Chapter 2
Possibilistic Models of Risk Management

Irina Georgescu, Jani Kinnunen and Ana Maria Lucia-Casademunt

Abstract In the traditional treatment, risk situations are modeled by random
variables. This chapter focuses on risk situations described by fuzzy numbers. The
first goal of the chapter is to define and characterize possibilistic risk aversion and
study some of its indicators. The second goal is the study of two possibilistic
models of risk management: a coinsurance problem and an investment portfolio
problem.

Keywords Risk management - Fuzzy sets - Possibility - Static portfolio
Coinsurance

2.1 Introduction

Risk aversion is an important topic in decision making under uncertainty. The first
crucial contributions on this topic were brought by Arrow (1965, 1970) and Pratt
(1964). They defined the risk aversion of an agent, they showed how it could be
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evaluated and how two agents’ risk aversions could be compared. Then the liter-
ature dedicated to risk aversion considerably increased (see e.g. Eeckhoudt et al.
(2005), Laffont (1993), Mas-Colell et al. (1995), Ross (1981)), which led to several
applications in risk management. The monograph (Eeckhoudt et al. 2005) presents
such applications in insurance decision, static and dynamic portfolio choices,
consumption and saving, optimal prevention, etc.

The whole risk theory was based on probability theory. The notions and theo-
rems on risk are formulated in terms of probabilistic indicators (expected value,
variance, covariance, etc.). However the probability theory cannot model all risk
situations related to economic and social phenomena. Zadeh’s possibility theory
(Zadeh 1978) offers another way of treating mathematically uncertainty (see also
Carlsson and Fullér (2011), Dubois and Prade (1988), (1987)). In Georgescu
(2009), (2010), (2012), Georgescu and Kinnunen (2012) a few possibilistic models
of risk aversion based on a notion of possibilistic expected utility are studied. In the
possibilistic approach, the risk is modeled by fuzzy numbers and possibilistic
indicators of fuzzy numbers (expected value, variance, covariance, etc.) are used in
order to formulate the definitions and the theorems of possibilistic theory.

This chapter continues the investigations of Georgescu (2009), (2010). It has two
main goals:

e to develop some new aspects of possibilistic risk aversion
e to apply this theory to two models of risk management: the coinsurance problem
and an investment portfolio problem.

The chapter is organized as follows.

In Sect. 2.2 fuzzy numbers and their indicators are presented. Due to their
remarkable properties, the fuzzy numbers constitute the most important class of
possibilistic distributions (Carlsson and Fullér 2011; Dubois and Prade 1988;
Georgescu 2012). They allow us to define some possibilistic indicators analogues
with the well-known indicators of random variables. The possibilistic expected
value E;(A) from Carlsson and Fullér (2001), (2011), two notions of possibilistic
variance Varg(A) from Carlsson and Fullér (2001), Fullér and Majlender (2003),
(2004) and Varj(A) from Georgescu (2009) are recalled. Varf(A) is more useful
than Vars(A) in the evaluation of possibilistic risk aversion (see Georgescu (2009),
(2010), (2012), Georgescu and Kinnunen (2012)). For example, in Georgescu
(2009), (2012) the possibilistic risk premium is expressed in terms of E;(A) and
Vars(A).

Section 2.3 is dedicated to a notion of possibilistic expected utility (associated
with a fuzzy number, a utility function and a weighting function) and some of their
properties (Georgescu 2009). Among the results of this section we mention an
approximation formula of possibilistic expected utility.

In Georgescu (2009), (2012), Georgescu (2010), Georgescu and Kinnunen (2012)
we studied the risk aversion of an agent faced to a risk situation described by a fuzzy
number. We defined the possibilistic risk premium as a measure for risk aversion and
we proved some basic properties of this indicator. However in these papers there
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exists no definition of what we mean that an agent is risk—averse. In Sect. 2.4 we
define a possibilistic risk—averse, a possibilistic risk—lover and a possibilistic risk—
neutral agent (represented by a utility function u). These three concepts are charac-
terized by the concavity, convexity and linearity of the utility function u. Some
surprising conclusions are reached: an agent is possibilistic risk—averse iff it is
probabilistic risk—averse, etc. (in the sense of Eeckhoudt et al. (2005), p. 8).

In Sect. 2.5 two new notions of possibilistic risk premium are defined and they
are connected with the one from Georgescu (2009). The section also contains an
approximate calculation formula for these indicators of risk aversion and a more
complete form of possibilistic Pratt theorem of Georgescu (2010). Finally a char-
acterization theorem of those utility functions for which the possibilistic risk pre-
mium is decreasing in wealth is proved.

Section 2.6 tackles the coinsurance problem in the context of possibilistic risk.
Insurance contracts for which the loss is modeled by a fuzzy number are studied.
Then the mean sum retrieved by the policyholder is a possibilistic expected utility
and on its basis the possibilistic premium for insurance indemnity is defined. The
optimal coinsurance rate is determined as a solution of a decision problem for
which the objective function is expressed as a possibilistic expected utility.
Properties of optimal coinsurance rate, its calculation and the way it changes with
the variation of the initial wealth are studied.

Section 2.7 deals with a possibilistic model of an investment portfolio problem.
The case of a risk—averse agent who invests in a risk—free asset and a risky asset is
studied. Our model is based on the hypothesis that the return of the risky asset is
described by a fuzzy number. To determine an investment with a maximum payoff
a decision problem should be solved whose objective function is a possibilistic
expected utility. Several properties of the optimal solution are studied and an
approximate calculation formula is proved.

2.2 Fuzzy Numbers and Their Indicators

In this section we recall the definition of fuzzy numbers, their operations and two of
their indicators (expected value and variance) (see Carlsson and Fullér (2011),
Dubois and Prade (1980), (1988), Majlender (2004)).

Let X be a non-empty set. Following Zadeh (1965), a fuzzy subset of X is a
function A : X — [0, 1]. A fuzzy subset A of X is normal if there exists x € X such
that A(x) = 1. The support of a fuzzy set A is supp(4) = {x € X|A(x) > 0}.

Throughout this chapter,we shall consider that X = R. For y € [0, 1], let the y-
level set [A]” of a fuzzy subset A of R (see Carlsson and Fullér (2011), Dubois and
Prade (1980)). The fuzzy set A is called fuzzy convex if [A]7’ is a convex subset in
R for any y € [0, 1].
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Definition 2.1 A fuzzy subset A of R is called fuzzy number if A is normal, fuzzy
convex, upper semicontinuous and with bounded support.

If A, B are two fuzzy numbers and 4 € R, the fuzzy numbers A + B and AA are
defined by

(A+B)(x) = sup min(A(y), B(z));

yt+z=x
(44)(x) = sup A(y).
Ly=x
If Ay,...,A, are fuzzy numbers and Ay, ..., 4, € R, then one can consider the

fuzzy number Y ., LA;.
A non-negative and monotone increasing function f : [0, 1] — R is a weighting
function if it satisfies the normality condition fo y)dy = 1.

We fix a fuzzy number A and a weighting function f such that [A]” =
[a1(7), az(y)] for all y € [0,1].
Definition 2.2 (Fullér and Majlender 2003) The f~weighted possibilistic expected
value of A is defined by Ef(A) = 15 fol (a1 (y) + ax(y)f ()dy.
Remark 2.3 (Carlsson and Fullér 2011) If Ay,...,A, are fuzzy numbers and
Aly..., 2y € R then Ef(zz;l )L,iAi) = E?:l /l,'Ef(Ai).
Definition 2.4 (Fullér and Majlender 2003) The f~weighted possibilistic variance of
A'is defined by Var(A) = 13 fy (@(7) = a2(7))F (7)db.

These two possibilistic indicators have important mathematical properties and
they have been used in the construction of models with applications to strategic
investment planning, fuzzy real options for strategic decisions, portfolio selection
with imprecise data, risk assessment in grid computing, etc. (see Carlsson and
Fullér (2011), Majlender (2004), Mezei (2011)).

In Georgescu (2009) another notion of possibilistic variance Var]’f(A) was

defined, necessary to the possibilistic risk aversion model from that paper.
Definition 2.5 (Georgescu 2009)
2
Varf fO ar( a1 a()—a1(y) f x - Ef )) dxlf(y)dy

The next proposition contains a computation formula for Vary (A).

Proposition 2.6 (Georgescu 2009)
Varg (A 1/3 fo ai(n)+ a3(7) + ar()ax(Df (7)dy — EF(A).
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2.3 Possibilistic Expected Utility

As far as we know from Eeckhoudt et al. (2005), Georgescu and Kinnunen (in
press), Mas-Colell et al. (1995), Quiggin (1993), the probabilistic risk theory is
developed in the framework of expected utility theory. A notion of possibilistic
expected utility was introduced in Fullér and Majlender (2003), Georgescu (2009),
then it was used in the construction of some possibilistic models (Carlsson and
Fullér 2011; Georgescu 2009, 2012; Georgescu 2010; Georgescu and Kinnunen
2012; Majlender 2004; Mezei 2011).

In this section we recall this notion of possibilistic expected utility and some of
its main properties.

We fix a weighting function f : [0,1] — R and a fuzzy number A such that
[A]" = [a1(y), ax(y)] for any y € [0, 1].

We consider a utility function u of class C2. Sometimes the domain of the utility
function will be [0, 00) or a real interval [m, M].

Definition 3.1 (Fullér and Majlender 2003) The possibilistic expected utility
Er(u(A)) associated with f; A and u is Ef(u(A)) = fol [m f;z((:)) u(x)dx|f (y)dy.

Each time we use the right hand side integral above we will assume that this
integral is finite.

Remark 3.2 (i) If u is the identity function then E;(u(A)) = Ef(A); (i) If u(x) =
(x — E;(A))* for all x € R, then Ey(u(A)) = Var;(A); (iii) If 2 € R and A(x) =  for
all x € R, then E;(u(A)) = /.

Proposition 3.3 (Georgescu 2009) Let g: R — R and h: R — R be two utility
functions and a,b € R. We consider the utility function u = ag + bh. Then
Ef(u(A)) = aky(g(A)) + bEr(h(A)).

Proposition 3.4 (Georgescu 2009) Let g: R — R and h: R — R be two utility
functions such that g(x) <h(x) for all x € R. Then Ef(g(A)) < Ef(h(A)).

Corollary 3.5 Let g : R — R be a utility function.
(i) If g(x) >0 for all x € R, then E;(u(A)) > 0.
(ii) If g(x) <O for all x € R, then Ef(u(A)) <O0.

Corollary 3.6 Let g : R — R be a utility function and a < b be two real numbers. If
a<g(x)<b for any x € R, then a < Ef(g(A)) <b.

Proposition 3.7 Let A be a fuzzy number and A€ R. Then
Varj (A +A) = Var; (A).

The following result establishes an approximation formula of the possibilistic
expected utility Ef(u(A)).
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Proposition 3.8 If the utility function u is of class C, then
1
Er(u(A)) ~ u(E;(A)) + Su" (Ef(A))Varg(A)
Proof According to the Taylor approximation formula of order II:
1
u(x) = u(Ep(A)) + u'(Ep(A)) (x = Er(A)) + Su" (E(A4)) (x — Ef(A))’
Let us consider the following functions:
g(x) =x—E;(A), x€R
h(x) =(x — Ef(A))>, x€R

We remark then g = 14 — Ey(A). Let us denote a = u(Ef(A)), b = u'(Ef(A)),
¢ =3u"(Es(A)). It follows that u ~ a + bg + ch.
By Proposition 3.3 one gets

Ey(u(A)) = Ef((a + bg + ch)(A)) = a + bEf(g(A)) + cEr(h(A))
Since g = 14 — Ef(A)) it follows that
Er(8(A)) = Ef(x — Ef(A))(A)) = Er(A) — Ef(A) = 0.

According to Remark 3.2(ii), Ef(h(A)) = Vars(A) therefore

1
Er(u(A)) = u(Er(A)) + S u" (Ey(A))Vary(A).
(]
Remark 3.9 If the integral of Definition 3.1 is not finite then one can define the

value of possibilistic utility Ef(u(A)) by the right member of the equality of
Proposition 3.8.

Example 3.10 Let us consider the triangular fuzzy number A = (a, a, B) defined by

1 -2t ifa—a<t<a
A)y=q 1 -2 ifa<t<a+f
0, otherwise

(@a€Randa, p>0)
We assume that the weighting function f has the form f(y) = 2y, for any
y € [0,1].
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According to Georgescu (2012, p. 11), the level sets of the triangular fuzzy
number A = (a, a, B) have the form [A]" = [a;(y), a2(y)], where a;(y) =a — (1 —
p)ec and ax(y) = a+ (1 —y)p.

By Georgescu (2012, p. 25, 29), the possibilistic expected value E;(A) and the
possibilistic variance Vary (A) have the following expressions:

TN
Ef(A) IG+T,VClrf(A) = 36

Applying Proposition 3.8, we find the following approximate value of Ef(u(A)):

_ 2, p2
ﬁ o o +ﬂ M”(a+

p—a
6 ) 72

Er(u(A)) ~ ula + )

As regards to the form of the utility function u and the numerical values of a, a,
B, we will be able to compute the approximate value of Ef(u(A)).
For example, if u(x) = Inx and A = (4, 2, 1) then Ef(u(A)) ~ 1.331.

2.4 Possibilistic Risk Aversion

In this section we will consider an agent faced with a risk situation. The agent is
represented by a utility function and the risk is described by a fuzzy number. Using
the possibilistic expected utility we will define a risk—averse, a risk-lover and a
risk—neutral agent. We will prove that these notions are characterized by the con-
cavity, convexity or linearity of the utility function. We identify an agent with its
utility function.

We fix a weighting function and a utility function u of class C2.

Definition 4.1 The agent u is possibilistic risk—averse if for any wealth level w and
for any fuzzy number A the following inequality holds:
(1) Er(u(w +A)) <u(w + Ef(A)).

When the opposite inequality holds, the agent u is possibilistic risk—lover, and if
(1) becomes equality the agent u is possibilistic risk—neutral.

Lemma 4.2 The following assertions are equivalent:

(a) The agent u is risk—averse.

(b) For any wealth level w and any fuzzy number B with E¢(B) = 0, the following
inequality holds:

(2) Ef(u(w + B)) <u(w).

Proof (a) = (b) is obvious; (b) = (a): Denoting B =A — Ef(A), we have
Ef(B) = 0. Applying (2) for this B and for w + E¢(A) instead of w it follows that
Ef(u(w+A)) = Ef(u(w + Ef(A) + B)) <u(w + Ef(A)). O
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Proposition 4.3 The following assertions are equivalent:
(i) The function u is concave.
(ii) The agent u is risk—averse.

Proof (i) = (ii): Let A be an arbitrary fuzzy number and m = E;(A). The second
order Taylor approximation of u(w + x) around w + m gives us
3 u(w+x) =ulw+m)+u'(w+m)(x— m)+1/2u”(éf(x))(x —m)*, where &(x)
is a real number between x and m.

By Proposition 3.3,

Ey(u(w + A)) = ulw + m) + 1 (w+ m)Er(A — m) + YoEy(u'(£(4)) (A — m)®)

Since Ef(A — m) = Ef(A) —m = 0, we obtain
() Ep(u(w + A)) = ulw +m) + oEy (" (2(A))(A = m)”).

Let g(x) = u"(¢(x))(x —m)* for x€R. Since u is concave, we have
u”(¢(x)) <0, therefore g( ) <0 for any x € R. Applying Corollary 3.5(ii) it follows
hat B G)A ") = ) <.

Then, by (4), Ef(u(w +A)) <u(w + A) for any w. Thus the agent u is possi-
bilistic risk—averse.

(ii) = (i): Assume that the function u is not concave. Then there exists w € R
and an interval I = [w — d,w + 6] such that «'(x) > 0 for any x € I.

We choose a fuzzy number A such that sup p(A) C 1. If [A] = [a;(y), az(y)] for
y € [0,1], then [a;(0),a2(0)] = supp(A) C I. For any y € [0,1], [a1(y),az2(y)] C
[a1(0),a2(0)] C I.

We consider the function g(x) = u”(&(x))(x —m)* for any x € R (associated
with the Taylor expansion (3)). Then

(5) Er(2(A)) = fy ey Jue) " (€0) (x = m)axlf ().

One notices that al( ) < Ex( )<a2(0). Thus m = E¢(A) € I. Accordingly,
" (£(x)) <0. Thus u”(E(x))(x — m)* <0 for any x € [a(y),az(y)] — {m}. 1t fol-
lows that fal(v) " (E(x)) (x — m)*dx > 0 for any y € [0 1] Since ay(y) —a;(y) >0

for any y € [0, 1], it follows that 1 PR f x —m)’dx > 0.

Using this inequality and the propemes of f from (5) it follows that
Ef(g(A)) > 0. Now (4) can be written

Ey(u(w+A)) = u(w +m) + 3 E((4)),

thus  Ep(u(w+A)) > u(w+m) + LhE(g(A).  Thus  Ep(u(w+A)) >
u(w + m). Then the agent u is not risk—averse. d
Corollary 4.4 The following assertions are equivalent:

(i) The function u is convex.
(ii) The agent u is risk—lover.

Proof 1t follows from Proposition 4.3 and from the fact that u is convex iff —u is
concave. U
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Corollary 4.5 The following assertions are equivalent:
(i) The function u is linear.
(ii) The agent u is risk—neutral.

Proof From real analysis it is known that u is linear iff u is simultaneously convex
and concave. Proposition 4.3 and Corollary 4.4 are applied then. O

By Proposition 1.2 from Eeckhoudt et al. (2005), an agent u is possibilistic risk—
averse iff u is concave. Combining this result with Proposition 4.3 it follows:

Proposition 4.6 Given a utility function u the following assertions are equivalent:
(i) The agent u is probabilistic risk—averse.
(ii) The agent u is possibilistic risk—averse.

Due to Proposition 4.6, we will use the term risk—averse agent instead of
probabilistic or possibilistic risk—averse agent.

2.5 Possibilistic Risk Aversion Indicators

In papers Georgescu (2009) and Georgescu (2010) the study of possibilistic risk
aversion started. In Georgescu (2009) a notion of possibilistic risk premium was
defined, and in Georgescu (2010) a possibilistic version of Pratt theorem was
proved (Pratt 1964).

In this section two more notions of possibilistic risk premium are introduced and
they are compared with the one from Georgescu (2009). Approximation formulas
are obtained and the Pratt-type theorem from Georgescu (2010) is strengthened. A
necessary and sufficient condition for the possibilistic risk aversion to be decreasing
in wealth is found.

We fix a weighting function f and an injective utility function u.

Definition 5.1 (Georgescu 2009) Let A be a fuzzy number. We define the pos-
sibilistic risk premium p(A, u) associated with A and u as the unique solution of the
equation

Er(u(A)) = u(Ef(A) — p(A,u)) (2.1)

Proposition 5.2 (Georgescu 2009) Assume that u has the class C* and u' > 0.
Then an approximate solution of Eq. (2.1) is

(Ef(A))

o) ~ NS vy ) 22)
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We recall from Arrow (1965) and Pratt (1964) the definition of the Arrow—Pratt
index of the utility function u:

) = — 9 e R (2.3)

u'(x)

Then (2.2) can be written as:
p(A,u) ~ “pVarg (A)ru(Er(A)) (2.4)

We define now two more notions of possibilistic risk premium.

Definition 5.3 Let A be a fuzzy number and x € R. We define n(x,A,u) as the
unique solution of the equation

Ef(u(x+A)) =u(x+ Ef(A) — n(x,A, u)) (2.3)

Definition 5.4 Let y € R and B a fuzzy number such that E;(B) = 0. We define
71 (y, B,u) as the unique solution of the equation

Ef(u(y + B)) = u(y — mi(y, B, u)) (2.6)

n(x,A,u) is the possibilistic analogue of the probabilistic risk premium from
Pratt (1964), and 7, (y, B,u) is the possibilistic analogue of the probabilistic risk
premium from Ross (1981).

Next we study the relationship between the three notions of possibilistic risk
premium 7(x,A,u), 7;(y, B,u) and p(A,u).

Lemma 5.5 For any i € R we have

n(x,A,u) = n(x + A — p,u) (2.7)

Proof One notices that Er(A — p) = E¢(A) — p. Therefore applying twice (2.5) one
obtains
ulx+Ep(A) — n(x+ w, A — wou))=u(x+ u+ Ef(A — u) — n(x + p, A — p, u)-
=Er(u(x+A)) = ulx+ Ef(A) — n(x,A, u)).

Then (2.7) results from u’s injectivity. O

Proposition 5.6 (i) If y € R and B is a fuzzy number with E;(B) =0, then
n(y,B,u) = m(y,B,u); (ii) If x € R and A is an arbitrary fuzzy number, then
n(x,A, u) =T (x + Ef(A)vA - Ef(A)7 u)

Proof (i) Since Ef(B) = 0 from (2.5) and (2.6) it follows that u(y — n(y, B,u)) =
Ef(u(y + B)) = u(y — mi(y, B,u)) from where, due to u’s injectivity, one obtains
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n(y, B,u) = m(y, B,u); (ii) One notices that E¢(A — E¢(A)) = 0. Thus, by Lemma
5.5 and (i), it follows that
n(x, A, u)=n(x + Ef(A),A — Ef(A),u) + m(x + Ef(A),A — Ef(A), u). O

By Proposition 5.6 we will always write n(y, B, u) instead of 7 (y, B, u).
Proposition 5.7 Let x € R and A an arbitrary fuzzy number. Then
(i) p(A,u) = n(0,A,u);
(ii) n(x,A,u) = p(x + A, u).
Proof (i) By applying (2.5) for x =0 and then (2.1) it follows that u(Ef(A) —
n(0,A,u)) = Ef(u(A)) = u(Ef(A) — p(A,u)) from where p(A,u) = n(0,A, u).

(i) We apply (2.1) and (2.5):

u(Ep(x+A) — p(x+A,u))= Ef(u(x + A))
=u(x+ Ef(A) — n(x,A,u))= u(Ef(x + A) — n(x,A,u)) from where n(x,A,u) =
p(x+ A, u) follows. d

The relationship between the indicators 7, 7; and p established by Propositions
5.6 and 5.7 allows a result obtained for one of them to be able to be transferred to
the others. We will exemplify next this idea.

Proposition 5.8 Let x € R, A a fuzzy number and u a utility function of class C>
such that u' > 0. Then

n(x,A,u) ~ Lo, (x + Er(A))Var} (A) (2.8)

Proof By Proposition 5.7, Varf(x+ A) = Varj(A). Then, applying Propositions
52 and 5.7 it follows that =n(x,A,u)=pkx+Au) = l/zVar}“(x +A)r,
(Ef(x + A))= L oVary (A)r(x + Ef(A)). O
Remark 5.9 If E;(A) = 0, then (2.8) becomes:

n(x,A,u) = LpVarf (A)r,(x) (2.9)

Applying in this case Proposition 2.6, Varf(A)= 1/3 fol [a}(y)+
a5 (7) + a1 (y)aa()]f (7)dy, thus (2.9) can be written as:

7, A, ) ~ Ygra(x) / [R0) +E0) + aDa)fQ)d (210

Example 5.10 Let A be the triangular fuzzy number (a,a,f). According to
Example 3.10 and (2.4), (2.10) the following approximation formulas are obtained:
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o? + B p—o
7 ru(x+a+ 6 )

Let u; and u; be two utility functions of class C? such that
w; >0, uy, >0, uf <0, u) <0. We denote by ri(x) = r,i(x) and r(x) = rp(x)
the Arrow—Pratt indexes of u; and u,.

The following result is a possibilistic version of Pratt theorem (Pratt 1964).

n(x, A, u) ~

Proposition 5.11 The following assertions are equivalent:

(a) For any x € R and for any fuzzy number A, we have n(x,A,u;) > n(x, A, us).
(b) For any y € R and for any fuzzy number B with E;(B) =0, we have
n(x, Byuy) > n(x, B, uz).

(c) For any fuzzy number A, we have p(A,uy) > p(A,uz).

(d) ri(x) > ry(x) for any x € R.

(e) uy is more concave than u,: there exists a function ¢ : R — R with ¢' > 0 and
¢" <0 such that uy(x) = ¢(uy(x)) for any x € R.

Proof The equivalences (c¢) < (d) < (e) were proved in Georgescu (2009) (see
also Georgescu (2012), Proposition 4.3.7); (a) < (b) follows from Proposition 5.6;
and (a) < (c) follows from Proposition 5.7. d

Definition 5.12 Consider two agents with the utility functions u; and u,. If the
equivalent conditions of Proposition 5.11 are fulfilled, then we say that the agent u
is possibilistic more risk—averse than u,.

Remark 5.13 One notices that the equivalent conditions (d) and (e) from
Proposition 5.11 also appear in Pratt theorem from probabilistic risk aversion (see
Pratt (1964) or Eeckhoudt et al. (2005), Proposition 1.5, p. 14). Then, by combining
Pratt theorem with Proposition 5.11, it follows that u; is probabilistic more risk—
averse than u; iff u; is possibilistic more risk—averse than u;. In this case we say
that u; is more risk averse than u,.

Let u be a utility function of class C?> with u' > 0, u” <0, u” > 0. Then the

function v = —u’ has the class C? and the properties v/ > 0, v/ <0. Thus u and
v are utility functions verifying the hypotheses in which Proposition 5.11 can be
applied.

The following result establishes a necessary and sufficient condition for the
possibilistic risk premium 7(x, A, u) to be decreasing in wealth.

Proposition 5.14 The following assertions are equivalent:
(i) For any fuzzy number A, the possibilistic risk premium 1(x, A, u) is decreasing in
wealth; x| < x, implies that ©(x;,A,u) <7(x1,A,u).
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(ii) For any fuzzy number A with E;(A) =0, the possibilistic risk premium
n(x,A,u) is decreasing in wealth.
(iii) v is more concave than u.

Proof (i) < (ii): by Proposition 5.6; (ii) < (iii): Let A be a fuzzy number with
Ef(A) = 0. Assume that [A]" = [a;(y), a2(y)] for all y € [0,1]. By (2.6) we have

u(x — TC()C,A, u)) :Ef(u(x +A))

1 1 ax(y)
- le("/) S gy o

Deriving with respect to x and taking into account (2.6) applied to v it follows
that

f(y)dy.

f()dy

/ / _ ! 1 aZ(y) /
(1 — 7' (A, u))u' (x — n(x, A u)) = /0 l—az()f) m— /al(w u'(x + t)dt

1 1 a(y)
N _/0 [ﬂz(V) —ai(y) Ll(y) vk i

= —E/(v(x +4)) = —v(x — n(x,A,))

f(y)dy

From the above equalities it follows that 7'(x, A, u)

ul(x — TC(X7A5 M)) + V(X — Tf(va’ V)_ v(x=n(x,A,v))—v(x—n(x,A,u)
- u’(x _ TE(X,A, I/L)) - u' (x—m(x,A,u)) .

But #/(x — n(x,A,u)) > 0 and v and is strictly increasing. Thus the following
assertions are equivalent:

n(x, A, u) is decreasing in x;

For all x, 7'(x,A, u) <0;

For all x, v(x — n(x,A,v)) <v(x — n(x, A, u));
For all x, n(x,A,v) > n(x,A, u).

Then (ii) is equivalent with condition (b) of Proposition 5.11 stated for the utility
functions u and v. According to the equivalence (b) < (c) from Proposition 5.11, it
follows that (if) < (iii). O

Definition 5.15 (Eeckhoudt et al. 2005) The Arrow—Pratt index of the utility
function v = —u":
u///(x

mw:mw:fwm (2.11)

~—

is called the degree of absolute prudence of the agent u.
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Remark 5.16 According to the equivalence (d) < (c¢) of Proposition 5.11, the three
conditions of Proposition 5.14 are equivalent with the following property:

For all x € R, P,(x) > r,(x) (2.12)

(i.e., prudence is larger than absolute risk aversion).

2.6 Possibilistic Coinsurance Problem

We consider a risk—averse agent with a utility function # and an initial wealth wy.
The agent faces a risk situation where it can lose a part of wy. We will assume that
the loss is described mathematically by the fuzzy number A.

To retrieve a part of the loss the agent will close an insurance contract. By
Eeckhoudt et al. (2005, p. 46), an insurance contract consists of a premium P to be
paid by the policyholder and an indemnity schedule I(x) representing the amount to
be paid by the insurer for a loss of size x.

I(x) will be considered a utility function. The form of the premium P depends on
the mathematical modeling of the loss: a random variable in the probabilistic
approach (Eeckhoudt et al. 2005) and a fuzzy number in the possibilistic approach.
If the loss is a random variable X > 0, then the mean sum retrieved by the agent will
be the probabilistic expected utility M(1(X)) and P will be defined with respect to
this indicator (Eeckhoudt et al. 2005, p. 49).

In this section we will assume that the loss is a fuzzy number A whose level sets
are [A]" = [a1(7),ax(y)] for y € [0,1]. We will assume that A is not a fuzzy point
and supp(A) C Ry, thus [A]" C R, for any y € [0,1]. We will fix a weighting
function f : [0, 1] — R.

We will consider the possibilistic expected utility associated with f, A and I:

) = [

a(y)
M/ 0 ’(’C)le]f(v)d*/ (2.13)

In our possibilistic model, Ef(I(A)) is the mean sum retrieved by the agent
through the insurance contract.
The possibilistic premium for insurance indemnity will be

P=(1+2)E/(I(A)) (2.14)

where / is a loading factor.

Equation (2.14) is inspired from the form of probabilistic premium for insurance
indemnity from Eeckhoudt et al. (2005, pp. 49-50), Ef(I(A)) replaces the proba-
bilistic actuarial value from Eeckhoudt et al. (2005).
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The function I may have various forms. We will assume that I(x) = fx for all
x. The constant f§ is called coinsurance rate and 1 — f is called retention rate (see
Eeckhoudt et al. (2005), p. 49),

For the function I(x) = fix one gets the form:

E¢(I(A)) = BE¢(A) (2.15)

Then by (2.13) and (2.15) the possibilistic premium for insurance indemnity will
depend on the parameter f§ and will have the form

P(p) = (1 = PE;(1(A)) = B(1 — B)E¢(A) (2.16)

By denoting Py = (1 + 1)E;(A) (= the full possibilistic insurance premium),
(2.16) becomes

P(B) = BPo (2.17)

The coinsurance rate f§ represents the fraction of loss which returns to the
policyholder and is a priori fixed by it. Next we study an optimization problem to
choose f.

We consider the function g defined as

glx,p) =wo— PPy — (1 —f)x (2.18)

g(x, p) represents the sum from wy that remains to the agent if the loss is x and if
it closed an insurance contract with the premium P and the coinsurance rate f5.
Since x is one of the values which the fuzzy number A can take, representing the
loss, the final wealth of the policyholder with loss A and the coinsurance rate f§ will
be the fuzzy number

g(A,B)=wo— pPy— (1 - p)A (2.19)

We recall that the utility function u has the class C2. The agent being risk—
averse, by Proposition 4.3 the function u will be concave.
We consider the function

h(x, B) = u(g(x, B)) = u(wo — pPo — (1 = f)x) (2.20)

and the possibilistic expected utility associated with f; A and h:

1 a(7)
H(B) = B (A p) = [ [ﬁ I h(x,mdx]f(y)dy (221)

Remark 6.1 By Proposition 3.8, we have the following approximation formula of

H(p):
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H(B) ~ h(EH(A), ) + 3 ' (Ey(a), ) Var; (4)

In our model, H(p) is the possibilistic expected final wealth of the policyholder
with loss A and coinsurance rate fi. The choice of f by the policyholder will
maximize H(ff). This way we reach the following optimization problem:

H(B') = max H() (2.22)

whose solution 8 is called optimal coinsurance rate.
Next we deal with the calculation and the properties of *. By (2.20), H(f) is
written as

1 1 a(7)
H = [ [M [ u(g(x,ﬂ))dX]f(v)dv 2.23)

Proposition 6.2 (i) The function H is concave.
(ii) The necessary and sufficient condition for the real number B* to be the optimal
solution of problem (2.22) is H'(f") = 0.

Proof (i) We compute the ﬁrst derivative of H:
dg(x
H'(B) = Ji e Juc) w (80 ) 2552 af () dy
By (2.19), % =x— Po. Thus,

, 7 1 1 ax(y) , 3 : A
Hp - | [@m_m(?) [ st me— o ]m)d/ (224)

Similarly we obtain the second derivative of H:

1 _ ! 1 @ 1" _ 2
H"(B) —/0 [az(y) — ) /alm u"(g(x, B))(x — Po)"dx

Since u is concave, u”(g(x, f)) <0 for all x and f8. Thus for any y € [0, 1] we

have H"(B) = f;z(/}) " (g(x, B))(x — Py)*dx < 0. Since a(y) —a,(y) >0 for any

My iy € R, from (2.5) it follows H”(f) <0 for all . Thus, H is concave.
(ii) follows from (i). O

fydy  (2.25)

The following result is the possibilistic version of a theorem of Mossin (see
Mossin (1968) or Proposition 3.1 of Eeckhoudt et al. (2005, p. 51)).

Proposition 6.3 Assume that v’ > 0 and u” <0.
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(i) If .= 0, then p* =1,
(ii) If A > 0, then " <1.

Proof (i) If f = 1, then by (2.6) g(x, 1) = wg — Py for all x. By applying (2.25) to
this particular case:

s 1 1 az(?’), B
o= | Lzm_alm [ st e P

. 1 1 a(y)
= ulwo - PO)/o [02(7)) —a(y) ~/al(",') (e = Po)dx

1 1 as(y)
zu’wo—Po)/ 7/ xdx — Py
( A P e

= u'(wo — Po)(Ef(A) — Po).

f()dy

f()dy

fy)dy

But Ef(A) — Py = Ef(A) - (1 + )V)Ef(A) = —iEf(A) Thus:
H'(1) = —iul (wo — Po)Ey(A) (2.26)

For A =0, we obtain H'(1) = 0. Thus, by Proposition 6.2(ii), f* =1 is the
optimal solution of the problem (2.22).
(i) One knows that a;(0) < Ef(A) <a,(0). By the hypothesis that A is not a fuzzy
point and supp(A) = [a1(0),a»(0)] € Ry, thus, Ef(A) > 0 follows. Since u'(wy —
Py) > 0 and 1 > 0, by (2.26) we have H'(1) = —Au'(wo — Po)E;(A) <0. Assume
that the optimal solution B* of the problem (2.10) verifies that f*>1. By
Proposition 6.2(i), H is concave. Thus, its derivative H' is decreasing. It follows that
H'(f*) <H'(1) <0, which contradicts H'(*) = 0. Accordingly, " <1. O

Proposition 6.4 If A = 0, then the possibilistic expected final wealth E(g(A, f)) is
constant.

Proof If /. =0, then Py = Ef(A). Thus, g(x, f) = wo — fE;(A) — (1 — B)x for all
x and . We compute Ef(g(A, f)) by the formula

Er(3(AB) = [y e f;lz((')) 8(x, B))dx]f (y)d.

A simple calculation shows that

) g B = [ (o = BEF(A) = (1= Bi)dv= (w0 — BE/(A)) aa(7)-

ai(y) =5 (@) = ai(y).
Replacing in the expression of E(g(A, f)) one obtains:
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1 —
B ) = [ o~ ) -1 3E @) + )]

= o= g5 [ty - 1= p) [ A2 0,
= wo — PE;(A) — (1 — B)Er(A) = wo — Ef(A).

For the rest of the section we assume that f(y) = 2y for any y € [0, 1].
Proposition 6.5 If u"(x) <0 for all x, then H" () <0 for all f.
Proof By (2.25) we have

17 _ ! 1 () " _ 2 ) n
-2 | [7@@)_6”@) [ s B Poas iy (227

A is not a fuzzy point. Thus, ax(y) —ai(y) >0 for any y € [0,1]. Also
W’ (g(x, ) <0 and (x — Py)* > 0 for any x € [a(}),as(y)] — {Po}. Therefore,
f;lz((g u"(g(x, B))(x — Py)’dx<0 for any y e [0,1]. Thus, for any y € [0,1],

Y as () 2
aT—a) fafé,/)) u"(g(x, B))(x — Po)"dx <0.

It follows that H"(f) <0 for any f. O

We consider two agents with the utility functions u; and u, such that
u; >0, uy >0, uf <0, u) <0. Let ] and ff; be the optimal coinsurance rates
associated with u; and u, (in the sense of problem (2.22)).

Proposition 6.6 If u; is more risk—averse than u, then | > f3.

Proof We consider the possibilistic expected final wealths H,(f) and H»(f)
associated with u; and u,:

1 a(y)
H(p) = 2/0 [M/m ul(g(X,ﬁ))dx‘| dy;

I v @)
Hy(B) —2/0 [7@(?)_0“(?) /al(y) uz(g(xyﬁ))dx] dy.

Then H{(f}) = 0 and H5(f5) = 0.

If A = 0, then, by Proposition 6.3(i), f; = 5 = 1 and the assertion is verified.

Assume 4 > 0. Using condition (c) of Proposition 5.11 and judging the same way
as in the proof of Proposition 3.2 of Eeckhoudt et al. (2005) one proves that for any x:

(x = Po)uy(wo — (1 = By)x — BiPo) < (x — Po)u (wo — (1 = By)x — BPy),
which by (2.18) can be written as (x — Po)uy(g(x, 7)) < (x — Po)u, (g(x, 7)).
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Then for any y € [0, 1]:

S5 (o — Pty (g(x, B))dx < [20) (x = PoYuts (g(x, B7)dx.
Taking into account that ax(y) — a;(y) > 0 for any y € [0, 1], it follows, by
(2.24), that

Hy(B) = 2 f3 oty S0 (= POy (g, By <2 [ Lo

Jiith) = Pojuy (s(x m)dx]dy = Hi{(§;) = 0.
By hypothesis u}; <0, thus by Proposition 6.5, H; () <0 for all f8. Therefore, H}
is strictly decreasmg Thus, from H}(f}) <0 = H} (/32), f5 < B} follows. O

2.7 Static Portfolio Choices: A Possibilistic Model

By Eeckhoudt et al. (2005, p. 65), we consider an agent with a wealth wg, which it
invests in a risk—free asset and in a risky asset. In the probabilistic approach of
Eeckhoudt et al. (2005), the return of the risky asset is a random variable. In this
section we will study a model in which the return of the risky asset is a fuzzy
number.

Let r be the risk—free return of the first asset and x the value of the return of the
risky asset. The agent invests the sum o in the risky asset and wy — o in the risk—
free asset. Then the value of the portfolio (wy — , o) at the end of the considered
period is by Eeckhoudt et al. (2005, p. 66): (wo—a)(1+7)+a(l+x)
=wo(l+r)+oa(x—r) =w+ alx —r), where w = wy(1 + r) is the future wealth
obtained with risk—free strategy.

In the probabilistic model of Eeckhoudt et al. (2005), x is the value of a random
variable. In the possibilistic model, which we will develop, x will be the value of a
fuzzy number A.

We consider the function

glo,w,x) =w+alx—r) (2.28)

If the fuzzy number A is the return of the risky asset, then the fuzzy number
g(a,w,A) = w+ (A — r) is the value of the portfolio at the end of the period.

We fix a weighting function f:[0,1] — R. Assume that the agent has an
increasing and concave utility function u of class C?. Also, we assume that [A]” =
[a1(y),ax(y)] for y € [0, 1]. We consider the function

h(o,w,x) = u(g(o, w, x)) (2.29)

and the possibilistic expected utility associated with f, A and h: K(o,w) =

Ef(h(o, w,A)) jo PO f <(y)) (o, w, x)dx]f (y)dy
By (2.2) we have
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1 1 a(y)
K(ow) = /0 [m /{W) u(g(oc,w,x))dx]f(y)dy (2.30)

Remark 7.1 By Proposition 3.9, we have the following approximation formula for
K(a,w):

K(o,w) ~ h(o, w, Ef(A)) +lw

5 P . Var; (A)

The investor’s problem is to choose a value o* such that

K(o,w) = max K (o, w) (2.31)

o

We prove next some properties of K and the optimal solution o*.

Proposition 7.2 (i) The function K(o,w) is concave in o;
(ii) The necessary and sufficient condition for the real number o* to be the

optimal solution of (2.31) is aK(g ) — .

Proof (i) From (2. 30) it follows that

OK W) a dg(o,w,x
) — [ Loty o) (g w,x)) G20 af ()
But (“ WX) = x — r. Thus,

0K , 1 1 ax(y) .
g;W):/o [W/ o ”(g“"w»x))(x—r)dx]f(y)dv (2.32)
From (2.5) one obtains
DK (2,w)

95 (2.33)

1 ax(7)
- e [ et o

u is concave and u”(g(o,w,x))<0. Thus, for any y €[0,1], we have

ff({ff " (g (o, w, x))(x — r)’dx < 0.

Then from (2.33) it follows that > K(“ w) <0 for any a. Thus, K(a, w) is concave
in o.
(ii) follows from (i). O

Proposition 7.3 Assume that v’ > 0 and u" <0.
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(i) If Ef(A) = r, then o* = 0;
(ii) If Ef(A) > r, then o > 0.

Proof We notice that g(0,w,x) = w, thus making o = 0 in (2.32) it follows that

OK(w,w) ! 1 () ~ «
Do ~u (W)~/0 |fh('y) — al('))) ~/al(y) (‘x r)dx]f( )d/

~ o) / DD )4y o] = i) -

IfEf(A) =r, then 2
solution of (2.31).
(i) Assume by absurdum that o*<0. If r<E;(A), then aKég’W) =
' (w)(Ef(A) —r) >0, since u'(w)>0. Then from o*<0 it follows that
0= 3K(5a W) > [“)K((j(;w > 0.
The obtained contradiction shows that o* = 0. O

M = 0. Thus, by Proposition 7.2(ii), «* = 0 is the optimal

Proposition 7.4 An approximate value of the optimal solution of (2.31) is

o u'(w) Er(A) —r
W' (w) Varf (A) + (Ef(A) — r)? (2.34)

Proof We use the first-order Taylor approximation of u'(w + a(x — r)) around w:
u(glo,w,x)) =u'(w+alx—r)) ~u'(w) + alx — r)u’ (w) (2.35)

Replacing u'(g(o, w,x)) in (2.32) with the approximate value from (2.35) it
follows that

) 2 fo by S (o () + ol = ) (w) (x = 7)) (x = r)dxlf (7)dy

We write this relatlon under the form:

W ~ 1 (W)l + oat (w), (2.36)

where

! 1 ax(y)
T P M LU

_ : ; ax(7) U
b= /o [az(l’) —ai(y) /mm e 1f(/)d/

We compute [;:
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=15 [yl () + ax(y) = 207 ()dy = Jy “O50 1 ()dy - r = Ey(A) —

We compute I,:

L=14 [y [(@®) =1+ (@@) = 1+ (@@) = (@) - ().

We  notice that  (a1(y) =)’ + (aa(y) = )’ + (a1(y) = ) (aa(y) — 1)
=ai(y) +a3(v) + @, (V)ay(v) = 3r(a, () +ay () + 37 Thus

=153 Jy [6}(2) + B3() + @y ey (NI () — 2r fy “C50f (3)dy + 12 and

by Proposition 2.6:

I = Var; (A) + E}(A) — 2rE,(A) + r* = Var}(A) + (Ef(A) — r)’.

Introducing the above values of I} and I, in (2.36), we find that
G 2wl () (B (A) = r) + out” (w) [Varf () + (Ey(4) = 1)),

OK (o W)
ot

An approximate value of the equation = (0 will be obtained by equaling

with O the right hand side member of the previous equation. It follows that
u' (w) Ef(A)—r O

Example 7.5 Let us assume that the return of the risky asset is the triangular fuzzy
number A = (a, o, B) and the weighting function f has the formf(y) = 2y, fory € [0, 1].

Therefore Ef(A) = a+ ﬁ%“ and Var;(A) = “2;6/#, hence by Proposition 7.4, the

agent will invest in the risky asset the amount

If a is exactly the risk-free return r (a = r) we obtain :
*

~ u'(w) . B—a
x ~ 3u”(w) 2+ +ap

2.8 Conclusions

This work fits in a recent research direction in which risk is treated by the possi-
bility theory (Carlsson and Fullér 2011; Georgescu 2009, 2012; Georgescu 2010;
Georgescu and Kinnunen 2012).

First the theme of possibilistic risk aversion, whose study began in Georgescu
(2009), (2010), (2012), Georgescu and Kinnunen (2012) is deepened. This will
provide a framework for the two risk management models of the chapter. Both
models are about a risk—averse agent in front of a situation of uncertainty.

In the first case we deal with an insurance contract the agent closes to recover a
part of the loss due to the risk situation. In the second case we develop a two-agent
investment model in which the risk has a possibilistic representation.

Both models lead to optimization problems: in the first one the optimal coin-
surance rate (in the possibilistic sense) should be achieved, and in the second one
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the optimal investment problem should be found. The main results of the chapter
focus on the optimal solutions of the problems: existence, properties, calculation,
behaviour towards risk aversion.

We present now some directions for further research.

1. A rich literature was dedicated to probabilistic models of multidimensional
risk (see the paper Jouini et al. (2013) for a survey of such models). In Georgescu
(2012) a possibilistic model for the situations with many risk parameters was
proposed. This model studies the risk aversion of an agent in the face of a multi-
dimensional possibilistic risk where the components are fuzzy numbers. An open
problem is to extend the models of Sects. 2.6 and 2.7 (coinsurance problem and
investment portfolio problem) to multidimensional possibilistic risk.

2. Credibility theory invented by Liu and Liu in (2002) is another way to
describe phenomena with incomplete information. A complete expose of this field
can be found in the monograph (Liu 2007). The paper Georgescu and Kinnunen (in
press) proposes a risk aversion approach by credibility theory. In particular, a risk-
prudent agent in credibilistic sense is defined and a credibilistic Pratt-type theorem
is proved. The treatment of coinsurance problem and investment portfolio problem
in the framework of such credibilistic models may be a topic for further research.

3. In paper Wu et al. (2014) various Principal—Agent Problems are studied by
credibility theory. Among others, necessary and sufficient conditions are established
for the optimal solution when the principal is risk-averse or risk-neutral (in a
credibilistic sense). To our knowledge, an approach of the Principal—Agent
Problem by possibility theory has not been discussed yet. In case of such approach
the results of the chapter would be certainly useful.

4. In Georgescu and Kinnunen (2011) and Georgescu (2012) a risk aversion
model for mixed parameter situations was considered: some parameters are mod-
eled by random variables and others by fuzzy numbers. An open problem is to
define a risk-averse, risk-lover or risk-neutral agent in the context of such mixed
models. It would be interesting coinsurance problem and investment portfolio
problem to be tackled for mixed parameter problems.

5. The mixed parameter risk models from Georgescu and Kinnunen (2011),
Georgescu (2012) combine probabilistic and possibilistic risk modeling. We can
figure out situations with three types of risk parameters: some probabilistically
modeled by random variables, some by fuzzy numbers and others by credibilistic
distributions. Can the concepts and results of this chapter be generalized to this
tridimensional context? Can concrete risk situations be found for which such hybrid
models offer an appropriate modeling?
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