
Chapter 2
Propositional Annotated Logics Pτ

Abstract This chapter introduces the propositional annotated logics Pτ .We present
a Hilbert style axiomatization of Pτ and their semantics. We show some formal
results including completeness.

2.1 Language

Here, we start by presenting the language of the propositional annotated logics Pτ

(also denoted PT) following da Costa et al. [66]; also see Abe [1]. We denote by L
the language of Pτ .

Annotated logics are based on some arbitrary fixed finite lattice called a lattice
of truth-values denoted by τ = 〈| τ |,≤,∼〉, which is the complete lattice with the
ordering ≤ and the operator ∼:|τ |→|τ |.

Here,∼ gives the “meaning” of atomic-level negation of Pτ . We also assume that
� is the top element and ⊥ is the bottom element, respectively. In addition, we use
two lattice-theoretic operations: ∨ for the least upper bound and ∧ for the greatest
lower bound.1

Definition 2.1 (Symbols) The symbols of Pτ are defined as follows:

1. Propositional symbols: p, q, . . . (possibly with subscript)

2. Annotated constants: μ, λ, . . . ∈ |τ |
3. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication),

and ¬ (negation)
4. Parentheses: (and).

Definition 2.2 (Formulas) Formulas are defined as follows:

1. If p is a propositional symbol and μ ∈ |τ | is an annotated constant, then
pμ is a formula called an annotated atom.

2. If F is a formula, then ¬F is a formula.

1 We employ the same symbols for lattice-theoretical operations as the corresponding logical
connectives.

© Springer International Publishing Switzerland 2015
J.M. Abe et al., Introduction to Annotated Logics,
Intelligent Systems Reference Library 88, DOI 10.1007/978-3-319-17912-4_2

5

6 2 Propositional Annotated Logics Pτ

3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.
4. If p is a propositional symbol and μ ∈ |τ | is an annotated constant, then

a formula of the form ¬k pμ (k ≥ 0) is called a hyper-literal. A formula
which is not a hyper-literal is called a complex formula.

Here, some remarks are in order. The annotation is attached only at the atomic level.
An annotated atom of the form pμ can be read “it is believed that p’s truth-value
is at least μ”. In this sense, annotated logics incorporate the feature of many-valued
logics.

A hyper-literal is a special kind of formula in annotated logics. In the hyper-
literal of the form¬k pμ,¬k denotes the k’s repetition of¬. More formally, if A is an
annotated atom, then ¬0A is A, ¬1A is ¬A, and ¬k A is ¬(¬k−1A). The convention
is also used for ∼.

Next, we define some abbreviations.

Definition 2.3 Let A and B be formulas. Then, we put:

A ↔ B =def (A → B) ∧ (B → A)
¬∗ A =def A → (A → A) ∧ ¬(A → A)

Here, ↔ is called the equivalence and ¬∗ strong negation, respectively.

Observe that strong negation in annotated logics behaves classically in that it has all
the properties of classical negation.

2.2 Semantics

A semantics specifies the meaning of formulas in a logical system. The semantics
for Pτ can be given in various ways. Now, we describe a model-theoretic semantics
for Pτ .

Let P be the set of propositional variables. An interpretation I is a function
I : P → τ . To each interpretation I , we associate a valuation vI : F → 2, where
F is a set of all formulas and 2 = {0, 1} is the set of truth-values. Henceforth, the
subscript is suppressed when the context is clear.

Definition 2.4 (Valuation) A valuation v is defined as follows:
If pλ is an annotated atom, then

v(pλ) = 1 iff I (p) ≥ λ,
v(pλ) = 0 otherwise,
v(¬k pλ) = v(¬k−1 p∼λ), where k ≥ 1.

If A and B are formulas, then

v(A ∧ B) = 1 iff v(A) = v(B)) = 1,
v(A ∨ B) = 0 iff v(A) = v(B) = 0,
v(A → B) = 0 iff v(A) = 1 and v(B) = 0.

2.2 Semantics 7

If A is a complex formula, then

v(¬A) = 1 − v(A).

We say that the valuation v satisfies the formula A if v(A) = 1 and that v falsifies A
if v(A) = 0. For the valuation v, we can obtain the following lemmas.

Lemma 2.1 Let p be a propositional variable and μ ∈ |τ | (k ≥ 0), then we have:

v(¬k pμ) = v(p∼kμ).

Proof Immediate from the definition of the valuation of hyper-literal.

Lemma 2.2 Let p be a propositional variable, then we have:

v(p⊥) = 1

Proof Since ⊥ is the bottom element, it can be derived by the definition of v(pλ).

Lemma 2.3 For any complex formula A and B and any formula F, the valuation v
satisfies the following:

1. v(A ↔ B) = 1 iff v(A) = v(B)

2. v((A → A) ∧ ¬(A → A)) = 0

3. v(¬∗ A) = 1 − v(A)

4. v(¬F ↔ ¬∗F) = 1

Proof (1): For (⇒), suppose v(A ↔ B) = 1. Then, we have:

v((A → B) ∧ (B → A)) = 1,

namely, both (a) v(A → B) = 1 and (b) v(B → A) = 1 hold. Now, assume that
v(A) �= v(B). This means that either the case that v(A) = 1 and v(B) = 0 or the case
that v(A) = 0 and v(B) = 1. In other words, v(A → B) = 0 or v(B → A) = 0.
This contradicts the hypothesis that both (a) and (b). Thus, we have v(A) = v(B).

For (⇐), suppose v(A) = v(B). Then, there are two cases (a) v(A) = v(B) = 1
and (b) v(A) = v(B) = 0. For (a), by definition, we have v(A → B) = v(B →
A) = 1. Then, we have v((A → B) ∧ (B → A)) = 1, i.e., v(A ↔ B) = 1. For (b),
by definition, we have v(A → B) = v(B → A) = 1. Thus, v((A → B) ∧ (B →
A)) = v(A ↔ B) = 1 follows.
(2):We have that v(A → A) �= v(¬(A → A)), because v(A → A) = 1−v(¬(A →
A)). This leads to the conclusion that v((A → A) ∧ ¬(A → A)) = 0.
(3): We have two cases (a) v(A) = 0 and (b) v(A) = 1. For (a), v(A → (A →
A)∧¬(A → A)) = 1.By the definition of strongnegation, v(¬∗ A) = 1.This implies
that v(¬∗ A) = 1−v(A). For (b), by (2), v((A → A)∧¬(A → A)) = 0 holds. Then,
from the valuation of implication, we have that v(A → (A → A)∧¬(A → A)) = 0,
i.e., v(¬∗ A) = 0. We can thus conclude that v(¬∗ A) = 1 − v(A).
(4): Suppose that v(¬F) �= v(¬∗F). Here, v(F) = 1 − v(¬∗F) from (3). The
valuation of ¬ gives rise to the fact that v(F) = 1 − v(¬F). From these facts,
v(¬F) = v(¬∗F) follows. But, it contradicts the assumption. Therefore, v(¬F ↔
¬∗F) = 1 by (1).

8 2 Propositional Annotated Logics Pτ

We here define the notion of semantic consequence relation denoted by |=. Let Γ
be a set of formulas and F be a formula. Then, F is a semantic consequence of Γ ,
written Γ |= F , iff for every v such that v(A) = 1 for each A ∈ Γ , it is the case that
v(F) = 1. If v(A) = 1 for each A ∈ Γ , then v is called a model of Γ . If Γ is empty,
then Γ |= F is simply written as |= F to mean that F is valid.

Lemma 2.4 Let p be a propositional variable and μ, λ ∈|τ |. Then, we have:

1. |= p⊥
2. |= pμ → pλ, μ ≥ λ

3. |= ¬k pμ ↔ p∼kμ, k ≥ 0

Proof (1): By the definition of v, we have I (p) ≥ ⊥ for any interpretation I . There-
fore, |= p⊥ holds.
(2): Suppose that there exists an interpretation such that �|= pμ → pλ. This implies
that |= pμ and �|= pλ. So, I (p) ≥ μ and I (p) �≥ λ. This contradicts the assumption.
Thus, we have that |= pμ → pλ, if μ ≥ λ.
(3): Immediate from Lemma2.1.

The consequence relation |= satisfies the next property.

Lemma 2.5 Let A, B be formulas. Then, if |= A and |= A → B then |= B.

Proof Suppose v(A) = 1 and v(A → B) = 1 but v(B) = 0. By the definition of
v(A → B), we have v(A → B) = 0 contradicting the assumption.

Lemma 2.6 Let F be a formula, p a propositional variable, and (μi)i∈J be an
annotated constant, where J is an indexed set. Then, if |= F → pμ, then F → pμi ,
where μ = ∨

μi .

Proof Suppose that we have the valuation such that v(F → pμi) = 1 and v(F →
pμ) = 0. Then, v(F) = 1, v(pμi) = 1 and v(μ) = 0 hold. The third condition
implies that I (p) �≥ μ. In other words, we have that I (p) �≥ μ j with j ∈ J . But,
by the second condition, I (p) ≥ μ j holds. Since μ = ∨

μ j holds, we have that
v(F → pμ) = 1. A contradiction.

As a corollary to Lemma2.6, we can obtain the following lemma.

Lemma 2.7 |= pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi .

Next, we discuss some results related to paraconsistency and paracompleteness.

Definition 2.5 (Complementary property) A truth-value μ ∈ τ has the complemen-
tary property if there is a λ such that λ ≤ μ and ∼ λ ≤ μ. A set τ ′ ⊆ τ has the
complementary property iff there is some μ ∈ τ ′ such that μ has the complementary
property.

2.2 Semantics 9

Definition 2.6 (Range) Suppose I is an interpretation of the language L . The range
of I , denoted range(I), is defined to be range(I) = {μ | (∃A ∈ BL)I (A) = μ},
where BL denotes the set of all ground atoms in L .

For Pτ , ground atoms correspond to propositional variables. If the range of the
interpretation I satisfies the complementary property, then the following theorem
can be established.

Theorem 2.1 Let I be an interpretation such that range(I) has the complementary
property. Then, there is a propositional variable p and μ ∈ |τ| such that

v(pμ) = v(¬pμ) = 1.

Proof Since range(I) has the complementary property, there is a propositional vari-
able p and a δ ∈ τ , satisfying (1) I (p) = δ and (2) there is a γ ∈ τ such that γ ≤ δ

and ∼γ ≤ δ. By (1), I (p) ≥ δ holds. Thus, we have that v(pγ) = 1. Similarly, we
have that v(¬pγ) = 1 by (2). From both, we can reach the theorem by Definition2.5.

Theorem2.1 states that there is a case in which for some propositional variable
it is both true and false, i.e., inconsistent. The fact is closely tied with the notion of
paraconsistency.

Definition 2.7 (¬-inconsistency) We say that an interpretation I is ¬-inconsistent
iff there is a propositional variable p and an annotated constant μ ∈ | τ | such that
v(pμ) = v(¬pμ) = 1.

Therefore, ¬-inconsistency means that both A and ¬A are simultaneously true
for some atomic A. Below, we formally define the concepts of non-triviality, para-
consistency and paracompleteness.

Definition 2.8 (Non-triviality) We say that an interpretation I is non-trivial iff there
is a propositional variable p and an annotated constantμ ∈ |τ | such that v(pμ) = 0.

By Definition2.8, we mean that not every atom is valid if an interpretation is
non-trivial.

Definition 2.9 (Paraconsistency) We say that an interpretation I is paraconsistent
iff it is both ¬-inconsistent and non-trivial. Pτ is called paraconsistent iff there is
an interpretation of I of Pτ such that I is paraconsistent.

Definition2.9 allows the case in which both A and ¬A are true, but some formula
B is false in some paraconsistent interpretation I .

Definition 2.10 (Paracompleteness)We say that an interpretation I is paracomplete
iff there is a propositional variable p and an annotated constant λ ∈ | τ | such that
v(pλ) = v(¬pλ) = 0. Pτ is called paracomplete iff there is an interpretation I of
Pτ such that I is paracomplete.

10 2 Propositional Annotated Logics Pτ

From Definition2.10, we can see that in the paracomplete interpretation I , both
A and ¬A are false. We say that Pτ is non-alethic iff it is both paraconsistent and
paracomplete. Intuitively speaking, paraconsistent logic can deal with inconsistent
information and paracomplete logic can handle incomplete information.

This means that non-alethic logics like annotated logics can serve as logics for
expressing both inconsistent and incomplete information. This is one of the starting
points of our study of annotated logics.

As the following Theorems2.2 and 2.3 indicate, paraconsistency and paracom-
pleteness in Pτ depend on the cardinality of τ .

Theorem 2.2 Pτ is paraconsistent iff card(τ) ≥ 2, where card(τ) denotes the
cardinality (cardinal number) of the set τ .

Proof For (⇒), let I be a paraconsistent interpretation. Then, there are propositional
variables p, q and annotated constants μ, λ such that (1) v(pμ) = v(¬pμ) = 1
and (2) v(qλ) = 0. Since τ is a complete lattice, card(μ) ≥ 1. Now, assume that
card(μ) = 1, namely τ has one element μ, and μ = ⊥ = �. This means that
⊥ and � agree in the lattice. Here, the only possible interpretation is to assign
μ = ⊥ = � to all propositional variables. It follows that for any propositional
variable r , v(r�) = v(r⊥) = 1. But, it contradicts the condition (2).

For (⇐), suppose card(τ) ≥ 2, with ⊥ �= �. Here, we can define the interpreta-
tion I such that I (p) = � and I (q) = ⊥. Then, v(p�) = 1 follows. As ∼� ≤ �,
we have that v(p∼�) = v(¬p�) = 1. Since ⊥ ≤ �, we have that v(q�) = 0. Con-
sequently, I is paraconsistent, and we can conclude that Pτ is paraconsistent.

Theorem 2.3 Pτ is paracomplete iff card(τ) ≥ 2.

Proof For (⇒), let I be a paracomplete interpretation. Then, there is a propositional
variable p and an annotated constant μ such that v(pμ) = v(¬pμ) = 0. Here, we
assume that card(τ) = 1 and set μ = ⊥ = �. Thus, v(p⊥) = v(p�) = 0 holds.
But, the only possible interpretation is v(p⊥) = v(p�) = 1 for any propositional
variable p. This is a contradiction.

For (⇐), suppose card(τ) ≥ 2, with ⊥ �= �. Now, assume that I (p) = ⊥. Then,
v(p�) = 0 since I (p) = ⊥ �≥ �. Now, we define the negation operator ∼ satisfying
∼� = �. Therefore, v(¬p�) = v(p∼�) = v(p�) = 0. As a consequence, I is
shown to be a paracomplete interpretation. In other words, Pτ is paracomplete.

The above two theorems imply that to formalize a non-alethic logic based on
annotated logics we need at least both the top and bottom elements of truth-values.
The simplest lattice of truth-values is FOUR in Belnap [49, 50], which is shown in
Fig. 2.1.

Definition 2.11 (Theory) Given an interpretation I , we can define the theory Th(I)
associated with I to be a set:

Th(I) = Cn({pμ | p ∈ P and I (p) ≥ μ}).

2.2 Semantics 11

Fig. 2.1 The lattice FOUR

Here, Cn is the semantic consequence relation, i.e.,

Cn(Γ) = {F | F ∈ F and Γ |= F}.
Here, Γ is a set of formulas.

Th(I) can be extended for any set of formulas.

Theorem 2.4 An interpretation I is ¬-inconsistent iff Th(Γ) is ¬-inconsistent.

Proof For (⇒), suppose I is ¬-inconsistent. Then, there is an interpretation I and
a hyper-literal pμ such that v(¬pμ) = 1. By the definition of Th(I), we have that
pμ,¬pμ ∈ Th(I). Next, consider a complex formula A for ¬-inconsistent inter-
pretation. v(A) = v(¬A) = 1 holds. Because v(¬A) = 1 − v(A), we have that
v(A) �= v(¬A). But it contradicts the assumption. Therefore,Th(I) is¬-inconsistent.

For (⇐), suppose Th(I) is ¬-inconsistent. Then, pμ,¬pμ ∈ T h(I). It follows
that v(pμ) = v(¬pμ) = 1, concluding that I is ¬-inconsistent. Next, for complex
formula A, A,¬A ∈ T h(I) holds. Then, we can v(A) = 1 and v(¬A) follows since
v(¬A) = 1. From these facts, I is ¬-inconsistent.

Theorem 2.5 An interpretation I is paraconsistent iff Th(I) is paraconsistent.

Proof For (⇒), let I be a paraconsistent interpretation. Then, for some hyper-literals
pμ, qμ, we have that v(pμ = v(¬pμ) = 1 and v(qμ) = 0. Then, pμ,¬pμ ∈ Th(I),
but qμ �∈ Th(I). For complex formulas A, B, we have that v(A) = v(¬A) = 1 and
v(B) = 0. From this, A,¬A ∈ Th(I), but B �∈ Th(I). This means that Th(I) is
paraconsistent.

For (⇐), pμ,¬pμ ∈ T h(I)butqμ �∈ T h(I) for somehyper-literals pμ, qμ. Then,
v(pμ) = v(¬pμ) = 1 and v(qμ) = 0 follows. This shows that I is paraconsistent.

The next lemma states that the replacement of equivalent formulas within the
scope of ¬ does not hold in Pτ as in other paraconsistent logics.

Lemma 2.8 Let A be any hyper-literal. Then, we have:

1. |= A ↔ ((A → A) → A)

2. �|= ¬A ↔ ¬(((A → A) → A))

3. |= A ↔ (A ∧ A)

4. �|= ¬A ↔ ¬(A ∧ A)

12 2 Propositional Annotated Logics Pτ

5. |= A ↔ (A ∨ A)

6. �|= ¬A ↔ ¬(A ∨ A)

Proof Since A is a hyper-literal, then A is of the form pμ, and μ ∈ | τ |. To prove
these propositions, we consider the cases that v(A) = 1 and the case that v(A) = 0.
Let A = p� and define the negation operator ∼ satisfying ∼� = �.
(1): (a) If v(A) = 1, then v((A → A) → A) = 1 as required. (b) if v(A) = 0, then
v(A → A) = 1. Then, we have that v((A → A) → A) = 0 = v(A).
(2) (a) If v(p�) = 1, then v(¬p�) = v(p∼�) = v(p�) = 1. Here, we have that
v(¬((p� → p�) → p�)) = 1 − v((p� → p�) → p�) = 0 �= v(p�). (b) If
v(p�) = 0, then v(¬p�) = 0. Here, we have that v(¬((p� → p�) → p�)) = 1 �=
v(p�).
(3) (a) If v(A) = 1, then v(A ∧ A) = 1. (b) If v(A) = 0, then v(A ∧ A) = 0.
(4) (a) If v(p�) = 1, then v(¬p�) = 1.We can see that v(¬(p�∧ p�)) = 1−v(p�∧
p�) = 0 �= v(p�). (b) If v(p�) = 0, then v(¬p�) = 0. Here, v(¬(p� ∧ p�)) =
1 − v(p� ∧ p�) = 1 �= v(p�), as required.

As obvious from the above proofs, (1), (3) and (5) hold for any formula A. But,
(2), (4) and (6) cannot be generalized for any A.

By the next theorem, we can find the connection of Pτ and the positive fragment
of classical propositional logic C .

Theorem 2.6 If F1, . . . , Fn are complex formulas and K (A1, . . . , An) is a tautology
of C, where A1, . . . , An are the sole propositional variable occurring in the tautology,
then K (F1, . . . , Fn) is valid in Pτ . Here, K (F1, . . . , Fn) is obtained by replacing
each occurrence of Ai , 1 ≤ i ≤ n, in K by Fi .

Proof Proved by induction on n. For example, consider the formulas

K (p, q) = (p ∧ q) → (q ∧ p)

which is a well-known tautology of C . Let F1 = F, F2 = ¬G be complex formulas.
By definition,

K (F,¬G) = (F ∧ ¬G) → (¬G ∧ F)

is obtained. It suffices to show that K (F,¬G) is valid in Pτ . In other words,
v(K (F,¬G)) = 1 for any v. Suppose that v(K (F,¬G)) = 1. This is equivalent to
the following:

v(F ∧ ¬G) = 0 or v(¬G ∧ F) = 1
iff (v(F) = 0 or v(¬G) = 0) or (v(¬G) = 1 and v(F) = 1)
iff (v(F) = 0 or v(G) = 1) or (v(G) = 0 and v(F) = 1)

It is easy to check that the last clause is satisfied by any v. Thus, |= K (F,¬G), that
is, K (F,¬G) is valid in Pτ .

Next, we consider the properties of strong negation ¬∗.

2.2 Semantics 13

Theorem 2.7 Let A, B be any formulas. Then,

1. |= (A → B) → ((A → ¬∗ B) → ¬∗ A)

2. |= A → (¬∗ A → B)

3. |= A ∨ ¬∗ A

Proof For (1), assume that there is a valuation v such that v(A → B) = 1 and
v((A → ¬∗ B) → ¬∗ A) = 0. From the latter, we have that v(A → ¬∗ B) = 1
and v(¬∗ A) = 0. Thus, v(A) = 1 because v(A) = 1 − v(¬∗ A). From the former,
we have that v(A → B) = 1. So v(A) = 0 or v(B) = 1 holds. But, the claim that
v(A) = 1 enables us to infer that v(B) = 1. As a consequence, we have:

v(A) = 1 and v(B) = 1

Here, the latter also ensures that v(A → ¬∗ B) = 1. However, since v(A) = 1, we
have to obtain v(¬∗ B) = 1, i.e. v(B) = 0. This induces a contradiction.

For (2), assume that we have a v satisfying that v(A) = 1 and v(¬∗ A → B) = 0.
The latter gives rise to the condition that v(¬∗ A) = 1 and v(B) = 0. Here, we have
that v(A) = 0 from v(¬∗ A) = 1. However, this is impossible.

For (3), assume the existence of v such that v(A ∨ ¬∗ A) = 0. This implies that
v(A) = v(¬∗ A) = 0. However, this is impossible.

Theorem2.7 tells us that strong negation has all the basic properties of classical
negation. Namely, (1) is a principle of reductio ad abusurdum, (2) is the related
principle of the law of non-contradiction, and (3) is the law of excluded middle.
Note that ¬ does not satisfy these properties. It is also noticed that for any complex
formula A |= ¬A ↔ ¬∗ A but that for any hyper-literal Q �|= ¬Q ↔ ¬∗Q.

From these observations, Pτ is a paraconsistent and paracomplete logic, but
adding strong negation enables us to perform classical reasoning.

2.3 Axiomatization

In this section, we provide an axiomatization of Pτ in the Hilbert style. There are
many ways to axiomatize a logical system, one of which is the Hilbert system. We
discuss other proof systems in Chap. 4.

A Hilbert system can be defined by the set of axioms and rules of inference. Here,
an axiom is a formula to be postulated as valid, and rules of inference specify how
to prove a formula.

We are now ready to give a Hilbert style axiomatization of Pτ , called A τ . Let
A, B, C be arbitrary formulas, F, G be complex formulas, p be a propositional
variable, and λ,μ, λi be annotated constant. Then, the postulates are as follows (cf.
Abe [1]):

Postulates for A τ

(→1) (A → (B → A)
(→2) (A → (B → C)) → ((A → B) → (A → C))

http://dx.doi.org/10.1007/978-3-319-17912-4_4

14 2 Propositional Annotated Logics Pτ

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))
(∨1) A → (A ∨ B)
(∨2) B → (A ∨ B)
(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))
(¬1) (F → G) → ((F → ¬G) → ¬F)
(¬2) F → (¬F → A)
(¬3) F ∨ ¬F
(τ1) p⊥
(τ2) ¬k pλ ↔ ¬k−1 p∼λ

(τ3) pλ → pμ, where λ ≥ μ

(τ4) pλ1 ∧ pλ2 ∧ · · · ∧ pλm → pλ, where λ =
m∨

i=1

λi

Here, except (→4), these postulates are axioms. (→4) is a rule of inferences called
modus ponens (MP).

In da Costa et al. [66], a different axiomatization is given, but it is essentially the
same as ours. There, the postulates for implication are different. Namely, although
(→1) and (→3) are the same (although the naming differs), the remaining axiom is:

(A → B) → ((A → (B → C)) → (A → C))

It is well known that there are many ways to axiomatize the implicational fragment
of classical logic C . In the absence of negation, we need the so-called Pierce’s law
(→3) for C .

In (¬1), (¬2), (¬3), F and G are complex formulas. In general, without this
restriction on F and G, these are not sound rules due to the fact that they are not
admitted in annotated logics.

da Costa et al. [66] fuses (τ1) and (τ2) as the single axiom in conjunctive form.
But, we separate it into two axioms for our purposes. Also there is a difference in
the final axiom. They present it for infinite lattices as

A → pλ j for every j ∈ J , then A → pλ, where λ =
∨

j∈J

λ j .

If τ is a finite lattice, this is equivalent to the form of (τ2).
As usual, we can define a syntactic consequence relation in Pτ . Let Γ be a set

of formulas and G be a formula. Then, G is a syntactic consequence of Γ , written
Γ � G, iff there is a finite sequence of formulas F1, F2, . . . , Fn , where Fi belongs
to Γ , or Fi is an axiom (1 ≤ i ≤ n), or Fj is an immediate consequence of the
previous two formulas by (→4). This definition can extend for the transfinite case
in which n is an ordinal number. If Γ = ∅, i.e. � G, G is a theorem of Pτ .

LetΓ,Δ be sets of formulas and A, B be formulas. Then, the consequence relation
� satisfies the following conditions.

2.3 Axiomatization 15

1. if Γ � A and Γ ⊂ Δ then Δ � A.

2. if Γ � A and Δ, A � B then Γ,Δ � B.
3. if Γ � A, then there is a finite subset Δ ⊂ Γ such that Δ � A.

In the Hilbert system above, the so-called deduction theorem holds.

Theorem 2.8 (Deduction theorem)Let Γ be a set of formulas and A, B be formulas.
Then, we have:

Γ, A � B ⇒ Γ � A → B.

Proof See Kleene [103].

The following theorem shows some theorems related to strong negation.

Theorem 2.9 Let A and B be any formula. Then,

1. � A ∨ ¬∗ A

2. � A → (¬∗ A → B)

3. � (A → B) → ((A → ¬∗ B) → ¬∗ A)

Proof For (1), we use the theorem A ∨ (A → B) of classical propositional logic. If
we set B = (A → A) ∧ ¬(A → A), then we obtain the following:

� A ∨ ¬∗ A

by the definition of strong negation, as required.
For (2), the following two hold:

(a) (A → A) ∧ ¬(A → A) � B
(b) A, A → (A → A) ∧ ¬(A → A) � (A → A) ∧ ¬(A → A)

By the property of �, we have (c).
(c) A, A → (A → A) ∧ ¬(A → A) � B

By applying the deduction theorem to (c) twice, (d) is obtained.

(d) � A → ((A → (A → A) ∧ ¬(A → A)) → B)

By the definition of ¬∗, (e) follows.

(e) � A → (¬∗ A → B).

For (3), we use the theorem:

(A → B) → ((A → (B → C)) → ((A → B) → (A → C)).

Now, set C = (A → A) ∧ ¬(A → A). Then, we have (a):

(a) � (A → B) → ((A → (B → (A → A) ∧ ¬(A → A)) → (A → (A →
A) ∧ ¬(A → A)))

16 2 Propositional Annotated Logics Pτ

By the definition of ¬∗, we can reach the following:

(b) � (A → B) → ((A → ¬∗ B) → ¬∗ A)

From Theorems2.9 and 2.10 follows.

Theorem 2.10 For arbitrary formulas A and B, the following hold:

1. � ¬∗(A ∧ ¬∗ A)

2. � A ↔ ¬∗¬∗ A

3. � (A ∧ B) ↔ ¬∗(¬∗ A ∨ ¬∗ B)

4. � (A → B) ↔ (¬∗ A ∨ B)

5. � (A ∨ B) ↔ ¬∗(¬∗ A ∧ ¬∗ B)

Theorem2.10 implies that by using strong negation and a logical connective other
logical connectives can be defined as in classical logic. If τ = {t, f }, with its opera-
tions appropriately defined, we can obtain classical propositional logic in which ¬∗
is classical negation.

2.4 Formal Results

In this section, we provide some formal results of Pτ including completeness and
decidability.

Lemma 2.9 Let p be a propositional variable and μ, λ, θ ∈ |τ |. Then, the following
hold:

1. � pλ∨μ → pλ

2. � pλ∨μ → pμ

3. λ ≥ μ and λ ≥ θ ⇒ � pλ → pμ∨θ

4. � pμ → pμ∧θ .

5. � pθ → pμ∧θ .

6. λ ≤ μ and λ ≤ θ ⇒ � pμ∧θ

7. � pμ ↔ pμ∨μ, � pμ ↔ pμ∧μ

8. � pμ∨λ ↔ pλ∨μ, � pμ∧λ ↔ pλ∧μ

9. � p(μ∨λ)∨θ∨ → pμ∨(λ∨θ), � p(μ∧λ)∧θ∨ → pμ∧(λ∧θ)

10. p(μ∨λ)∧μ → pμ, p(μ∧λ)∨μ → pμ

11. λ ≤ μ ⇒ � pλ∨μ → pμ

12. λ ∨ μ = μ ⇒ � pμ → pλ

13. μ ≥ λ ⇒ ∀θ ∈|τ | (� pμ∨θ → pλ∨θ and � pμ∧θ → pλ∧θ)

14. μ ≥ λ and θ ≥ ϕ ⇒ � pμ∨θ → pλ∨ϕ and pμ∧θ → pλ∧ϕ

2.4 Formal Results 17

15. � pμ∧(λ∨θ) → p(μ∧λ)∨(μ∧θ), � pμ∨(λ∧θ) → p(μ∨λ)∧(μ∨θ)

16. � pμ ∧ pλ ↔ pμ∧λ

17. � pμ∨λ → pμ ∨ pλ

Proof Immediate from the properties of τ .

Example 2.1 Consider the complete lattice τ = N ∪ ω, where N is the set of natural
numbers. The ordering on τ is the usual ordering on ordinals, restricted to the set τ .
Consider the set Γ = {p0, p1, p2, . . .}, where pω �∈ Γ . It is clear that Γ � pω, but
an infinitary deduction is required to establish this.

Definition 2.12 Δ = {A ∈ F | Δ � A}.
Definition 2.13 Δ is said to be trivial iffΔ = F (i.e., every formula in our language
is a syntactic consequence of Δ); otherwise, Δ is said to be non-trivial. Δ is said to
be inconsistent iff there is some formula A such thatΔ � A andΔ � ¬A; otherwise,
Δ is consistent.

From the definition of triviality, the next theorem follows:

Theorem 2.11 Δ is trivial iff Δ � A ∧ ¬A (or Δ � A and Δ � ¬∗ A) for some
formula A.

Proof Obvious from the axiom (¬2) and Theorem2.9(2).

Theorem 2.12 Let Γ be a set of formulas, A, B be any formulas, and F be any
complex formula. Then, the following hold.

1. Γ � A and Γ � A → B ⇒ Γ � B

2. A ∧ B � A

3. A ∧ B � B

4. A, B � A ∧ B

5. A � A ∨ B

6. B � A ∨ B

7. Γ, A � C and Γ, B � C ⇒ Γ, A ∨ B � C

8. � F ↔ ¬∗F

9. Γ, A � B and Γ, A � ¬∗ B ⇒ Γ � ¬∗ A
10. Γ, A � B and Γ,¬∗ A � B ⇒ Γ � B.

Proof We here only prove (8), (9) and (10). For (8), we first prove ¬F → ¬∗F . By
definition, we have¬∗F =def F → (F → F)∧¬(F → F). Since¬F, F � (F →
F) ∧ ¬(F → F), by the deduction theorem,

(a) � ¬F → (F → (F → F) ∧ ¬(F → F))

holds. By the definition of (¬∗), we have (b).

18 2 Propositional Annotated Logics Pτ

(b) � ¬F → ¬∗F

Next, we prove ¬∗F → ¬F . By (¬1), we have (a):

(a) � (F → (F → F) ∧ ¬(F → F)) → ((F → ¬((F → F) ∧ ¬(F →
F))) → ¬F)

By hypothesis, (b) holds.

(b) � F → (F → F) ∧ ¬(F → F) = ¬∗F

By (→4) from (a) and (b), we obtain (c).

(c) � (F → ¬((F → F) ∧ ¬(F → F))) → ¬F

By (→1), (d) can be derived.

(d) � ¬((F → F) ∧ ¬(F → F)) → (F → ¬((F → F) ∧ ¬(F → F)))

To proceed, we prove ¬(G ∧ ¬G) for any complex formula G. By (¬1), we have
(e):

(e) � ((G ∧ ¬G) → G) → (((G ∧ ¬G) → ¬G) → ¬(G ∧ ¬G))

By (∧1), (∧2), (f) and (g) hold.

(f) � (G ∧ ¬G) → G
(g) � (G ∧ ¬G) → ¬G

By (→4) from (e) and (f), we have (h).

(h) � ((G ∧ ¬G) → ¬G) → ¬(G ∧ ¬G)

By (→4) from (g) and (h), we have (i).

(i) � ¬(G ∧ ¬G)

Set G = F → F . Then, (i) is (j).

(j) ¬((F → F) ∧ ¬(F → F))

By (→4) from (d) and (j), (k) is derived.

(k) F → ¬((F → F) ∧ ¬(F → F))

Applying (→4) to (c) and (k), we obtain (l).

(l) ¬F

Therefore, (m) is proved.

(m) � ¬∗F → F

For (9), by the deduction theorem, we have (a) and (b) from the assumptions.

(a) Γ � A → B
(b) Γ � A → ¬∗ B

2.4 Formal Results 19

By Theorem2.9(3), (c) can be derived.

(c) � (A → B) → ((A → ¬∗ B) → ¬∗ A)

By (→4) from (a) and (c), we obtain (d).

(d) Γ � (A → ¬∗ B) → ¬∗ A

By (→4) from (b) and (d), we obtain (e).

(e) Γ � ¬∗ A

For (10), assume that Γ, A � B and Γ,¬∗ A � A. By Theorem2.12(7), (a) holds.

(a) Γ, A ∨ ¬∗ A � B

By the deduction theorem, (b) is proved.

(b) Γ � (A ∨ ¬∗ A) → B

By Theorem2.9, we have (c).

(c) � A ∨ ¬∗ A

By Theorem2.12(1) from (b) and (c), (d) can be derived.

(d) Γ � B

Note here that the counterpart of Theorem2.12(10) obtained by replacing the
occurrence of ¬∗ by ¬ is not valid.

Now, we are in a position to prove the soundness and completeness of Pτ . Our
proof method for completeness is based on maximal non-trivial set of formulas; see
Abe [1] and Abe and Akama [8]. da Costa et al. [66] presented another proof using
Zorn’s Lemma.

Theorem 2.13 (Soundness) Let Γ be a set of formulas and A be any formula. A τ

is a sound axiomatization of Pτ , i.e., if Γ � A then Γ |= A.

Proof It is easy to prove that all the postulates of A τ is valid. From the property of
�, soundness follows.

For proving the completeness theorem, we need some theorems.

Theorem 2.14 Let Γ be a non-trivial set of formulas. Suppose that τ is finite. Then,
Γ can be extended to a maximal (with respect to inclusion of sets) non-trivial set
with respect to F.

Proof LetΓ be a non-trivial subset of formulas ofF. To show thatΓ can be extended
to a maximal non-trivial set, we construct a sequence Γ0, Γ1, . . . , Γn, . . . as follows.
As a vocabulary is composed by a denumerable set of symbols, the set of formu-
las of F is denumerable. Let Γ0 = Γ and inductively construct the rest of the
sequence by taking Γi+1 = Γ ∪ {Ai+1} if this set is non-trivial and otherwise by
taking Γi+1 = Γi .

20 2 Propositional Annotated Logics Pτ

It is easy to see that each set of the sequence Γ0, Γ1, . . . is non-trivial, and this is
a non-decreasing sequence of sets such that Γ ⊆ Γ0 ⊆ Γ1 ⊆ · · · ⊆ · · · Γ ⊆ · · · Set
Γ ∗ as follows:

Γ ∗ =
∞⋃

i=0

Γi

Then, Γ ∗ is a maximal non-trivial set containing Γ . Each finite subset of Γ ∗ must be
contained in some Γi for some i , and thus must be non-trivia (since Γi is non-trivial).

For suppose that A ∈ F and A �∈ Γ ∗. As A is a formulas of F, it must appear
in our enumeration, say as Ak . If Γ ∪ {Ak} were non-trivial, then our construction
would guarantee that Ak ∈ Γk+1, and hence Ak ∈ Γ ∗. Because Ak �∈ Γ ∗, it follows
that Γk ∪ {A} is also trivial. Hence Γ ∗ ∪ {A} is also trivial. It follows that Γ ∗ is a
maximal non-trivial set.

AsΓ ⊆ Γi and i ∈ ω, we have thatΓ ⊆ Γ ∗ =
∞⋃

i=0

Γi . On the other hand, suppose

that Γ ∗ is trivial. Thus, Γ ∗ = F. Thus, pλ,¬∗ pλ ∈ Γ ∗. As τ is finite, we have that
any application of modus ponens has only a finite number of premises. Thus, there
are n, m < ω such that pλ ∈ Γn and¬∗ pλ ∈ Γm . Therefore, pλ,¬∗ pλ ∈ Γn0 , where
n0 = max(n, m). Thus, Γn0 is trivial, but it is a contradiction.

Theorem 2.15 Let Γ be a maximal non-trivial set of formulas. Then, we have the
following:

1. if A is an axiom of Pτ , then A ∈ Γ

2. A, B ∈ Γ iff A ∧ B ∈ Γ

3. A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ

4. if pλ, pμ ∈ Γ , then pθ ∈ Γ , where θ = max(λ, μ)

5. ¬k pμ ∈ Γ iff ¬k−1 p∼μ ∈ Γ , where k ≥ 1

6. if A, A → B ∈ Γ , then B ∈ Γ

7. A → B ∈ Γ iff A �∈ Γ or B ∈ Γ

Proof We only prove (4). (5) is clear by definition. The remaining cases are proved
as in the classical cases. The proof of (4) is as follows. From pλ, pμ, by (2), we have
that (a).

(a) pλ ∧ pμ ∈ Γ

From the axiom (τ4), (b) holds.

(b) pλ ∧ pμ → pθ

where θ = max(λ, μ). By (1), from (b), (c) follows.

(c) pλ ∧ pμ → pθ ∈ Γ

2.4 Formal Results 21

By (7) from (a) and (c), we can derive (d).

(d) pθ ∈ Γ

Theorem 2.16 Let Γ be a maximal non-trivial set of formulas. Then, the character-
istic function χ of Γ , that is, χΓ → 2 is the valuation function of some interpretation
I : P → |τ |.
Proof Let us define the function I : P →|τ | putting I (p) = ∨{μ ∈|τ || pμ ∈ Γ }.
Such a function is well defined, so p⊥ ∈ Γ .

Let vI : F → 2 be the valuation associated to I . Hereafter, we omit the subscript.
We need to show v = χΓ . To show this, let pμ ∈ Γ . Thus, χΓ (pμ) = 1. On the
other hand, it is clear that I (p) ≥ μ. So, v(pμ) = 1. If pμ �∈ Γ , χΓ (pμ) = 0.
Also, I (p) �≥ μ, because if so, that is I (p) ≥ μ, we have pI (p) ∈ Γ , which is a
contradiction. Therefore, I (p) �≥ μ, and thus vpμ = 0.

By Theorem2.15(5), ¬k pμ ∈ Γ iff ¬k−1 p∼μ ∈ Γ , where k ≥ 1. Thus,
χΓ (¬k pμ) = χΓ (¬k−1 p∼μ), where k ≥ 1. We show that v(¬k pμ) = χΓ (¬k pμ).
We proceed by induction on k. If k = 0, it is just the previous case. Suppose that
it holds for k − 1 (k ≥ 1). Then, we have that χΓ (¬k pμ) = χΓ (¬k−1 p∼μ) =
v(¬k−1 p∼μ) = v(¬k pμ).

Now, let A be any formula.We proceed by induction on the number of occurrences
of connectives in A. Thus, suppose that:
(1) A is of the form ¬B: Due to the previous discussion, we can suppose that B is a
complex formula. So, χΓ (B) = v(B). If A ∈ Γ , then B �∈ Γ , and χΓ (A) = 0 and
χΓ (B) = 1. But, v(A) = 1 − v(B), Therefore, v(A) = 0.
(2) A is of the form B ∧C : A ∈ Γ iff B, C ∈ Γ . By induction hypothesis, χΓ (B) =
v(B) and χΓ (C) = v(C). Thus, χΓ = v(A). The other cases can also easily proved.

Here is the completeness theorem for Pτ .

Theorem 2.17 (Completeness) Let Γ be a set of formulas and A be any formula. If
τ is finite, then A τ is a complete axiomatization for Pτ , i.e., if Γ |= A then Γ � A.

Proof It can be proved by contraposition. Suppose that Γ �∈ A. Thus, Γ0 = Γ ∪
{¬∗ A} is non-trivial. By Theorem2.14, Γ0 is contained in a maximal non-trivial
set Γ . Let v : F → 2 be the valuation obtained from Γ . We have that v(A) =
1 − v(¬∗ A) = 0. Thus, Γ �|= A.

The decidability theorem also holds for finite lattice.

Theorem 2.18 (Decidability) If τ is finite, then Pτ is decidable.

Proof Let A be a formula. We denote by s f (A) the set of all subformulas of A
and by at (A) the set of all atomic subformulas composing A. We write �A for the
cardinality of the set A. So, by using the valuation defined above, we can check in
�s f (A)−�at (A) steps as in the classical case up to analyze �at (A) atomic formulas.
The validity of each atomic formula is checked in �τ times. So, at (A) can be checked
at most k�τ�at (A) times, where k is a constant. Thus, it is possible to check whether
A is valid or not in a finite number of steps. This means that Pτ is decidable.

22 2 Propositional Annotated Logics Pτ

The completeness does not in general hold for an infinite lattice. But, it holds for
a special case.

Definition 2.14 (Finite annotation property) Suppose that Γ be a set of formulas
such that the set of annotated constants occurring in Γ is included in a finite sub-
structure of τ (Γ itself may be infinite). In this case, Γ is said to have the finite
annotation property.

Note that if τ ′ is a substructure of τ then τ ′ is closed under the operations ∼,∨
and ∧. One can easily prove the following from Theorem2.17.

Theorem 2.19 (Finitary Completeness) Suppose that Γ has the finite annotation
property. If A is any formula such that Γ � A, then there is a finite proof of A
from Γ .

Theorem2.19 tells us that even if the set of the underlying truth-values of Pτ

is infinite (countably or uncountably), as long as theories have the finite annotation
property, the completeness result applies to them, i.e., A τ is complete with respect
to such theories.

In general, when we consider theories that do not possess the finite annotation
property, it may be necessary to guarantee completeness by adding a new infinitary
inference rule (ω-rule), similar in spirit to the rule used by da Costa [60] in order to
cope with certain models in a particular family of infinitary language. Observe that
for such cases a desired axiomatization of Pτ is not finitary.

From the classical result of compactness,we can state a version of the compactness
theorem.

Theorem 2.20 (Weak Compactness) Suppose that Γ has the finite annotation prop-
erty. If A is any formula such that Γ � A, then there is a finite subset Γ ′ of Γ such
that Γ ′ � A.

Annotated logics Pτ provide a general framework, and can be used to reasoning
about many different logics. Below we present some examples.

The set of truth-values FOUR = {t, f,⊥,�}, with ¬ defined as: ¬t = f,¬ f =
t,¬⊥ = ⊥,¬� = �. Four-valued logic based on FOUR was originally due to Bel-
nap [49, 50] to model internal states in a computer. Subrahmanian [149] formalized
an annotated logicwithFOUR as a foundation for paraconsistent logic programming;
also see Blair and Subrahmanian [53]. In Chap. 6, we will give a detailed exposition
of paraconsistent logic programming.

Their annotated logic may be used for reasoning about inconsistent knowledge
bases. For example, we may allow logic programs to be finite collections of formulas
of the form:

(A : μ0) ↔ (B1 : μ1)& . . .&(Bn : μn)

where A and Bi (1 ≤ i ≤ n) are atoms and μ j (0 ≤ j ≤ n) are truth-values in
FOUR.

http://dx.doi.org/10.1007/978-3-319-17912-4_6

2.4 Formal Results 23

Intuitively, such programs may contain “intuitive” inconsistencies–for example,
the pair

((p : f), (p : t))

is inconsistent. If we append this program to a consistent program P , then the result-
ing union of these two programs may be inconsistent, even though the predicate
symbols p occurs nowhere in program P .

Such inconsistencies can easily occur in knowledge based systems, and should not
be allowed to trivialize themeaningof a program.However, knowledgebased systems
based on classical logic cannot handle the situation since the program is trivial. In
Blair and Subrahmanian [53], it is shown how the four-valued annotated logic may
be used to describe this situation. Later, Blair and Subrahmanian’s annotated logic
was extended as generalized annotated logics by Kifer and Subrahmanian [100].

There are also other examples which can be dealt with by annotated logics. The
set of truth-values FOUR with negation defined as boolean complementation forms
an annotated logic.

The unit interval [0, 1] of truth-values with ¬x = 1− x is considered as the base
of annotated logic for qualitative or fuzzy reasoning. In this sense, probabilistic and
fuzzy logics could be generalized as annotated logics.

The interval [0, 1] × [0, 1] of truth-values can be used for annotated logics for
evidential reasoning. Here, the assignment of the truth-value (μ1, μ2) to proposition
p may be thought of as saying that the degree of belief in p is μ1, while the degree
of disbelief is μ2. Negation can be defined as ¬(μ1, μ2) = (μ2, μ1).

Note that the assignment of [μ1, μ2] to a proposition p by an interpretation I does
not necessarily satisfy the condition μ1 + μ2 ≤ 1. This contrasts with probabilistic
reasoning. Knowledge about a particular domain may be gathered from different
experts (in that domain), and these experts may hold different views.

Some of these views may lead to a “strong” belief in a proposition; likewise, other
experts may have a “strong” disbelief in the same proposition. In such a situation,
it seems appropriate to report the existence of conflicting opinions, rather than use
ad-hoc means to resolve this conflict.

The above examples can be described by annotated logics Pτ or its suitable
extensions. These issues will be taken up in Chap.5.

http://dx.doi.org/10.1007/978-3-319-17912-4_5

http://www.springer.com/978-3-319-17911-7

	2 Propositional Annotated Logics Pτ
	2.1 Language
	2.2 Semantics
	2.3 Axiomatization
	2.4 Formal Results

