
Chapter 2

Analysis by Manual Calculations

2.1 Introduction

In structural engineering, the term analysis usually refers to force analysis in which
the distribution of force effects is determined in the various components of a

structure. The responses of a structure such as deflections and bending moments

are often referred to as load effects. Another infrequently used term in structural

engineering is strength analysis which refers to the process of determining the

strength of the whole structure or its components. The term analysis is used in this

book only in the meaning of force analysis.

In bridge engineering the term analysis is also used for determining the effects of

load distribution mainly in the longitudinal components of a bridge due to a

vehicle. This chapter provides details of some methods which can be used to

analyse a bridge for load distribution through manual calculations.

Notwithstanding the fact all calculations for bridge analysis are currently done

with the help of computers, manual methods are important in permitting engineers

to retain the physical feel of the distribution of load effects in a bridge, and

confirming the results of computer analyses in a broad sense. The manual methods

of calculations are also known as the ‘simplified’methods. Bakht and Jaeger (1985)

have written a book dealing with manual analysis of bridges, entitled as ‘Bridge
Analysis Simplified’.

It is very important to note that the specific manual methods of analysis

presented in this chapter explicitly include: (a) the number of lines of wheels in

the design vehicle and their transverse spacing, and (b) the reduction factors for

multi-lane loadings specified by the design code. The manual methods of analysis

presented in this chapter should be used only if the conditions of load placement are

the same as those included in the methods.
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2.2 Distribution Coefficient Methods

The basis of many simplified/manual methods is the distribution coefficient

methods prevalent in pre-computer days; the background to these methods is

discussed in following. The distribution coefficient methods, e.g. Morice and Little

(1956), were well known to bridge designers in the U.K. and in those Asian

countries where bridge design practice is, or was, influenced significantly by the

British practice. These methods can be applied manually to obtain the values of

various load effects at any reference point on a transverse section of the bridge. For

most of the load distribution coefficient methods, a right simply supported bridge is

idealized as an orthotropic plate whose load distribution characteristics are

governed by two dimensionless parameters α and θ, defined as follows:

α ¼ Dxy þ Dyx þ D1 þ D2

2 DxDy

� �0:5 ð2:1Þ

θ ¼ b

L

Dx

Dy

� �0:25

ð2:2Þ

where the notation is as defined in the following:

x direction¼ the longitudinal direction, i.e., the direction of traffic flow

y direction¼ the transverse direction (perpendicular to the longitudinal direction)

Dx¼ the longitudinal flexural rigidity per unit width (corresponding to flexural

rigidity EI in a longitudinal beam)

Dy¼ the transverse flexural rigidity per unit length (corresponding to flexural

rigidity EI in a transverse beam)

Dxy¼ the longitudinal torsional rigidity per unit width (corresponding to torsional

rigidity GJ in a longitudinal beam)

Dyx¼ the transverse torsional rigidity per unit length (corresponding to torsional

rigidity GJ in a transverse beam)

D1¼ the longitudinal coupling rigidity per unit width (which is the contribution of

transverse flexural rigidity to longitudinal torsional rigidity through Poisson’s
ratio)

D2¼ the transverse coupling rigidity per unit length (which is the contribution of

longitudinal flexural rigidity to transverse torsional rigidity through Poisson’s
ratio)

b¼ half width of the idealised plate

L¼ the span of the idealised plate

In slab-on-girder bridges, D1 and D2 are small and have little effect on load

distribution. It is customary to ignore these rigidities in the calculation of α for slab-

on-girder bridges. Figure 2.1 illustrates some of the notation.

The Morice and Little method, which is originally due to Guyon and Massonnet

reported by Bares and Massonnet (1966), is based upon the harmonic analysis of
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orthotropic plates using only the first term of the harmonic series representing

concentrated loads (discussed in Chap. 3). The basis of the method is the assump-

tion that the deflected shape of a transverse section remains constant along the span

irrespective of the longitudinal position of the load and the transverse section under

consideration. The method uses charts of distribution coefficients Kα corresponding

to nine different transverse reference stations and nine transverse positions of single

concentrated loads. These coefficients are plotted in chart form against θ, and the

charts are given for two values of α, namely 0.0 and 1.0.

Values of coefficients, Kα, for intermediate values of α are obtained by the

following interpolation function:

Kα ¼ K0 � K0 � K1ð Þ αð Þ0:5 ð2:3Þ

where K0 and K1 are the corresponding coefficients for α equal to 0.0 and 1.0,

respectively. In using the method, the applied loads are converted into equivalent

concentrated loads at the standard locations for which the charts are given. The

distribution coefficients are then manually added for all the equivalent loads to give

the final set of coefficients for the loading case under consideration. The exercise is,

of course, repeated for each load case, and therefore requires extensive and tedious

calculations.

To compensate for possible errors resulting from the representation of loads by

only one harmonic, Morice and Little (1956) suggest that the computed longitudinal

moments be increased by an arbitrary 10 %. Cusens and Pama (1975) improved the

distribution coefficient method by taking seven terms of the harmonic series into

account, and by extending the range of values of α up to 2.0. This method also uses

an interpolation equation similar to Eq. (2.3).

It is interesting to examine the α-θ space with respect to various types of bridges.
For practical bridges, α ranges between 0.0 and 2.0, and θ between 0.25 and 2.5.

The ranges of α values for various types of bridges are shown in the α-θ space in
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Fig. 2.1 Plan of a right

bridge idealised as an

orthotropic plate
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Fig. 2.2. It can be seen that the various bridge types occupy distinctly separate

zones. The space for bridges with timber beams occupies the space between

α¼ nearly zero and 0.01; the space for slab-on-girder bridges is bracketed by values

of α between 0.06 and 0.2; slab bridges have α¼ 1.0; and box girder bridges have α
close to 2.0.

In the Morice and Little method, since the values of α for slab-on-girder bridges

are between 0.0 and 1.0, the distribution coefficients for these bridges have to be

obtained by using Eq. (2.3). This equation is only an approximate design conve-

nience and, irrespective of the accuracy of K0 and K1, can and does introduce

significant errors, especially for bridges having smaller values of θ.

2.3 Simplified Methods of North America

Unlike the distribution coefficient methods, the simplified methods of bridge

analysis used almost exclusively in North America provide only the maximum,

i.e. the design, values of the various load effects at a given transverse section.

Computation needed for these methods is only a fraction of that required for the

distribution coefficient methods.

The North American simplified methods are permitted by the current and past

design codes, being the AASHTO Specifications (1998, 2010), the CSA Code

(1988), the Ontario Highway Bridge Design Code (1992) and the Canadian High-

way Bridge Design Code (2000, 2006). These methods can be applied manually and

can provide fairly reliable estimates of the design values of the various load effects

in a very short period of time. The simplified methods of analysis are dependent

upon the specification of the magnitude and placement of the design live loads, and

accordingly are not always transportable between the various design codes.
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Fig. 2.2 The α-θ space for bridge superstructures idealized as orthotropic plates
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2.3.1 Old AASHTO Method

Most highway bridges in North America are designed by the AASHTO specifica-

tions. Design vehicles for these specifications consist of two- and three-axle

vehicles having two lines of wheels the centres of which are 1.83 m apart. The

old AASHTO specifications (1989) permitted a simplified method for obtaining

live load longitudinal moments and shears, according to which a longitudinal

girder, or a strip of unit width in the case of slabs, is isolated from the rest of the

structure and treated as a one-dimensional beam. This beam, as shown in Fig. 2.3b,

is subjected to loads comprising one line of wheels of the design vehicle multiplied

by a load fraction (S/D), where S is the girder spacing and D, having the units of

length, has an assigned value for a given bridge type. The resulting moments and

shears are assumed to correspond to maximum girder moments and shears in the

bridge. Values of D as specified in the AASHTO (1989) specifications for various

cases of slab-on-girder bridges are given in Table 2.1.

a b

Wheel loads 
multiplied by 
S/D

Fig. 2.3 Illustration of the simplified methods of North America: (a) actual bridge, (b) isolated
1-D model

Table 2.1 Some AASHTO (1989) D values

Bridge type

D in m

Bridge designed for one

traffic lane

Bridge designed for two or more

traffic lanes

Slab on steel or prestressed

concrete girders

2.13 1.67

Slab on T-beams 1.98 1.83

Slab on timber girders 1.83 1.53
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2.3.2 Concept of D Method

The concept of the factor D can be explained with reference to Fig. 2.4, which

shows schematically the transverse distribution of live load longitudinal moment

intensity in a slab-on-girder bridge at a cross-section due to one vehicle with two

lines of wheels. The intensity of longitudinal moment, having the units of kN.m/m,

is obtained by idealizing the bridge as an orthotropic plate.

It can be readily appreciated that the maximum girder moment, Mg, for the case

under consideration occurs in the second girder from the left. The moment in this

girder is equal to the area of the shaded portion under the moment intensity curve. If

the intensity of maximum moment isMx(max) then this shaded area is approximately

equal to SMx(max), so that:

Mg ’ SMx maxð Þ ð2:4Þ

It is assumed that the unknown quantity Mx(max) is given by:

Mx maxð Þ ¼ M=D ð2:5Þ

where M is equal to the total moment due to half a vehicle, i.e., due to one line of

wheels. Substituting the value of Mx(max) from Eq. (2.5) into Eq. (2.4):

Mg ’ M S=Dð Þ ð2:6Þ
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Thus if the value of D is known, the whole process of obtaining longitudinal

moments in a girder is reduced to the analysis of a 1-dimensional beam in which

the loads of one line of wheels are multiplied by the load fraction (S/D).

2.3.3 New AASHTO Method

Earlier AASHTO D values for this extremely simple method were developed from

results of extensive orthotropic plate analyses by Sanders and Elleby (1970). The

simplicity of the method, however, does take its toll in accuracy. In the old

AASHTO method, the value of D depends only on the bridge type; it is obvious,

however, that the manner of load distribution in a long and narrow bridge is

different from that in a short and wide bridge of the same type. The old AASHTO

method is unable to cater for such factors as the aspect ratio of the bridge. It is noted

that in its 1994 edition, the AASHTO specifications introduced another simplified

method, which is similar in spirit to the D method, but is more accurate. In the new

method, the ratio S/D is designated as g. For slab-on-girder bridges, the value of g is
obtained as a function of (a) the girder spacing S in mm, (b) the span length L in

mm, (c) the deck slab thickness tS in mm, and (d) the longitudinal stiffness

parameter Kg in mm4, which is obtained as follows.

Kg ¼ n Ig þ e2gA
� �

ð2:7Þ

where, n is the modular ratio Egirder/Edeck, Ig is the moment of inertia of the girder in

mm4, eg is the girder eccentricity in mm, being the distance from the girder centroid

to the middle of the deck slab, and A is the cross-sectional area of the girder in mm2.

For example, the value of g for moment in exterior girders of slab-on-girder bridges

with steel or concrete girders and subjected to multiple lane loading is designated as

mgmoment and is given by:

mgmoment ¼ 0:075þ S

2900mm

� �0:6 S

L

� �0:2 Kg

Lt3S

� �0:1

ð2:8Þ

2.3.4 Canadian Methods

2.3.4.1 Ontario Method I

When the development of the Ontario Highway Bridge Design Code (OHBDC)

began in 1976, the committee which was entrusted with the task of writing the

section on analysis was asked to develop and specify a method of analysis which

was as simple as the old AASHTO method but far more accurate. The method,

which was developed for the OHBDC and was specified in the editions published in

1979 and 1983, has come to be known as the α-θ method. As discussed by Bakht
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and Jaeger (1985), in this method the contours of the values of D obtained from

rigorous analyses are presented on charts which use the two characterizing param-

eters of orthotropic plates, being α and θ, as their axes. These parameters are the

same as used in the distribution coefficient methods and are defined by Eqs. (2.1)

and (2.2), respectively. Values of the plate rigidities used in these equations can be

obtained by standard methods, e.g. Cusens and Pama (1975) and Bakht and

Jaeger (1985).

The final value of D, which is used for analysing the bridge, denoted as Dd, is

obtained from:

Dd ¼ D
1þ μC f

100

� 	
ð2:9Þ

where

μ ¼ We � 3:3

0:6
� 1:0 ð2:10Þ

in which We is the design lane width in metres, and Cf is a factor, whose values are

provided in chart-form on the α-θ space.

2.3.4.2 CSA Method

Despite the simplicity of the Ontario method, some designers were not happy with

having to calculate the values of α and θ. When the 1988 edition of the Canadian

Standards Association (CSA) bridge code was being developed by using the

OHBDC as its model, it was decided to heed the above concern of the designers

and present conservative estimates of the values of D depending upon the type and

width of the bridge. A selection of the CSA (1988) values of D is presented in

Table 2.2. It can be appreciated that in terms of accuracy, the CSA method lies

between the AASHTO and Ontario methods.

Table 2.2 Values of D for longitudinal moments for the ultimate limit state specified by the CSA

(1988) design code

Bridge type

D in metres for bridge with no. of lanes ¼
2 3 3 or more

Slab bridges and voided slab bridges 1.90 2.15 2.40

Concrete slab on girders 1.80 1.90 2.00

Timber flooring on girders 1.65 1.90 2.00

Multi cell box girders 1.80 2.05 2.40
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2.3.4.3 Ontario Method II

Research done by Bakht and Moses (1988) has shown that the simplified method of

Ontario incorporated in the 1979 and 1983 editions can be “simplified” further by

recognizing mainly that the longitudinal flexural rigidity per unit width, Dx, of

girder bridges in North America lies between the two bounds defined as follows:

Dx ¼ 59, 575Lþ 2, 275L2 upper boundð Þ ð2:11Þ
Dx ¼ 9, 250Lþ 1, 790L2 lower boundð Þ ð2:12Þ

where the span of the bridge L is in metres and Dx in kN.m. Figure 2.5 shows the

upper and lower bounds of Dx for slab-on-girder bridges in North America.

The advantage of determining the upper and lower bound values of Dx for a

bridge of a given span can be explained with the example of a specific four-lane

slab-on-girder bridge, which has L¼ 30 m, and 2b¼ 14.4 m; this bridge is analyzed

by the semi-continuum method in Sect. 3.3.4. With reference to Fig. 2.2 it can be

seen that α for a slab on girder bridge lies between 0.06 and 0.1. From Eqs. (2.11)

and (2.12), the upper and lower bound values of Dx are found to be 3,834,750 and

1,888,500 kN.m, respectively. The value of Dy for this bridge with a 175 mm thick

concrete deck slab is calculated to be 8930 kN.m, so that from Eq. (2.1) the upper
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Fig. 2.5 Dx plotted against span length for slab-on-girder bridges in North America
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and lower bound values of θ are found to be 1.17 and 0.98, respectively. The

contours of the D values for four-lane bridges for internal portions specified in the

OHBDC (1983) for the ULS are reproduced in Fig. 2.6, which also shows the very

small rectangular area occupied by slab-on-girder bridges with a span of 30 m.

From the trend of the contours of the D values plotted in this figure, it can be

appreciated that within the small rectangular area, the smallest value of D, i.e. the

most conservative value, is at the corner where the value α is the smallest and the

value of θ the largest. If the values ofD are obtained by rigorous analysis for α and θ
representing this corner of the rectangle, then all other values of D corresponding to

all other combinations of α-θ within the rectangle would be larger but by only a

small amount. This principle was used to calculate the values of D and Cf as

functions of span length L.
The expressions for D and Cf for longitudinal moments in two types of bridge on

Class A highways are listed in Table 2.3 corresponding to the Ultimate Limit State

(ULS).

Having obtained the values of D and Cf from the expressions given in Table 2.3,

the design value of D, i.e. Dd, is obtained from Eq. (2.9).

Recognizing that the distribution of longitudinal moments is more benign than

that of longitudinal shears, the OHBDC (1992) has specified that the values of Dd

for longitudinal shears be obtained from a separate table which is reproduced herein

as Table 2.4.

2.3.5 CHBDC Method

The successors to the OHBDC, the Canadian Highway Bridge Design Code

(CHBDC 2000, 2006) have specified a slightly different simplified method of

analysis. The purpose of this new method was to permit the designers to have a

Smallest value of D

Space occupied by slab-on-girder 
bridges with L= 30 m

Fig. 2.6 D charts for four-lane bridges for ULS, OHBDC loading
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better feel of the load distribution characteristics of bridge than could be afforded

by the somewhat abstract D method. The CHBDC method provides a multiplier to

the average longitudinal moment or shear; this multiplier, which has to be always

greater than 1.00 and which is denoted as Fm for moments and Fs for shears, gives

an indication of the load distribution characteristics of a given bridge. If the

multiplier is much larger than 1.00, the bridge has poor load distribution charac-

teristics. On the other hand, a multiplier closer to 1.00 indicates that the bridge has

good load distribution characteristics.

For girder-type bridges, the longitudinal momentMg, or longitudinal shear Vg, in

a girder due to design live loads is obtained by multiplying the average girder

momentMg avg, or the average girder shear Vg avg by the multiplier Fm or Fv. Values

ofMg avg, or Vg avg for each girder are obtained by placing the design live loads in all

Table 2.3 Expressions for D and Cf for longitudinal moments at the ULS in bridges on Class A

highways

No. of design lanes

External/internal

portion or girder

D(m)

Cf (%)3< L� 10 m L> 10 m

(a) Slab bridges and voided slab bridges

1 External 2.10 2.10 16� (36/L )

Internal 2.00 + (3L/100) 2.30 16� (36/L )

2 External 2.05 2.05 20� (40/L )

Internal 2.10� (1/L ) 2.10� (1/L ) 20� (40/L )

3 External 1.90 + (L/20) 2.60� (2/L ) 16� (30/L )

Internal 1.45 + (L/10) 2.65� (2/L ) 16� (30/L )

(b) Slab-on-girder bridges

1 External 2.00 2.10� (1/L ) 5� (12/L )

Internal 1.75 + (L/40) 2.30� (3/L ) 5� (12/L )

2 External 1.90 2.00� (1/L ) 10� (25/L )

Internal 1.40 + (3L/100) 2.10� (4/L ) 10� (25/L )

3 External 1.90 2.00� (1/L ) 10� (25/L )

Internal 1.60 + (2L/100) 2.30� (5/L ) 10� (25/L )

Table 2.4 Values of Dd in metres for longitudinal shear for ultimate limit state for bridges on

Class A highways

Bridge type

Dd in m for number of design lanes ¼
1 2 3 4 or more

Slab 2.05 1.95 1.95 2.15

Voided slab 2.05 1.95 1.95 2.15

Slab-on-girder 1.75 1.70 1.85 1.90

Stress-laminated wood decks 1.75 1.70 1.85 1.90

2.3 Simplified Methods of North America 45



design lanes and multiplying the loads by the appropriate modification factor for

multi-lane loading, so that:

Mgavg ¼ nMtRL

N
ð2:13Þ

and

Vgavg ¼ nVtRL

N
ð2:14Þ

where

Mt¼ the maximum moment per design lane at the transverse section of the span

under consideration

Vt¼ the maximum shear per design lane at the transverse section of the span under

consideration

n¼ the number of design lanes in the bridge

RL¼ the modification factor for multi-lane loading as shown in Table 2.5

N¼ the number of girders

The Highway classes referred to in Table 2.5 relate to the volume of average

daily truck traffic (ADTT) per lane of the bridge. The ADTT for Class A, B, C and

D Highways is more than 1000, between 250 and 1000, between 50 and 250, and

less than 50, respectively.

The maximum girder momentsMg and shears Vg are obtained by multiplying the

average moments or shears by the amplification factors Fm or Fv, respectively; these

factors, which account for the transverse variation in maximum longitudinal

moment or shear intensities, as compared to the average responses, are obtained

by the following equations.

Fm ¼ SN

F 1þ μC f

100

� � � 1:05 ð2:15Þ

and

Fv ¼ SN

F
� 1:05 ð2:16Þ

Table 2.5 Modification

factors, RL, for multi-lane

loading specified by CHBDC

(2006)

Number of loaded lanes

Highway class

A B C or D

1 1.00 1.00 1.00

2 0.90 0.90 0.85

3 0.80 0.80 0.70

4 0.70 0.70 –
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where

S¼ centre-to-centre girder spacing in metres

μ¼ (We� 3.3)/0.6

We¼width of the design lane in metres

F is a width dimension that characterises load distribution for a bridge, and Cf is

a correction factor in %. Both F and Cf for moments and shears are obtained from

Tables 2.6 and 2.7, respectively, for slab-on-girder bridges for the ultimate limit

state. It is noted that the values of F for external girders noted in Table 2.6 are

applicable when the deck slab overhang is equal to or less than 0.5S.
The Ontario II and CHBDC methods discussed above can also be used in

conjunction with other design codes provided that the following conditions are met.

Table 2.6 Expressions for F and Cf for longitudinal moments in slab-on-girder bridges for the

ultimate limit state of CHBDC

Class of

highway

No. of design

lanes

External/internal

girders

F, m

Cf, %

For L� 10 m,

but> 3 m For L> 10 m

A or B 1 External 3.30 3.50� (2/L ) 5� (12/L )

Internal 3.30 + 0.05 L 4.40� (6/L ) 5� (12/L )

2 External 6.50 6.80� (3/L ) 5� (15/L )

Internal 4.80 + 0.10 L 7.20� (14/L ) 5� (15/L )

3 External 8.30 8.70� (4/L ) 10� (25/L )

Internal 6.70 + 0.08 L 9.60� (21/L ) 10� (25/L )

4 External 9.50 10.00� (5/L ) 10� (25/L )

Internal 7.60 + 0.14 L 11.20� (22/L ) 10� (25/L )

C or D 1 External 3.30 3.50� (2/L ) 5� (12/L )

Internal 3.30 + 0.05 L 4.40� (6/L ) 5� (12/L )

2 External 6.10 6.40� (3/L ) 5� (15/L )

Internal 4.80 + 0.10 L 7.20� (14/L ) 5� (15/L )

3 External 7.70 8.10� (4/L ) 10� (25/L )

Internal 6.60 + 0.04 L 8.80� (18/L ) 10� (25/L )

Table 2.7 Values for F for

longitudinal shears in slab-on-

girder bridges for the ultimate

limit state of CHBDC

Class of highway No. of design lanes F, m

A or B 1 3.50

2 6.10

3 8.20

4 9.50

C or D 1 3.50

2 6.10

3 7.60
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(a) The design vehicle has two longitudinal lines of wheels the centres of which

are transversely about 1.8 m apart, as illustrated in Fig. 2.7a.

(b) When two design vehicles are present on the bridge side-by-side, their adja-

cent longitudinal lines of wheels are about 1.2 m apart, centre to centre, as

illustrated in Fig. 2.7b.

(c) The transverse distance between a longitudinal free edge of the bridge and the

centre of the closest longitudinal line of wheels of the design vehicle, i.e. the

vehicle edge distance, is not less than about 1.0 m.

(d) The reduction factors for multiple presences in more than one lane of the

bridge are as shown in Table 2.5.

It is noted that the Ontario and CHBDC methods are applicable only to those

bridges where the values of Dx lie below the upper-bound values defined by

Eq. (2.11). In some jurisdictions, the bridges are considerably stiffer. Figure 2.8,

for example, compares the values of Dx for slab-on-girder bridges in Hong Kong

with those in North America (Chan et al. 1995). For such bridges, the Ontario and

CHBDC methods should not be used as they will lead to unsafe results. When the

conditions noted above are not met, a set of new simplified methods can be

developed readily as explained in Sect. 2.4.

1.8m

a

1.2m

b

1.0m

c

Fig. 2.7 Transverse spacing of longitudinal lines of wheels: (a) spacing between two lines of

wheels of a vehicle, (b) spacing between two lines of wheels of adjacent vehicles, (c) minimum

vehicle edge distance
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2.4 Two Proposed Methods for Two-Lane Slab-On-Girder
Bridges

The previous manual methods of bridge analysis, such as those by Morice and Little

and by Cusens and Pama, were made simple by simplifying assumptions. On the

other hand, the simplified methods presented in this chapter are based on the results

of rigorous analyses, and accordingly are dependent upon the specification of

design live loading. The design loadings used elsewhere in the world are signifi-

cantly different from those of North America. Two simplified methods are

presented in this section for the analysis of slab-on-girder bridges with two design

lanes for two specific design loads. It is important to note that these methods give

approximate values of maximum moments and shears in girders that should pref-

erably be used only to verify the results of rigorous analyses. One of the presented

methods was developed by analysing a selected number of bridges by the

orthotropic plate method, and the other was developed by analysing the selected

bridges by the semi-continuummethod; both these rigorous methods of analyses are

discussed in Chap. 3 along with their computer programs, which are can be

downloaded from http://extras.springer.com. Other similar simplified methods could

be developed by using these programs.
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2.4.1 Simplified Method for Indian Road Congress Bridge
Design Loads

The Indian Road Congress (IRC) specifies three design loads, being 70-R loading,

Class A loading and Class B loading. Details of the 70-R loading are shown in

Fig. 2.9, and those for Class A loading in Fig. 2.10. Class B loading is the same as

Class A loading, except that its axle weights are 60 % of those of Class A loading,

and its wheel contact areas are smaller than those for Class B loading. The

transverse position of the 70R loading with respect to the nearest curb is shown

in Fig. 2.9, and those for Class A and B loadings in Fig. 2.11. The latter figure also

shows the transverse distance between the lines of wheels of two adjacent design

loads.

A simplified method was developed for slab-on-girder bridges having a clear

distance of 7.5 m between the curbs, so that each design lane has a width of 3.75 m.

The lane width was assumed to be 3.75 m, and the minimum curb width, B, was
assumed to be 0.225 m, resulting in a total bridge width of 7.95 m. The upper limit

of the curb width was assumed to be 0.5 m, which resulted in a total bridge width of

8.5 m. Fifteen bridges corresponding to each of these two widths, and having spans

4.57 m

90m

Elevation

2.0
6m 1.2

0m
0.8

5m
0.8

5m

Plan

1.2m

Cross-section

70 t

Fig. 2.9 70-R track loading
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of 20.0 m were analysed for 70-R, Class A and Class B loadings by the orthotropic

plate method of Cusens and Pama (1975), which is incorporated into a computer

program PLATO, discussed in Chap. 3. The 15 bridges effectively covered the

entire α-θ space for slab-on-girder bridges, as can be seen in Fig. 2.12.

For determining the values of D for longitudinal moments, the vehicles were

placed in such longitudinal positions as would induce maximum total longitudinal

moments. Similarly for shear D values, the vehicles were positioned to induce

maximum longitudinal shears. The transverse vehicle positions were as shown in

Figs. 2.9 and 2.11. The orthotropic plate method takes into account the finite size of a

concentrated load, which has a significant effect on moment and shear intensities

directly under a wheel load. Tomake the representation of loads as realistic as possible,

a deck slab thickness of 200mmwas assumed. It was further assumed that the effective

a

b
200mm

250mm

150mm

1.80m

200mm

500mm 380mm

Axle weights, t 2.7 2.7 11.4 6.8

1.120.0 3.2 1.2 4.3 m3.0 3.0 3.0 20.0

11.4 6.8 6.8 6.8

Fig. 2.10 Class A loading: (a) elevation, (b) plan, not to scale

1.8m 1.8m1.7m
For Class A
loading, 0.65m

For Class B
loading, 0.53m

Fig. 2.11 Transverse vehicle positions for Class A and B loadings
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size of a concentrated load is obtained by dispersing the surface contact area of the

wheel load by 45� to the slab middle surface, as shown in Fig. 2.13.

From Fig. 2.4, it can be readily appreciated that the quantity SMx (max) is slightly

more than the quantity represented by the shaded area under the curve, which is

equal to the moment sustained by the girder. Such over-estimation of live load

moments can be eliminated by taking an average of longitudinal moment intensity
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over the width S and then multiplying this average moment intensity by S to obtain
the girder moment. For all the analysed cases, the average maximum longitudinal

moments and shears,M0
x(max) and V

0
x(max) respectively, were obtained by averaging

the corresponding quantities over a width of 2.0 m. It should be appreciated that this

2.0 m width is only to reduce the effect of “peakiness” of Mx(max). A departure of

actual girder spacing from this quantity would have negligible effect on M0
x(max).

From computer-calculated values of M0
x(max), the governing value for longitudinal

moments was obtained by the following equation, which is a rearranged form of

Eq. (2.5), in which Mx(max) is replaced by M0
x(max):

D ¼ M=M0
x maxð Þ ð2:17Þ

where M is the total moment due to one line of wheels or one track of the design

loading. Similarly, D for longitudinal shear is given by:

D ¼ V=V0
x maxð Þ ð2:18Þ

where V is the total shear due to one line of wheels or one track of the design

loading. Each of the cases were analysed for 31 harmonics. Spot checks of results

with 41 harmonics confirmed that the solutions were fully converged under

31 harmonics.

All D values for longitudinal moments were found to be relatively insensitive to

small variations in α values, as may be seen for example in Table 2.8 which shows

the D values corresponding to the 70-R loading. Adopting a mean value of D for

given θ values results in maximum errors or �5 %. In the light of this observation,

it was decided to eliminate α from consideration. Changes in curb widths did have a

noticeable effect on D values for longitudinal moment, especially for Class A and

Class B loadings, for which the code-specified minimum edge distances are unusu-

ally small.

The D values for moments are plotted in Fig. 2.14 for the three loadings, and for

curb widths B¼ 0.2 and 0.5 m, respectively. A few spot checks indicated that a

linear interpolation for intermediate curb widths provided results of reasonable

accuracy.

Table 2.8 D values in m for longitudinal moments corresponding to 70-R Loading and B¼ 0.2 m

α

D in metres for θ ¼
0.5 1.0 1.5 2.0 2.5

0.05 2.72 2.37 2.19 2.14 2.13

0.20 2.90 2.46 2.22 2.18 2.18

0.35 3.03 2.53 2.29 2.22 2.20

Mean D values 2.88 2.45 2.23 2.18 2.17

Max. variation from mean �5 % �3 % �3 % �2 % �2 %
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The θ values of 0.5, 1.0, 1.5, 2.0, and 2.5 for which bridges were analysed,

correspond to γ of 0.141, 0.035, 0.016, 0.009 and 0.006, respectively, where γ is

given as follows:

γ ¼ Dy=Dx

� �0:5 ð2:19Þ

It was found that for the 70-R loading, the D value for shear varied almost linearly

with γ, resulting in the following simple relationship which gives the D value in

metres:

D ¼ 2:16þ 1:6γ ð2:20Þ

For Class A and Class B loadings,D values for shear were little affected by γ. It was
found to be sufficiently accurate to adopt the single value of 1.6 m for D for all slab-

on-girder bridges for both Class A and Class B loadings.

The method described above can be used for analysing slab-on-girder bridges

with two design lanes, and subjected to 70-R, Class A or Class B design loads, it

being noted that the bridges concerned must satisfy the following conditions.
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Fig. 2.14 D values for longitudinal moments for IRC design loads
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(a) The width is constant or nearly constant and there are at least three girders in

the bridge;

(b) the skew parameter ε¼ (S tan ψ)/L does not exceed 1/18 where S is girder

spacing, L is span and ψ is the angle of skew;

(c) for bridges curved in plan, L2/bR does not exceed 1.0, where R is the radius of

curvature; L is span length; b is half width of the bridge;

(d) the total flexural rigidity of transverse cross-section remains substantially the

same over at least the central 50 % length of each span;

(e) girders are of equal flexural rigidity and equally spaced, or with variations

from the mean of not more than 10 % in each case; and

(f) the deck slab overhang does not exceed 60 % of S, and is not more than 1.8 m.

In cases where the above conditions are not fully met, engineering judgement

should be exercised to ascertain if a bridge meets them sufficiently closely for the

simplified method to be applicable.

The proposed method requires the following steps:

(a) Calculate values of Dx and Dy using Eqs. (2.21) and (2.22), respectively.

(b) Obtain the value of θ from Eq. (2.2). The effective spans for continuous

bridges can be obtained from Fig. 2.15 for the purpose of calculating θ.
(c) Corresponding to the type of loading and values of θ and curb width B, read

the value of D for moments from Fig. 2.14. For curb widths larger than 0.5 m,

use the D value corresponding to B¼ 0.5 m.

(d) Calculate live load longitudinal moment at any section by multiplying the total

moment at that section due to one line of wheels, or one track, of the relevant

loading by the load fraction S/D.
(e) For longitudinal shear, use a D value of 1.60 m for Class A and Class B

loadings. For class 70-R loading, obtain the value of D from Eq. (2.20)

corresponding to the γ value given by Eq. (2.19). The same value of D for

longitudinal shear is applicable for both single and continuous spans.

(f) Similarly to longitudinal moments, obtain longitudinal shear per girder by

multiplying the total shear for half the design loading by the load fraction (S/D).
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Fig. 2.15 Effective span lengths for calculating θ
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The longitudinal flexural rigidity Dx, of a bridge is the product of E and i, where
E is modulus of elasticity of deck slab concrete, and i is the longitudinal moment of

inertia per unit width in the units of deck slab concrete. For obtaining a value for i,
the total moment of inertia of the cross-section of the bridge, I, should be calculated
in terms of deck slab concrete. The parameter i is then obtained by dividing I by the
bridge width. Thus:

Dx ¼ EI

2b
ð2:21Þ

For bridges having fewer than five intermediate diaphragms per span, the transverse

flexural rigidity is obtained by ignoring contributions from diaphragms, so that for

slab thickness t:

Dy ¼ Et3=12 ð2:22Þ

The contribution of diaphragms to transverse flexural rigidity should be taken into

consideration only when engineering judgement shows that their contribution can be

realistically assumed to be uniformly distributed along the span. Neglecting contri-

butions of diaphragms is a safe-side assumption for nearly all practical bridges.

To illustrate the use of the method, the example of a single-span T-beam bridge

is presented; the cross-section of the bridge is shown in Fig. 2.16a, and the 70-R

loading on the 15 m simply supported span in Fig. 2.16b.
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b
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380mm 380mm 380mm

1.17m 1.17m2.38m

220mm

1.2
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0.37m 0.37m

70 t

4.57 m
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Fig. 2.16 Details of example: (a) cross-section, (b) simply supported beam under 70-R track

loading
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The total moment of inertia, I, of the bridge cross-section is calculated to be

0.66 m4. Hence Dx¼E� 0.66/8.25¼ 0.08E. The transverse rigidity, Dy, is calcu-

lated by ignoring contributions of any diaphragms, so that: Dy¼E� 0.223/

12¼ 0.00087E. The half width b and span L for the bridge are 4.125 and 15.0 m,

respectively. Therefore, θ is given by:

θ ¼ 4:125

15

E� 0:08

E� 8:87� 10�4


 �0:25
¼ 0:85

The 70-R track loading, shown in Fig. 2.16b leads to the mid-span moment¼ 70

(7.5� 1.14)¼ 222.5 t.m, so that the mid-span moment due to one line of

tracks¼ 0.5� 222.5¼ 111.25 t.m. The steps in calculating the maximum

mid-span moment due to the 70-R loading are listed in Table 2.9, which shows

that the maximum live load longitudinal moment per girder is equal to 119.0 t�m.

The above-cited bridge is similar to the one used by Krishna and Jain (1977) to

illustrate the use of the Morice and Little method, according to which the maximum

longitudinal moment per girder due to the 70-R loading is found to be 110 t�m.

2.4.2 Simplified Method for HB Design Loads

A simplified method for two-lane slab-on-girder bridges in Hong Kong was

presented by Chan et al. (1995); details of this method, which was developed for

the British HB loading, are presented in the following with the hope that it would

prove useful for preliminary design of bridges designed by the British document

BS5400.

As shown in Fig. 2.17, the HB loading comprises four axles, with four wheels in

each axle. The weights of the wheels are governed by the units of the HB loading. In

Great Britain, most highway bridges are designed for 45 units of HB loading, so that

each wheel has a load of 112.5 kN, giving a load of 45 kN per axle. Each unit of HB

loading is equal to 10 kN. It should, however, be noted that the units of the design

loading does not affect the simplified method presented in the following.

Chan et al. (1995) have shown that Dx, the longitudinal flexural rigidity per unit

width, of slab-on-girder bridges in Hong Kong lies between two bounds defined by

the following equations.

Table 2.9 Steps in calculation of maximum moments due to 70-R loading

S, m
D, m (from

Fig. 2.14) S/D
Mid-span moment due to one

line of tracks, t.m

Max. girder moment at

mid-span, t.m

2.76 2.57 2.76/

2.57¼ 1.07

111.25 1.07� 111.25¼ 119.0
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Dx ¼ 48, 000Lþ 5, 100L2 upper boundð Þ ð2:23Þ
Dx ¼ 2, 000Lþ 3, 650L2 lower boundð Þ ð2:24Þ

where the span of the bridge L is in metres and Dx in kN.m. The two bounds defined

by the above equations are illustrated in Fig. 2.8. From a study of a large number of

slab-on-girder highway bridges in Hong Kong, it was determined that the ranges of

the various parameters which influence the transverse load distribution character-

istics of a bridge are as follows.

(a) The deck slab thickness, t, varies between 150 and 230 mm, with the usual

value being 200 mm.

(b) The centre-to-centre spacing of girders, S, varies between 0.2 and 2.0 m, with

the usual value being 1.0 m.

(c) The lane width, We, varies between 3.2 and 3.8 m, with the usual value being

3.5 m.

(d) The vehicle edge distance, VED, being the transverse distance between the

centre of the outermost line of wheels of the HB loading and the nearest

longitudinal free edge of the bridge, varies between 0.75 and 5.00 m, with the

usual value being 1.00 m.

From the above observations, the following values of the various parameters

were adopted for the developmental analyses conducted for developing the simpli-

fied method: t¼ 200 mm; S¼ 1.0 m;We¼ 3.5 m; and VED¼ 1.00 m. In addition, it

was assumed that the deck slab overhang beyond the outer girders was 0.55 m.

Bridges with spans of 10, 20, 30 and 40 m were selected for the developmental

analyses. The flexural rigidities of their girders were calculated from the mean

values of Dx given by Eqs. (2.22) and (2.23). The selected idealised bridges under

the HB loading were analysed by the semi-continuum method, which is incorpo-

rated in computer program SECAN, discussed in Chap. 3. For each bridge, the HB

vehicle was placed so as to induce maximum moments at the mid-span. The

maximum moment, designated as Mg(max) was calculated for each case for each

of the external and internal girders.

1.80 6.26 1.80        

1.00 m

1.00 m

1.00 m

Direction of travel

Line of wheels (Typical)

Axle (typical)m

Fig. 2.17 Plan of HB loading
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From Eq. (2.6), it can be shown that D, which has the units of length and

provides a measure of the transverse load distribution characteristics of bridge as

discussed earlier, is given by:

D ¼ MS=Mg maxð Þ ð2:25Þ

Chan et al. (1995), having plotted the values of D from the above analyses against

the span length L, found that these values of D are related to L according to the

following equations with a reasonable degree of accuracy, provided that the design

value of D, i.e. Dd, is corrected by Eq. (2.30).

For internal girders having L< 25 m:

D ¼ 1:20� 3:50=L ð2:26Þ

For internal girders having L� 25 m:

D ¼ 1:06 ð2:27Þ

For external girders having L< 25 m:

D ¼ 0:95 þ 2:10=L ð2:28Þ

For external girders having L� 25 m:

D ¼ 1:03 ð2:29Þ

The correcting equation for obtaining Dd is as follows.

Dd ¼ D 1þ μCw

100

� �
ð2:30Þ

in which μ is given by:

μ ¼ 3:5� We

0:25
ð2:31Þ

where We is the width of the design lane in meters.

Chan et al. (1995) have provided charts in which Cw is plotted as functions of

L for internal and external girders. However, Cw can also be obtained fairly

accurately by the following equations.

For internal girders:

Cw ¼ 6L

40
ð2:32Þ
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For external girders:

Cw ¼ 17:5� 8:5ðL� 10Þ
10

ð2:33Þ

It is noted that in the above equations, both D and L are in metres.

The following conditions must be met for applying the above simplified

method.

(a) The value of Dx, calculated from Eq. (2.21), lies between the upper and lower

bound values given by Eqs. (2.23) and (2.24), respectively.

(b) The bridge has two design lanes, with the lane width, We, being �3.5 m.

(c) The width is constant or nearly constant, and there are at least three girders in

the bridge.

(d) The skew parameter ε¼ (S tan ψ)/L does not exceed 1/18 where S is girder

spacing, L is span and ψ is the angle of skew.

(e) For bridges curved in plan, L2/bR does not exceed 1.0, where R is the radius of

curvature; L is span length; 2b is the width of the bridge.

(f) The total flexural rigidity of transverse cross-section remains substantially the

same over at least the central 50 % length of each span.

(g) Girders are of equal flexural rigidity and equally spaced, or with variations

from the mean of not more than 10 % in each case.

(h) The deck slab overhang does not exceed 0.6 S, and is not more than 1.8 m.

In cases where the above conditions are not fully met, engineering judgement

should be exercised to ascertain if the bridge meets them sufficiently closely for the

simplified method to be applicable.

The following steps of calculation are required in calculating maximum

moments in internal an external girders due to HB loading.

(a) Calculate the value of D from the relevant of Eqs. (2.26, 2.27, 2.28, and 2.29);

for simply supported spans, L is the actual span length, and for continuous

span bridges, the effective L for different spans is obtained from Fig. 2.15.

(b) For the design lane width, We, obtain μ from Eq. (2.31) and Cw from the

relevant of Eqs. (2.32) and (2.33), and thereafter obtain Dd from Eq. (2.30).

(c) Isolate one girder and the associated portion of the deck slab, as illustrated in

Fig. 2.3b, and analyse it by treating it as a one-dimensional beam under one

line of wheels of the HB loading, shown in Fig. 2.17. The moment thus

obtained at any transverse section of the beam is designated as M.

(d) For of the internal and internal girders, obtain the maximum moment at the

transverse section under consideration by multiplying M with (S/Dd), where Dd

is as obtained in Step (b) for the relevant of the internal and external girders.

The use of the above method is illustrated by analysing an actual two-span

continuous steel girder bridge in Hong Kong, the Canton Road Duplication Bridge

(Chan et al. 1995). Since this bridge was included in determining the upper and

lower bound values of Dx for bridges in Hong Kong (Fig. 2.8), there is no need to
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check if the value of its Dx falls within the two bounds. In the following example,

maximum positive, i.e. sagging, moments in the internal girders of the bridge under

45 units of HB loading are determined by the simplified method. The various

parameters of the bridge are as noted in the following.

Actual span lengths, L¼ 22.0 and 22.0 m

Bridge width, 2b¼ 8.7 m

Design lane width We¼ 3.35 m

Deck slab thickness¼ 0.18 m

Girder spacing S¼ 1.48 m

Deck slab overhang¼ 0.65 m

Vehicle edge distance VED¼ 1.25 m

The parameters for the simplified analysis are calculated as follows.

From Fig. 2.15, effective span L¼ 0.8� 22.0¼ 17.6 m

From Eq. (2.26), D¼ 1.20� 3.5/17.6¼ 1.001 m

From Eq. (2.31), μ¼ (3.5� 3.35)/0.25¼ 0.6

From Eq. (2.32), Cw¼ 2.6 %

From Eq. (2.30), Dd¼ 1.001� (1 + 0.6� 2.5/100)¼ 1.017 m

Load fraction S/Dd¼ 1.48/1.017¼ 1.455

From beam analysis, the maximum positive moment in the two-span beam due

to one line of 45 units of HB loading,M, is found to be 1160 kN.m. By multiplying

this moment with load fraction 1.445, the maximum positive moment in any of the

internal girders of the bridge was found to be 1688 kN.m.

A rigorous analysis of the above problem by the semi-continuum and grillage

methods gave the maximum moments of 1503 and 1636 kN.m, respectively (Chan

et al. 1995). This observation confirms that the moments given by the simplified

method are 12 % larger than those given by the semi-continuum method and 3 %

larger than those given by the grillage method. It is discussed in Chap. 3 that while

the two rigorous methods of analysis are similar in idealisation, the semi-continuum

method is believed to be more accurate than the grillage method.

2.5 Analysis of Two-Girder Bridges

In two-girder bridges and those bridges which comprise two main longitudinal

members, such as trusses, the transverse distribution analysis is usually done by

simple static apportioning of the loads to the two main longitudinal members. For

example, considering the cross-section of the two-girder bridge shown in

Fig. 2.18a, with a girder spacing S and a concentrated load P located on the deck

slab at a distance eS from the left girder, it is usual to assume, as shown in

Fig. 2.18b, that the left and right girders receive loads (1� e) P and eP, respec-
tively. It is recalled that these loads are the same as the reactions of a beam simply

supported by the two girders.
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Transverse load distribution analysis by static apportioning as described above is

based upon the implicit assumption that the bridge has negligible torsional rigidities

in both the longitudinal and transverse directions of the bridge. In practice, even

though the torsional rigidities of girders themselves may be negligible, the torsional

rigidity of the deck slab, in both the longitudinal and transverse directions, can be

substantial. The neglect of these torsional rigidities can make the analysis by static

apportioning somewhat conservative. The objective of this section is to present a

very simple, yet accurate, method of apportioning loads to the girders of two-girder,

right bridges, based upon the semi-continuum method, the general treatment of

which is described in Chap. 3. It is emphasized that knowledge of the general semi-

continuum method is not needed in order to be able to use the proposed method.

2.5.1 Two-Girder Bridges

The case of a right, simply-supported bridge with two main girders supporting a

concrete deck slab, is considered first. Consistent with usual practice, transverse

deflections of the solid concrete deck slab due to shear are assumed to be negligible.

Figure 2.18a shows a two-girder bridge carrying a longitudinal line load at a

distance eS from girder 1. By using the general semi-continuum method described

by Jaeger and Bakht (1989), it can be shown that the distribution coefficients for

longitudinal bending moment and torsion are given by:

ρ1 ¼
η
2
1� eþ λþ 2μð Þ þ μ 1þ λ� 3e2 þ 2e3ð Þ

η
2
1þ 2λþ 4μð Þ þ μ 1þ 2λð Þ ð2:34Þ

ρ2 ¼
η
2
eþ λþ 2μð Þ þ μ λþ 3e2 � 2e3ð Þ
η
2
1þ 2λþ 4μð Þ þ μ 1þ 2λð Þ ð2:35Þ

ρ∗1 ¼ e 1� eð Þ
2 η

6
þ μ

� �þ 1
2
� e

� �
1þ 2λð Þe 1� eð Þ � ηf g

η
2
1þ 2λþ 4μð Þ þ μ 1þ 2λð Þ ð2:36Þ

S 

eS 

P 
(1 – e)P eP 

ba

Girder 1 12 2

Fig. 2.18 The usual method of apportioning loads to girders in a two-girder bridge (a) single load
between two girders, (b) static apportioning of load without considering torsional rigidities
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ρ∗2 ¼ �e 1� eð Þ
2 η

6
þ μ

� � þ
1
2
� e

� �
1þ 2λð Þe 1� eð Þ � ηf g

η
2
1þ 2λþ 4μð Þ þ μ 1þ 2λð Þ ð2:37Þ

where ρ1 and ρ2 are the distribution coefficients for longitudinal bending moments

in girders 1 and 2, respectively; and ρ1
* and ρ2

* are the distribution coefficients for

longitudinal torsional moments. It is noted that the left girder is referred to as girder

1, the right girder as girder 2, and that the quantity e is positive when the load is to

the right hand side of girder 1.

In the above equations, η, λ and μ are the dimensionless characterizing param-

eters of the bridge defined by:

η ¼ 12

π4
L

S

� 	3 LDy

EI
ð2:38Þ

λ ¼ 1

π2
L

S

� 	2 SDyx

EI
ð2:39Þ

μ ¼ 1

π2
L

S

� 	2 GJ

EI
ð2:40Þ

in which L¼ bridge span; S¼ girder spacing; EI¼ the combined flexural rigidity of

one girder and the associated portion of the deck slab; GJ¼ the combined torsional

rigidity of one girder and the associated portion of the deck slab; Dy¼ the transverse

flexural rigidity per unit length of the deck slab; and Dyx¼ the transverse torsional

rigidity per unit length of the deck slab. For a deck slab of thickness t, modulus of

elasticity Ec and shear modulus Gc, the values of Dy and Dyx are given by:

Dy ¼ Ect
3

12
ð2:41Þ

Dyx ¼ Gct
3

6
ð2:42Þ

It is recalled that for analysis by the semi-continuum method, the applied loading is

represented by harmonic series, and that Eqs. (2.38), (2.39), and (2.40) are appli-

cable for only the first term of the loading series. The characterizing parameters for

higher terms, which are not utilized for the development of the proposed method,

are obtained by replacing π in these equations by mπ, where m is the harmonic

number.

A slab-on-girder bridge carrying a single concentrated load is considered. For

such a case, the ratio of the moment induced in a girder to the total moment at the

transverse section under consideration varies from section to section; furthermore,

this ratio of girder moments is not the same as the ratio for girder shears (Jaeger and

Bakht 1989). For these reasons, the girder moments and shears cannot be directly

derived simply by multiplying the total moments and shears by ρ1 and ρ2.
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Variation of the transverse distribution patterns of longitudinal responses along

the span is caused mainly because some girders are directly loaded while others are

not. In a two-girder bridge, most of the applied loads are located transversely

between the two girders, as a result of which the situation of only some girders

carrying the load directly is eliminated. It can be shown that in a two-girder bridge

which carries several concentrated loads, the coefficients ρ1 and ρ2, which are

strictly true only for the first harmonic, nevertheless represent with very good

accuracy the fractions of loads transformed to the girders.

A longitudinal line load P at a distance eS from girder 1 is considered as shown

in Fig. 2.18a. In light of the above discussion, it can be appreciated that this load is

effectively transferred as ρ1P and ρ2P on girders 1 and 2 respectively. By denoting

e*¼ ρ2, it follows that these loads can be written (1� e0) P and e
0
P, which are the

loads that would be obtained if the external load were located at a distance e
0
S from

girder 1, and were then apportioned statically in the usual manner. Using Eq. (2.34),

the equation for e
0
can be written as:

e0 ¼
η
2
eþ λþ 2μð Þ þ μ λþ 3e

2 � 2e
3

� �
η
2
1þ 2λþ 4μð Þ þ μ 1þ 2λð Þ ð2:43Þ

In the case of a single concentrated load, eS is the distance of the load measured in

the transverse direction from the left girder. When there are two or more concen-

trated loads on a transverse line, eS becomes the distance of the centre of gravity of

the loads from the left girder as illustrated in Fig. 2.19a. The approach of appor-

tioning loads to girders by using e0 as defined by Eq. (2.43) can also be used in the

case of multiple loads on a transverse line. It is noted that both e and e0 are measured

positive on the right hand side of the left hand girder, i.e. girder number 1.

The use of the proposed method can be illustrated with the help of the example

shown in Fig. 2.19a. As shown in this figure, there are four concentrated loads on a

transverse line with a total weight W. The centre of gravity of these loads is a

distance eS from girder 1. Using the values of η, λ and μ obtained from Eqs. (2.38),

(2.39), and (2.40), respectively, and e, the value of e0 is obtained from Eq. (2.43). As

shown in Fig. 2.18b, the four loads can be transformed as single concentrated loads

S 

eS 
(1 – e')W  e'W 

a b
C.G. 

Girder 1 Girder 2 Girder 2 Girder 1 

W 

Fig. 2.19 Notation used in conjunction with the proposed method (a) four loads between two

girders, (b) static apportioning of load by considering torsional rigidities
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of weights (1� e0)W and e0W on girders 1 and 2, respectively, both acting on the

same section which contains the four applied loads. Thereafter, each girder can be

analysed in isolation under the action of the transformed loads.

For the case shown in Fig. 2.18b, equilibrium can be maintained only if the two

girders have torsional couples T1T2. While it is usual to ignore the effect of these

couples in design, they can be derived from the distribution coefficients ρ1
* and ρ2

*.

2.5.2 Calculation of Stiffnesses

It will be appreciated that the simplified method proposed above is applicable to a

variety of bridges including (a) two-girder bridges without horizontal bracing;

(b) two-girder bridges with horizontal bracing; (c) box girder bridges with two

spines; (d) through truss bridges; and (e) deck truss bridges. The cross-sections of

these bridges are shown in Fig. 2.20a–e, respectively. It is noted that the semi-

continuum method can also be applied for the analysis of single cell box girders, as

discussed later.

While the proposed method is simple enough to be applied without any diffi-

culty, the calculation of the stiffnesses needed for obtaining the characterizing

parameters needs care, and is not always self-evident. The procedures for calculat-

ing these stiffnesses for certain kinds of bridges are given below, mainly because

not all of them are available in readily-available references.

The longitudinal flexural rigidity EI of girder bridges having uniform section

along the span can be obtained in the usual manner and needs no explanation. When

Horizontal bracing

a b c

Horizontal bracing

Truss Truss Truss Truss

d e

Horizontal bracing

Fig. 2.20 Bridges with two main longitudinal members: (a) girder bridge without horizontal
bracing, (b) girder bridge with horizontal bracing, (c) box girder bridge with two spines, (d)
through truss bridge, (e) deck truss bridge
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the flexural rigidity of a girder varies along the span, the following expression

proposed by Jaeger and Bakht (1989) can be used to obtain the equivalent uniform

flexural rigidity EIe:

EIe ¼ π

72

� � 0:0000EI1 þ 1:0352 EI2 þ EI12ð Þ
þ1:0000 EI3 þ EI11ð Þ þ 2:8284 EI4 þ EI10ð Þ
þ1:7320 EI5 þ EI9ð Þ þ 3:8636 EI6 þ EI8ð Þ
þ2:0000EI7

8>><
>>:

9>>=
>>;

ð2:44Þ

where EI1, EI2,. . ., EI12 are the flexural rigidities of the girder at longitudinal

locations identified in Fig. 2.21.

For truss bridges, the equivalent EI can be obtained by seeking equivalence

between the maximum truss and equivalent beam deflections under uniformly

distributed loads.

In the absence of transverse diaphragms, or transverse floor beams, the trans-

verse flexural rigidity per unit length, Dy is obtained from Eq. (2.41). However,

when these transverse members are present, their contribution to Dy may be

significant, especially when they are closely spaced. When the deck slab is

supported on both longitudinal main members and transverse beams, and the

spacing of transverse beams is less than about 0.75S, Dy can be calculated from:

Dy ¼ EIt
St

ð2:45Þ

where EIt is the flexural rigidity of a transverse beam and the associated portion of

the deck slab, and St is the spacing of these beams.

When the deck slab is supported only by transverse beams, as it usually is in the

floor systems of truss bridges, Eq. (2.41) can be used for calculating Dy even when

St is greater than S.

a

b

EI1 EI2 EI6 EI13

12 Equal divisions 

Fig. 2.21 A girder with variable flexural rigidity: (a) elevation, (b) flexural rigidity
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For twin-cell box girder bridges, the simplified analysis can be performed by

idealizing each box girder by a one-dimensional longitudinal beam having the same

EI and GJ as the box girder and the associated portion of the deck slab (taken from

centre to centre of the individual cells). However, this will underestimate its ability

to transfer loads laterally; to correct for this inconsistency, the value of Dy can be

enhanced as follows:

Dy ¼ Ect
3

12

S

S0

� �3

ð2:46Þ

where, as shown in Fig. 2.22, S is the centre to centre spacing of the two box girders
and S0 is the clear transverse span of the deck slab.

For a two-girder bridge without horizontal bracing at the bottom flange level, the

longitudinal torsional rigidity of a girder and the associated portion of the deck slab

is estimated simply as the sum of the torsional rigidities of the girder and the deck

slab, so that:

GJ ¼ GgJg þ Gcb
t3

6
ð2:47Þ

where Gg and Jg are the shear modulus of the girder material and the torsional

inertia of the girder, respectively; Gc is the shear modulus of the deck slab material;

b is half the width of the bridge; and t is the slab thickness.

The longitudinal torsional rigidity of a thin walled box girder having a closed

section can be obtained from the following equation:

GJ ¼ Gc
4A2I
ds

nst0

8>><
>>:

9>>=
>>;

ð2:48Þ

where A is the area enclosed by the median line passing through the walls of the

closed section; and t’ is the thickness of the steel girder;

I
ds

t0
refers to the contour

S 

S’

Fig. 2.22 Cross-section of a bridge with two box girders
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integral along the median line of the reciprocal of the wall thickness; and ns is the
ratio of the shear modulus of the deck slab material and the material of the wall

under consideration.

The bottom flanges of steel girder bridges are usually connected by horizontal

bracing, which is also referred to as wind bracing. This bracing has the effect of

closing the cross-section and thus enhancing considerably the longitudinal torsional

rigidity of the bridge. This enhancement of the longitudinal torsional rigidity of the

bridge by closing the section also takes place in through-truss bridges and deck-

truss bridges. As shown in Fig. 2.20d, the horizontal bracing at the top closes the

section in through-truss bridges, whilst in deck truss bridges the section is closed by

the horizontal bracing at the bottom, as shown in Fig. 2.20e.

The case is now considered of a closed-section box member in which one or

more walls of the member are composed of a framework such as a truss or a system

of horizontal bracing. In such a case, as noted by Kollbrunner and Basler (1969), the

framework can be idealized as a plate whose thickness t depends upon the config-

uration of the framework and the cross-sectional areas of the various chord mem-

bers. For the K-type of framework shown in Fig. 2.23a, the equivalent thickness t is
given by:

t ¼ Es

Gs

ac

d3

Ad
þ a3

3
1
At
þ 1

Ab

n o ð2:49Þ

For the N-type of framework shown in Fig. 2.23b, t is given by:

t ¼ Es

Gs

ac

d3

Ad
þ c3

Av
þ a3

12
1
At
þ 1

Ab

n o ð2:50Þ
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At

Ad
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d

Av

Fig. 2.23 Various frame configurations (a) K-type, (b) N-type, (c) X-type without transverse

members, and (d) X-type with transverse members
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For the X-type of framework shown in Fig. 2.23c, t is given by:

t ¼ E

Gs

ac

d3

2Ad
þ a3

12
1
At
þ 1

Ab

n o ð2:51Þ

When the X-type of framework incorporates members perpendicular to the main

members as shown in Fig. 2.23d, the idealized thickness t can be found either by

ignoring these transverse members and thus using Eq. (2.50), or by ignoring the

diagonal members in compression in which case the system becomes identical to

the one shown in Fig. 2.23b. For this latter case t can be obtained from Eq. (2.49).

In the above equations, Es and Gs are respectively the elastic and shear modulus

of the material of the framework; a, c and d are the chord lengths identified in

Fig. 2.23; and At, Ab Ad and Av are the cross-sectional areas of the chord members,

also identified in Fig. 2.23. For horizontal bracing in girder bridges, At and Ab can be

taken as the areas of cross-section of the bottom flanges of the relevant girders.

For all the bridges discussed so far, it is conservative to assume that only the

deck slab provides the transverse torsional rigidity, so that Dyx can always be

obtained from Eq. (2.41).

2.5.3 Numerical Example

As an illustration, the proposed simplified method is used to analyse a two-girder

bridge under two eccentrically-placed vehicles. Various details of the bridge are

given in Fig. 2.24 including the areas of cross-sections of the various members of

the horizontal bracing system; other relevant details are given below.

Span, L ¼ 18.0 m

Girder spacing, S ¼ 8.75 m

Flexural rigidity, EI, of a girder ¼ 5.886� 106 kN•m2

Modular ratio, ms ¼ 10

Floor beam spacing, St ¼ 4.5 m

Flexural rigidity, EIt, of floor beam ¼ 1.320� 106 kN•m2

The bracing system is the same type as is shown in Fig. 2.23d. The equivalent

thickness for this system can be obtained either from Eqs. (2.50) or (2.51), which

give t¼ 0.42 mm and 0.36 mm, respectively. Both of these values are conservative

estimates of the effective thickness. The smaller thickness would give an even safer

side estimate of the load distribution characteristics of the structure. Accordingly,

this value was chosen.

Using t¼ 0.36 mm and other relevant properties of the bridge cross-section, the

total longitudinal torsional stiffness of the bridge is found to be 3.480� 106 kN�m2.

By assigning half of this torsional rigidity to each girder, the effective girder GJ
becomes 1.74� 106 kN�m2.
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Using Eq. (2.45) Dy¼ 386,667 kN�m, and from Eq. (2.42) Dyx¼ 22,100 kN�m.

By using the various stiffnesses and other properties of the bridge, the values of the

non-dimensional parameters η, λ and μ are found to be 0.962, 0.014 and 0.127,

respectively.

As shown in Fig. 2.24a, the centre of gravity of the four axle loads is 2.8 m from

the left girder. Hence e¼ 2.8/8.75¼ 0.32. Substituting this value of e and the

characterizing parameters calculated above into Eq. (2.43), one obtains e0 ¼ 0.372.

If the loads were apportioned to the two girders in the usual static manner, girder

1 would have been called upon to sustain 0.68 times the total load. By contrast, load

distribution analysis by the proposed method shows that this fraction is 0.628. This

reduction represents a 7.6 % reduction in maximum live load effect. Such a

reduction in maximum live load effects may not be of great consequence for the

design of new bridges, but it can prove to be very useful in the evaluation of the load

carrying capacity of existing ones.

8.75m 

250mm
0.4m 

2.8m
C.G.

1.8m 1.8m 1.2m 

1.7
8m

 

10mm 

a

4.5
m

Ad = 6770mm2

Av = 6770mm2

b

Fig. 2.24 Details of a two-girder bridge: (a) cross-section, (b) plan
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