Chapter 2
Geometric Action Functionals

Abstract In this chapter we begin by teaching the reader all the necessary basics of
rectifiable curves and absolutely continuous functions. We then introduce the class
of geometric action functionals to which our theory can be applied (and in particular
the subclass of Hamiltonian geometric actions), give several examples of geometric
actions, and prove a lower semi-continuity property for them. Finally, we define the
notion of a “drift” of an action, as a generalization of the drift vector field entering
the Wentzell-Freidlin action.

2.1 Curves

Let us begin by reviewing some basic definitions and facts related to curves, and let
us then introduce the various classes of curves that we will use.

2.1.1 Rectifiable Curves and Absolutely Continuous
Functions

An unparameterized oriented curve y is an equivalence class of functions ¢ €
C([0,T],D), T > 0, that are identical up to continuous non-decreasing changes
of their parameterizations, or more formally, whose Fréchet distance to each
other vanishes. In this monograph we will tacitly assume that all our curves are
unparameterized and oriented.

A curve y is called rectifiable [18, p. 115] if for some (and thus for every)
parameterization ¢ € C([0, T], D) of y we have

N
length(y) := length(¢) := ;u}R)] Z lo(t) — p(ti1)| < 0.
€

O=ty<--<ty=T i=1

It is easy to see that length(¢) is in fact the same for any parameterization ¢ of y,
and that it is finite if and only if all the component functions of ¢ are of bounded
variation [18, Theorem 3.1]. We will denote the set of rectifiable curves in D by I".

A function ¢:[0,T] — D is said to be absolutely continuous [18, p. 127] if
for every ¢ > 0 there exists a § > 0 such that for any finite collection of disjoint
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14 2 Geometric Action Functionals

intervals [t;—1,%;) C [0,T],i = 1,...,N, we have

N

N
Dti—t) <8 = Y o) — )| <.
i=1

i=1

We will denote the space of absolutely continuous functions with values in D by
C (0, T). One can show [18, Proposition 1.12 (ii) and Theorem 3.11] that a function
@ isin C(0, T) if and only if there exists an L'-function which we denote by ¢’ such
that ¢(¢) = ¢(0) + fot ¢’ (7) dt for V¢ € [0, T]. In that case, ¢ is differentiable in the
classical sense at almost every ¢ € [0, T, with derivative ¢’(¢).

Clearly, every function ¢ € C(0,T) is the parameterization of a rectifiable
curve y since for every partition 0 = ¢ty < --- < ty = T we have

ti—1
/ @' dt
ti

and it is not hard to show [18, Theorem 4.1] that length(y) = fOT |@’| dz. The
reverse is not true: Not every function ¢ that parameterizes a rectifiable curve y
is necessarily absolutely continuous (a counterexample can be constructed using the
Cantor function [18, p. 125]). However, we have the following:

N

N
PNIOEXICIEDY
i=1

i=1

T
5/ '] dr < oo,
0

Lemma 2.1 (Parameterization by Arclength)

(i) Any curvey € I' can be parameterized by a unique function ¢, € C(0, 1) with
|¢;| = length(y) a.e.

(ii) If ¢ € C(0,T) is any absolutely continuous parameterization of y then ¢ =
@y o B for some absolutely continuous function B:[0, T] — [0, 1], and we have
@' = (p,0B)B and ' > 0 a.e.on [0, 1].

Proof (i) This is a trivial modification of [18, p. 136].

(ii) In the proof in [18, p. 136] it is shown that for any parameterization ¢ €
C([0,T],D) of y the function ¢, fulfills ¢(t) = ¢,(B(?)) for V¢ € [0,T],
where B:[0,7] — [0, 1] is defined by B(r) := length(¢|,q)/ length(y). For

any collection of disjoint intervals [t;—1,#;) C [0,T],i = 1,...,N, we have
N | N
) — B(tiz1)) = ———— ) length(o|i_,
2 (B = pl-v) = s ; ength(@ly,-..11)
| N M;
= sup 9(st) — (si—y)
length(y) ; MiEN 1;| k k=t |
[,'71=S6<"'<S5\,1,_=t,’
| N M
=T sup sup W(Si) _</’(Si_ )|
length(y) M EN My€EN ZZ| * -l

i=1 k=1
1 1 N N
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and since for ¢ € C(0, T) the last double sum can be made arbitrarily small by
ensuring that Y0 Y% (st —si_ ) = Yo, (t; — ti1) is sufficiently small,
this shows that B is absolutely continuous. Clearly, 8/ > 0 a.e. since B is
non-decreasing, and for V¢ € [0, T] we have

‘A¢M=¢m—wm=%wmrwwmw

ﬂ(t) / ! / !
=4 %MZA%$@WMM

0

(for the last step, see [18, p. 149, Exercise 21]), which implies that
¢’ = (¢, 0 B)B’ ae.on [0,T]. 0

The following lemma is a result about the uniform convergence of absolutely
continuous functions. We will use the notation ¢ C G (for a function ¢ € C(0, 1)
and a set G C R") to indicate that ¢(«) € G for Yo € [0, 1]. Similarly, for a curve
y € I' we will write y C G to indicate that ¢, C G.

Lemma 2.2 (i) If a sequence (¢,)nen C C(0,1) fulfills ¢, C K for ¥Vn € N and
some compact set K C D, and if

M := sup esssup |g,(a)| < o0, 2.1
neN  «€l0,1]

then there exists a uniformly converging subsequence.
(ii) If a sequence (gn)nen C C(0, 1) fulfilling the conditions of part (i) converges
uniformly then its limit ¢ is in C(0, 1) and fulfills |¢'| < M a.e.

Proof (i) The sequence (¢,).en iS equicontinuous since by (2.1) we have

ay
/ ¢, da
2%}

for ¢y < ) and Vn € N, and so we can apply the Arzela-Ascoli theorem.
(ii) By the same estimate, for any collection of disjoint intervals [e;—1, «;) C [0, 1],
i=1,...,N, we have

ay
5/|wwsMw—w

oo

|(pn(al) - @n(OlO)l =

N N N
> le@) = @] = lim > |eu(@) = gulei-)| <MY (@ —aim).
i=1

i=1 i=1

This shows that ¢ is absolutely continuous, and (taking N = 1 and recalling
that ¢’ is the classical derivative a.e.) that |¢/| < M a.e. Since K is compact and
¢, C K for Vn € N, we have ¢ C K C D and thus ¢ € C(0, 1). O
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2.1.2 Curves that Pass Points in Infinite Length

Sometimes we will have to work with curves that do not have finite length (i.e.,
that are not rectifiable). We denote by C(0, 1) D C(0, 1) the space of all functions
in C([0, 1], D) that are absolutely continuous in neighborhoods of all but at most
finitely many «; € [0, 1], and we denote by I" D I the set of all curves that can be
parameterized by a function ¢ € C(0, 1).

Note that for Vo € C(0, 1), ¢’ is still defined a.e., but one can see that for
these exceptional values o; we have f[o,l]m[a,-—s,a,- +e] |¢'| da = oo for Ve > 0.! We
therefore say that the curve y € I" given by ¢ passes the points ¢(;) in infinite
length.

Of particular use in our work is, for fixed x € D, the set r (x) of all curves that are
either of finite length (i.e., rectifiable) or that pass x once in infinite length (note that
rcr (x) C I"). More precisely, these are the curves that can be parameterized by
functions in the set C(x), which we define to be the set of functions ¢ € C([0, 1], D)
such that

either ¢ € C(0, 1),
or (p(%) =x,

and ¢|(0,1/2—a) and @|[1/2+4,1] are absolutely continuous for Va € (0, %).

See Sect. 2.1.3 and Fig. 2.1 for an illustration of these classes of curves.

In preparation for Lemma 2.3, which is the equivalent of Lemma 2.2 for
sequences of functions in C(x), we introduce the following notation: For a curve
y and a point x we say that y passes x at most once if for any parameterization
¢ € C([0, 1]) of y we have

(<o <a <1: () =¢lr) =x) = Vae o, a (@) =x
(2.2)
For a Borel set E C Dand acurve y € I we define

1
length(y|g) := /]lzeEIdzl =/ |¢'[1yepda € [0, 00]
y 0

for any parameterization ¢ € C(0, 1) of y.

Lemma 2.3 Let x € D, let the sequence (Yp)nen C I'(x) fulfill y, C K for Vn € N
and some compact set K C D, suppose that every curve y, passes x at most once,

I'The key argument for this can be found at the end of the proof of Proposition 3.25.
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and suppose that there exists a function n: (0, 00) — [0, 00) such that
Vn e N Yu > 0: length(yulp, ) < n(w). (2.3)

Then there exist parameterizations ¢, € 6(x) of the curves y, such that a
subsequence (¢, )xen converges pointwise on [0,1] and uniformly on the sets
[0, % —a] U [% +a, 1], a € (0, %) The limit ¢ is in C(x), and the corresponding
curve y € I (x) fulfills

Yu > 0: length(y|l§“(x)(-) < n(u). 2.4)
Proof See Appendix A.1. This proof uses Lemma 2.6 (i). O
Introducing some final notation, for two sets A1, A, C D we write
r>:={yer|ycD,y startsinA; and ends in A5},
C2(0.1) :={p € C(0.1) | ¢ C D, 9(0) € Ar. (1) € Ay},

and for two points xj,x, € D we similarly define I’ X’EZ and é‘ff (0, 1). The sets r Alz,
Cﬁf 0,1), r'x Cjﬁz 0, 1), f'xfz (x) and C‘jlz (x) are defined analogously.

X1 2 1

2.1.3 Summary of the Various Classes of Curves

(See Fig. 2.1 for illustrations.) All curves are unparameterized and oriented, and they
may have loops and cusps. The class I" contains only curves with finite length, while
curvesin ' D I’ may reach and/or leave finitely many points in infinite length, also
repeatedly. For some fixed x € D (marked by the cross), f'(x) contains all of I,
plus all the curves that pass x once in infinite length; they cannot pass any other
point in infinite length, and they cannot pass x twice in infinite length. The sub- and

- Q L
I

\/‘}Xg_

Fig. 2.1 Illustration of the various classes of curves
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superscripts x; and x, or A; and A, add constraints to the start and end points of
these functions and curves and in addition require them to take their values in D.

2.2 Geometric Actions, Drift Vector Fields

In this section we will define the class & of geometric action functionals, and we
will generalize the concept of a “drift vector field” b(x) from the large deviation
geometric action of the SDE (1.3), given by (1.7), to general geometric actions
Se¥.

Definition 2.4 We denote by ¢ the set of all functionals S: I = [0, 0] of the form
1
50) = [ ted = [ top) e @3)
y 0

where ¢ € C(0, 1) is an arbitrary parameterization of y, and where the local action
£ € C(D x R",[0,00)) has the following properties:

(i) VxeD VyeR" Ve > 0: £(x,cy) = cl(x,y),
(ii) for every fixed x € D the function £(x, -) is convex.

For ¢ € C(0, 1) we will sometimes use the notation S(¢) := fol e, ¢’) da, and
for any interval [o, @] C [0, 1] we will denote by S(¢|je, ) = fofllz Lp, ") da
the action of the curve segment parameterized by ¢|(¢; ay]-

As we will see next, (i) is needed to show that (2.5) is independent of the specific
choice of ¢, while (ii) is essential to show that S is lower semi-continuous in a certain
sense (Lemma 2.6). Observe also that (i) implies that £(x,0) = 0 for Vx € D.

Lemma 2.5 Functionals S € 9 and their local actions £(x,y) have the following
properties:

(i) S(y) is well-defined, i.e., (2.5) is independent of the specific choice of .
(ii) For ¥compactK C D 3dc; = ¢1(K) >0 Vx € K Vy € R™ L(x,y) < c1ly|- In
particular, we have for Vy € I" with y C K:S(y) < c1 length(y).

Proof (i) Givenacurve y € I' and any parameterization ¢ € C(0, 1) of y, we use
the representation ¢ = ¢, o 8 of Lemma 2.1 (ii) and Definition 2.4 (i) to find
that

1 1
[ tp.¢)do = / tgy 0 B. (g, 0 )B') da
0 0
1
- /0 €y 0 B.gl, 0 )P da

1
- /0 t(gy. 4, dB.
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where the last step follows again from [18, p. 149, Exercise 21]. By the
uniqueness of ¢,,, the right-hand side only depends on y. The proof for general
curves y € I is based on the same calculation.

(ii) Given any K, set ¢; := 1 + maX,ex yj=1 £(x,y) > 0, use Definition 2.4 (i) to
show that £(x,y) = [y|¢(x, ﬁ) < c1|y| for ¥y # 0, and recall that £(x,0) = 0.

In particular, if ¢ € C(0, 1) is a parameterization of some y € I" with y C K
then S(y) = fol Lp,¢)da < ¢ fol |¢'| da = c; length(y). o

Lemma 2.6 (Lower Semi-Continuity) For VS € 4 we have the following:

(i) If a sequence (@p)nen C C(0,1) fulfilling (2.1) has a uniform limit ¢ € C(0,1)
then liminf,_, o S(¢,) > S(¢).
(ii) The limit y constructed in Lemma 2.3 fulfills lim inf, o0 S(y,,) > S(y).

Proof See Appendix A.2. O

Definition 2.7 Let S € 4. A vector field b € C'(D,R") is called a drift of S if for
VY compact K C D3c,=cr(K) > 0Vxe K VyeR"

£(x,y) = e2(Ib@)|Iyl = (b(x), 3)). (2.6)

The right-hand side of (2.6) is a constant multiple of the local large deviation
geometric action (1.7) of the SDE (1.3) with drift 5(x) and homogeneous noise,
and thus we see that for the geometric action associated to (1.3), the vector field
b(x) in (1.3) is clearly a drift also in this generalized sense (take ¢c; = 1). The
inequality (2.6), which will only be used to obtain the key estimate Lemma 6.13 (and
a weaker version thereof in the proof of Lemma 4.2), effectively reduces our proofs
for an arbitrary action S € ¢ to the case of the specific action given by (1.7), and it
is ultimately the reason why the conditions of our main criteria, Propositions 3.23
and 3.25, solely depend on the drift and not on any other aspect of the action S.

The drift vector field b(x) in Definition 2.7 is not a uniquely defined object: If b is
a drift of some action § € ¢ and if B € C'(D, [0, 00)) then Bb is a drift of S as well
(with modified constants ¢,), and in particular the vector field b(x) = 0 is a drift of
any action S € ¢. Note however that (i) if S(x) > 0 for Vx € D then the vector
fields b and Bb have the same flowline diagrams, and we will find that our criteria
will not distinguish between these two choices; (ii) if on the other hand 8(x) = 0
and b(x) # 0 for some x € D then the flowline diagrams of b and Bb are different,
and our criteria may only apply to b but not to 8b. In general, a good choice for the
drift (i.e., one that lets us get the most out of our criteria) will be one with only as
many roots as necessary.
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Definition 2.8 For a given vector field b € C!(D,R") we define the flow ¥ €
C'(D x R, D) as the unique solution of the ODE

Y (x,t) =b(Y(x, 1)) for xeD,teR,

2.7)
Y(x,0) =x for xeD.

By a standard result from the theory of ODEs [1, Sect.7.3, Corollary 4], our
regularity assumption on b implies that the solution ¥ (x, f) is well-defined locally
(i.e., for small #), unique, and C' in (x, f). However, since b will always play the role
of a drift, we may assume that ¥ (x, r) is in fact defined globally, i.e., for Vi € R:
Indeed, if this is not the case then we can instead consider the modified drift b,
for some function § € C 1(D (0, 00)) that vanishes so fast near the boundary 0D
that the associated flow ¥ only reaches dD in infinite time (i.e. 1//(x t) is defined
for V(x, 1) € D x R), and the only aspect of the flow that will be relevant to us (the
flowline diagram) remains invariant under this change.

Finally, recall that under this additional assumption we have ¥ (¥ (x,1),s) =
Y(x,t+s)and 9,V (x,1) = Vb(Y(x, 1)) for Vx € D and Vt,s € R.

We conclude this section by classifying the points in state space according to the
type of difficulty that they will pose for our existence theory.

Definition 2.9 Let S € ¢ be given by the local action £(x, y), and let x € D.

(1) xis called a degenerate point of S if 3y € R" \ {0}: £(x,y) = 0.
(ii) x is called a critical point of S if Vy € R": £(x,y) = 0.

We denote by Dg+ := {x € D|Vy € R"\{0}: £(x,y) > 0} the set of non-degenerate
points of S.

In other words, degenerate points are those at which there is at least one direction
into which one can locally move at no cost, while at critical points one can move
into any direction at no cost. At non-degenerate points of S, every direction comes
at a positive cost. Note that every critical point is degenerate.

Since directions with zero cost make it hard for us to control the length of curves
that pass the point in question, critical points will be the hardest to deal with in our
existence theory, while non-degenerate points will be the easiest.

Example 2.10 (i) For the geometric action S given by (1.7), i.e., by £(x,y) =
|b(x)|]y] — (b(x),y), every point in D is degenerate (i.e., D¢+ = @), and the
critical points are those points x for which b(x) = 0. Indeed, if x € D is such
that b(x) = 0 then clearly we have £(x,y) = 0 for Vy € R", and for all other
points only the direction given by y = b(x) # 0 fulfills £(x,y) = 0.

(i) For the Euclidean length, i.e., the geometric action S given by £(x,y) = |y|,
there are no degenerate or even critical points, and so we have D¢+ = D. O
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2.3 The Subclass of Hamiltonian Geometric Actions

We will now consider a particular way of constructing a geometric action from
a Hamiltonian H(x, 6), which was introduced in [9, 10] in the context of large
deviation theory.?

Lemma 2.11 Let the function H € C(D x R", R) fulfill the assumptions

(HI) VYxeD: H(x0) <0,
(H2) the derivatives Hy and Hyy exist and are continuous in (x, 0),
(H3) Y compactK C D3Img > 0Vx € KVO,£ € R": (£, Hog(x, 0)E) > mg|E|>

Then the function £: D x R" — [0, 00) defined by

£(x.y) := max{(y,0) |6 € R", H(x,0) < 0} (2.8a)

max{(y,6) |6 € R", H(x,6) = 0} (2.8b)

has the properties of Definition 2.4, and so it defines a geometric action S € 9.

Proof The sets L, := {0 € R"|H(x,0) < 0} are bounded, in fact uniformly for
all x in any compact set K C D, since for Vx € K V0 € L, 30 € R™

0> H(x,0) = H(x,0) + (Hg(x,0),0) + {0, Hoo (x, 0)6)
> —max |H(x,0)| — max |Hp (x,0)||0] + $m|6]>. (2.9)
X€EK X€EK

This shows that £ is finite-valued, and since 0 € L, by (H1) we have
£(x,y) > (y,0) = 0 for Vy € R". The fact that the representations (2.8a) and (2.8b)
are equivalent is obvious for y = 0; for y # 0 observe that for V6 € R”
with H(x,0) < O the boundedness of L, implies that there 3¢ > 0 such that
H(x,0 + cy) = 0, and (y,0 + cy) > (y,0). The relation £(x,cy) = cf(x,y) for
Ve > 0 is clear, and £(x,-) is convex as the supremum of linear functions. The
continuity at any point (xo,yo = 0) follows from the estimate £(x,y) < M|y| for
Vy € R" and all x in some ball B, (xo) C D, where M := sup{|0] | 0 € U,ep, (x,) L+}-
The continuity everywhere else will follow from Lemma 2.14 (i). O

Definition 2.12 (i) We call a function H fulfilling the properties (H1)-(H3) a
Hamiltonian, and we say that H induces the geometric action S defined in
Lemma 2.11.

(ii)) We denote the class of all Hamiltonian geometric actions, i.e., of all actions S
constructed as in Lemma 2.11, by 7 C ¢.

2This work also proposed an algorithm, called the geometric minimum action method (gMAM),
for numerically computing minimizing curves of such geometric actions.
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(iii) We denote by J#% C . the class of all geometric actions S € 7 that are
constructed from a Hamiltonian H that fulfills the stronger assumption

(H1’) Vx € D: H(x,0) = 0.

Note that since £ depends on H only through its O-level sets, different Hamilto-
nians H can define the same local action £ via (2.8), i.e., they can induce the same
geometric action S € 7. In particular, for VB € C(D, (0, 00)) the Hamiltonians
H(x,0) and B(x)H(x, 0) induce the same action S. The next lemma shows how
Definition 2.9 can be expressed in terms of H, and that Assumption (H1") does not
depend on the specific choice of H.

Lemma 2.13 Let S € 7, and let H be a Hamiltonian that induces S.

(i) A point x € D is critical if and only if
Hyp(x,0) =0 and H(x,0) =0, (2.10)

and in that case (2.10) holds in fact for every Hamiltonian that induces S.
(ii) A point x € D is degenerate if and only if H(x,0) = 0.
(iii) If some H inducing S fulfills (H1’) then all of them do.

Proof See Appendix A.3. For part (ii) see also Fig. 2.2b. O

In particular, Lemma 2.13 (ii) and (iii) imply that % is the class of all Hamiltonian
actions S such that D only consists of degenerate points, i.e., such that Dy, = @.
Furthermore, we learn that for VS € 5 we have Ds+ = {x € D | H(x,0) < 0}.

To actually compute £(x, y) from a given Hamiltonian H, and for many proofs,
the following alternative representation of £ is oftentimes useful. It can be derived
by carrying out the constraint maximization in (2.8b) with the method of Lagrange
multipliers.

Lemma 2.14 (i) Forevery fixed x € D and y € R" \ {0} the system
Hy(x,0) = Ay, H(x,v) =0, A=>0 (2.11)

has a unique solution (¥ (x,y), A(x,y)), the functions ¥: D x (R" \ {0}) — R”"
and A:D x (R" \ {0}) — [0, 00) are continuous, and the function £ defined
in (2.8a) can be written as

0(x.y) = (()y,ﬂ(x,y)) ify #0, 2.12)

ify=0.

(ii) If S € € is induced by H then a point x € D is critical if and only if
dy # 0: A(x,y) = 0. In that case, we have in fact A(x,y) = 0 for Vy # 0.

Proof See Appendix A.4. O
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See Fig.2.2a for a geometric interpretation of (2.8a)—(2.8b) and (2.11)-(2.12):
By Assumption (H3) the function H(x,-) and thus also its O-sublevel set
{60 € R"| H(x,0) < 0} is strictly convex, and by Assumption (H1) it contains the
origin. The maximizer in (2.8a), 8 = ¥ (x,y), is the unique point on its boundary
where the outer normal aligns with y, and the local action £(x,y) is |y| times the
component of ¥ (x, y) in the direction y.

The following lemma provides a quick way to obtain a drift for any Hamiltonian
geometric action. The examples at the end of this section will illustrate its use.

Lemma 2.15 If S € J2 is induced by H then b(x) := Hy(x, 0) fulfills the estimate
in Definition 2.7, and thus if b is C' then it is a drift of S. We call a drift obtained in
this way a natural drift of S.

Proof Let b(x) := Hy(x,0), and let K C D be compact. Define a := sup,cx |b(x)|
and ¢ := [2 + sup{|H99(x, 0)| |x ek, |0 < a}]_1 e (0, %], and let x € K and
y e R™.

If y = 0 then (2.6) is trivial since both sides vanish. Also, if y # 0 and
A(x,y) = 0 then by Lemmas 2.14 (ii) and 2.13 (i) we have b(x) = 0, so (2.6) is
trivial again. Therefore let us now assume that y # 0 and that A(x, y) > 0.

Setting 6y := ¢ (lb‘(xl)| y— b(x)) a Taylor expansion of H(x, 6y) around 6 = 0
gives us a 6" on the straight line between 0 and 6y (thus fulfilling |0'| < [6] <
2¢3|b(x)| < 2ac, < a) such that

H(x, 6p) = H(x,0) + (Hs(x,0), 6o) + 3(60. Hoa (x, 0")60)
<0+ (b(x). 60) + 3¢5 60|
= (b(x) + 3¢5 " 6o, bo)

(37l + bw). oy = beo)

= 32|55 = bP) = 0

(a) : R’ = Hx9) |[l(b) . Ay = Hy(x,0)

Fig. 2.2 (a) Illustration of (2.8a)—(2.8b) and (2.11)—(2.12), for fixed x € D and y € R" \ {0},
in the case H(x,0) < 0. (b) If H(x,0) = 0 and if y aligns with Hg(x,0) then ¥ = 0 and thus
fx,y) =0
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Another Taylor expansion, this time around 8 = ¢ := ¥ (x,y), now gives us a 6”
such that

0 > H(.X, 90)
= H(x,9) + (Ho(x.9), 60 — ) + (60 — 9, Hpo (x,6") (60 — 9))
=04+ Axy)(y. 00— ) +0,

where we used both equations in (2.11), and Assumption (H3). Since A(x,y) > 0,
this implies that

£0ey) = (8.5) = (60.y) = co B2y — b(x).3) = e2(Ib@)|ly| = (b(). ).

|

Note that since there is not a unique Hamiltonian associated to S, there is not
a unique natural drift either; in particular, the remark following Definition 2.12
implies that with b also Bb is a natural drift for V8 € C(D, (0, 00)), with the
same flowline diagram. The next remark shows that for actions S € .74 in fact every
natural drift has the same flowline diagram.

Remark 2.16 For S € 7% we have the following:

(1) All natural drifts b share the same roots since by Lemma 2.13 (i) and (H1’)
we have b(x) = 0 if and only if x is a critical point. In particular, this means
that natural drifts are optimal in the sense that by (2.6) they only vanish where
necessary.

(i) At non-critical points x, the direction y := % is the same for every natural
drift b, since Lemma 4.3 (i)—(ii) will characterize it as the unique unit vector y
such that £(x,y) = 0.

Thus, for any fixed S € .74 all natural drifts have the same flowline diagram.

In contrast, for actions § € 7\ 74 (i.e., if S has any non-degenerate points) the
natural drift is not always the optimal choice: In Examples 2.20 and 2.21 below the
natural drift will even turn out to be the trivial (and thus useless) drift b = 0. (See
Example 3.32 in Sect. 3.4.3 for how to find a better one.) Furthermore, Example 3.33
illustrates two cases in which the natural drift is non-trivial but contains a limit cycle,
which would usually prevent us from using it in our existence criteria.

However, since in that example we assume that there is a non-degenerate point
on the limit cycle, the following lemma turns out to resolve the problem in this case:
It says that we are allowed to modify the obtained natural drift in a closed subset of
the region Dy in any way we want.

Lemma 2.17 Suppose that b is a drift of S € 4, and that b € CY(D,R") is another
vector field that coincides with b outside of some closed subset of Ds+. Then b is a
drift of S, too.
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Proof See Appendix A.S. O

Finally, the next lemma states the key property of Hamiltonian geometric actions
in particular in the context of large deviation theory: It shows how a double
minimization problem such as (1.4)—(1.5) can be reduced to a simple minimization
problem over a Hamiltonian geometric action.

Lemma 2.18 Ler H be a Hamiltonian fulfilling (H1)—~(H3), and define for VT > 0
the functional Sp: C(0,T) — [0, o0] as

T
Sr(y) = / L(y, y)dt, where (2.13)
0
L(x,y) := sup ((y, 0) — H(x, 9)) for Vxe D Yy e R" (2.14)
R

is the Legendre transform of H(x, ). Then for YA1,A, C D we have

inf  Sp(x) = inf S(y). (2.15)
_T>0 yeFAz
2€C,2(0.1) =

where S € J is the geometric action induced by H.

Proof Using the bijection (7, x) <> (y. T, p) given in Lemma 2.1 (ii) that assigns
to every y € C(0,T) its curve y € I" and its parameterization § € C([0, T], [0, 1])
via the relation y = ¢, o 8, we have

b Sro= il nf  Selgyof)= int, SG)
XGQ%(O,T) A1 BeC([0.1].[0.1]) Al

B non-decr., surjective

where the functional

S(y) == }g{) St(py o B)

BeC((0.71.[0,1])
B non-decr., surjective

was found in [10] to have the integral representation (2.5) with the local action given
by (2.8a)—(2.8b) (or equivalently, by (2.11)—(2.12)). O

We conclude this section with three examples of Hamiltonian geometric actions.

Example 2.19 (Large Deviation Theory, PartI) Stochastic dynamical systems with
a small noise parameter ¢ > 0 often satisfy a large deviation principle whose

3 At the beginning of [10], additional smoothness assumptions on H were made, but they do not
enter the proofs of these representations.
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action functional St is of the form (2.13)—(2.14). Examples include (i) stochastic
differential equations (SDEs) in R" [8]

dX¢ = b(X5)dt + Veo (X)) dW,, X, = xi, (2.16)

where b(x) is the drift vector field and o (x) is the diffusion matrix of the SDE, and
(ii) continuous-time Markov jump processes in R” [16] with jump vectors ee; € R”,
i =1,...,N, and corresponding jump rates £~'v;(ex) > 0. Here we assume that b,
A := ool and v; are C! functions, and that for each fixed x € D, A(x) is a positive
definite matrix.

Using the notation (w;,wa),, = (w1, Mw) and soon also |wly = (w, w)}vfz
for Ywi,wy,w € R" and for any positive definite symmetric matrix M, the
Hamiltonians used in (2.13)—(2.14) to define Sy are

H(x.0) = (b(x).0) + 3|0[3,.  (SDE) (2.17a)
N
H(x,0) = Z vi(x) (e<e"’0> — 1). (Markov jump process) (2.17b)

i=1
In the SDE case, the function L(x, y) defined in (2.14) can easily be found to be

L(x,y) = 51b(x) = y[3-14); (SDE) (2.18)

whereas for Markov jump processes no closed form of L(x, y) is available.

The central object of large deviation theory for answering various questions about
rare events in the zero-noise-limit & — 0, such as the transition from one stable
equilibrium point of b to another, is the quasipotential V (x|, x;). Originally defined
by (1.4) using the action S7 given by (2.13)—(2.14), Lemma 2.18 allows us to rewrite
itas

V(xi,x2) = inf S(y), (2.19)
yeri?

where § € JZ is the Hamiltonian geometric action defined via (2.8a)—(2.8b), or
equivalently, via (2.11)-(2.12). The minimizing curve y* in (2.19) (if it exists) can
be interpreted as the maximum likelihood transition curve.

In the SDE case, (2.11) can in fact be solved explicitly: Its solution is given by
A = |b(X)|a@)-1/Ya—1 and ¥ = A(x)"'(Ay — b(x)), and so we obtain the local
geometric action

K(xv y) = Ib(x)|A_1(x)|y|A_l(x) - (b(x)v y)A_l(x)‘ (SDE) (220)

For Markov jump processes no explicit expression for £(x, y) exists.
Finally, we observe that in the SDE case (2.17a) the expression Hy(x, 0) for the
natural drift given in Lemma 2.15 indeed recovers the given vector field b(x), while
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in the case (2.17b) of a Markov jump process we obtain

N
b(x) = Z vi(x)e;, (Markov jump process)

i=1

which is the vector field that defines the zero-noise-limit of Kurtz’s Theorem
(see [12] or [16, Theorem 5.3]). O

Example 2.20 (Riemannian Metric) Suppose that A € C(D,R™") is a function
whose values are positive definite symmetric matrices A(x). Then the action § € ¥
given by

L(x,y) = |ylaw (2.21)
is a Hamiltonian action, S € JZ \ J%), with associated Hamiltonian

H(x,0) = |9|/24(X),1 —1. (Riemannian metric)

Indeed, as one can easily check, for this choice of H the Eq. (2.11) are fulfilled by
A = 2/|y|aw and ¥ := A(x)y/|y|aw), and thus the local geometric action defined
by (2.12) yields (2.21).

Note that the natural drift for this Hamiltonian is b(x) = 0. As we shall see,
however, this will be made up for by the fact that H(x,0) < 0 for Vx € D, see
Proposition 3.16 and Example 3.32 in Sect. 3.4.3. O

Example 2.21 (Quantum Tunneling) The instanton by which quantum tunneling
arises is the minimizer y* of the Agmon distance [17, Eq. (1.4)], i.e., of (2.19),
where S € ¢ is given by the local action

£(x,y) = V2UX)lyl. (2.22)

Here, x; and x; are the minima of the potential U € C(D, [0, 00)), and it is assumed
that U(x;) = U(xp) = 0.

If U did not have any roots then this would be a special case of
Example 2.20, with A(x) := 2U(x)I, which leads us to the Hamiltonian
H(x,0) = |0]>/(2U(x)) — 1. According to the remark following (2.11), we could
multiply H by the function U(x) without changing the associated action, and so we
would find that (2.22) is given by

H(x,0) = % 16— U(x). (quantum tunneling)
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We can now check that this choice in fact leads to (2.22) even if U does have roots
(with A = /2U(x)/|y| and ¥ = Ay), and so we have S € JZ \ J%. Again, the
natural drift is b(x) = 0. O

Example 2.22 (Large Deviation Theory, Part II) Now consider again the
SDE (2.16), but equipped with the additional feature that the process jumps to
some “dead” state at the rate £~ 'r(X;), for some given bounded absorption rate
function r € C(D, [0, 00)). Then this killed diffusion process is fulfilling a large
deviation principle as well,* and assuming for simplicity that A(x) = I, the large
deviation action St is given by

H(x,0) = (b(x).0) + 3|0 - r(x), (2.23)
L(x,y) = 31b(x) —yI> + r(0), (2.24)

thus penalizing curves for spending time in regions where r(x) > 0. Solving the

system (2.11), we find that A = [y|™'{/|b(x)|? + 2r(x) and = Ay — b(x), which

leads us to the corresponding geometric local action

£(x.y) = YIVIPO)? 4 2r(x) — (. b(x)). (2.25)

For general A(x) all scalar products and norms only have to be replaced as in
Example 2.19, which then makes (2.25) a generalization of (2.20). Observe also how
our expression Hy (x, 0) for the natural drift defined in Lemma 2.15 still recovers the
given vector field b.

In summary, adding the continuous and bounded absorption rate ' r(x) to the
SDE (2.16) had the effect of subtracting r(x) from H(x, €) and adding it to L(x, y),
which leaves the natural drift unchanged but results in H(x,0) = —r(x) being
negative wherever r(x) > 0. As a result, by Lemma 2.13 (ii) the set of non-
degenerate points in Definition 2.9 is given by D¢+ = {r € D|r(x) > 0}.

In fact, the comments in Appendix A.6 show that adding a properly scaled
absorption rate to any other process will have the same effect on its large deviation
action. O

“Probabilists will find some comments in Appendix A.6.
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