
Chapter 2
Possibilistic Models of Risk Management

Irina Georgescu, Jani Kinnunen and Ana Maria Lucia-Casademunt

Abstract In the traditional treatment, risk situations are modeled by random
variables. This chapter focuses on risk situations described by fuzzy numbers. The
first goal of the chapter is to define and characterize possibilistic risk aversion and
study some of its indicators. The second goal is the study of two possibilistic
models of risk management: a coinsurance problem and an investment portfolio
problem.

Keywords Risk management � Fuzzy sets � Possibility � Static portfolio �
Coinsurance

2.1 Introduction

Risk aversion is an important topic in decision making under uncertainty. The first
crucial contributions on this topic were brought by Arrow (1965, 1970) and Pratt
(1964). They defined the risk aversion of an agent, they showed how it could be
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evaluated and how two agents’ risk aversions could be compared. Then the liter-
ature dedicated to risk aversion considerably increased (see e.g. Eeckhoudt et al.
(2005), Laffont (1993), Mas-Colell et al. (1995), Ross (1981)), which led to several
applications in risk management. The monograph (Eeckhoudt et al. 2005) presents
such applications in insurance decision, static and dynamic portfolio choices,
consumption and saving, optimal prevention, etc.

The whole risk theory was based on probability theory. The notions and theo-
rems on risk are formulated in terms of probabilistic indicators (expected value,
variance, covariance, etc.). However the probability theory cannot model all risk
situations related to economic and social phenomena. Zadeh’s possibility theory
(Zadeh 1978) offers another way of treating mathematically uncertainty (see also
Carlsson and Fullér (2011), Dubois and Prade (1988), (1987)). In Georgescu
(2009), (2010), (2012), Georgescu and Kinnunen (2012) a few possibilistic models
of risk aversion based on a notion of possibilistic expected utility are studied. In the
possibilistic approach, the risk is modeled by fuzzy numbers and possibilistic
indicators of fuzzy numbers (expected value, variance, covariance, etc.) are used in
order to formulate the definitions and the theorems of possibilistic theory.

This chapter continues the investigations of Georgescu (2009), (2010). It has two
main goals:

• to develop some new aspects of possibilistic risk aversion
• to apply this theory to two models of risk management: the coinsurance problem

and an investment portfolio problem.

The chapter is organized as follows.
In Sect. 2.2 fuzzy numbers and their indicators are presented. Due to their

remarkable properties, the fuzzy numbers constitute the most important class of
possibilistic distributions (Carlsson and Fullér 2011; Dubois and Prade 1988;
Georgescu 2012). They allow us to define some possibilistic indicators analogues
with the well-known indicators of random variables. The possibilistic expected
value Ef ðAÞ from Carlsson and Fullér (2001), (2011), two notions of possibilistic
variance Varf ðAÞ from Carlsson and Fullér (2001), Fullér and Majlender (2003),
(2004) and Var�f ðAÞ from Georgescu (2009) are recalled. Var�f ðAÞ is more useful
than Varf ðAÞ in the evaluation of possibilistic risk aversion (see Georgescu (2009),
(2010), (2012), Georgescu and Kinnunen (2012)). For example, in Georgescu
(2009), (2012) the possibilistic risk premium is expressed in terms of Ef ðAÞ and
Varf ðAÞ.

Section 2.3 is dedicated to a notion of possibilistic expected utility (associated
with a fuzzy number, a utility function and a weighting function) and some of their
properties (Georgescu 2009). Among the results of this section we mention an
approximation formula of possibilistic expected utility.

In Georgescu (2009), (2012), Georgescu (2010), Georgescu and Kinnunen (2012)
we studied the risk aversion of an agent faced to a risk situation described by a fuzzy
number. We defined the possibilistic risk premium as a measure for risk aversion and
we proved some basic properties of this indicator. However in these papers there
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exists no definition of what we mean that an agent is risk–averse. In Sect. 2.4 we
define a possibilistic risk–averse, a possibilistic risk–lover and a possibilistic risk–
neutral agent (represented by a utility function u). These three concepts are charac-
terized by the concavity, convexity and linearity of the utility function u. Some
surprising conclusions are reached: an agent is possibilistic risk–averse iff it is
probabilistic risk–averse, etc. (in the sense of Eeckhoudt et al. (2005), p. 8).

In Sect. 2.5 two new notions of possibilistic risk premium are defined and they
are connected with the one from Georgescu (2009). The section also contains an
approximate calculation formula for these indicators of risk aversion and a more
complete form of possibilistic Pratt theorem of Georgescu (2010). Finally a char-
acterization theorem of those utility functions for which the possibilistic risk pre-
mium is decreasing in wealth is proved.

Section 2.6 tackles the coinsurance problem in the context of possibilistic risk.
Insurance contracts for which the loss is modeled by a fuzzy number are studied.
Then the mean sum retrieved by the policyholder is a possibilistic expected utility
and on its basis the possibilistic premium for insurance indemnity is defined. The
optimal coinsurance rate is determined as a solution of a decision problem for
which the objective function is expressed as a possibilistic expected utility.
Properties of optimal coinsurance rate, its calculation and the way it changes with
the variation of the initial wealth are studied.

Section 2.7 deals with a possibilistic model of an investment portfolio problem.
The case of a risk–averse agent who invests in a risk–free asset and a risky asset is
studied. Our model is based on the hypothesis that the return of the risky asset is
described by a fuzzy number. To determine an investment with a maximum payoff
a decision problem should be solved whose objective function is a possibilistic
expected utility. Several properties of the optimal solution are studied and an
approximate calculation formula is proved.

2.2 Fuzzy Numbers and Their Indicators

In this section we recall the definition of fuzzy numbers, their operations and two of
their indicators (expected value and variance) (see Carlsson and Fullér (2011),
Dubois and Prade (1980), (1988), Majlender (2004)).

Let X be a non–empty set. Following Zadeh (1965), a fuzzy subset of X is a
function A : X ! ½0; 1�. A fuzzy subset A of X is normal if there exists x 2 X such
that AðxÞ ¼ 1. The support of a fuzzy set A is sup pðAÞ ¼ x 2 XjAðxÞ[ 0f g.

Throughout this chapter,we shall consider that X ¼ R. For c 2 ½0; 1�, let the γ-
level set ½A�c of a fuzzy subset A of R (see Carlsson and Fullér (2011), Dubois and
Prade (1980)). The fuzzy set A is called fuzzy convex if ½A�c is a convex subset in
R for any c 2 ½0; 1�.
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Definition 2.1 A fuzzy subset A of R is called fuzzy number if A is normal, fuzzy
convex, upper semicontinuous and with bounded support.

If A, B are two fuzzy numbers and k 2 R, the fuzzy numbers A + B and λA are
defined by

ðAþ BÞðxÞ ¼ sup
yþz¼x

minðAðyÞ;BðzÞÞ;

ðkAÞðxÞ ¼ sup
ky¼x

AðyÞ:

If A1; . . .;An are fuzzy numbers and k1; . . .; kn 2 R, then one can consider the
fuzzy number

Pn
i¼1 kiAi.

A non–negative and monotone increasing function f : ½0; 1� ! R is a weighting

function if it satisfies the normality condition
R 1
0 f ðcÞdc ¼ 1.

We fix a fuzzy number A and a weighting function f such that ½A�c ¼
½a1ðcÞ; a2ðcÞ� for all c 2 ½0; 1�.
Definition 2.2 (Fullér and Majlender 2003) The f-weighted possibilistic expected

value of A is defined by Ef ðAÞ ¼ 1=2
R 1
0 ða1ðcÞ þ a2ðcÞÞf ðcÞdc.

Remark 2.3 (Carlsson and Fullér 2011) If A1; . . .;An are fuzzy numbers and
k1; . . .; kn 2 R then Ef ð

Pn
i¼1 kiAiÞ ¼

Pn
i¼1 kiEf ðAiÞ.

Definition 2.4 (Fullér and Majlender 2003) The f-weighted possibilistic variance of

A is defined by Varf ðAÞ ¼ 1=2
R 1
0 ða1ðcÞ � a2ðcÞÞ2f ðcÞdc.

These two possibilistic indicators have important mathematical properties and
they have been used in the construction of models with applications to strategic
investment planning, fuzzy real options for strategic decisions, portfolio selection
with imprecise data, risk assessment in grid computing, etc. (see Carlsson and
Fullér (2011), Majlender (2004), Mezei (2011)).

In Georgescu (2009) another notion of possibilistic variance Var�f ðAÞ was
defined, necessary to the possibilistic risk aversion model from that paper.

Definition 2.5 (Georgescu 2009)

Var�f ðAÞ ¼
R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ ðx� Ef ðAÞÞ2dx�f ðcÞdc.

The next proposition contains a computation formula for Var�f ðAÞ.
Proposition 2.6 (Georgescu 2009)

Var�f ðAÞ ¼ 1=3
R 1
0 ½a21ðcÞþ a22ðcÞ þ a1ðcÞa2ðcÞ�f ðcÞdc� E2

f ðAÞ.
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2.3 Possibilistic Expected Utility

As far as we know from Eeckhoudt et al. (2005), Georgescu and Kinnunen (in
press), Mas-Colell et al. (1995), Quiggin (1993), the probabilistic risk theory is
developed in the framework of expected utility theory. A notion of possibilistic
expected utility was introduced in Fullér and Majlender (2003), Georgescu (2009),
then it was used in the construction of some possibilistic models (Carlsson and
Fullér 2011; Georgescu 2009, 2012; Georgescu 2010; Georgescu and Kinnunen
2012; Majlender 2004; Mezei 2011).

In this section we recall this notion of possibilistic expected utility and some of
its main properties.

We fix a weighting function f : ½0; 1� ! R and a fuzzy number A such that
½A�c ¼ ½a1ðcÞ; a2ðcÞ� for any c 2 ½0; 1�.

We consider a utility function u of class C2. Sometimes the domain of the utility
function will be ½0;1Þ or a real interval ½m;M�.
Definition 3.1 (Fullér and Majlender 2003) The possibilistic expected utility

Ef ðuðAÞÞ associated with f, A and u is Ef ðuðAÞÞ ¼
R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ uðxÞdx�f ðcÞdc.

Each time we use the right hand side integral above we will assume that this
integral is finite.

Remark 3.2 (i) If u is the identity function then Ef ðuðAÞÞ ¼ Ef ðAÞ; (ii) If uðxÞ ¼
ðx� Ef ðAÞÞ2 for all x 2 R, then Ef ðuðAÞÞ ¼ Var�f ðAÞ; (iii) If k 2 R and AðxÞ ¼ k for
all x 2 R, then Ef ðuðAÞÞ ¼ k.

Proposition 3.3 (Georgescu 2009) Let g : R ! R and h : R ! R be two utility
functions and a; b 2 R. We consider the utility function u ¼ agþ bh. Then
Ef ðuðAÞÞ ¼ aEf ðgðAÞÞ þ bEf ðhðAÞÞ.
Proposition 3.4 (Georgescu 2009) Let g : R ! R and h : R ! R be two utility
functions such that gðxÞ� hðxÞ for all x 2 R. Then Ef ðgðAÞÞ�Ef ðhðAÞÞ.
Corollary 3.5 Let g : R ! R be a utility function.
(i) If gðxÞ� 0 for all x 2 R, then Ef ðuðAÞÞ� 0.
(ii) If gðxÞ� 0 for all x 2 R, then Ef ðuðAÞÞ� 0.

Corollary 3.6 Let g : R ! R be a utility function and a� b be two real numbers. If
a� gðxÞ� b for any x 2 R, then a�Ef ðgðAÞÞ� b.

Proposition 3.7 Let A be a fuzzy number and k 2 R. Then
Var�f ðkþ AÞ ¼ Var�f ðAÞ.

The following result establishes an approximation formula of the possibilistic
expected utility Ef ðuðAÞÞ.
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Proposition 3.8 If the utility function u is of class C2 then

Ef ðuðAÞÞ � uðEf ðAÞÞ þ 1
2
u00ðEf ðAÞÞVarf ðAÞ

Proof According to the Taylor approximation formula of order II:

uðxÞ � uðEf ðAÞÞ þ u0ðEf ðAÞÞðx� Ef ðAÞÞ þ 1
2
u00ðEf ðAÞÞðx� Ef ðAÞÞ2

Let us consider the following functions:

gðxÞ ¼x� Ef ðAÞ; x 2 R

hðxÞ ¼ðx� Ef ðAÞÞ2; x 2 R

We remark then g = 1A − Ef ðAÞ. Let us denote a ¼ uðEf ðAÞÞ, b ¼ u0ðEf ðAÞÞ,
c ¼ 1

2 u
00ðEf ðAÞÞ. It follows that u � aþ bgþ ch.

By Proposition 3.3 one gets

Ef ðuðAÞÞ � Ef ððaþ bgþ chÞðAÞÞ ¼ aþ bEf ðgðAÞÞ þ cEf ðhðAÞÞ

Since g = 1A − Ef ðAÞ) it follows that

Ef ðgðAÞÞ ¼ Ef ðx� Ef ðAÞÞðAÞÞ ¼ Ef ðAÞ � Ef ðAÞ ¼ 0:

According to Remark 3.2(ii), Ef ðhðAÞÞ ¼ Varf ðAÞ therefore

Ef ðuðAÞÞ � uðEf ðAÞÞ þ 1
2
u00ðEf ðAÞÞVarf ðAÞ:

h

Remark 3.9 If the integral of Definition 3.1 is not finite then one can define the
value of possibilistic utility Ef ðuðAÞÞ by the right member of the equality of
Proposition 3.8.

Example 3.10 Let us consider the triangular fuzzy number A = (a, α, β) defined by

AðtÞ ¼
1� a�t

a ; if a� a� t� a
1� t�a

b ; if a� t� aþ b
0; otherwise

8<
:

(a ∈ R and α, β > 0)
We assume that the weighting function f has the form f ðcÞ ¼ 2c, for any

c 2 ½0; 1�.
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According to Georgescu (2012, p. 11), the level sets of the triangular fuzzy
number A = (a, α, β) have the form ½A�c ¼ ½a1ðcÞ; a2ðcÞ�, where a1ðcÞ ¼ a� ð1�
cÞa and a2ðcÞ ¼ aþ ð1� cÞb.

By Georgescu (2012, p. 25, 29), the possibilistic expected value Ef ðAÞ and the
possibilistic variance Var�f ðAÞ have the following expressions:

Ef ðAÞ ¼ aþ b� a
6

;Var�f ðAÞ ¼
a2 þ b2

36

Applying Proposition 3.8, we find the following approximate value of Ef ðuðAÞÞ:

Ef ðuðAÞÞ � uðaþ b� a
6

Þ þ a2 þ b2

72
u00ðaþ b� a

6
Þ

As regards to the form of the utility function u and the numerical values of a, α,
β, we will be able to compute the approximate value of Ef ðuðAÞÞ.

For example, if uðxÞ ¼ ln x and A = (4, 2, 1) then Ef ðuðAÞÞ � 1:331.

2.4 Possibilistic Risk Aversion

In this section we will consider an agent faced with a risk situation. The agent is
represented by a utility function and the risk is described by a fuzzy number. Using
the possibilistic expected utility we will define a risk–averse, a risk-lover and a
risk–neutral agent. We will prove that these notions are characterized by the con-
cavity, convexity or linearity of the utility function. We identify an agent with its
utility function.

We fix a weighting function and a utility function u of class C2.

Definition 4.1 The agent u is possibilistic risk–averse if for any wealth level w and
for any fuzzy number A the following inequality holds:
(1) Ef ðuðwþ AÞÞ� uðwþ Ef ðAÞÞ.

When the opposite inequality holds, the agent u is possibilistic risk–lover, and if
(1) becomes equality the agent u is possibilistic risk–neutral.

Lemma 4.2 The following assertions are equivalent:
(a) The agent u is risk–averse.
(b) For any wealth level w and any fuzzy number B with Ef ðBÞ ¼ 0, the following
inequality holds:
(2) Ef ðuðwþ BÞÞ� uðwÞ.
Proof ðaÞ ) ðbÞ is obvious; ðbÞ ) ðaÞ: Denoting B ¼ A� Ef ðAÞ, we have
Ef ðBÞ ¼ 0. Applying (2) for this B and for wþ Ef ðAÞ instead of w it follows that
Ef ðuðwþ AÞÞ ¼ Ef ðuðwþ Ef ðAÞ þ BÞÞ� uðwþ Ef ðAÞÞ. h
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Proposition 4.3 The following assertions are equivalent:
(i) The function u is concave.
(ii) The agent u is risk–averse.

Proof ðiÞ ) ðiiÞ: Let A be an arbitrary fuzzy number and m ¼ Ef ðAÞ. The second
order Taylor approximation of uðwþ xÞ around wþ m gives us
(3) uðwþ xÞ ¼ uðwþ mÞ þ u0ðwþ mÞðx� mÞþ1=2u

00ðnðxÞÞðx� mÞ2, where nðxÞ
is a real number between x and m.

By Proposition 3.3,

Ef ðuðwþ AÞÞ ¼ uðwþ mÞ þ u0ðwþ mÞEf ðA� mÞ þ 1=2Ef ðu00ðnðAÞÞðA� mÞ2Þ

Since Ef ðA� mÞ ¼ Ef ðAÞ � m ¼ 0, we obtain
(4) Ef ðuðwþ AÞÞ ¼ uðwþ mÞ þ 1=2Ef ðu00ðnðAÞÞðA� mÞ2Þ.

Let gðxÞ ¼ u00ðnðxÞÞðx� mÞ2 for x 2 R. Since u is concave, we have
u00ðnðxÞÞ� 0, therefore gðxÞ� 0 for any x 2 R. Applying Corollary 3.5(ii) it follows
that Ef ðu00ðnðAÞÞðA� mÞ2Þ ¼ Ef ðgðAÞÞ� 0.

Then, by (4), Ef ðuðwþ AÞÞ� uðwþ AÞ for any w. Thus the agent u is possi-
bilistic risk–averse.

ðiiÞ ) ðiÞ: Assume that the function u is not concave. Then there exists w 2 R
and an interval I ¼ ½w� d;wþ d� such that u0ðxÞ[ 0 for any x 2 I.

We choose a fuzzy number A such that sup p Að Þ 	 I. If ½A�c ¼ ½a1ðcÞ; a2ðcÞ� for
c 2 ½0; 1�, then ½a1ð0Þ; a2ð0Þ� ¼ sup pðAÞ 	 I. For any c 2 ½0; 1�, ½a1ðcÞ; a2ðcÞ� 	
½a1ð0Þ; a2ð0Þ� 	 I.

We consider the function gðxÞ ¼ u00ðnðxÞÞðx� mÞ2 for any x 2 R (associated
with the Taylor expansion (3)). Then

(5) Ef ðgðAÞÞ ¼
R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ u

00ðnðxÞÞðx� mÞ2dx�f ðcÞdc.
One notices that a1ð0Þ�Ef ðAÞ� a2ð0Þ. Thus m ¼ Ef ðAÞ 2 I. Accordingly,

u00ðnðxÞÞ\0. Thus u00ðnðxÞÞðx� mÞ2\0 for any x 2 ½a1ðcÞ; a2ðcÞ� � mf g. It fol-
lows that

R a2ðcÞ
a1ðcÞ u

00ðnðxÞÞðx� mÞ2dx[ 0 for any c 2 ½0; 1�. Since a2ðcÞ � a1ðcÞ[ 0

for any c 2 ½0; 1�, it follows that 1
a2ðcÞ�a1ðcÞ

R a2ðcÞ
a1ðcÞ u

00ðnðxÞÞðx� mÞ2dx[ 0.

Using this inequality and the properties of f from (5) it follows that
Ef ðgðAÞÞ[ 0. Now (4) can be written

Ef ðuðwþ AÞÞ ¼ uðwþ mÞ þ 1
2Ef ðgðAÞÞ,

thus Ef ðuðwþ AÞÞ[ uðwþ mÞ þ 1=2Ef ðgðAÞÞ. Thus Ef ðuðwþ AÞÞ[
uðwþ mÞ. Then the agent u is not risk–averse. h

Corollary 4.4 The following assertions are equivalent:
(i) The function u is convex.
(ii) The agent u is risk–lover.

Proof It follows from Proposition 4.3 and from the fact that u is convex iff –u is
concave. h
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Corollary 4.5 The following assertions are equivalent:
(i) The function u is linear.
(ii) The agent u is risk–neutral.

Proof From real analysis it is known that u is linear iff u is simultaneously convex
and concave. Proposition 4.3 and Corollary 4.4 are applied then. h

By Proposition 1.2 from Eeckhoudt et al. (2005), an agent u is possibilistic risk–
averse iff u is concave. Combining this result with Proposition 4.3 it follows:

Proposition 4.6 Given a utility function u the following assertions are equivalent:
(i) The agent u is probabilistic risk–averse.
(ii) The agent u is possibilistic risk–averse.

Due to Proposition 4.6, we will use the term risk–averse agent instead of
probabilistic or possibilistic risk–averse agent.

2.5 Possibilistic Risk Aversion Indicators

In papers Georgescu (2009) and Georgescu (2010) the study of possibilistic risk
aversion started. In Georgescu (2009) a notion of possibilistic risk premium was
defined, and in Georgescu (2010) a possibilistic version of Pratt theorem was
proved (Pratt 1964).

In this section two more notions of possibilistic risk premium are introduced and
they are compared with the one from Georgescu (2009). Approximation formulas
are obtained and the Pratt-type theorem from Georgescu (2010) is strengthened. A
necessary and sufficient condition for the possibilistic risk aversion to be decreasing
in wealth is found.

We fix a weighting function f and an injective utility function u.

Definition 5.1 (Georgescu 2009) Let A be a fuzzy number. We define the pos-
sibilistic risk premium qðA; uÞ associated with A and u as the unique solution of the
equation

Ef ðuðAÞÞ ¼ uðEf ðAÞ � qðA; uÞÞ ð2:1Þ

Proposition 5.2 (Georgescu 2009) Assume that u has the class C2 and u0 [ 0.
Then an approximate solution of Eq. (2.1) is

qðA; uÞ � �1=2
u00ðEf ðAÞÞ
u0ðEf ðAÞÞ Var

�
f ðAÞ ð2:2Þ
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We recall from Arrow (1965) and Pratt (1964) the definition of the Arrow–Pratt
index of the utility function u:

ruðxÞ ¼ � u00ðxÞ
u0ðxÞ for x 2 R ð2:3Þ

Then (2.2) can be written as:

qðA; uÞ � 1=2Var
�
f ðAÞruðEf ðAÞÞ ð2:4Þ

We define now two more notions of possibilistic risk premium.

Definition 5.3 Let A be a fuzzy number and x 2 R. We define pðx;A; uÞ as the
unique solution of the equation

Ef ðuðxþ AÞÞ ¼ uðxþ Ef ðAÞ � pðx;A; uÞÞ ð2:5Þ

Definition 5.4 Let y 2 R and B a fuzzy number such that Ef ðBÞ ¼ 0. We define
p1ðy;B; uÞ as the unique solution of the equation

Ef ðuðyþ BÞÞ ¼ uðy� p1ðy;B; uÞÞ ð2:6Þ

pðx;A; uÞ is the possibilistic analogue of the probabilistic risk premium from
Pratt (1964), and p1ðy;B; uÞ is the possibilistic analogue of the probabilistic risk
premium from Ross (1981).

Next we study the relationship between the three notions of possibilistic risk
premium pðx;A; uÞ, p1ðy;B; uÞ and qðA; uÞ.
Lemma 5.5 For any l 2 R we have

pðx;A; uÞ ¼ pðxþ l;A� l; uÞ ð2:7Þ

Proof One notices that Ef ðA� lÞ ¼ Ef ðAÞ � l. Therefore applying twice (2.5) one
obtains
uðxþ Ef ðAÞ � pðxþ l;A� l; uÞÞ¼ uðxþ lþ Ef ðA� lÞ � pðxþ l;A� l; uÞ-
¼ Ef ðuðxþ AÞÞ ¼ uðxþ Ef ðAÞ � pðx;A; uÞÞ.

Then (2.7) results from u’s injectivity. h

Proposition 5.6 (i) If y 2 R and B is a fuzzy number with Ef ðBÞ ¼ 0, then
pðy;B; uÞ ¼ p1ðy;B; uÞ; (ii) If x 2 R and A is an arbitrary fuzzy number, then
pðx;A; uÞ ¼ p1ðxþ Ef ðAÞ;A� Ef ðAÞ; uÞ.
Proof (i) Since Ef ðBÞ ¼ 0 from (2.5) and (2.6) it follows that uðy� pðy;B; uÞÞ ¼
Ef ðuðyþ BÞÞ ¼ uðy� p1ðy;B; uÞÞ from where, due to u’s injectivity, one obtains
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pðy;B; uÞ ¼ p1ðy;B; uÞ; (ii) One notices that Ef ðA� Ef ðAÞÞ ¼ 0. Thus, by Lemma
5.5 and (i), it follows that

pðx;A; uÞ¼ pðxþ Ef ðAÞ;A� Ef ðAÞ; uÞ þ p1ðxþ Ef ðAÞ;A� Ef ðAÞ; uÞ. h

By Proposition 5.6 we will always write pðy;B; uÞ instead of p1ðy;B; uÞ.
Proposition 5.7 Let x 2 R and A an arbitrary fuzzy number. Then
(i) qðA; uÞ ¼ pð0;A; uÞ;
(ii) pðx;A; uÞ ¼ qðxþ A; uÞ.
Proof (i) By applying (2.5) for x ¼ 0 and then (2.1) it follows that uðEf ðAÞ �
pð0;A; uÞÞ ¼ Ef ðuðAÞÞ ¼ uðEf ðAÞ � qðA; uÞÞ from where qðA; uÞ ¼ pð0;A; uÞ.

(ii) We apply (2.1) and (2.5):
uðEf ðxþ AÞ � qðxþ A; uÞÞ¼ Ef ðuðxþ AÞÞ

¼ uðxþ Ef ðAÞ � pðx;A; uÞÞ¼ uðEf ðxþ AÞ � pðx;A; uÞÞ from where pðx;A; uÞ ¼
qðxþ A; uÞ follows. h

The relationship between the indicators p; p1 and q established by Propositions
5.6 and 5.7 allows a result obtained for one of them to be able to be transferred to
the others. We will exemplify next this idea.

Proposition 5.8 Let x 2 R, A a fuzzy number and u a utility function of class C2

such that u0 [ 0. Then

pðx;A; uÞ � 1=2ruðxþ Ef ðAÞÞVar�f ðAÞ ð2:8Þ

Proof By Proposition 5.7, Var�f ðxþ AÞ ¼ Var�f ðAÞ. Then, applying Propositions

5.2 and 5.7 it follows that pðx;A; uÞ ¼ qðxþ A; uÞ � 1=2Var
�
f ðxþ AÞru

ðEf ðxþ AÞÞ¼ 1=2Var
�
f ðAÞruðxþ Ef ðAÞÞ. h

Remark 5.9 If Ef ðAÞ ¼ 0, then (2.8) becomes:

pðx;A; uÞ � 1=2Var
�
f ðAÞruðxÞ ð2:9Þ

Applying in this case Proposition 2.6, Var�f ðAÞ ¼ 1=3
R 1
0 a21ðcÞþ
�

a22ðcÞ þ a1ðcÞa2ðcÞ�f ðcÞdc, thus (2.9) can be written as:

pðx;A; uÞ � 1=6ruðxÞ
Z 1

0
a21ðcÞ þ a22ðcÞ þ a1ðcÞa2ðcÞ
� �

f ðcÞdc ð2:10Þ

Example 5.10 Let A be the triangular fuzzy number ða; a; bÞ. According to
Example 3.10 and (2.4), (2.10) the following approximation formulas are obtained:
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qðA; uÞ � a2 þ b2

72
ru aþ b� a

6

� �

pðx;A; uÞ � a2 þ b2

72
ru xþ aþ b� a

6

� �
:

Let u1 and u2 be two utility functions of class C2 such that
u01 [ 0; u02 [ 0; u001\0; u002\0. We denote by r1ðxÞ ¼ ru1ðxÞ and r2ðxÞ ¼ ru2ðxÞ
the Arrow–Pratt indexes of u1 and u2.

The following result is a possibilistic version of Pratt theorem (Pratt 1964).

Proposition 5.11 The following assertions are equivalent:
(a) For any x 2 R and for any fuzzy number A, we have pðx;A; u1Þ� pðx;A; u2Þ.
(b) For any y 2 R and for any fuzzy number B with Ef ðBÞ ¼ 0, we have
pðx;B; u1Þ� pðx;B; u2Þ.
(c) For any fuzzy number A, we have qðA; u1Þ� qðA; u2Þ.
(d) r1ðxÞ� r2ðxÞ for any x 2 R.
(e) u1 is more concave than u2: there exists a function / : R ! R with /0 [ 0 and
/00 � 0 such that u2ðxÞ ¼ /ðu1ðxÞÞ for any x 2 R.

Proof The equivalences ðcÞ , ðdÞ , ðeÞ were proved in Georgescu (2009) (see
also Georgescu (2012), Proposition 4.3.7); ðaÞ , ðbÞ follows from Proposition 5.6;
and ðaÞ , ðcÞ follows from Proposition 5.7. h

Definition 5.12 Consider two agents with the utility functions u1 and u2. If the
equivalent conditions of Proposition 5.11 are fulfilled, then we say that the agent u1
is possibilistic more risk–averse than u2.

Remark 5.13 One notices that the equivalent conditions (d) and (e) from
Proposition 5.11 also appear in Pratt theorem from probabilistic risk aversion (see
Pratt (1964) or Eeckhoudt et al. (2005), Proposition 1.5, p. 14). Then, by combining
Pratt theorem with Proposition 5.11, it follows that u1 is probabilistic more risk–
averse than u2 iff u1 is possibilistic more risk–averse than u2. In this case we say
that u1 is more risk averse than u2.

Let u be a utility function of class C2 with u0 [ 0; u00\0; u000 [ 0. Then the
function v ¼ �u0 has the class C2 and the properties v0 [ 0; v00\0. Thus u and
v are utility functions verifying the hypotheses in which Proposition 5.11 can be
applied.

The following result establishes a necessary and sufficient condition for the
possibilistic risk premium pðx;A; uÞ to be decreasing in wealth.

Proposition 5.14 The following assertions are equivalent:
(i) For any fuzzy number A, the possibilistic risk premium pðx;A; uÞ is decreasing in
wealth; x1 � x2 implies that pðx2;A; uÞ� pðx1;A; uÞ.
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(ii) For any fuzzy number A with Ef ðAÞ ¼ 0, the possibilistic risk premium
pðx;A; uÞ is decreasing in wealth.
(iii) v is more concave than u.

Proof ðiÞ , ðiiÞ: by Proposition 5.6; ðiiÞ , ðiiiÞ: Let A be a fuzzy number with
Ef ðAÞ ¼ 0. Assume that ½A�c ¼ ½a1ðcÞ; a2ðcÞ� for all c 2 ½0; 1�. By (2.6) we have

uðx� pðx;A; uÞÞ ¼Ef ðuðxþ AÞÞ

¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
uðxþ tÞdt

" #
f ðcÞdc:

Deriving with respect to x and taking into account (2.6) applied to v it follows
that

ð1� p0ðx;A; uÞÞu0ðx� pðx;A; uÞÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u0ðxþ tÞdt

" #
f ðcÞdc

¼ �
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
vðxþ tÞdt

" #
f ðcÞdc

¼ �Ef ðvðxþ AÞÞ ¼ �vðx� pðx;A; vÞÞ

From the above equalities it follows that p0ðx;A; uÞ
¼ u0ðx� pðx;A; uÞÞ þ vðx� pðx;A; vÞ

u0ðx� pðx;A; uÞÞ ¼ vðx�pðx;A;vÞÞ�vðx�pðx;A;uÞ
u0ðx�pðx;A;uÞÞ .

But u0ðx� pðx;A; uÞÞ[ 0 and v and is strictly increasing. Thus the following
assertions are equivalent:

• pðx;A; uÞ is decreasing in x;
• For all x, p0ðx;A; uÞ� 0;
• For all x, vðx� pðx;A; vÞÞ� vðx� pðx;A; uÞÞ;
• For all x, pðx;A; vÞ� pðx;A; uÞ.

Then (ii) is equivalent with condition (b) of Proposition 5.11 stated for the utility
functions u and v. According to the equivalence ðbÞ , ðcÞ from Proposition 5.11, it
follows that ðiiÞ , ðiiiÞ. h

Definition 5.15 (Eeckhoudt et al. 2005) The Arrow–Pratt index of the utility
function v = −u′:

PuðxÞ ¼ rvðxÞ ¼ � u000ðxÞ
u00ðxÞ ð2:11Þ

is called the degree of absolute prudence of the agent u.
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Remark 5.16 According to the equivalence ðdÞ , ðcÞ of Proposition 5.11, the three
conditions of Proposition 5.14 are equivalent with the following property:

For all x 2 R;PuðxÞ� ruðxÞ ð2:12Þ

(i.e., prudence is larger than absolute risk aversion).

2.6 Possibilistic Coinsurance Problem

We consider a risk–averse agent with a utility function u and an initial wealth w0.
The agent faces a risk situation where it can lose a part of w0. We will assume that
the loss is described mathematically by the fuzzy number A.

To retrieve a part of the loss the agent will close an insurance contract. By
Eeckhoudt et al. (2005, p. 46), an insurance contract consists of a premium P to be
paid by the policyholder and an indemnity schedule IðxÞ representing the amount to
be paid by the insurer for a loss of size x.

IðxÞ will be considered a utility function. The form of the premium P depends on
the mathematical modeling of the loss: a random variable in the probabilistic
approach (Eeckhoudt et al. 2005) and a fuzzy number in the possibilistic approach.
If the loss is a random variable X � 0, then the mean sum retrieved by the agent will
be the probabilistic expected utility MðIðXÞÞ and P will be defined with respect to
this indicator (Eeckhoudt et al. 2005, p. 49).

In this section we will assume that the loss is a fuzzy number A whose level sets
are ½A�c ¼ ½a1ðcÞ; a2ðcÞ� for c 2 ½0; 1�. We will assume that A is not a fuzzy point
and sup pðAÞ 	 Rþ, thus ½A�c 	 Rþ for any c 2 ½0; 1�. We will fix a weighting
function f : ½0; 1� ! R.

We will consider the possibilistic expected utility associated with f, A and I:

Ef ðIðAÞÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
IðxÞdx

" #
f ðcÞdc ð2:13Þ

In our possibilistic model, Ef ðIðAÞÞ is the mean sum retrieved by the agent
through the insurance contract.

The possibilistic premium for insurance indemnity will be

P ¼ ð1þ kÞEf ðIðAÞÞ ð2:14Þ

where k is a loading factor.
Equation (2.14) is inspired from the form of probabilistic premium for insurance

indemnity from Eeckhoudt et al. (2005, pp. 49–50), Ef ðIðAÞÞ replaces the proba-
bilistic actuarial value from Eeckhoudt et al. (2005).
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The function I may have various forms. We will assume that IðxÞ ¼ bx for all
x. The constant b is called coinsurance rate and 1� b is called retention rate (see
Eeckhoudt et al. (2005), p. 49),

For the function IðxÞ ¼ bx one gets the form:

Ef ðIðAÞÞ ¼ bEf ðAÞ ð2:15Þ

Then by (2.13) and (2.15) the possibilistic premium for insurance indemnity will
depend on the parameter b and will have the form

PðbÞ ¼ ð1� bÞEf ðIðAÞÞ ¼ bð1� bÞEf ðAÞ ð2:16Þ

By denoting P0 ¼ ð1þ kÞEf ðAÞ (= the full possibilistic insurance premium),
(2.16) becomes

PðbÞ ¼ bP0 ð2:17Þ

The coinsurance rate b represents the fraction of loss which returns to the
policyholder and is a priori fixed by it. Next we study an optimization problem to
choose b.

We consider the function g defined as

gðx; bÞ ¼ w0 � bP0 � ð1� bÞx ð2:18Þ

gðx; bÞ represents the sum from w0 that remains to the agent if the loss is x and if
it closed an insurance contract with the premium P and the coinsurance rate b.
Since x is one of the values which the fuzzy number A can take, representing the
loss, the final wealth of the policyholder with loss A and the coinsurance rate b will
be the fuzzy number

gðA; bÞ ¼ w0 � bP0 � ð1� bÞA ð2:19Þ

We recall that the utility function u has the class C2. The agent being risk–
averse, by Proposition 4.3 the function u will be concave.

We consider the function

hðx; bÞ ¼ uðgðx; bÞÞ ¼ uðw0 � bP0 � ð1� bÞxÞ ð2:20Þ

and the possibilistic expected utility associated with f, A and h:

HðbÞ ¼ Ef ðhðA; bÞÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
hðx; bÞdx

" #
f ðcÞdc ð2:21Þ

Remark 6.1 By Proposition 3.8, we have the following approximation formula of
HðbÞ:
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HðbÞ � hðEf ðAÞ; bÞ þ 1
2
h00ðEf ðaÞ; bÞVar�f ðAÞ

In our model, HðbÞ is the possibilistic expected final wealth of the policyholder
with loss A and coinsurance rate b. The choice of b by the policyholder will
maximize HðbÞ. This way we reach the following optimization problem:

Hðb�Þ ¼ max
b

HðbÞ ð2:22Þ

whose solution b� is called optimal coinsurance rate.
Next we deal with the calculation and the properties of b�. By (2.20), HðbÞ is

written as

HðbÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
uðgðx; bÞÞdx

" #
f ðcÞdc ð2:23Þ

Proposition 6.2 (i) The function H is concave.
(ii) The necessary and sufficient condition for the real number b� to be the optimal
solution of problem (2.22) is H0ðb�Þ ¼ 0.

Proof (i) We compute the first derivative of H:

H0ðbÞ ¼ R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ u

0ðgðx; bÞÞ @gðx;bÞ@b dx�f ðcÞdc.
By (2.19), @gðx;bÞ

@b ¼ x� P0. Thus,

H0ðbÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u0ðgðx; bÞÞðx� P0Þdx

" #
f ðcÞdc ð2:24Þ

Similarly we obtain the second derivative of H:

H00ðbÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u00ðgðx; bÞÞðx� P0Þ2dx

" #
f ðcÞdc ð2:25Þ

Since u is concave, u00ðgðx; bÞÞ� 0 for all x and b. Thus for any c 2 ½0; 1� we
have H00ðbÞ ¼ R a2ðcÞ

a1ðcÞ u
00ðgðx; bÞÞðx� P0Þ2dx� 0. Since a2ðcÞ � a1ðcÞ� 0 for any

k1; . . .; kn 2 R, from (2.5) it follows H00ðbÞ� 0 for all b. Thus, H is concave.
(ii) follows from (i). h

The following result is the possibilistic version of a theorem of Mossin (see
Mossin (1968) or Proposition 3.1 of Eeckhoudt et al. (2005, p. 51)).

Proposition 6.3 Assume that u0 [ 0 and u00 � 0.
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(i) If k ¼ 0, then b� ¼ 1;
(ii) If k[ 0, then b�\1.

Proof (i) If b ¼ 1, then by (2.6) gðx; 1Þ ¼ w0 � P0 for all x. By applying (2.25) to
this particular case:

H0ð1Þ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u0ðgðx; bÞÞðx� P0Þdx

" #
f ðcÞdc

¼ u0ðw0 � P0Þ
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
ðx� P0Þdx

" #
f ðcÞdc

¼ u0ðw0 � P0Þ
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
xdx� P0

" #
f ðcÞdc

¼ u0ðw0 � P0ÞðEf ðAÞ � P0Þ:

But Ef ðAÞ � P0 ¼ Ef ðAÞ � ð1þ kÞEf ðAÞ ¼ �kEf ðAÞ. Thus:

H0ð1Þ ¼ �ku0ðw0 � P0ÞEf ðAÞ ð2:26Þ

For k ¼ 0, we obtain H0ð1Þ ¼ 0. Thus, by Proposition 6.2(ii), b� ¼ 1 is the
optimal solution of the problem (2.22).
(ii) One knows that a1ð0Þ�Ef ðAÞ� a2ð0Þ. By the hypothesis that A is not a fuzzy
point and suppðAÞ ¼ ½a1ð0Þ; a2ð0Þ� 2 Rþ, thus, Ef ðAÞ[ 0 follows. Since u0ðw0 �
P0Þ[ 0 and k[ 0, by (2.26) we have H0ð1Þ ¼ �ku0ðw0 � P0ÞEf ðAÞ\0. Assume
that the optimal solution b� of the problem (2.10) verifies that b� � 1. By
Proposition 6.2(i), H is concave. Thus, its derivative H0 is decreasing. It follows that
H0ðb�Þ�H0ð1Þ\0, which contradicts H0ðb�Þ ¼ 0. Accordingly, b�\1. h

Proposition 6.4 If k ¼ 0, then the possibilistic expected final wealth Ef ðgðA; bÞÞ is
constant.

Proof If k ¼ 0, then P0 ¼ Ef ðAÞ. Thus, gðx; bÞ ¼ w0 � bEf ðAÞ � ð1� bÞx for all
x and b. We compute Ef ðgðA; bÞÞ by the formula

Ef ðgðA; bÞÞ ¼
R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ gðx; bÞÞdx�f ðcÞdc.

A simple calculation shows thatR a2ðcÞ
a1ðcÞ gðx; bÞÞdx ¼

R a2ðcÞ
a1ðcÞ ðw0 � bEf ðAÞ � ð1� bÞxÞdx¼ ðw0 � bEf ðAÞÞða2ðcÞ�

a1ðcÞÞ � 1�b
2 ða2ðcÞ � a1ðcÞÞ.

Replacing in the expression of Ef ðgðA; bÞÞ one obtains:
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Ef ðgðA; bÞÞ ¼
Z 1

0
w0 � bEf ðAÞ � 1� b

2
ða1ðcÞ þ a2ðcÞÞ

� �
f ðcÞdc

¼ ðw0 � bEf ðAÞÞ
Z 1

0
f ðcÞdc� ð1� bÞ

Z 1

0

a1ðcÞ þ a2ðcÞ
2

f ðcÞdc
¼ w0 � bEf ðAÞ � ð1� bÞEf ðAÞ ¼ w0 � Ef ðAÞ:

h

For the rest of the section we assume that f ðcÞ ¼ 2c for any c 2 ½0; 1�.
Proposition 6.5 If u00ðxÞ\0 for all x, then H00ðbÞ\0 for all b.

Proof By (2.25) we have

H00ðbÞ ¼ 2
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u00ðgðx; bÞÞðx� P0Þ2dx

" #
f ðcÞdc ð2:27Þ

A is not a fuzzy point. Thus, a2ðcÞ � a1ðcÞ[ 0 for any c 2 ½0; 1�. Also
u00ðgðx; bÞÞ\0 and ðx� P0Þ2 [ 0 for any x 2 ½a1ðcÞ; a2ðcÞ� � P0f g. Therefore,R a2ðcÞ
a1ðcÞ u

00ðgðx; bÞÞðx� P0Þ2dx\0 for any c 2 ½0; 1�. Thus, for any c 2 ½0; 1�,
c

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ u

00ðgðx; bÞÞðx� P0Þ2dx\0.

It follows that H00ðbÞ\0 for any b. h

We consider two agents with the utility functions u1 and u2 such that
u01 [ 0; u02 [ 0; u001\0; u002\0. Let b�1 and b�2 be the optimal coinsurance rates
associated with u1 and u2 (in the sense of problem (2.22)).

Proposition 6.6 If u1 is more risk–averse than u2 then b�1 � b�2.

Proof We consider the possibilistic expected final wealths H1ðbÞ and H2ðbÞ
associated with u1 and u2:

H1ðbÞ ¼ 2
Z 1

0

c
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u1ðgðx; bÞÞdx

" #
dc;

H2ðbÞ ¼ 2
Z 1

0

c
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u2ðgðx; bÞÞdx

" #
dc:

Then H0
1ðb�1Þ ¼ 0 and H0

2ðb�2Þ ¼ 0.
If k ¼ 0, then, by Proposition 6.3(i), b�1 ¼ b�2 ¼ 1 and the assertion is verified.
Assume k[ 0. Using condition (c) of Proposition 5.11 and judging the same way

as in the proof of Proposition 3.2 of Eeckhoudt et al. (2005) one proves that for any x:
ðx� P0Þu02ðw0 � ð1� b�1Þx� b�1P0Þ� ðx� P0Þu01ðw0 � ð1� b�1Þx� b�1P0Þ,

which by (2.18) can be written as ðx� P0Þu02ðgðx; b�1ÞÞ� ðx� P0Þu01ðgðx; b�1ÞÞ.
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Then for any c 2 ½0; 1�:R a2ðcÞ
a1ðcÞ ðx� P0Þu02ðgðx; b�1ÞÞdx�

R a2ðcÞ
a1ðcÞ ðx� P0Þu01ðgðx; b�1ÞÞdx:

Taking into account that a2ðcÞ � a1ðcÞ[ 0 for any c 2 ½0; 1�, it follows, by
(2.24), that

H0
2ðb�1Þ ¼ 2

R 1
0 ½ c

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ ðx� P0Þu02ðgðx; b�1ÞÞdx�dc� 2

R 1
0 ½ c

a2ðcÞ�a1ðcÞR a2ðcÞ
a1ðcÞ ðx� P0Þu01ðgðx; b�1ÞÞdx�dc ¼ H0

1ðb�1Þ ¼ 0.

By hypothesis u002\0, thus by Proposition 6.5, H00
2 ðbÞ\0 for all b. Therefore, H0

2
is strictly decreasing. Thus, from H0

2ðb�1Þ� 0 ¼ H0
2ðb�2Þ, b�2 � b�1 follows. h

2.7 Static Portfolio Choices: A Possibilistic Model

By Eeckhoudt et al. (2005, p. 65), we consider an agent with a wealth w0, which it
invests in a risk–free asset and in a risky asset. In the probabilistic approach of
Eeckhoudt et al. (2005), the return of the risky asset is a random variable. In this
section we will study a model in which the return of the risky asset is a fuzzy
number.

Let r be the risk–free return of the first asset and x the value of the return of the
risky asset. The agent invests the sum a in the risky asset and w0 � a in the risk–
free asset. Then the value of the portfolio ðw0 � a; aÞ at the end of the considered
period is by Eeckhoudt et al. (2005, p. 66): ðw0 � aÞð1þ rÞ þ að1þ xÞ
¼ w0ð1þ rÞ þ aðx� rÞ ¼ wþ aðx� rÞ, where w ¼ w0ð1þ rÞ is the future wealth
obtained with risk–free strategy.

In the probabilistic model of Eeckhoudt et al. (2005), x is the value of a random
variable. In the possibilistic model, which we will develop, x will be the value of a
fuzzy number A.

We consider the function

gða;w; xÞ ¼ wþ aðx� rÞ ð2:28Þ

If the fuzzy number A is the return of the risky asset, then the fuzzy number
gða;w;AÞ ¼ wþ aðA� rÞ is the value of the portfolio at the end of the period.

We fix a weighting function f : ½0; 1� ! R. Assume that the agent has an
increasing and concave utility function u of class C2. Also, we assume that ½A�c ¼
½a1ðcÞ; a2ðcÞ� for c 2 ½0; 1�. We consider the function

hða;w; xÞ ¼ uðgða;w; xÞÞ ð2:29Þ

and the possibilistic expected utility associated with f, A and h: Kða;wÞ ¼
Ef ðhða;w;AÞÞ ¼

R 1
0

1
a2ðcÞ�a1ðcÞ

R a2ðcÞ
a1ðcÞ hða;w; xÞdx�f ðcÞdc.

By (2.2) we have
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Kða;wÞ ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
uðgða;w; xÞÞdx

" #
f ðcÞdc ð2:30Þ

Remark 7.1 By Proposition 3.9, we have the following approximation formula for
Kða;wÞ:

Kða;wÞ � hða;w;Ef ðAÞÞ þ 1
2
@2hða;w;Ef ðAÞÞ

@2x
� Var�f ðAÞ

The investor’s problem is to choose a value a� such that

Kða�;wÞ ¼ max
a

Kða;wÞ ð2:31Þ

We prove next some properties of K and the optimal solution a�.

Proposition 7.2 (i) The function Kða;wÞ is concave in a;
(ii) The necessary and sufficient condition for the real number a� to be the

optimal solution of (2.31) is @Kða�;wÞ
@a ¼ 0.

Proof (i) From (2.30) it follows that
@Kða:;wÞ

@a ¼ R 1
0 ½ 1

a2ðcÞ�a1ðcÞ
R a2ðcÞ
a1ðcÞ u

0ðgða;w; xÞÞ @gða;w;xÞ@a dx�f ðcÞdc.
But @gða;w;xÞ

@a ¼ x� r. Thus,

@Kða;wÞ
@a

¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u0ðgða;w; xÞÞðx� rÞdx

" #
f ðcÞdc ð2:32Þ

From (2.5) one obtains

@2Kða;wÞ
@a2

ð2:33Þ

¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
u00ðgða;w; xÞÞðx� rÞ2dx

" #
f ðcÞdc

u is concave and u00ðgða;w; xÞÞ� 0. Thus, for any c 2 ½0; 1�, we haveR a2ðcÞ
a1ðcÞ u

00ðgða;w; xÞÞðx� rÞ2dx� 0.

Then from (2.33) it follows that @
2Kða;wÞ
@a2 � 0 for any a. Thus, Kða;wÞ is concave

in a.
(ii) follows from (i). h

Proposition 7.3 Assume that u0 [ 0 and u00\0.
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(i) If Ef ðAÞ ¼ r, then a� ¼ 0;
(ii) If Ef ðAÞ[ r, then a� [ 0.

Proof We notice that gð0;w; xÞ ¼ w, thus making a ¼ 0 in (2.32) it follows that

@Kða;wÞ
@a

� u0ðwÞ
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
ðx� rÞdx

" #
f ðcÞdc

¼ u0ðwÞ
Z 1

0

a1ðcÞ þ a2ðcÞ
2

f ðcÞdc� r

� �
¼ u0ðwÞ½Ef ðAÞ � r�:

If Ef ðAÞ ¼ r, then @Kð0;wÞ
@a ¼ 0. Thus, by Proposition 7.2(ii), a� ¼ 0 is the optimal

solution of (2.31).

(ii) Assume by absurdum that a� � 0. If r\Ef ðAÞ, then @Kð0;wÞ
@a ¼

u0ðwÞðEf ðAÞ � rÞ[ 0, since u0ðwÞ[ 0. Then from a� � 0 it follows that

0 ¼ @Kða�;wÞ
@a [ @Kð0;wÞ

@a [ 0.
The obtained contradiction shows that a� ¼ 0: h

Proposition 7.4 An approximate value of the optimal solution of (2.31) is

a� � � u0ðwÞ
u00ðwÞ

Ef ðAÞ � r

Var�f ðAÞ þ ðEf ðAÞ � rÞ2 ð2:34Þ

Proof We use the first–order Taylor approximation of u0ðwþ aðx� rÞÞ around w:

u0ðgða;w; xÞÞ ¼ u0ðwþ aðx� rÞÞ � u0ðwÞ þ aðx� rÞu00ðwÞ ð2:35Þ

Replacing u0ðgða;w; xÞÞ in (2.32) with the approximate value from (2.35) it
follows that

@Kða;wÞ
@a � R 1

0 ½ 1
a2ðcÞ�a1ðcÞ

R a2ðcÞ
a1ðcÞ ðu0ðwÞ þ aðx� rÞu00ðwÞðx� rÞÞðx� rÞdx�f ðcÞdc.

We write this relation under the form:

@Kða;wÞ
@a

� u0ðwÞI1 þ au00ðwÞI2; ð2:36Þ

where

I1 ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
ðx� rÞdx

" #
f ðcÞdc; and

I2 ¼
Z 1

0

1
a2ðcÞ � a1ðcÞ

Z a2ðcÞ

a1ðcÞ
ðx� rÞ2dx

" #
f ðcÞdc

We compute I1:

2 Possibilistic Models of Risk Management 41



I1 ¼ 1=2
R 1
0 ½a1ðcÞ þ a2ðcÞ � 2r�f ðcÞdc ¼ R 1

0
a1ðcÞþa2ðcÞ

2 f ðcÞdc� r ¼ Ef ðAÞ � r.
We compute I2:

I2 ¼ 1=3
R 1
0 ½ða1ðcÞ � rÞ2 þ ða2ðcÞ � rÞ2 þ ða1ðcÞ � rÞða2ðcÞ � rÞ�f ðcÞdc.

We notice that ða1ðcÞ � rÞ2 þ ða2ðcÞ � rÞ2 þ ða1ðcÞ � rÞða2ðcÞ � rÞ
¼ a21ðcÞ þ a22ðcÞ þ a1ðcÞa2ðcÞ � 3rða1ðcÞ þ a2ðcÞÞ þ 3r2. Thus,

I2 ¼ 1=3
R 1
0 ½a21ðcÞ þ a22ðcÞ þ a1ðcÞa2ðcÞ�f ðcÞdm� 2r

R 1
0

a1ðcÞþa2ðcÞ
2 f ðcÞdcþ r2 and

by Proposition 2.6:
I2 ¼ Var�f ðAÞ þ E2

f ðAÞ � 2rEf ðAÞ þ r2 ¼ Var�f ðAÞ þ ðEf ðAÞ � rÞ2.
Introducing the above values of I1 and I2 in (2.36), we find that

@Kða;wÞ
@a � u0ðwÞðEf ðAÞ � rÞ þ au00ðwÞ½Var�f ðAÞ þ ðEf ðAÞ � rÞ2�.
An approximate value of the equation @Kða�;wÞ

@a ¼ 0 will be obtained by equaling
with 0 the right hand side member of the previous equation. It follows that

a� � � u0ðwÞ
u00ðwÞ

Ef ðAÞ�r

Var�f ðAÞþðEf ðAÞ�rÞ2. h

Example 7.5 Let us assume that the return of the risky asset is the triangular fuzzy
numberA= (a, α, β) and theweighting function f has the form f ðcÞ ¼ 2c, for c 2 ½0; 1�.

Therefore Ef ðAÞ ¼ aþ b�a
6 and Var�f ðAÞ ¼ a2þb2

36 , hence by Proposition 7.4, the
agent will invest in the risky asset the amount

a� � � u0ðwÞ
u00ðwÞ � aþ b�a

6 � r
a2þb2

36 þ ðaþ b�a
6 � rÞ2

If a is exactly the risk-free return r (a = r) we obtain :

a� � �3 u0ðwÞ
u00ðwÞ � b�a

a2þb2þab
.

2.8 Conclusions

This work fits in a recent research direction in which risk is treated by the possi-
bility theory (Carlsson and Fullér 2011; Georgescu 2009, 2012; Georgescu 2010;
Georgescu and Kinnunen 2012).

First the theme of possibilistic risk aversion, whose study began in Georgescu
(2009), (2010), (2012), Georgescu and Kinnunen (2012) is deepened. This will
provide a framework for the two risk management models of the chapter. Both
models are about a risk–averse agent in front of a situation of uncertainty.

In the first case we deal with an insurance contract the agent closes to recover a
part of the loss due to the risk situation. In the second case we develop a two-agent
investment model in which the risk has a possibilistic representation.

Both models lead to optimization problems: in the first one the optimal coin-
surance rate (in the possibilistic sense) should be achieved, and in the second one
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the optimal investment problem should be found. The main results of the chapter
focus on the optimal solutions of the problems: existence, properties, calculation,
behaviour towards risk aversion.

We present now some directions for further research.
1. A rich literature was dedicated to probabilistic models of multidimensional

risk (see the paper Jouini et al. (2013) for a survey of such models). In Georgescu
(2012) a possibilistic model for the situations with many risk parameters was
proposed. This model studies the risk aversion of an agent in the face of a multi-
dimensional possibilistic risk where the components are fuzzy numbers. An open
problem is to extend the models of Sects. 2.6 and 2.7 (coinsurance problem and
investment portfolio problem) to multidimensional possibilistic risk.

2. Credibility theory invented by Liu and Liu in (2002) is another way to
describe phenomena with incomplete information. A complete expose of this field
can be found in the monograph (Liu 2007). The paper Georgescu and Kinnunen (in
press) proposes a risk aversion approach by credibility theory. In particular, a risk-
prudent agent in credibilistic sense is defined and a credibilistic Pratt-type theorem
is proved. The treatment of coinsurance problem and investment portfolio problem
in the framework of such credibilistic models may be a topic for further research.

3. In paper Wu et al. (2014) various Principal—Agent Problems are studied by
credibility theory. Among others, necessary and sufficient conditions are established
for the optimal solution when the principal is risk-averse or risk-neutral (in a
credibilistic sense). To our knowledge, an approach of the Principal—Agent
Problem by possibility theory has not been discussed yet. In case of such approach
the results of the chapter would be certainly useful.

4. In Georgescu and Kinnunen (2011) and Georgescu (2012) a risk aversion
model for mixed parameter situations was considered: some parameters are mod-
eled by random variables and others by fuzzy numbers. An open problem is to
define a risk-averse, risk-lover or risk-neutral agent in the context of such mixed
models. It would be interesting coinsurance problem and investment portfolio
problem to be tackled for mixed parameter problems.

5. The mixed parameter risk models from Georgescu and Kinnunen (2011),
Georgescu (2012) combine probabilistic and possibilistic risk modeling. We can
figure out situations with three types of risk parameters: some probabilistically
modeled by random variables, some by fuzzy numbers and others by credibilistic
distributions. Can the concepts and results of this chapter be generalized to this
tridimensional context? Can concrete risk situations be found for which such hybrid
models offer an appropriate modeling?
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