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Second-Order Linear Equations

In this chapter we study second-order linear differential equations of the form
ar” 4+ bx' + cx = f(t)

and their applications to classical mechanics and electrical circuits. These appli-
cations are standard fare and a centerpiece in both elementary physics and
engineering courses, and they serve as prototypes for oscillating systems, oscil-
lating systems with dissipation, or damping, and forced vibrations that occur
in all areas of pure and applied science. In the final sections of the chapter we
extend the coverage to linear equations with variable coefficients.

2.1 Classical Mechanics

Newton’s second law is familiar from high school physics and beginning calculus
courses. It is the fundamental law of classical particle dynamics and is perhaps
the most well known law in elementary physics. Its simple statement is: force
equals mass times acceleration, or F' = ma. When an external force acts on
a particle of mass m, it changes the momentum, or inertia, in the system. If
x = z(t) denotes the position of the particle, then the particle undergoes an
acceleration given by the second derivative, 2’/ (t). Thus Newton’s law takes the
form mz” = F, which is a second-order differential equation for the position
x. In the general case, the external force could depend on time ¢, the position
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Figure 2.1 Spring—mass oscillator. x(¢) is the displacement of the mass at
time ¢, where x = 0 is the equilibrium positon; z(¢) > 0 when the mass is
displaced to the right.

z, and the velocity z’. Therefore Newton’s law of motion can be expressed
generally as

ma” = F(t,z,2), (Newton’s Second Law)

where the form of the force F(t,z, ") is prescribed.
In dynamics we expect to impose two initial conditions,

2(0) = 29, 2'(0) = 1,

where x¢ is the initial position and x; is the initial velocity. In general terms,
the program of classical mechanics is deterministic; that is, if the initial state
(position and velocity) of a system is known, as well as the forces acting on
the system, then the state of the system is determined for all times ¢ > 0.
Practically, this means we solve the initial value problem above associated
with Newton’s law to determine the evolution of the system z = z(t).

2.1.1 Oscillations and Dissipation

Oscillatory behavior is a common phenomenon in mechanical, biological, elec-
trical, atomic, and other physical systems. We begin with a prototype of a
simple oscillatory system, a mass connected to a spring.

Example 2.1

(Oscillator) Imagine a mass m lying on a table and connected to a spring,
which is in turn attached to a rigid wall (Figure 2.1). At time ¢t = 0 we displace
the mass a positive distance xg to the right of equilibrium and then release it. If
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we ignore friction on the table then the mass executes simple harmonic motion;
that is, it slides back and forth at a fixed frequency and amplitude. Following
the doctrine of mechanics we write Newton’s second law of motion, mz” = F,
where the state function x = x(t) is the position of the mass at time ¢; we take
x = 0 to be the equilibrium position and x > 0 to the right; the spring exerts
external force Fy, which must be prescribed. Experiments confirm that if the
displacement is not too large (which we assume), then the force exerted by the
spring on the mass is proportional to its displacement from equilibrium, or

Fy = —kx. (Hooke’s Law) (2.1)

The minus sign appears because the force opposes positive motion, which is
to the right. The force is negative when x > 0, and positive if x < 0. The
proportionality constant k£ > 0 (having dimensions of force per unit distance)
is called the spring constant, or stiffness of the spring, and Equation (2.1)
is called Hooke’s law. Not every spring behaves in this manner, but Hooke’s
law is used as a model for some springs. In engineering such a law is called a
constitutive relation; it is an empirical result rather than a law of nature.
This is an example of a linear force that depends only on the position x.

To give more justification for Hooke’s law, suppose the force F depends on
the displacement x through F' = F(x), with F(0) = 0. By Taylor’s theorem,

1
Fy(x) = Fy(0)+F(0)z+ 5F;’(O)a;? o
1
= —kx+ ng”(())az:2 e
where we defined F.(0) = —k. So Hooke’s law is a good approximation if

the displacement is small, allowing the higher-order terms in the series to be
neglected.

We can measure the stiffness k£ of a spring by attaching it to the ceiling
without the mass. Then we attach the mass m and measure the elongation L
after it comes to rest. The force of gravity mg (downward) must balance the
restoring force kxz (upward) of the spring, so mg = kL. Therefore,
mg
T

Newton’s law, or the equation of motion of the system, is therefore

k’:

mz" = —kx. (2.2)

This is the spring-mass equation. The initial conditions are x(0) = x¢, the
position where the mass is released, and the velocity 2/(0) = x; given to it at
time ¢ = 0.



82 2. Second-Order Linear Equations

As a special case, suppose the initial velocity is zero. That is, we just displace
the mass to g and release it. The initial conditions are

z(0) = 2o, 2'(0) =0.

We expect oscillatory motion. Assuming a solution of (2.2) of the form z(t) =
A coswt for some unknown frequency w and amplitude A, we find upon sub-
stitution into (2.2) that w = \/k/m and A = xy. (Verify this!) Therefore, the
position of the mass at time ¢ is given by

x(t) = xgcosy/k/mt.

This solution is an oscillation of amplitude xg, natural frequency /k/m , and
period 27 divided by the frequency, or 2w/m/k. O

Now we add an additional force, that of the frictional force of the table
exerted on the mass. Friction is a force that opposes positive motion and it
dissipates, or decreases, the energy in the system. Dissipation in mechanical
systems include friction, air resistance, and so on, which are also called damping
forces. In circuits, electrical resistance dissipates the energy in the circuit. These
energies often are transformed to heat energy.

Example 2.2

(Damped Oscillator) Assume there is friction as the mass slides on the table.
The simplest constitutive relation is to take the frictional force to be propor-
tional to how fast the mass is moving, or its velocity z’. Thus

Fy = —va/, (damping force)

where v > 0 is the damping coefficient (mass per time). If the mass is moving
to the right, or ' > 0, the damping retards the motion and F; < 0. Therefore,
the total external force is the sum

F=F,+F;=—kx—n~x'.
The equation of motion is
mz' = —yz' — kz. (damped oscillator)

This equation is called the damped oscillator equation. Both forces have
negative signs because each opposes positive (to the right) motion. For this
case we expect an oscillatory solution with a decreasing amplitude during each



2.1 Classical Mechanics 83

oscillation because of the presence of friction. One such a solution, a damped
oscillation, takes the form of

z(t) = Ae M coswt,

where A is some amplitude, A is a decay rate, and w is the frequency. O

The Mechanical-FElectrical Analogy

There is great similarity between the damped spring-mass system and an
RCL circuit. We can write the damped oscillator equation with unknown dis-
placement z(t) as

mz” + vz’ + kx = 0. (damped oscillator)

Interestingly enough, from Section 1.5, the current I(¢) in an RCL circuit with
no electromotive force (emf) satisfies

1
C
which has ezactly the same form. This similarity is a classical example of the

unifying nature of mathematics in science. The similarity between these two
models is called the mechanical—electrical analogy:

LI"+RI' + =1 =0, (RCL circuit)

e The spring constant k is analogous to the inverse capacitance 1/C; both a
spring and a capacitor store energy in the system.

e The damping constant v is analogous to the resistance R; both friction in a
mechanical system and a resistance in an electrical system dissipate energy,
often in the form of heat.

e The mass m is analogous to the inductance L; both represent inertia in the
system; a large mass or inductance causes the velocity or current, respec-
tively, to resist change. In the case of a circuit, an inductor (or coil) stores
energy in its magnetic field which resists changes in current.

In every equation we encounter, we want to understand the meaning of each
term. In the analogy above the first term is the inertia term, the second term
is the dissipation or energy loss term, and the third is an energy storage term.
Many of the equations we examine in this chapter can be regarded as either
circuit equations or mechanical equations. Common among them are the phys-
ical properties of inertia, damping, and oscillation. In Section 2.3 we consider
additional forces on the system due to external forcing or an electromotive
force.
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Energy Considerations

To get a better idea about the role of dissipation in a system, let us think
a little deeper about energy. For a damped spring-mass system, the governing
equation is
ma’” +~x' + kx = 0.

To get energy expressions, multiply this equation by the velocity =’ to obtain

ma'x” 4+ ya'z' + kxa’ = 0.

Each term has units of energy per time. By the chain rule

d d
—2'(t)? =22'(t)2"(t) and —x(t)? = 2x(t)2' ().
dt dt
Therefore, the energy equation can be written
d 1 N2 1 20 /W)
o 2m(:v )+ 2k:v = —vya'z'. (2.3)

The two terms inside the left bracket are the kinetic energy and potential energy
in the system:

1 1
T = §m(m')2 (kinetic energy); V = 5/61'2 (potential energy)

To understand potential energy, recall that the force is the negative derivative
of the potential. The force is F(x) = —kx, so the potential energy due to that
force is the negative integral of the force, or

Viz)=- /(—kx)dx = %ka.

Therefore (2.3) is an energy dissipation law

dE  d
% iravi= - Wi
7 = gl +V]=—2'd,

stating that the total energy £ = T+ V in the system is dissipated at the rate
—~a'z’. Energy per time is power, so (2.3) is the power lost in the system.

If there is no damping in the system then v = 0 and we have

1 1
§m(:c’)2 + 5]{3172 = F, E constant.

This is the conservation of energy law.

EXERCISES

1. When a mass of 0.3 kg is placed on a spring hanging at rest from the ceiling,
it elongates the spring 5 cm. What is the stiffness k£ of the spring?
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2. (a) Beginning with the RCL circuit equation expressed in terms of charge
Q@ on the capacitor, or

1
LQ" + RQ' + c@=0

derive the energy dissipation law corresponding to a spring-mass oscillator
(2.3). (b) Identify the energy in the inductor and on the capacitor. (¢) Show
that the power lost by the resistor is —RI?. (d) If there is no resistor, what
is the conservation of energy law for the circuit?

3. We derived the spring-mass equation for a mass moving horizontally on
a table top. This exercise shows that the same equation holds for a mass
oscillating on a vertical, perfectly elastic string (or a spring) under the
influence of the force of gravity mg. We assume Hooke’s law holds for the
string, that is, the force exerted by the string is proportional to its dis-
placement. See the set up in Figure 2.2, where we introduce two coordinate
systems, x and y, to measure displacement. First, only the string of natural
length L is attached with no mass. This is position y = 0. Then we attach
the mass, and at equilibrium it reaches a natural length L + ALj; this is
position x = 0. Next we pull the mass down a positive distance and release
it, and it undergoes oscillatory motion.

a) Use Newton’s second law and Hooke’s law to justify the equation of

motion
" _

my’ = —ky +mg.
b) In the x coordinate system show that the equation of motion is
mx” = —kzx,

where the gravitational force does not appear. Hint: Note that y =
x + AL and use the definition of the stiffness, kAL = mg.

¢) Show that if damping occurs, then the governing equation is ma’” =
—kx — .

2.2 Equations with Constant Coeflicients

Both the damped spring-mass equation and the RCL circuit equation have the
form, namely,
az” + b’ 4+ cx =0, (2.4)
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Figure 2.2 Two coordinate systems x and y for the motion of a mass m
attached to a perfectly elastic string, or a spring, subject to both a gravitational
force mg downward and a restoring force given by Hooke’s law.

where a, b, and ¢ are constants. An equation of the form (2.4) is called a homo-
geneous linear equation with constant coefficients. The word homoge-
neous refers to the fact that the right side is zero, meaning there is no external
forces acting on the mass or no emf in the circuit. (In Section 2.3 we include
these types of forces.) Equation (2.4) can be accompanied by initial conditions
of the form

z(0) = xg, 2'(0) = x1. (2.5)

Here, we are using « = z(t) as the generic state function.

The problem of solving (2.4) subject to (2.5) is called the initial value
problem (IVP). In (2.5) the initial conditions are given at ¢ = 0, which is
the common case, but they could be given at any time ¢ = tg. Finally, in the
spring-mass problem and RCL circuit problem the constants a, b, and ¢ are
nonnegative, but our analysis is valid for any values of the constants.

2.2.1 The General Solution

We develop a simple technique to solve the homogeneous linear equation
ax’” +bx' 4+ cx = 0.

Fundamental to the discussion is the following existence—uniqueness theorem,
which is proved in advanced texts; it also includes a definitive statement about
the interval where solutions are valid.

Theorem 2.3

(Existence-Uniqueness) The initial value problem (2.4)—(2.5) has a unique
solution that exists on —oo <t <oco. [
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The issue is how to find the solution. For the constant coefficient equa-
tion (2.4), with no initial conditions, we demonstrate that there are always
exactly two independent solutions, say x1(t) and x2(t), meaning one is not
a constant multiple of the other; they are not proportional. Such a set of solu-
tions, x1(t), z2(t), is called a basic, or fundamental set. Further, if we multiply
each by an arbitrary constant and form the linear combination

z(t) = crx1(t) + coxa(t), (2.6)

where ¢; and ¢y are arbitrary constants, then we can easily check that z(t)
is also a solution to the differential equation (2.4). (This is the superposition
principle—see Exercise 3.) The linear combination (2.6) is called the general
solution to (2.4), which means that all solutions to (2.4) are contained in this
linear combination for different choices of the constants ¢; and co. In solving the
initial value problem we use the initial conditions (2.5) to uniquely determine
the constants ¢; and cg in (2.6).

Theorem 2.4

(General Solution) Let x;(t), z2(t) be a fundamental set of solutions of
(2.4), and let ¢(t) be any other solution. Then there exists unique values of the
constants ¢; and ¢y such that

d)(t) = Clilil(t) + CQZEQ(t). O

To prove this result, let 21 (¢) and x2(t) be the unique solutions that satisfy
the initial conditions

21(0) =1, 27(0) =0, 22(0) =0, 25(0) =1,

respectively, and let ¢(t) be any solution of (2.4). ¢(t) will satisfy some condi-
tions at t = 0, say, ¢(0) = A and ¢’(0) = B. But the function

x(t) = Ax1(t) + Bxa(t)

satisfies those same initial conditions, £(0) = A and 2/(0) = B. By the unique-
ness theorem, Theorem 2.3, ¢(t) = x(t) and so ¢; = A, c2 = B. So the solution
¢(t) is contained in the general solution. O

Construction of Solutions

Our strategy now is to find two independent solutions 1 (t) and z2(t) of
(2.4). We suspect something of the form

z(t) = eM,
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where A is a constant to be determined, might work because every term in
(2.4) has to be the same type of function for cancelation to occur; thus, x, 2/,
and z” must be the same form, which suggests an exponential function for z.
Substitution of 2 = e into (2.4) instantly leads to

aX? + b\ +c=0, (characteristic equation) (2.7)

which is a quadratic equation for the unknown A. Equation (2.7) is called the
characteristic equation. Using the quadratic formula, we obtain its roots

A= 2_1a (—b +b2 — 4ac) . (eigenvalues)

These roots of the characteristic equation are called the eigenvalues corre-
sponding to the differential equation (2.4). Each value of A gives a solution
x(t) = eM to the equation

az” + bx’ + cx = 0.

Clearly, the values of A could be real numbers or complex numbers. Thus,
there are three cases, depending upon whether the discriminant b? — 4ac is
positive, zero, or negative.

Case 1. If b?> — 4ac > 0, then there are two real unequal eigenvalues \; and
A2. Hence, there are two independent, exponential-type solutions

Qil(t) = 8)\175, ZZ?Q(t) = e)‘zt, /\1 75 )\2.

Therefore the general solution to (2.4) is

Mt epetet (2.8)

z(t) = cre

Case 2. If b2 — 4ac = 0 then there is a double root A\ = —b/2a, A2 = —b/2a.

Then one solution is z1(t) = e*, where A = —b/2a. A second independent

solution in this case is x5(t) = te. (Later we show why this solution
occurs.) Therefore the general solution to (2.4) in this case is

z(t) = e + cote. (2.9)

Case 3. If b — 4ac < 0 then the roots, or eigenvalues, of the characteristic
equation are complex conjugates having the form*

A =a+if, Ao =a—1if,

4 Notation: Any complex number z can be written z = u + v, where u and v are
real numbers; u is called the real part of z and v is called the imaginary part of
z. Similarly, if z(t) = u(t) + tv(t) is a complex function, then u(t) and v(t) are its
real and imaginary parts, respectively. The numbers u 4 ¢v and u — iv are called
complex conjugates.
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