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Second-Order Linear Equations

In this chapter we study second-order linear differential equations of the form

ax′′ + bx′ + cx = f(t)

and their applications to classical mechanics and electrical circuits. These appli-

cations are standard fare and a centerpiece in both elementary physics and

engineering courses, and they serve as prototypes for oscillating systems, oscil-

lating systems with dissipation, or damping, and forced vibrations that occur

in all areas of pure and applied science. In the final sections of the chapter we

extend the coverage to linear equations with variable coefficients.

2.1 Classical Mechanics

Newton’s second law is familiar from high school physics and beginning calculus

courses. It is the fundamental law of classical particle dynamics and is perhaps

the most well known law in elementary physics. Its simple statement is: force

equals mass times acceleration, or F = ma. When an external force acts on

a particle of mass m, it changes the momentum, or inertia, in the system. If

x = x(t) denotes the position of the particle, then the particle undergoes an

acceleration given by the second derivative, x′′(t). Thus Newton’s law takes the

form mx′′ = F , which is a second-order differential equation for the position

x. In the general case, the external force could depend on time t, the position
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Figure 2.1 Spring–mass oscillator. x(t) is the displacement of the mass at

time t, where x = 0 is the equilibrium positon; x(t) > 0 when the mass is

displaced to the right.

x, and the velocity x′. Therefore Newton’s law of motion can be expressed

generally as

mx′′ = F (t, x, x′), (Newton’s Second Law)

where the form of the force F (t, x, x′) is prescribed.
In dynamics we expect to impose two initial conditions,

x(0) = x0, x′(0) = x1,

where x0 is the initial position and x1 is the initial velocity. In general terms,

the program of classical mechanics is deterministic; that is, if the initial state

(position and velocity) of a system is known, as well as the forces acting on

the system, then the state of the system is determined for all times t > 0.

Practically, this means we solve the initial value problem above associated

with Newton’s law to determine the evolution of the system x = x(t).

2.1.1 Oscillations and Dissipation

Oscillatory behavior is a common phenomenon in mechanical, biological, elec-

trical, atomic, and other physical systems. We begin with a prototype of a

simple oscillatory system, a mass connected to a spring.

Example 2.1

(Oscillator) Imagine a mass m lying on a table and connected to a spring,

which is in turn attached to a rigid wall (Figure 2.1). At time t = 0 we displace

the mass a positive distance x0 to the right of equilibrium and then release it. If
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we ignore friction on the table then the mass executes simple harmonic motion;

that is, it slides back and forth at a fixed frequency and amplitude. Following

the doctrine of mechanics we write Newton’s second law of motion, mx′′ = Fs,

where the state function x = x(t) is the position of the mass at time t; we take

x = 0 to be the equilibrium position and x > 0 to the right; the spring exerts

external force Fs, which must be prescribed. Experiments confirm that if the

displacement is not too large (which we assume), then the force exerted by the

spring on the mass is proportional to its displacement from equilibrium, or

Fs = −kx. (Hooke’s Law) (2.1)

The minus sign appears because the force opposes positive motion, which is

to the right. The force is negative when x > 0, and positive if x < 0. The

proportionality constant k > 0 (having dimensions of force per unit distance)

is called the spring constant, or stiffness of the spring, and Equation (2.1)

is called Hooke’s law. Not every spring behaves in this manner, but Hooke’s

law is used as a model for some springs. In engineering such a law is called a

constitutive relation; it is an empirical result rather than a law of nature.

This is an example of a linear force that depends only on the position x.

To give more justification for Hooke’s law, suppose the force Fs depends on

the displacement x through F = Fs(x), with Fs(0) = 0. By Taylor’s theorem,

Fs(x) = Fs(0) + F ′
s(0)x+

1

2
F ′′
s (0)x

2 + · · ·

= −kx+ 1

2
F ′′
s (0)x

2 + · · ·,

where we defined F ′
s(0) = −k. So Hooke’s law is a good approximation if

the displacement is small, allowing the higher-order terms in the series to be

neglected.

We can measure the stiffness k of a spring by attaching it to the ceiling

without the mass. Then we attach the mass m and measure the elongation L

after it comes to rest. The force of gravity mg (downward) must balance the

restoring force kx (upward) of the spring, so mg = kL. Therefore,

k =
mg

L
.

Newton’s law, or the equation of motion of the system, is therefore

mx′′ = −kx. (2.2)

This is the spring-mass equation. The initial conditions are x(0) = x0, the

position where the mass is released, and the velocity x′(0) = x1 given to it at

time t = 0.
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As a special case, suppose the initial velocity is zero. That is, we just displace

the mass to x0 and release it. The initial conditions are

x(0) = x0, x′(0) = 0.

We expect oscillatory motion. Assuming a solution of (2.2) of the form x(t) =

A cosωt for some unknown frequency ω and amplitude A, we find upon sub-

stitution into (2.2) that ω =
√
k/m and A = x0. (Verify this!) Therefore, the

position of the mass at time t is given by

x(t) = x0 cos
√
k/m t.

This solution is an oscillation of amplitude x0, natural frequency
√
k/m , and

period 2π divided by the frequency, or 2π
√
m/k. �

Now we add an additional force, that of the frictional force of the table

exerted on the mass. Friction is a force that opposes positive motion and it

dissipates, or decreases, the energy in the system. Dissipation in mechanical

systems include friction, air resistance, and so on, which are also called damping

forces. In circuits, electrical resistance dissipates the energy in the circuit. These

energies often are transformed to heat energy.

Example 2.2

(Damped Oscillator) Assume there is friction as the mass slides on the table.

The simplest constitutive relation is to take the frictional force to be propor-

tional to how fast the mass is moving, or its velocity x′. Thus

Fd = −γx′, (damping force)

where γ > 0 is the damping coefficient (mass per time). If the mass is moving

to the right, or x′ > 0, the damping retards the motion and Fd < 0. Therefore,

the total external force is the sum

F = Fs + Fd = −kx− γx′.

The equation of motion is

mx′′ = −γx′ − kx. (damped oscillator)

This equation is called the damped oscillator equation. Both forces have

negative signs because each opposes positive (to the right) motion. For this

case we expect an oscillatory solution with a decreasing amplitude during each
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oscillation because of the presence of friction. One such a solution, a damped

oscillation, takes the form of

x(t) = Ae−λt cosωt,

where A is some amplitude, λ is a decay rate, and ω is the frequency. �

The Mechanical-Electrical Analogy

There is great similarity between the damped spring-mass system and an

RCL circuit. We can write the damped oscillator equation with unknown dis-

placement x(t) as

mx′′ + γx′ + kx = 0. (damped oscillator)

Interestingly enough, from Section 1.5, the current I(t) in an RCL circuit with

no electromotive force (emf) satisfies

LI ′′ +RI ′ +
1

C
I = 0, (RCL circuit)

which has exactly the same form. This similarity is a classical example of the

unifying nature of mathematics in science. The similarity between these two

models is called the mechanical–electrical analogy:

• The spring constant k is analogous to the inverse capacitance 1/C; both a

spring and a capacitor store energy in the system.

• The damping constant γ is analogous to the resistance R; both friction in a

mechanical system and a resistance in an electrical system dissipate energy,

often in the form of heat.

• The mass m is analogous to the inductance L; both represent inertia in the

system; a large mass or inductance causes the velocity or current, respec-

tively, to resist change. In the case of a circuit, an inductor (or coil) stores

energy in its magnetic field which resists changes in current.

In every equation we encounter, we want to understand the meaning of each

term. In the analogy above the first term is the inertia term, the second term

is the dissipation or energy loss term, and the third is an energy storage term.

Many of the equations we examine in this chapter can be regarded as either

circuit equations or mechanical equations. Common among them are the phys-

ical properties of inertia, damping, and oscillation. In Section 2.3 we consider

additional forces on the system due to external forcing or an electromotive

force.
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Energy Considerations

To get a better idea about the role of dissipation in a system, let us think

a little deeper about energy. For a damped spring-mass system, the governing

equation is

mx′′ + γx′ + kx = 0.

To get energy expressions, multiply this equation by the velocity x′ to obtain

mx′x′′ + γx′x′ + kxx′ = 0.

Each term has units of energy per time. By the chain rule

d

dt
x′(t)2 = 2x′(t)x′′(t) and

d

dt
x(t)2 = 2x(t)x′(t).

Therefore, the energy equation can be written

d

dt

[
1

2
m(x′)2 +

1

2
kx2
]
= −γx′x′. (2.3)

The two terms inside the left bracket are the kinetic energy and potential energy

in the system:

T =
1

2
m(x′)2 (kinetic energy); V =

1

2
kx2 (potential energy)

To understand potential energy, recall that the force is the negative derivative

of the potential. The force is F (x) = −kx, so the potential energy due to that

force is the negative integral of the force, or

V (x) = −
∫
(−kx)dx =

1

2
kx2.

Therefore (2.3) is an energy dissipation law

dE

dt
=

d

dt
[T + V ] = −γx′x′,

stating that the total energy E = T + V in the system is dissipated at the rate

−γx′x′. Energy per time is power, so (2.3) is the power lost in the system.

If there is no damping in the system then γ = 0 and we have

1

2
m(x′)2 +

1

2
kx2 = E, E constant.

This is the conservation of energy law.

EXERCISES

1. When a mass of 0.3 kg is placed on a spring hanging at rest from the ceiling,

it elongates the spring 5 cm. What is the stiffness k of the spring?
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2. (a) Beginning with the RCL circuit equation expressed in terms of charge

Q on the capacitor, or

LQ′′ + RQ′ +
1

C
Q = 0,

derive the energy dissipation law corresponding to a spring-mass oscillator

(2.3). (b) Identify the energy in the inductor and on the capacitor. (c) Show

that the power lost by the resistor is −RI2. (d) If there is no resistor, what

is the conservation of energy law for the circuit?

3. We derived the spring-mass equation for a mass moving horizontally on

a table top. This exercise shows that the same equation holds for a mass

oscillating on a vertical, perfectly elastic string (or a spring) under the

influence of the force of gravity mg. We assume Hooke’s law holds for the

string, that is, the force exerted by the string is proportional to its dis-

placement. See the set up in Figure 2.2, where we introduce two coordinate

systems, x and y, to measure displacement. First, only the string of natural

length L is attached with no mass. This is position y = 0. Then we attach

the mass, and at equilibrium it reaches a natural length L + ΔL; this is

position x = 0. Next we pull the mass down a positive distance and release

it, and it undergoes oscillatory motion.

a) Use Newton’s second law and Hooke’s law to justify the equation of

motion

my′′ = −ky +mg.

b) In the x coordinate system show that the equation of motion is

mx′′ = −kx,
where the gravitational force does not appear. Hint: Note that y =

x+ΔL and use the definition of the stiffness, kΔL = mg.

c) Show that if damping occurs, then the governing equation is mx′′ =
−kx− γx.

2.2 Equations with Constant Coefficients

Both the damped spring-mass equation and the RCL circuit equation have the

form, namely,

ax′′ + bx′ + cx = 0, (2.4)
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Figure 2.2 Two coordinate systems x and y for the motion of a mass m

attached to a perfectly elastic string, or a spring, subject to both a gravitational

force mg downward and a restoring force given by Hooke’s law.

where a, b, and c are constants. An equation of the form (2.4) is called a homo-

geneous linear equation with constant coefficients. The word homoge-

neous refers to the fact that the right side is zero, meaning there is no external

forces acting on the mass or no emf in the circuit. (In Section 2.3 we include

these types of forces.) Equation (2.4) can be accompanied by initial conditions

of the form

x(0) = x0, x′(0) = x1. (2.5)

Here, we are using x = x(t) as the generic state function.

The problem of solving (2.4) subject to (2.5) is called the initial value

problem (IVP). In (2.5) the initial conditions are given at t = 0, which is

the common case, but they could be given at any time t = t0. Finally, in the

spring-mass problem and RCL circuit problem the constants a, b, and c are

nonnegative, but our analysis is valid for any values of the constants.

2.2.1 The General Solution

We develop a simple technique to solve the homogeneous linear equation

ax′′ + bx′ + cx = 0.

Fundamental to the discussion is the following existence–uniqueness theorem,

which is proved in advanced texts; it also includes a definitive statement about

the interval where solutions are valid.

Theorem 2.3

(Existence-Uniqueness) The initial value problem (2.4)–(2.5) has a unique

solution that exists on −∞ < t <∞. �
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The issue is how to find the solution. For the constant coefficient equa-

tion (2.4), with no initial conditions, we demonstrate that there are always

exactly two independent solutions, say x1(t) and x2(t), meaning one is not

a constant multiple of the other; they are not proportional. Such a set of solu-

tions, x1(t), x2(t), is called a basic, or fundamental set. Further, if we multiply

each by an arbitrary constant and form the linear combination

x(t) = c1x1(t) + c2x2(t), (2.6)

where c1 and c2 are arbitrary constants, then we can easily check that x(t)

is also a solution to the differential equation (2.4). (This is the superposition

principle—see Exercise 3.) The linear combination (2.6) is called the general

solution to (2.4), which means that all solutions to (2.4) are contained in this

linear combination for different choices of the constants c1 and c2. In solving the

initial value problem we use the initial conditions (2.5) to uniquely determine

the constants c1 and c2 in (2.6).

Theorem 2.4

(General Solution) Let x1(t), x2(t) be a fundamental set of solutions of

(2.4), and let φ(t) be any other solution. Then there exists unique values of the

constants c1 and c2 such that

φ(t) = c1x1(t) + c2x2(t). �

To prove this result, let x1(t) and x2(t) be the unique solutions that satisfy

the initial conditions

x1(0) = 1, x′1(0) = 0, x2(0) = 0, x′2(0) = 1,

respectively, and let φ(t) be any solution of (2.4). φ(t) will satisfy some condi-

tions at t = 0, say, φ(0) = A and φ′(0) = B. But the function

x(t) = Ax1(t) +Bx2(t)

satisfies those same initial conditions, x(0) = A and x′(0) = B. By the unique-

ness theorem, Theorem 2.3, φ(t) = x(t) and so c1 = A, c2 = B. So the solution

φ(t) is contained in the general solution. �

Construction of Solutions

Our strategy now is to find two independent solutions x1(t) and x2(t) of

(2.4). We suspect something of the form

x(t) = eλt,
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where λ is a constant to be determined, might work because every term in

(2.4) has to be the same type of function for cancelation to occur; thus, x, x′,
and x′′ must be the same form, which suggests an exponential function for x.

Substitution of x = eλt into (2.4) instantly leads to

aλ2 + bλ+ c = 0, (characteristic equation) (2.7)

which is a quadratic equation for the unknown λ. Equation (2.7) is called the

characteristic equation. Using the quadratic formula, we obtain its roots

λ =
1

2a

(
−b±

√
b2 − 4ac

)
. (eigenvalues)

These roots of the characteristic equation are called the eigenvalues corre-

sponding to the differential equation (2.4). Each value of λ gives a solution

x(t) = eλt to the equation

ax′′ + bx′ + cx = 0.

Clearly, the values of λ could be real numbers or complex numbers. Thus,

there are three cases, depending upon whether the discriminant b2 − 4ac is

positive, zero, or negative.

Case 1. If b2 − 4ac > 0, then there are two real unequal eigenvalues λ1 and

λ2. Hence, there are two independent, exponential-type solutions

x1(t) = eλ1t, x2(t) = eλ2t, λ1 �= λ2.

Therefore the general solution to (2.4) is

x(t) = c1e
λ1t + c2e

λ2t. (2.8)

Case 2. If b2 − 4ac = 0 then there is a double root λ1 = −b/2a, λ2 = −b/2a.
Then one solution is x1(t) = eλt, where λ = −b/2a. A second independent

solution in this case is x2(t) = teλt. (Later we show why this solution

occurs.) Therefore the general solution to (2.4) in this case is

x(t) = c1e
λt + c2te

λt. (2.9)

Case 3. If b2 − 4ac < 0 then the roots, or eigenvalues, of the characteristic

equation are complex conjugates having the form4

λ1 = α+ iβ, λ2 = α− iβ,

4 Notation: Any complex number z can be written z = u + iv, where u and v are
real numbers; u is called the real part of z and v is called the imaginary part of
z. Similarly, if z(t) = u(t) + iv(t) is a complex function, then u(t) and v(t) are its
real and imaginary parts, respectively. The numbers u + iv and u − iv are called
complex conjugates.
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