Chapter 1
Introduction

Abstract In this chapter we introduce the reader to the problem addressed by this
monograph. First we explain the main question at hand and its motivation in the
context of the Wentzell-Freidlin theory of rare transition paths. We then summarize
the main features of our existence theory, and the various approaches used in the
literature. Finally, we explain the structure of this monograph and introduce some
notation.

1.1 Geometric Action Functionals

A geometric action S is a mapping that assigns to every unparameterized oriented
rectifiable curve y in R” a number S(y) € [0, co). It is defined via a curve integral

1
S(y) ::/E(z,dz) :2/0 Lp, ") da, (1.1)
v

where ¢: [0, 1] — R” is any absolutely continuous parameterization of y, and where
the local action £ € C(R" x R", [0, 00)) must have the properties

(i) Vx,y e R" Ve > 0: L(x,cy) = cl(x,y),

(ii) for every fixed x € R" the function £(x, - ) is convex.

While (i) guarantees that the second integral in (1.1) is independent of the choice
of @, (ii) is necessary to ensure that S is lower semi-continuous in a certain sense.
A trivial example is given by £(x,y) = |y|, in which case S(y) is just the Euclidean
length of y, or more generally, by £(x,y) = |y|,, for any Riemannian metric g. In
fact, £ generalizes the well-studied notion of a Finsler metric [2] in that (a) £ only
needs to be continuous (no smoothness required), that (b) we do not require that
£(x,y) = £(x, —y), and that (c) £ need not be strictly convex in y.

Now given two sets Aj, A, C R”, in this work we develop criteria under which
there exists a minimum action curve y* leading from A; to A,, i.e., under which
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dy* e F/ﬁz := {y | y starts in A; and ends in A,} such that

S(y*) = inf S(y). (1.2)

yeFAlz

We then prove properties of the minimizer y* without finding y* explicitly.

Although our existence results can certainly be applied to the exemplary local
actions given above, the present work was primarily motivated by a recently
emerging problem from large deviation theory that is adding a considerable layer
of difficulty: In contrast to Finsler metrics, in this example £(x, y) vanishes in some
direction y = b(x) # 0, which allows for curves y (the flowlines of the vector
field b) with positive Euclidean length but vanishing action S(y).

1.2 Example: Large Deviation Theory

Consider for some b € C!'(R",R") and some small parameter ¢ > 0 the stochastic
differential equation (SDE)!

dX° = b(XO)dt + VedW,, X, =x. (1.3)

where (W;)>o is an n-dimensional Brownian motion, and where the zero-noise-
limit, i.e., the ODE x = b(x), has two stable equilibrium points x;,x; € R". The
presence of the small noise allows for rare transitions from x; to x, that would
be impossible without the noise (green curve in Fig. 1.1), and one is interested in

Fig. 1.1 Rare noise-induced transitions from one meta-stable state to another (green curve) stay
near the minimum action curve y* (red) with high probability

'The reader with no background in probability theory should not feel discouraged here: No
knowledge in that field will be required to understand the results or proofs in this monograph.
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the frequency and the most likely pathway of these transitions. Both questions are
answered within the framework of Wentzell-Freidlin Theory [8] (a subfield of large
deviation theory), the key object being the quasipotential

V(xi,x) = inf  Sr(y), (1.4)
>0
x€C3(0.7)
17 .
where Sr(x) = 3 |b(x) — x|”dt, (1.5)
0

and where Cjc‘f (0,7) denotes the space of all absolutely continuous functions
x:[0, T] — R” fulfilling x(0) = x; and x(T) = x5.

The idea behind this formula is that transitions have been shown to more likely
occur in neighborhoods of paths y with small action S7(x), and thus V(x;,x;) is a
measure for how likely it is to see any transition within some fixed observation time
(with smaller values of V indicating a higher likelihood). Furthermore, the expected
time until a transition to x, happens was shown to scale like e”*172)/¢ as & \ 0 [16].
Observe that S7(y) cannot be made arbitrarily small, since paths y that leave x; must
deviate from the flowlines of b (which fulfill y = b(y)).

An unpleasant feature of this formulation is that the minimization problem (1.4)
does not have a minimizer (T*, y*), i.e., a function y* € Cff (0, T*), defined on
some optimal finite time interval [0, 7*], at which the infimum (1.4) is achieved.
The main reason for this is that by [8, Chap.4, Lemma 3.1] y* would need to vanish
at x; and x,, and typically also at some critical point x. along the way (see Sect. 4.4),
so that y* would need infinite time each to leave x;, pass x. and approach x,.
Therefore, in general it is not even possible to define a minimizer y*: R — R” on
an infinite time interval, but one would rather have to paste together two solutions
X1 x5 R — R" with

lim x7 (1) = x, lim y7(1) = lim x3(1) =x,, and lim x;(¢) = x,.
1—>—00 —> 00 1—>—00 —>00

This is a major problem for both analytical and numerical work, and so in [9, 10]
the use of the alternative representation

V(xi,x) = inf S(y) (1.6)
yer?

was suggested, where the geometric action S(y) is given by

Ex,y) = [bOly[ = (b(x).y). (SDE) (1.7)

which can be seen as a degenerate version of a Randers metric [2, Chap. 11].
A minimizer y* of (1.6), i.e., a maximum likelihood transition curve (the red
curve in Fig. 1.1), seems more feasible to exist in this formulation since the time
parameterization has been eliminated from the problem.
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This geometric reformulation of the quasipotential generalizes also to other
types of Markovian time-homogeneous® stochastic dynamics, such as SDEs with
multiplicative noise or continuous-time Markov jump processes [9, 10, 16], with
modified (in the latter case not Randers-like) local action £. It was shown to
effectively remove the numerical difficulties [9-11, 19], and our goal in this
monograph is now to demonstrate also its analytical advantages when addressing
geometrical® questions.

1.3 Key Features of the Existence Theory

The goal of this monograph is to develop a comprehensive geometric theory for
proving the existence of minimum action curves, the key features of which are the
following:

(i) The theory can be applied to a large class of geometric actions, including
those encountered in the context of large deviation theory. It also applies
to Riemannian actions (as a trivial example), and in fact to actions that
at different locations in space can have features of one or the other.

(ii) The minimization is carried out over the space of rectifiable curves with
start and end points in some prescribed sets A; and A,, respectively.

(iii) Curves can be constrained to only traverse points in a prescribed closed
subset D C R”.

(iv) Whenever possible, minimizers y* are shown to be rectifiable as well.

(v) The conditions of the key theorems are non-technical and easy to check
based on information that is explicitly available in practice.

(vi) Smoothness requirements on the local action £ and related functions are
kept to a minimum.

In the process, the reader will be provided with the necessary basic definitions
and concepts. The tools that we develop for our purposes have value in their own
right, as they may be of use also in other problems related to geometric actions.

2That is, the definition of the dynamics via its drift and noise covariance matrix in the case of an
SDE, or via its jump rates in the case of a jump process, cannot explicitly depend on time.

3See, however, [10, Sect. 2.4] for how the optimal time parameterization can be recovered from
the minimum action curve y*.
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1.4 Techniques Used in the Literature

Let us take a look at some methods that have been used in the literature to prove the
existence of optimal time-dependent curves, and let us understand why they either
cannot be applied in the given geometric setting at all, or why they would only lead
to partial results. The approaches fall into two categories:

(a) constructive techniques, which are based on the derivation of an ODE that min-
imizing curves need to fulfill, and which effectively transform the minimization
problem into a boundary value problem with start point x; and end point x,; and

(b) abstract techniques based on the lower semi-continuity of the action functional
of interest.

1.4.1 Constructive Techniques

Two prominent examples of constructive techniques based on an ODE are the
following:

(i) First-Order ODE for Drift Vector Fields with a Gradient-Like Structure. This
technique can only be used for the specific action (1.5), where the drift vector
field » must be of the form b(x) = —VV(x) + v (x) for some potential function
V:D — [0,00), D € R”, and for some vector field v perpendicular to VV.
Under these assumptions, a simple estimate can show that any solution x ()
of the ODE § = VV(x) + v*(x) minimizes the action between its start and
end point [8, Chap. 4, Theorem 3.1]. Now assume that the given start point
X1 is the unique minimum of V and the only point at which VV vanishes, and
that V(x;) < infyejp V(x). Then since the solution of the above ODE with
x(t = 0) = x, fulfills d%V(X(t)) = |[VV(x(1))|> > 0 for YVt < 0 and therefore
approaches x; as 1 — —o0, one can conclude that x| is a (generalized)
minimizer of (1.4).

(ii) The Euler-Lagrange Equation. If the action St is not in the specific form (1.5)
then there is no general first-order equivalent to the above ODE. Instead,
one can derive a second-order ODE called the Euler-Lagrange equation for
the extremals y of Sr, by setting the variation §S7 equal to zero (this is the
equivalent of finding the minimum of a function f(x) by attempting to solve
f'(x) = 0). For fixed T, one is then again left with the boundary problem that
requires y(0) = x; and y(T) = x,.

To obtain a more general theory that is not taylored to any specific action,
one can write this ODE in the form of the 2n-dimensional first-order ODE
system y = %—;I()(,p), p = —%(}(,p), where the function H(x,p) is the
Hamiltonian associated to the action S7 (more precisely, it is the Legendre
transform of its integrand). Necessarily, this reduction to a first-order system
comes along with more relaxed boundary conditions: The solution (y(¢), p(t))
must now lead from a point of the form (x|, p;) and to one of the form (x;, p»).
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To minimize also over all T > 0 in (1.4), it turns out that we also need to
ask that H(xy,p1) = H(xz,p2) = 0; if x; and x, are critical points of the
system (i.e., if %(xl,z, 0) = 0) then for a subclass of Hamiltonians (%7 in
Definition 2.12 (iii)) this implies that p; = p, = 0.

The main problems with these constructive approaches are the following: First,
the statement about the ODE in the first approach only holds for actions Sy
in the given specific form, and its proof cannot be extended to general actions.
Furthermore, if the point x; is not an attractor of b then the solution y starting at
x, will in general not lead to x; as r — —oo, and so the above statement (“if a
solution of the ODE connects x; and x; then it is a minimizer”’) becomes worthless.
The problem persists if x; and x; are replaced by sets A; and A,, respectively.

The general Hamiltonian ODE still leaves us with the problem of showing
that the derived boundary value problem actually has a solution, and it is unclear
how this problem can be approached in our intended generality. Instead, this
formulation is more useful in situations in which the existence of a minimizer can
be assumed: For example, in [15] minimizers in R? were computed numerically
by solving the boundary value problem via the shooting method, and in [4, 5]
the Hamiltonian formulation has turned out to be useful for proving properties of
minimizers, addressing uniqueness questions, and investigating the regularity of the
quasipotential.

The biggest two problems with any ODE-based constructive approach, however,
are the following: First, minimizers y* of (1.2) have numerically been found to
generally have cusps as they pass critical points (even in the basic case where £ is
given by (1.7) with some smooth b, see Fig. 1.1 or [10, Fig. 4.1]). Therefore we
know that there is no ODE that the arclength parameterization of y* could possibly
fulfill throughout the entire curve.

Second, ODE-based approaches (both for geometric and for time-parameterized
curves) would not allow us to constrain our curves to be contained in some given set
D C R" (point (1.3) in our wish list in Sect. 1.3), since such constraints can cause
y* to become non-smooth when the curve reaches and then traces the (potentially
also non-smooth) boundary dD.

For these reasons, such approaches are not an option for us.

1.4.2 The Lower Semi-Continuity Technique

The idea behind the lower semi-continuity approach is the following: As we know,
any continuous function f:/ — R defined on a compact interval / C R obtains its
infimum on 7 (i.e., 3x* € I:f(x*) = inf\¢; f(x)). However, it is not hard to see that
we can in fact allow f to have jumps, as long as the function value at such points is
not larger than any of the two one-sided limits. More generally, we only need to ask
that Vx € I:f(x) < liminf,_,,f(y). Functions with this property are called lower
semi-continuous.

The proof that this property indeed still suffices is analogous to the continuous
case: Take any minimizing sequence (xx)ren (i.€., iMoo f(xx) = infie;f(x)),
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choose a converging subsequence (xy,)en (this is possible since / is compact), and
call its limit x* € I. Then

F) < liminff() < lim f(x,) = inf /().
y—>x* —00 X€E

where we first used the lower semi-continuity of f, then the definition of lim inf, and
finally the property of the minimizing sequence. This shows that x* is a minimizer.

Now in our situation, in which the function f(x) is replaced by the functional
S(y), why would we not simply define ourselves a topology on the space of curves
under which S is continuous, and then use the standard continuity result? The above
proof shows that there is a fine trade-off to be made: If we choose the topology
too fine (making it too hard for a sequence of curves to converge) then we may
no longer be able to find a converging subsequence of our minimizing sequence
of curves; if we choose the topology too coarse (making it too easy to converge)
then our functional may no longer be continuous. It is for this reason that one
commonly uses this weakened form of continuity—lower semi-continuity—when
it comes to functionals: to ease this trade-off to the point that the existence proof
can be completed.

Using this approach in our geometric context, one quickly arrives at the following
first result (Proposition 3.8): If there exists a minimizing sequence (yi)ren of (1.2)
whose curves yy are all contained in some compact set K C R" and have uniformly
bounded curve lengths, then there exists a minimizer y* € T, :1 2. (The conditions on
(vi)ren guarantee the existence of a converging subsequence, obtained by applying
Arzela-Ascoli’s theorem.)

In practice, however, this criterion alone is of little use since minimizing
sequences are not at our direct disposal, and so their curve lengths can be hard
to control. What we need is an estimate that bounds the length of a curve y in
terms of its action S(y): since the curves in any minimizing sequence (Yx)ren
have (converging and therefore) bounded actions, this would imply that the length
condition in the statement above is fulfilled.

Now we see the challenge of our proof: The degeneracy of our local action
£(x,y) can allow a curve to move in a direction y (=b(x) for the SDE geometric
action (1.7)) at no cost, and so there can be arbitrarily long curves with small or zero
action. Furthermore, at some critical points x. (in the SDE case those points with
b(x.) = 0), £(x.,y) may even vanish for every direction y, which again allows for
arbitrarily long curves near this point with arbitrarily small action. For this reason,
the desired estimate described above (Lemma 6.13) and our resulting main existence
criteria (Propositions 3.23 and 3.25) will be intimately tied to the flowline diagram
of the drift vector field b, or of a generalized definition thereof for general geometric
actions (Definition 2.7).

In [8, Chap. 4, Lemma 2.2], the existence of a (generalized) time-parameterized
minimizer y*:(—o0,0] — R” of (1.4)—(1.5) is shown in the case where x; is an
attractor of the vector field b and x; is a point in its basin of attraction (thus avoiding
much of the problems caused by the time parametrization). Its proof suggests one
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way of obtaining such an estimate away from critical points also for our geometric
action S(y), based on the observation that there are no infinitely long flowlines or
limit cycles in our region of interest. Following that specific route would however
come at the cost that we would lose control over the minimizer’s curve length near
critical points, and so we would not be able to prove that our obtained minimizer y*
stays rectifiable as it passes critical points. Our estimate in Lemma 6.13 instead,
which carefully quantifies some decisive constants involved, does provide us with
the desired extra amount of control near critical points, albeit at the cost of some
extra work in our proofs.

1.5 Properties of Minimum Action Curves

Then turning our attention to the properties of minimizers, we consider a subclass of
geometric actions that still contains the large deviation geometric actions mentioned
above. For our main result, suppose that the drift » has two basins of attraction (see,
e.g., Figs. 1.1, 3.4a,b, or 4.2), and let y* be the minimum action curve leading from
one attractor to the other.

Since for the class of actions in question y* can follow the flowlines of b at no
cost, it is not surprising that the second (“downhill”) part of y* will be a flowline
connecting a saddle point to the second attractor. In particular, the /ast hitting point
of the separatrix is a point with zero drift (the saddle point). Here we prove also the
non-obvious fact that also the first hitting point must have zero drift. In practice, such
knowledge can be used either to gain confidence in the output of algorithms that
compute y* numerically (such as the geometric minimum action method, gMAM,
see [9, 10]), or to speed up such algorithms by restricting their search to only those
curves with these properties.

Finally, we will demonstrate how the same result (Corollary 4.5) that is used to
prove this property can also be used to prove the non-existence of minimizers in
some situations.

1.6 The Structure of this Monograph

This monograph is split into two main parts and an appendix. In Part I we lay out
all our results on the existence of minimum action curves, we demonstrate with
several examples how to use our criteria in practice, we discuss when minimizers do
not exist, and finally we prove the above-mentioned properties of minimum action
curves. The reader who is only interested in gaining enough working knowledge to
use our existence criteria in practice will find it sufficient to read only this first part.

Part II consists of two chapters: Chap. 6 contains the proofs of our key criteria
(stated in Part I) under which a “local” existence property holds to which our global
existence theorem has been reduced in Part I; the reader who wants to know why
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these criteria work should also read this chapter. Chapter 7 contains the proof of a
very technical lemma that was needed in Chap. 6 in order to deal with curves that
are passing a saddle point; the reader can decide to skip this chapter without losing
much insight.

Appendices A and B contain some of the more technical proofs that we have
omitted in Parts I and II, respectively, in order to not interrupt the flow of the main
arguments. While Appendix A can significantly contribute to the understanding of
Part I, Appendix B is very technical in nature and can be skipped as well.

The suggested reading order is as follows: Part I, Appendix A, Part II,
Appendix B.

1.7 Notation and Assumptions

For a point x € R" and a radius r > 0 we define the open and the closed balls
B.(x):={weR"[lw—x|<r} and B.(x):={weR"||lw—x|<r}

Similarly, for a set A C R”" and a distance r > 0 we define the open and the closed
neighborhoods N,(A) and N,(A) as

N,(A) := {w e R"|dist(w,A) <r} and N,(A):= {weR"|dist(w,A) < r}.

Furthermore, we denote by A, by A€ := R"\ A, by A° := (A)¢, and by 04 := A\ A°
the closure, the complement, the interior, and the boundary of A in R”, respectively.
For a point x on a C'-manifold M we denote by T, M the tangent space of M at x.

For a function f and a subset A of its domain we denote by f|4 the restriction of
f to A, and we use the notation f = ¢ to emphasize that f is constant. Expressions
of the form 1.,,4 denote the indicator function that returns the value 1 whenever the
condition cond is fulfilled and 0O otherwise.

Finally, throughout this monograph we let D € D C R" be two fixed connected
sets, where D is open, and where D is closed in D. An additional technical
assumption on D will be made at the beginning of Sect. 3.1. D will serve as our state
space,4 i.e., as the set that the curves y live in, and D will be used for an additional
constraint on the curves y during our minimization, i.e., we will in fact minimize
over 1"/;412 := {y C D]y starts in A and ends in A,}. (For simplicity we suppress
the dependence of I AAf on D in our notation.) If no such constraint is desired, just

choose D := D; the reader is encouraged to consider this simple unconstrained case
whenever on first reading he may feel overwhelmed by some definition or statement
involving D.

“Note that we may occasionally reuse the letter n of our state space dimension also for other
purposes, e.g., as an index for sequences such as (¥,),en-
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