
Preface

This research monograph is an analytical treatment of a geometric problem that
recently arose in an applied community [6, 7, 10] focused on developing numerical
methods for understanding the pathways of rare transition events in stochastic
dynamical systems with small noise. For years, it had been a reoccurring problem
that the underlying mathematical framework, Wentzell-Freidlin theory [8], is typi-
cally formulated in terms of time-parameterized paths, and that in that formulation
no “maximum likelihood transition path” exists. This was leading to numerical
problems since algorithms had no well-defined object to converge to.

In a collaboration of Eric Vanden-Eijnden (NYU) and myself [9, 10], it was then
found that a geometric reformulation of the theory, i.e., one based on unparameter-
ized rectifiable curves1 � , promised to resolve this issue because the main reason
for this non-existence (the time parameterization) had been eliminated. Indeed, an
algorithm based on this approach, the geometric minimum action method (gMAM),
turned out to converge reliably in our applications.

This in turn seemed to suggest that in this geometric formulation an (unparam-
eterized) maximum likelihood transition curve �? does indeed exist, defined as
the minimizer of a certain non-negative geometric functional S.�/. Motivated by
the prospects of finally having a well-defined object to work with, I then took up
the exciting task of developing criteria for rigorously proving this existence in the
most general framework possible. The results of this effort are the content of this
monograph.

The key problem in dealing with our functionals of interest is a degeneracy2 they
share that allows for curves � with positive Euclidean length but with vanishing

1These are the same curves that the reader will know from the Cauchy integral theorem in
complex analysis, which also treats its curves as geometric objects that are not tied to any specific
parameterization.
2To prevent confusion for those familiar with Wentzell-Freidlin theory, it should be pointed out
that this property is not related to degeneracies in the diffusion matrix of the given SDE. In fact, in
our applications we can only consider non-degenerate diffusions.

vii



viii Preface

action, S.�/ D 0. Many of the techniques and concepts that we develop here in
order to address this difficulty are fundamentally new and have value in their own
right, as they may be of use in other problems related to such actions.

The effort that this investigation required is justified by more than just academic
curiosity: No algorithm for finding a minimizer �? of S can work without the
interaction with a human who tweaks its parameters and who verifies whether its
output looks reasonable. Now if no minimizer exists, then naturally the algorithm
will fail to find one, but without any analytical insight the user may falsely
blame himself/herself instead and keep trying to tweak the algorithm parameters.
Furthermore, any analytically obtained knowledge about properties of �? can be
used either to gain confidence in the numerically obtained curve (by checking
whether it indeed has these properties) or to speed up the algorithm (by restricting
its search for �? to only those curves that fulfill these properties).

In short: Solid analytical knowledge about the existence and properties of �? are
invaluable to the person who uses an algorithm for finding it.

I hope that this monograph will not only impact how people within the large
deviation community view and work with transition curves, but that the generality of
its results will also spark some interest outside of this field and lead to applications
that go beyond my original motivation for this work.
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