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Abstract This paper proposes a new method for directly discovering the uncer-
tainty from a sample of discrete data, which is then used in the formation of an
Interval Type-2 Fuzzy Inference System. A Coefficient of Variation is used to
measure the uncertainty on a finite sample of discrete data. Based on the maximum
possible coverage area of the Footprint of Uncertainty of Gaussian membership
functions, with uncertainty on the standard deviation, which then are modified
according to the found index values, obtaining all antecedents in the process.
Afterwards, the Cuckoo Search algorithm is used to optimize the Interval Sugeno
consequents of the Fuzzy Inference System. Some sample datasets are used to
measure the output interval coverage.

1 Introduction

Uncertainty, as it is currently perceived, is still something of a mistified topic. Being
defined as something that is doubtful or unknown, in which by nature cannot be
directly measured, therefore showing a first problem in making use of it. Although
by nature, uncertainty is an unknown, it has not stopped engineers, scientists,
mathematicians, etc. from using it. That is, although directly not known, an
approximate of it can be modeled and used, improving the models in which it is
used. By using uncertainty in a model, that model will improve its resilience, thus
obtaining a better model in the end.

M.A. Sanchez � J.R. Castro
Autonomous University of Baja California, Tijuana, Mexico
e-mail: mauricio.sanchez@uabc.edu.mx

J.R. Castro
e-mail: jrcastror@uabc.edu.mx

O. Castillo (&)
Tijuana Institute of Technology, Tijuana, Mexico
e-mail: ocastillo@hafsamx.org

© Springer International Publishing Switzerland 2015
P. Melin et al. (eds.), Design of Intelligent Systems Based on Fuzzy Logic,
Neural Networks and Nature-Inspired Optimization,
Studies in Computational Intelligence 601, DOI 10.1007/978-3-319-17747-2_2

13



Most current literature on uncertainty [1–6] is mainly based on having previous
knowledge of the confidence interval around certain measurements, which trans-
lates into what is the probable uncertainty which exists within certain measure-
ments, usually expressed with the plus-minus symbol ± (e.g. 10.4 ± 0.02, with in
interval representation of [10.38, 10.42]).

As for models with uncertainty, there exists a logic which directly manages
uncertainty, this being Interval Type-2 Fuzzy Logic (IT2 FL) [7], which infers
Interval Type-2 Fuzzy Sets (IT2 FS) and ultimately obtains an interval or a crisp
value [8]. IT2 FS manage uncertainty directly into its logic by means of confidence
intervals [9], the best solution could be anywhere within such interval, and as such
is an excellent tool for directly applying and inference when dealing with uncer-
tainty. And as stated, the output interval can be used as the end result and a
deffuzification process can be computed upon such interval in the case that a crisp
value is required, and not an interval.

In this paper, a link is proposed between a measure of dispersion and uncer-
tainty, which is ultimately used in the formation of IT2 FS. The platform for the
model is created by a Fuzzy C-Means algorithm [10], afterwards using the
Coefficient of Variation is used to calculate the Fingerprint Of Uncertainty (FOU)
of each individual IT2 FS in the antecedents of the Interval Type-2 Fuzzy Inference
System (IT2 FIS), and finally, a Cuckoo Search algorithm [11] is used to optimize
Interval Type-2 Sugeno linear consequents [12]. The proposed method can be
categorized as a hybrid algorithm because it requires multiple steps/algorithm to
work in sequence for the final result to be obtained.

This paper is divided into three sections, the first is a brief introduction to the
definition of Interval Type-2 Fuzzy Sets; the following section describes in detail
both the premises and the proposed method; afterwards, some experimental results
are shown and discussed which asses the viability of the proposed method; finally,
concluding remarks are given as well as a couple of open questions as future work.

2 Interval Type-2 Fuzzy Sets

With the introduction of Fuzzy Sets in 1965 [13], it improved upon formal hard
logic, where instead of only having two choices of truth values {0, 1}, any value
between [0, 1] was now possible. This set an unprecedented involvement in
research that up to today is still very strong, first came Type-1 Fuzzy Sets [14],
which can only represent vagueness or imprecision, later came Interval Type-2
Fuzzy Sets, which could now, apart from vagueness, also represent a degree of
uncertainty (which is the focus of the proposed method in this paper), although
recently General Type-2 Fuzzy Sets [15] are starting to gain traction in research, is
still far from maturity when compared to Type-1 or Interval Type-2 Fuzzy Sets.

By nature, IT2 FS directly integrate uncertainty into its reasoning. This behavior
is best applied in the case of when it is expected to deal with uncertainty in the
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system that it is modeling, or when certain confidence intervals (uncertainty) are
known a priori to designing the IT2 FIS.

The most general descriptive form of an IT2 FIS is through a block diagram, as
shown in Fig. 1, which describes the basic inner functions of the complete infer-
ence. The Fuzzifier block may or may not transform the crisp input into a FS, this is
chosen depending on the intended behavior of the system; the Inference block takes
from the Rules block and reasons upon each input´s compatibility; the Type-reducer
block processes the outputs into an interval; finally, the Defuzzifier block reduces
the interval from the previous block and obtains a single real number.

An IT2 FS ~A is represented by l~A
xð Þ and l~A xð Þ which are the lower and upper

membership functions respectively of l~A xð Þ, and is expressed as
~A ¼ R

wl2½l
�Fl
k
xkð Þ;l�Fl

k
xkð Þ� 1

�
wl. Where, x 2 X, k is the kth antecedent, and l the lth rule.

A sample IT2 FS is shown in Fig. 2, here a Gaussian membership function with
uncertainty in the standard deviation.

Fig. 1 Block diagram describing an IT2 FLS. With a cripst input, two outputs are possible, a
confidence interval in which any possible point within such interval is a correct answer, or a crisp
value, in the case a single real number is required as output

Fig. 2 Sample IT2 FS
membership function.
A Gaussian membership
function is shown which has
uncertainty through the
standard deviation
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The representation for rules in an IT2 FIS is formatted as shown in Eq. (1),
where, l ¼ 1; . . .;M rules, p ¼ 1; . . .; q inputs, ~F is an antecedent IT2 FS, and ~G a
consequent IT2 FS.

Rl : IF x1 is ~Fl
1 and . . . xp is ~Fl

p; THEN y is ~Gl ð1Þ

3 Proposed Method for Measuring Uncertainty

Before giving a detailed description of the proposed method, the input data must
first be defined. As a starting point, a dataset is required, these data pairs, defined as
Eq. (2), where u is a set of ordered input values, and c is a set of ordered output
values, such that C forms a tuple of ordered sets of inputs with their respective
outputs.

C ¼ u; ch i ð2Þ

Having a dataset C, first some pre-processing must be done in order to obtain the
required inputs to the proposed method, this process is executed in order to acquire
a description of the IT2 FIS, that is, to obtain the rule description x as well as each
membership function’s base description, and the set of data pairs which affected the
formation of each membership function c 2 C. As this is are the required inputs
x; cf g to the proposed method, a Fuzzy C-Means (FCM) algorithm was chosen to

process the raw dataset C into the listed required inputs x; cf g. The FCM provides
a description of rules by means of a center for each membership function for each
rule. Although the FCM can define consequents for the rules in a Fuzzy System,
only the antecedents are used. As the other required input is a set of data pair sets
which affected the definition of each center, this can be obtained from the partition
matrix that is given by the FCM; for each data pair there exists a membership value
0; 1½ � which defines how much a certain data pair belongs to a cluster, or rule of the
found FIS, to simplify building the sets of data pairs, a simple competitive rule is
used: the cluster with the highest value decides that said data pair belongs to its
formation set. With both required inputs obtained, the proposed method can now
begin.

3.1 Dispersion in Data

Data dispersion in a sample of data pairs can be interpreted as a case of uncertainty.
An example of varying degrees of dispersion is shown in Fig. 3, where low,
medium, and high data dispersion, in relation to its center can, be perceived.
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When there is low dispersion of data samples near it representative center point,
most data points are bound by only a small distances as the standard deviation is very
small. This being interpreted directly into uncertainty in data, low dispersion is low
uncertainty because its numerical evidence concludes that there is near zero possi-
bility that further singular samples will fall far from the central point, unto which all
previous numerical evidence is very close to. In the case of medium data dispersion,
although there is a concentration of numerical evidence near its central point, there
are still data points farther from its center, this leads to knowing that although future
reading might obtain evidence which is far from the center, the probabilities of this
occurring is low when compared to having future readings fall near the center,
although not as near in the case of lower dispersion, this behavior points to having a
medium amount of uncertainty. On the extreme case of high dispersion, where every
sampled data point is evenly distributed throughout the range, the available
numerical evidence gives way to conclude that any future sample may equally land
on any section, therefore a high amount of uncertainty exists.

3.2 Relation Coefficient of Variation with Uncertainty

For the purpose of converting dispersion into uncertainty, a measure is first required
which can identify a degree of dispersion in a given set, preferably a normalized
value, and as such requirement, the Coefficient of Variation cv, shown in Eq. (3),
where r is the standard deviation, and l is the mean of the set.

cv ¼ r
l

ð3Þ

This coefficient has some limitations which can be avoided by applying some
modifications. First, cv should only be computed on non-negative values, for the
case of existing negative values, the solution is to remap all values unto the positive
side of the axis. Second, if μ has a value of 0 (zero), this would case an error in
computation, the solution is to add ε, which is a very small value, assuring a non-
division by zero. Another note on the behavior of cv, is that in normal distributions,

Fig. 3 Example of data dispersion. a Low data dispersion, b medium data dispersion, and c high
data dispersion
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values of [0, 1] are most likely to be obtained, but non-normal distributions can
obtain values above 1. Fortunately, with the FCM, all calculated sets are normal
distributions, so this is a non-issue with the current implementation.

With the known limitations of cv, an equation which modifies a set D is proposed
which addresses the issue negative values, shown in Eq. (4), where if a value exists
that is negative then the absolute value of the minimum is added to the set, thus
remapping all values into the domain of positive values.

IF 9x 2 Dð Þ; xjx \ 0f gTHEN D ¼ Dþ min Dð Þj j ð4Þ

In addition, a modification of Eq. (3) to suppress a possible division by zero, as
shown in Eq. (5), where ε is a very small value.

cv ¼ r
lþ e

ð5Þ

To express a relation dispersion-uncertainty, when dealing with IT2 FS, the
Footprint of Uncertainty (FOU) is used. This relation is a direct proportionFOU / cv.
When there is low dispersion, there is a small FOU, when there is a medium amount
of dispersion, there is a medium amount of FOU, and when there exists a high amount
of dispersion, there is a high amount of FOU. This is better expressed in Fig. 4, where
varying degrees of a measure of dispersion has been converted into a FOU which
directly forms an IT2 FS, explained in the following sub-section.

3.3 Proposed Method

To form IT2 FS for the antecedents of a FIS, the first step is to obtain rule configuration,
and data pair sets for each inputs on each rule, via a FCM algorithm. Afterwards each
set of data pairs is worked on independently of each other. First, a standard deviation σ
is found for the set in relation to its μ, which was found by the FCM, then the cv is
calculated. This value is now used to search for the optimal FOU area in an IT2 FS.
Considering Fig. 4c, this would be the highest possible area. The initial search is done
by first considering the highest possible area and the σ which was already calculated,

Fig. 4 Examples of varying degrees of FOU. Where a FOU = 0, b FOU = 0.5, and c FOU = 1
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with discrete small steps a search is performed for the FOU value which equals cv.
The smallest value is set as r1 ¼ r2, shown in Fig. 4a. Each increment step λ affects σ
as shown in Eq. (6), this is done iteratively while ri � l; r0k k.

r� k ð6Þ

Once the search has found the values of r1 and r2 which represent the desired
FOU, the IT2 FS can be formed. Which has the form of Fig. 5, this can be formed
with the values which have been calculated, by the FCM, l, and by the proposed
method, r1 and r2. This concludes the proposed method for building the ante-
cedents of an IT2 FIS.

3.4 IT2 Sugeno Fuzzy Consequents

The proposed method only obtains the IT2 FS for the antecedents of a FIS, the next
required step is to obtain the consequents of the FIS. This is done by optimizing the
IT2 Sugeno linear parameters via a Cuckoo Search algorithm. Although any other
optimization algorithm can be used.

4 Experimental Results and Discussion

To test the proposed method, various datasets were used. The validation method
was to verify that the interval output of the IT2 FIS had good coverage of the
reference targets and at the same time not overreaching too far with the output
interval.

Fig. 5 IT2 FS represented by
a Gaussian membership
function with uncertainty in
the standard deviation
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Among the used datasets, three were used. A synthetic dataset of a 5th Order
curve [16], with 1 input (x) and 1 output (y), and 94 total samples. And two real
datasets; engine behavior [16], with 2 inputs (fuel rate, speed) and 2 outputs (tor-
que, nitrous oxide emissions), and 1199 total samples; and Hahn1 [16], with 1 input
(temperature) and 1 output (thermex), with 236 total samples.

4.1 Experimental Results

The obtained IT2 FIS for each dataset is shown in Figs. 6, 7 and 8, making
emphasis on the FOU of the individual membership functions in the antecedents,
where varying degrees of uncertainty can be seen.

As for the output coverage for each dataset, using 40 % training and 60 %
training, Table 1 show the summary of the obtained coverage results.

The last set of results show graphical representations of the respective outputs
for each dataset, these are shown in Figs. 9, 10 and 11. Where the blue points
represent the output targets, and the lower and green lines represent the coverage of
the FOU (Fig. 12).

Fig. 6 IT2 FIS for solving the 5th order curve dataset
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Fig. 7 IT2 FIS for solving the Hahn1 dataset

Fig. 8 IT2 FIS for solving the engine behavior dataset
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4.2 Results Discussion

With the obtained results, two facets of discussion arise, on the individual level and
on the general level. On the individual level; for the 5th Order curve, a full coverage
of the target is achieved although there are spikes where the curve changes slope,
this is caused by the linear consequents which cannot follow abrupt changes in the

Table 1 Obtained output
coverage results for the
chosen datasets

Dataset name Coverage (%)

5th Order curve 100

Hahn1 100

Engine behavior 99.88/99.66

Fig. 9 Output coverage for
the 5th order dataset

Fig. 10 Output coverage for
the Hahn1 dataset
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curve grade due to the small amount of rules used for this FIS. A solution would be
to use more rules to compensate, but this would also cause an additional, and
unnecessary, complexity in the system. Yet the overall behavior is acceptable as
there is sufficient coverage as well as a controlled width of the output uncertainty.
For the Hahn1 solution, it has the same curve behavior of the 5th Order curve,
where with only three rules there is a pronounced visible behavior in the linear
output of the consequents. Yet there is good coverage, of 100 %, of the target
outputs via the controlled output uncertainty. Finally, for the engine, having two
outputs, each ones behavior was slightly different. The first output has a more
predictable behavior by better following the output targets with its coverage of
99.88 % of reference targets, whereas the second output´s behavior is not as linear,
such that it holds a tendency to expand as the x axis increases, although it has a
coverage of 99.66 % of its reference targets. It must be noted that this specific
behavior is more in line with how the Cuckoo Search algorithm optimized the

Fig. 11 Output coverage for
the Hahn1 dataset. For the
first output of the FIS

Fig. 12 Output coverage for
the Hahn1 dataset. For the
second output of the FIS
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consequents, because the spreads on each individual consequent control the output
interval behavior. The solution would be to adjust the Cuckoo Search for better
performance or use another optimization algorithm that obtains a better solution.

On the general level of the obtained results, the formed antecedents give a good
representation of uncertainty based on the dispersion of the individual sets which
affected the creation of the rule configurations found by the FCM. It also depicts a
behavior that IT2 FS are not always necessary, with low to no dispersion, and a T1
FS would be more than enough.

Being dependent on other algorithms can limit the general performance of the
proposed method. Yet it also adds more possibilities, such as interchanging clus-
tering algorithms to one that can obtain better rule configurations and belonging sets
to be used by the proposed method. As for the optimization of the IT2 Sugeno linear
consequents, there is a vast amount of optimization algorithms which could also be
used for acquiring better results and thus improving the output interval behavior.

5 Conclusion and Future Work

5.1 Conclusions

With the suggested relation dispersion-uncertainty, direct uncertainty extraction is
possible from existing data. This relation is found through the Coefficient of
Variation, an existing equation used to measure the amount of dispersion in a set,
this measure is a normalized value between 0 and 1, that although higher values
than 1 are possible, this is only for non-normal distributions, which, for the pur-
posed application, are non existent considering that the sets are created by a
clustering algorithm which only groups in normal distributions of data.

The application shown in this paper, of forming IT2 FS through the suggested
equation, which relates dispersion-uncertainty, finds this relation based on the
maximum possible achievable FOU, valued at 1, and relates to the maximum
possible Coefficient of Variation, in a normal distribution, valued also at 1. This
relation of dispersion-uncertainty-FOU is the main contribution of this paper.

With a deeper examination of the experimental results, there is much depen-
dence on the FCM algorithm, where if such algorithm fails to provide a good
model, the proposed method would fail also, since the proposed method depends on
the performance of the clustering algorithm. Fortunately, if the FCM fails, other
clustering algorithms could be used.

5.2 Future Work

Considering the limitation, as well as dependence, of the clustering algorithm,
which other clustering or non-clustering techniques could be used to create a better
pairing with the proposed method?
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With the other high dependence on optimization algorithms for the consequent
section of the IT2 FIS, what other optimization algorithm could be used to best pair
with the proposed method?

In this paper an IT2 FS was formed, represented by a Gaussian membership
function with uncertainty in the standard deviation. How would other IT2 FS
membership function be adapted to use the proposed method?

How the area was directly correlated to the FOU by means of its maximum
possible area was proposed. Is this the best approach?
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