
Chapter 2
The Spherical Basis Function Method

2.1 Introduction

Since the early 1990s the radial basis function (RBF) method has become a well
established tool for reconstructing functions and for solving partial differential equa-
tions based on data prescribed at scattered locations throughout a domain in R

d . The
method is extremely flexible, it has good approximation properties and does not
become more elaborate as the space dimension increases. In the past decade or so
approximation on spheres has become an area of growing interest with applications
to physical geodesy, potential theory, geophysics, oceanography and meteorology.
As more satellites are launched into space, the acquisition of global data is becoming
more widespread and the demand for spherical data processing and solving prob-
lems of a global nature is increasing. In this chapter we will introduce the spherical
basis function (SBF) method; the spherical analogue of the famous RBF method.
In particular, we will use tools from Chap.1 to construct a theoretical framework
within which we can analyse the accuracy of the method. Specifically, we present
two point-wise error bounds which both rely on the remarkable fact that, provided
the data locations fill up the sphere sufficiently well, then it is possible to annihi-
late spherical harmonics of a certain order by using only a linear combination of
point evaluations. The first error bound we encounter uses a global annihilation, i.e.,
every data location is used in the linear combination of point evaluations. In this case
the relationship between the density of the data locations and the order of spherical
harmonics to be annihilated is explicit and this is crucial to the error analysis that
follows. The second error bound delivers a result of the same strength but uses a local
annihilation of spherical harmonics and from this perspective one may consider this
to be a stronger result. A drawback of this local approach is that, unlike the global
case, there is no explicit connection between the density of the points and the degree
of spherical harmonics to be annihilated and, as a result, much more additional work
is required to establish the final result. The payoff for putting in this extra effort will
be realized in the next chapter where the local error bound plays a key rôle in making
significant improvements in the error bounds.
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30 2 The Spherical Basis Function Method

2.2 A Brief History of the RBF Method

There already exists several excellent textbooks on the subject of radial basis func-
tions [Fass07, Wen05, Buh03]. In view of this, the aim of this section is simply to
establish the idea behind the method and also to highlight some of the crucial ideas
and pioneering discoveries. This will set the scene for the rest of the chapter where
we will demonstrate how these ideas can be recast onto the spherical setting.

The problem of interpolating data measured at scattered locations in Euclidean
spaceR

d (d > 1) arises inmany areas of science and engineering. The importance of
this problem is reflected in the literature, where a large number of different methods
for its solution have been proposed. The problem itself is stated as follows.

Problem 1 Given a setX = {xi }N
i=1 of distinct data points inR

d and a target function
f : R

d → R, find a function s : R
d → R that satisfies the interpolation conditions

s(xi ) = f (xi ), 1 ≤ i ≤ N . (2.1)

The radial basis function (RBF) approach proposes a solution of the form

s(x) =
N∑

j=1

λ jφ(d(x, x j )), for λ j ∈ R, 1 ≤ j ≤ N, (2.2)

where d(x, y) = ‖x − y‖ is usually the Euclidean metric and φ : [0,∞) → R is the
RBF. Applying the interpolation conditions (2.1) provides the linear system

Aφλ = f, where Aφ ∈ R
N×N : Aφ,i j = φ(d(xi , x j )), 1 ≤ i, j ≤ N . (2.3)

Thus a unique RBF interpolant exists if and only if the interpolation matrix Aφ is
non-singular. One of the most attractive features of the RBF method is the fact that
a unique interpolant is often guaranteed under rather mild conditions on the data
points. In particular, if we choose our basis function to be any one of the following

φ(r) = e−cr2 (Gaussian),

φ(r) = (r2 + c2)−
1
2 (inverse multiquadric),

φ(r) = (r2 + c2)
1
2 (multiquadric),

φ(r) = r (linear),

r ≥ 0, c > 0, (2.4)

then uniqueness is guaranteed provided that the N data points (N ≥ 2) are distinct,
which is as simple a condition as one could wish for.
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Two other commonly used RBFs are

φ(r) = r2 log r (thin plate spline),

φ(r) = r3 (cubic),
r ≥ 0. (2.5)

Now, in contrast to the previous candidates (2.4), there is no guarantee that the
resulting interpolation matrix Aφ will be non-singular. Indeed, for the thin plate
spline we can choose x2, . . . , xN to be any distinct points on the unit sphere centred
at x1, in which case the first row and column of Aφ consists entirely of zeros, and
hence is singular. In such cases, it is usual to add to s a polynomial of degree k ≥ 1,
and so consider an interpolant of the form

s(x) =
N∑

j=1

λ jφ(d(x, x j )) +
M∑

j=1

μ j p j (x), (2.6)

where M = dimΠk(R
d) and {p1, . . . , pM} is a basis for Πk(R

d). If we then impose
the usual interpolation conditions

N∑

j=1

λ jφ(d(xi , x j )) +
M∑

j=1

μ j p j (xi ) = f (xi ), 1 ≤ i ≤ N, (2.7)

we observe that the addition of the polynomial introduces an extra M degrees of
freedom. These are usually taken up by insisting that the RBF coefficients satisfy the
following moment conditions:

N∑

j=1

λ j pi (x j ) = 0, 1 ≤ i ≤ M, (2.8)

or equivalently, we have the linear system
(

Aφ P
PT 0

)(
λ
μ

)
=
(

f
0

)
(2.9)

where Aφ is as in (2.3) and where P ∈ R
N×M is given by

Pi j = p j (xi ), for 1 ≤ i ≤ N and 1 ≤ j ≤ M. (2.10)

Thus a unique augmented RBF interpolant exists if and only if the augmented inter-
polation matrix (2.9) is non-singular.
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One of the earliest examples of an RBF interpolant dates back to the late 1960s
when the cubic spline method was developed for interpolating a univariate function
f : [x1, xN ] → R at distinct data points x1 < · · · < xN . The resulting interpolant s
is composed of cubic polynomial pieces, that are joined so that the second derivative
of s is continuous. A good account of the cubic spline method is given in [Pow81]
where it is shown that in order to guarantee the uniqueness of the interpolant, it is
necessary to impose suitable end conditions at x1 and xN . One useful condition is
to set

s′′(x1) = s′′(xN ) = 0, (2.11)

in which case s is called the “natural” cubic-spline and has the form

s(x) =
N∑

j=1

λ j |x − x j |3 + a + bx, x ∈ R. (2.12)

We remark that the end conditions (2.11) are equivalent to the moment conditions∑
λ j = ∑

λ j x j = 0 which appear in (2.8), and thus we may regard the natural
cubic-splinemethod as a special case of univariate RBF interpolationwithφ(r) = r3.
The natural cubic spline is a good starting point because the method itself has several
interesting theoretical properties. In particular, if we consider the following function
space

H = { f ∈ L2(R) : | f | :=
(∫

R

| f ′′(x)|2dx

) 1
2

< ∞}, (2.13)

then |·| is a semi-normwith null spaceΠ1(R)makingH a semi-Hilbert space. Further,
it is well known that (2.12) is the unique solution to the following variational problem

minimise {|s| : s ∈ H and s(xi ) = f (xi ) 1 ≤ i ≤ N}. (2.14)

For a detailed account of the many aspects of spline interpolation see [dB78].
The next appearance of an RBF came in 1971when Rolland Hardy, a geoscientist,

first suggested the use of the multiquadric basis function (see (2.4)) to interpolate
scattered data in the plane. The discovery of this function arose fromapurely heuristic
approach to a problem in topography and the success of the resulting interpolation
scheme, for solving 2D contour and mapping problems, is reported in [Ha71]. This
appears to be the first application of the RBF method beyond the univariate setting.

The next landmark discovery occurred in 1977 when Jean Duchon [Du77]
approached the data fitting problem from the variational perspective. Duchon was
one of the first mathematicians to generalise the notion of a natural cubic spline to
higher dimensions and, to illustrate his contribution, consider a non-negative integer
m > d/2 which indexes the following space of functions

Hm,d = { f ∈ L2(R
d) : Dα f ∈ L2(R

d), for all |α| = m}. (2.15)
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This space is then equipped with the semi-norm

| f |m,d =
⎛

⎝
∑

|α|=m

m!
α!
∫

Rd
|(Dα f )(x)|2dx

⎞

⎠
1/2

, (2.16)

with null space Πk−1(R
d).

We note that, for d = 1 and m = 2, this space is the same as H above. More
generally, Hm,d is closely related to the Sobolev space Wm(Rd) and shares many of
its properties. In particular, since m > d/2, we know from the Sobolev embedding
theorem that Hm,d is a semi-Hilbert space of continuous functions. Thus, following
the cubic spline approach, for any f ∈ Hm,d the following variational problem was
considered:

minimise{|s|m,d : s ∈ Hm,d and s(xi ) = f (xi ) 1 ≤ i ≤ N}. (2.17)

Using sophisticated techniques from distribution theory Duchon showed that the
solution to (2.17),whichhe termed theDm(Rd)−spline, has the formof an augmented
RBF (2.6), where

φ(r) :=
{

(−1)nr2m−d log r (with n = m − d−2
2 ), if d is even,

(−1)nr2m−d (with n = m − d−1
2 ), if d is odd,

(2.18)

and where the augmented polynomial is of degree n−1.We note again that for d = 1
and m = 2 we recover the natural cubic spline.

A year later Duchon [Du78] presented a study of the accuracy of Dm(Rd)−spline
interpolation. To set the scene, it is assumed that we wish to interpolate a function
f ∈ Hm,d over a set of distinct data pointsX = {xi }N

i=1, located in a smooth, bounded
domainΩ ⊂ R

d . The density of the set X ⊂ Ω is measured by using the mesh-norm

h := h(X,Ω) := sup
y∈Ω

min
xi ∈X

‖y − xi‖, (2.19)

and our aim is to investigate how the Dm(Rd)−spline interpolant s f approximates
f as the data points become dense in Ω, that is, as h → 0.

Definition 2.1 (The Duchon strategy) The Duchon strategy for delivering error
bounds for RBF interpolation consists of the following steps:

1. construct a scalable quasi-uniform mesh for the domain, that is a collection of
points on Ω so that it can be covered by a union of small open balls Bi (centred
at each of the mesh points) that have uniformly bounded overlap:

2. estimate the local interpolation error using data prescribed on each Bi ;
3. by way of a suitable extension operator create the gluing result which combines

the local error estimates to provide a final estimate for Ω.
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The justification for each of the three steps above is provided in [Du78], where
geometric arguments and techniques from Sobolev space theory play a prominent
role. Moreover, employing the strategy yields error bounds of the form

‖s f − f ‖Lp(Ω) = O(hm− d
2 + d

p ), p ∈ [2,∞]. (2.20)

In 1982, Richard Franke [F82] published the results of his survey on scattered
data interpolation methods for R

2. In his report, over 30 different methods are tested
including Hardy’s multiquadric and Duchon’s thin plate spline. Each method was
assessed over a range of criterion including accuracy, ease of implementation and
visual smoothness.Of all themethods testedHardy’smultiquadric schemeperformed
the best and Duchon’s thin plate spline was also highly rated. These findings were
particularly intriguing since, at the time, there was no mathematical basis to justify
the use of multiquadric interpolation. In view of this Franke proposed the conjecture
that the interpolation matrix (2.3) corresponding to the multiquadric basis function
is non-singular.

The invertibility of the interpolation matrices associated with the common RBFs
was proven in two stages. First, Schoenberg [Sch38] in 1938 proved the unique
solvability of (2.3) for a small class of RBFs. Then, in 1986, Micchelli [Mi86]
extended Schoenberg’s result and established a larger class of RBFs for which (2.9)
is uniquely solvable. In particular,Micchelli showed how this extension could be used
to settle Franke’s conjecture on the multiquadric basis function. For the convenience
of the reader, we present a brief account of the Schoenberg-Micchelli theory.

Definition 2.2 (Positive Definite Functions) A continuous functionφ : [0,∞) → R

is said to be positive definite (φ ∈ PD) if, for any d ≥ 1 and any set X = {xi }N
i=1 of

distinct points in R
d , the quadratic form

λT Aφλ =
N∑

j=1

N∑

k=1

λ jλkφ(d(x j , xk)) (2.21)

is non-negative for all λ ∈ R
N . Furthermore, if (2.21) is positive for all λ ∈ R

N\{0}
then we say that φ is strictly positive definite (φ ∈ SPD).

In addition, we consider the following interesting class of functions first studied
by Bernstein in the early 1930s.

Definition 2.3 (Completely Monotone Functions) A continuous function f : [0,∞)

→ R is said to be completely monotone on (0,∞) if f ∈ C∞(0,∞) and

(−1)l f (l)(r) ≥ 0, for all r > 0 and l = 0, 1, 2 . . . . (2.22)

In [Sch38] Schoenberg provided the following important theorem
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Theorem 2.1 (Schoenberg) A continuous function φ : [0,∞) → R, belongs to PD
if and only if the function f = φ(

√·) is completely monotone on (0,∞). Moreover,
if, in addition, f is not a constant then φ belongs to SPD.

Using Schoenberg’s theorem we can immediately deduce that the Gaussian and
inverse multiquadric basis functions belong to SPD. This observation establishes the
solvability of the RBF method for these cases.

Following on from Schoenberg’s work we consider the following, more general,
class of functions.

Definition 2.4 (Conditionally Positive Definite Functions) A continuous function
φ : [0,∞) → R is said to be conditionally positive definite of order m ∈ N

(φ ∈ CPD(m)) if, for any d ≥ 1 and any set X = {xi }N
i=1 of distinct points in R

d ,

the quadratic form (2.21) is non-negative on the subspace

Vm−1 = {λ ∈ R
N :

N∑

i=1

λi p(xi ) = 0 for all p ∈ Πm−1(R
d)}. (2.23)

Furthermore, if (2.21) is positive for all λ ∈ Vm−1\{0} then we say that φ is condi-
tionally strictly positive definite of order m (φ ∈ CSPD(m)).

For augmented RBF interpolation (2.6) it is usual to insist that the geometry of
the locations satisfy the following mild property.

Definition 2.5 (Unisolvency) Let m be a positive integer and let M= dimΠm−1
(Rd). A set of distinct points {x1, . . . , xM} is said to be unisolvent with respect
to Πm−1(R

d) if the only element of Πm−1(R
d) to vanish at each xi is the zero

polynomial.

The following theorem establishes a unique solution to the augmented interpola-
tion problem (2.9) in the case where φ ∈ CSPD(m).

Theorem 2.2 Let φ ∈ CSPD(m) and X = {x1, . . . , xN } denote a set of N distinct
data points in R

d such that

(i) N ≥ M = dimΠm−1(R
d),

(i i) X contains a subset that is unisolvent with respect to Πm−1(R
d).

Then the augmented interpolation problem (2.9) has a unique solution.

Proof It is sufficient to show that, if λ ∈ R
N and μ ∈ R

M satisfy the homogeneous
linear system

(
Aφ P
PT 0

)(
λ
μ

)
=
(

0
0

)
(2.24)

then they are zero vectors. We note that PT λ = 0 implies that λ ∈ Vm−1, and thus
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0 = λT (Aφλ + Pμ) = λT Aφλ + (μT (PT λ))T = λT Aφλ.

Since Aφ induces a positive definite form on Vm−1, this implies that λ = 0.

Let {p1, . . . , pM} denote the basis ofΠm−1(R
d) used to define thematrixP (2.10)

and let p∗(x) =∑M
j=1 μ j p j (x). Now, since λ = 0 we have that

Pμ = (p∗(x1), . . . , p∗(xN ))T = 0,

and so, using the unisolvency of X, we conclude that μ = 0. �

Inspired by Schoenberg’s characterisation theorem, Micchelli proved the follow-
ing important extension.

Theorem 2.3 (Micchelli) A continuous function φ : [0,∞) → R, belongs to
CPD(m) if the function f = φ(

√·) is such that (−1)m f (m) is completely monotone
on (0,∞). Moreover, if, in addition, f ∈ Cm−1[0,∞) and is not a polynomial of
degree at most m, then φ belongs to CSPD(m).

We note in passing that, as Micchelli suspected, the converse of this theorem is also
true and this was settled in 1993 by Guo et al. [GHS93]. As it stands, Micchelli’s
theorem serves as an important source of applicable RBFs. The popular choices are
the generalised Duchon splines

φ(r) = (−1)k+1r2k log r

φ(r) = (−1)�β
r2β
∈ CSPD(k + 1),

∈ CSPD(�β
 + 1),

k ∈ N,

β > 0 and β /∈ N,
(2.25)

and the generalised multiquadrics

φ(r) = (−1)�β
+1(r2 + c2)β

φ(r) = (r2 + c2)β
∈ CSPD(�β
 + 1),

∈ SPD,

β > 0 and β /∈ N,

β < 0.
(2.26)

In addition, Micchelli also proved the following important theorem concerning
CSPD(1) functions.

Theorem 2.4 Let −φ be CSPD(1) with φ(0) ≥ 0 then the corresponding interpo-
lation matrix Aφ given by (2.3) is non-singular.

Proof By definition the matrix Aφ induces a positive definite form on the N − 1
dimensional hyperplane, given by

V0 = {λ = (λ1, . . . λN )T ∈ R
N :

N∑

i=1

λi = 0}.

Thus Aφ has at least N − 1 positive eigenvalues. However trace(Aφ) ≤ 0, and so the
remaining eigenvalue must therefore be negative. �
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In view of Franke’s numerical findings this theorem is particularly important, for
it establishes the solvability of Hardy’s original multiquadric interpolation scheme.
Indeed,Micchelli’s overall contribution has encouraged a large communities ofmath-
ematicians to study the properties of RBFs.

One of the most important of the post-Micchelli discoveries is the so-called vari-
ational approach, i.e., that every RBF interpolant can be viewed as the solution to
a minimal norm interpolation problem in some reproducing kernel Hilbert space
(commonly called the Native space). This approach, which can be viewed as a gen-
eralization of Duchon’s work, was developed by Madych and Nelson in the early
1980s and finally published in 1990 [MN90]. Over the years many researchers have
studied the original Madych-Nelson approach and, as a result, a sound theoretical
framework for RBF interpolation has emerged where error estimates can easily be
delivered. To give a flavour of the Madych-Nelson theory, we consider the following
definition.

Definition 2.6 Let Φ ∈ C(Rd) be of polynomial growth, i.e., there exists k ∈ N0,

such that |Φ(x)| = O(‖x‖k) as ‖x‖ → ∞. A continuous function Φ̂ : R
d\{0} → R

is said to be the generalised Fourier transform of Φ if there exists m ∈ N0, such that

∫

Rd
Φ(x)̂γ(x)dx =

∫

Rd
Φ̂(ω)γ(ω)dω (2.27)

holds for all functions γ from the subspace

Sm−1(R
d) = {γ ∈ S(Rd) :

∫

Rd
γ(x)p(x)dx = 0 for all p ∈ Πm−1(R

d)}.

Furthermore, the minimal choice of m is called the order of Φ̂.

We now quote a specialisation of a result due to Iske, which can be found in [I95].

Theorem 2.5 Let φ ∈ C[0,∞) and assume that Φ(x) = φ(‖x‖) is of polynomial
growth, then the following are equivalent

(i) φ ∈ CPD(m);
(i i) Φ possesses a generalised Fourier transform Φ̂ of order m which is non-

negative and not identically zero on R
d\{0}.

It turns out that the generalised Fourier transforms of the most commonly used
basis functions φ ∈ CSPD(m) are positive on R

d\{0} [SW01]. This fact allows us
to define the so-called native space by

Hφ = { f ∈ L2(R
d) : | f |2φ =

∫

Rd

1

Φ̂(ω)
| f̂ (ω)|2dω < ∞}, (2.28)

where | · |φ is a semi-norm whose kernel is Πm−1(R
d).

For a given φ ∈ CSPD(m), the nature of Hφ is largely determined by the decay
rate of Φ̂(ω). Specifically, if Φ̂(ω) has a polynomial rate of decay thenHφ is closely
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related to a certain Sobolev space. On the other hand, if Φ̂(ω) decays exponentially
quickly then Hφ is a smaller space of C∞ functions. Madych and Nelson were the
first to illustrate the importance of the native spaces. Specifically, they showed that
given any f ∈ Hφ, the solution to the following Duchon-like variational problem

minimise{|s|φ : s ∈ Hφ and s(xi ) = f (xi ) 1 ≤ i ≤ N}, (2.29)

is precisely the unique φ−based RBF interpolant.
Micchelli’s non-singularity results and theMadych-Nelson variational framework

are the fundamental starting points from which a whole host of theoretical and prac-
tical advances have been made; the reader is encouraged to consult the textbooks
highlighted earlier to discover more.

All of the candidate RBFs that we have encountered so far are globally sup-
ported. When implementing algorithms on large data sets the global support can be
a drawback; the associated dense interpolation matrices can be poorly conditioned
and also the evaluation of resulting interpolants can be expensive. In the mid 1990s
several researchers set about overcoming these issues by constructing tailor made
strictly positive definite RBFs that have compact support, for these examples the
interpolation matrices are sparse and better conditioned and the evaluation of their
interpolants is simpler as it requires relatively few evaluations of the RBF. Unlike
their global counterparts the compactly supported RBFs are dimension dependent so
Michelli’s theorem does not apply. Instead we appeal to a famous and more general
result of Bochner which tells us that a candidate RBF φ is strictly positive definite on
R

d (where d is fixed) whenever the d−dimensional Fourier transform of its induced
kernel Φ(x) = φ(‖x‖) (x ∈ R

d ) is positive, i.e., whenever

Φ̂(ω) > 0, for all ω ∈ R
d .

One of the most commonly used families of compactly supported RBFs examples
are theWendland functions (named after their discoverer). In order to introduce these
functions we begin by investigating the following family of parameterised basis
functions defined by:

φμ,α(r) := 1

2α−1Γ (α)

∫ 1

r
(1 − t)μ t

(
t2 − r2

)α−1
dt for r ∈ [0, 1], (2.30)

where μ > −1, α > 0. It well known (see [Gne02]) that if α = k ∈ {0, 1, 2, . . .}
then the function φμ,k generates a strictly positive definite function onR

d if and only
if μ ≥ d+1

2 + k. In [Wen95] Wendland considers the case where

μ = � :=
⌊

d

2

⌋
+ k + 1, (2.31)
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i.e., the smallest allowable integer that still allowspositive definiteness. In practical
cases it is usual to introduce a support parameter ε > 0 and define

φ
(ε)
�,k(r) = 1

2k−1(k − 1)!
∫ 1

εr
(1 − t)� t

(
t2 − (εr)2

)α−1
dt for r ∈

[
0,

1

ε

]
.

It is known that the functions φ
(ε)
�,k are polynomial of degree 2k + � on 0 ≤ r ≤ 1/ε,

and furthermore it is shown in [Hub12] that they are given explicitly by

φ
(ε)
�,k(r) = (−1)k2k�!

[ k+� �
2 
∑

i=0

Γ
(
i + 1

2

)
(εr)2i

Γ
(
i − k + 1

2

)
(� + 2k − 2i)!(2i)!

−
� �−1

2 
∑

i=0

(k + i)!(εr)2k+2i+1

i !(� − 2i − 1)!(2k + 2i + 1)!
]
.

(2.32)

By construction eachWendland function induces a radial kernel on the appropriate
R

d whose d−dimensional Fourier transform is positive. Furthermore, it can also be
shown that there exists positive constants C1 and C2 such that

C1
ε2k+1

‖ω‖d+1+2k
≤ ̂

Φ
(ε)
�,k(ω) ≤ C2

ε2k+1

‖ω‖d+1+2k
. (2.33)

TheMadych-Nelson variational theory applies equally to themore general dimen-
sion dependent RBFs. In particular, in the case of the Wendland functions we note
that the polynomial decay rates of their Fourier transforms (2.33) ensures that their
corresponding Native spaces (2.28) are norm equivalent to certain Sobolev spaces.

2.3 The Spherical Basis Function Method

The global spherical interpolation problem is as follows:

Problem 2 Given a set Ξ = {ξi }N
i=1 of distinct data points on Sd−1 and a target

function f : Sd−1 → R, find a function s : Sd−1 → R that satisfies the interpolation
conditions

s(ξi ) = f (ξi ), 1 ≤ i ≤ N . (2.34)

In this setting we can consider specializing the RBF method to the sphere by
considering an interpolant of the form

s(ξ) =
N∑

j=1

αiψ(g(ξ, ξ j )), ξ ∈ Sd−1, (2.35)



40 2 The Spherical Basis Function Method

where g denotes the geodesic metric on Sd−1

g(ξ,η) = cos−1(ξT η), ξ,η ∈ Sd−1. (2.36)

and where ψ : [0,π] → R is a continuous function which we will call the spherical
basis function (SBF). Applying the interpolation conditions (2.34) provides the linear
system

Aψα = f, where Aψ ∈ R
N×N : Aψ,i j = ψ(g(ξi , ξ j )), 1 ≤ i, j ≤ N . (2.37)

Thus a unique SBF interpolant exists if and only if the interpolation matrix Aψ is
non-singular.

Just as polynomial reproduction is important in Euclidean data fitting problems it
is also common, in the spherical setting, that one requires that an interpolant should
reproduce the low order spherical harmonics. Following the RBF approach we can
conveniently add to s (2.35) a spherical harmonic of order k, which gives the form

s(ξ) =
N∑

j=1

α jψ(g(ξ, ξ j )) +
M∑

j=1

β jY j (ξ), ξ ∈ Sd−1, (2.38)

where M = dimHk(Sd−1), and {Y1, . . . ,YM} is a basis for Hk(Sd−1).

The interpolation conditions (2.34) now provide N linear equations in N + M
unknowns, and so, following RBF theory, it is usual to impose M linear constraints

N∑

j=1

α jYi (ξ j ) = 0, 1 ≤ i ≤ M, (2.39)

which leads to the augmented linear system

(
Aψ Y
YT 0

)(
α
β

)
=
(

f
0

)
(2.40)

where Aψ is as in (2.37) and Y ∈ R
N×M is given by

Yi j = Y j (ξi ), where 1 ≤ i ≤ N, and 1 ≤ j ≤ M. (2.41)

Thus a unique augmented SBF interpolant exists if and only if the augmented inter-
polation matrix in (2.40) is non-singular. In order to make a transfer of the RBF
machinery to the spherical setting we require the spherical analogue of Michelli’s
discovery, i.e., a notion and characterization of positive and conditionally positive
definite functions on spheres. Recasting from the Euclidean setting we have the
following definitions.



2.3 The Spherical Basis Function Method 41

Definition 2.7 (SPD functions on spheres) A continuous function ψ : [0,π] → R

is said to be strictly positive definite on Sd−1 (ψ ∈ SPD(Sd−1)) if, for any set
Ξ = {ξi }N

i=1 of distinct points on Sd−1, the quadratic form

αT Aψα =
N∑

j=1

N∑

k=1

α jαkψ(g(ξ jξk)) (2.42)

is positive on R
N\{0}.

Definition 2.8 (CSPD functions on spheres) Let m be a positive integer. A contin-
uous function ψ : [0,π] → R is said to be conditionally strictly positive definite of
order m on Sd−1 (ψ ∈ CSPDm(Sd−1)) if, for any set Ξ = {ξi }N

i=1 of distinct points
on Sd−1, the quadratic form (2.42) is positive on the subspace

Wm−1 = {α ∈ R
N\{0 :

N∑

i=1

αiY(ξi ) = 0 for all Y ∈ Hm−1(S
d−1)}. (2.43)

Following the story of the RBF method it is clear that any ψ ∈ SPD(Sd−1) func-
tion can be used to provide a unique interpolant of the form (2.35). Furthermore, it
is straightforward to show that ψ ∈ CSPDm(Sd−1) can be used to provide a unique
augmented interpolant (2.38) provided that the following spherical unisolvency con-
dition holds:

Definition 2.9 (Unisolvency on the sphere) Let m be a positive integer and let M =
dimHm−1(Sd−1). A set of distinct points Ξ = {ξi }M

i=1 is said to be unisolvent with
respect to Hm−1(Sd−1) if the only element of Hm−1(Sd−1) to vanish at each ξi is
the zero spherical harmonic.

So far we have a method in theory. The following partial characterization theorem
is the result which allows us to practically implement this method and to perform
in depth analysis of its properties, it can be viewed as a modification/extension of
Schoenberg’s pioneering work from the early 1940s.

Theorem 2.6 If ψ ∈ CSPDm(Sd−1), then it has the following form

ψ(θ) =
∞∑

k=0

aψ(k)Pk,d(cos θ), (2.44)

such that

aψ(k) ≥ 0 for k ≥ m and
∞∑

k=0

aψ(k) < ∞, (2.45)

where {Pk,d} denote the d−dimensional Legendre polynomials (1.24).

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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The above theorem gives rise to several remarks and observations. Firstly, given
that cos(g(ξ,η)) = ξT η we may view our SBF ψ as a function of the inner product.
Secondly, we note that SPD functions are contained in Theorem 2.6 by consider-
ing the case m = 0; in view of this we shall take ψ ∈ CSPD0(Sd−1) to mean
ψ ∈ SPD(Sd−1). Thirdly, and finally, we remark that a complete characterization of
functions of the form (2.44) satisfying (2.45) has been established for d ≥ 3 by Chen
et al. [CMS03] who show that, in this case, a necessary and sufficient condition is
that the set {k ∈ N0\{0, 1, . . . , m − 1} : ak > 0} must contain infinitely many odd
and infinitely many even integers. The case of d = 2 remains an open problem. For
our purposes we will only consider SBFs whose Legendre coefficients satisfy the
sufficient condition that they are all positive for k ≥ m.

We now turn to developing a variational setting for SBF interpolants. This begins
with an application of the addition formula (1.24) which shows that for every ψ ∈
SCPDm(Sd−1) we can associate a zonal kernel Ψ (ξ,η) = ψ(ξT η) which has a
unique spherical Fourier expansion, given by

Ψ (ξ,η) =
∞∑

k=0

Nk,d∑

�=1

ψ̂kYk,�(ξ)Yk,�(η), (2.46)

where (ψ̂k)k≥0 denote the spherical Fourier coefficients (1.33) of Ψ. We say that the
coefficients decay at a polynomial rate as k → ∞ if there exist positive constants
A1, A2 and α independent of k such that

A1(1 + k)−(d−1+α) ≤ ψ̂k ≤ A2(1 + k)−(d−1+α), k ≥ m, (2.47)

otherwise they decay exponentially quickly. We remark that if (2.47) holds for the
spherical Fourier coefficients then, using formula (1.33) together with (1.19), we can
deduce that there exists constant A1 and A2 (again independent of k) such that

A1(1 + k)−(1+α) ≤ aψ(k) ≤ A2(1 + k)−(1+α), α > 0 k ≥ m. (2.48)

With this insight we define the so-called Native space for the SBF ψ as follows.

Definition 2.10 (Native space of the SBF) Let ψ ∈ SCPDm(Sd−1) and let {ψ̂k}k≥m

denote the spherical Fourier coefficients of its associated zonal kernel (2.46). We
define the native space of ψ to be

Hψ,m := { f ∈ L2(S
d−1) : | f |2ψ,m =

∞∑

k=m

Nk,d∑

�=1

| f̂k,�|2
ψ̂k

< ∞}, (2.49)

where | · |ψ,m is a (semi-)norm induced via the (semi-)inner product

http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
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( f, g)ψ,m =
∞∑

k=m

Nk,d∑

�=1

f̂k,�ĝk,�

ψ̂k
. (2.50)

We note that this definition is analogous to the RBF native spaces (2.28) where
Φ̂(ω),ω ∈ R

d is a counterpart to (ψ̂k)k≥0 and f̂ (ω) corresponds to f̂k,�.TheSobolev
spaces Ws(Sd−1), s > 0 (see Definition 1.54) are a special instance of native spaces
generated by the kernel whose Fourier coefficients are ψ̂k = (1 + λk)

−s . One can
easily show that there exists constants A1 and A2 such that

A1(1 + k)−2s ≤ (1 + λk)
−s ≤ A2(1 + k)−2s, k ≥ 0,

and, in view of this, we can see that the native space of an SBF ψ ∈ SPD(Sd−1) for
which (ψ̂k)k≥0 (the Fourier coefficients of its induced kernel) decay at a polynomial
rate (2.47) is norm equivalent to the Sobolev spaceWs(Sd−1), s = (d−1+α)/2. The
Sobolev embedding theorem guarantees that this is a space of continuous functions
or, in the language of Chap. 1, the pair

(
Hψ,0, (·, ·)ψ,0

)
is a RKHS.

Whenm > 0 the native space is a semi-Hilbert spacewith the spherical harmonics
Hm−1(Sd−1) being the null space of the induced semi-norm. In this case, in order
to make use of the Hilbert space theory as presented in Chap. 1, it is common to
modify ( f, g)ψ,m so that it becomes a genuine inner product; we do this by defining
an appropriate inner product for the null space and add this to the semi-inner product.
One common approach is to select a set {ξ1, . . . , ξM}which is unisolventwith respect
toHm−1(Sd−1) and use this to define the following inner product

〈 f, g〉Hm−1(Sd−1) =
M∑

i=1

f (ξi )g(ξi ), f, g ∈ Hm−1(S
d−1). (2.51)

We now propose the following modified native space.

Definition 2.11 (Native Hilbert space of the SBF) Let ψ ∈ SCPDm(Sd−1) and let
{ψ̂k}k≥m denote the spherical Fourier coefficients of its associated zonal kernel (2.46).
We define the native Hilbert space of ψ to be

Hψ :=
{

f ∈ L2(S
d−1) : ‖ f ‖2ψ =

M∑

i=1

(
f (ξi )

)2 +
∞∑

k=m

Nk,d∑

�=1

| f̂k,�|2
ψ̂k

< ∞
}
, (2.52)

where ‖ · ‖ψ is the norm induced via the inner product

〈 f, g〉ψ = 〈 f, g〉Hm−1(Sd−1) + ( f, g)ψ,m . (2.53)

We remark that as all norms are equivalent on finite dimensional spaces, we
can use the same arguments as above (for the m = 0 case) to deduce that if the
spherical Fourier coefficients exhibit the polynomial decay rate (2.47) then Hψ is

http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
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norm equivalent to Ws(Sd−1), with s = (d − 1 + α)/2. This means both spaces
coincide as sets and there exist constants 0 < keq < Keq , such that

keq‖ · ‖Ws (Sd−1) ≤ ‖ · ‖ψ ≤ Keq‖ · ‖Ws (Sd−1). (2.54)

When the coefficients decay exponentially quickly then Hψ is a much smaller
subspace of infinitely differentiable functions.

With this preparation we now investigate the following variational problem:

Proposition 2.1 (Optimal interpolation in the native space) Let Ξ = {ξi }N
i=1 denote

a set of distinct points on Sd−1 and ψ ∈ CSPDm(Sd−1). Assume further that
{ξ1, . . . ξM} ⊂ Ξ is unisolvent with respect to Hm−1(Sd−1), and let

(Hψ, 〈·, ·〉ψ
)

denote the native Hilbert space of ψ (2.52). Then, for any f ∈ Hψ, the solution to
the variational problem:

minimise
{

‖s‖ψ : subject to s ∈ Hψ and s(ξi ) = f (ξi ), ξi ∈ Ξ
}
, (2.55)

is the unique ψ−based SBF interpolant to f at Ξ.

Proof Given that
(Hψ, 〈·, ·〉ψ

)
is a Hilbert function space we know, from Sect. 1.3,

that the solution has the form

s f (ξ) :=
N∑

k=1

λkK(ξ, ξk), (2.56)

where K is the reproducing kernel ofHψ. Thus, we need to compute K.We begin this
process by defining a projection operator from Hψ onto Hm−1(Sd−1). Specifically
we use the subset of Ξ that is unisolvent with respect to Hm−1(Sd−1) to define the
unique “Lagrange” basis {Ŷ1, . . . , ŶM} forHm−1(Sd−1) satisfying

Ŷi (ξ j ) =
{
1, if i = j,

0, if i �= j.
(2.57)

The “Lagrange” projection P : Hψ → Hm−1(Sd−1) is given by

(P f )(ξ) =
M∑

j=1

Ŷ j (ξ) f (ξ j ), where ξ ∈ Sd−1. (2.58)

This operator maps each f ∈ Hψ to its unique spherical harmonic interpolant based
on {ξ j }M

j=1. In particular, (PY)(ξ) = Y(ξ) for all Y ∈ Hm−1(Sd−1), and we have
the following decomposition

Hψ := H̃ψ ⊕ Hm−1(S
d−1), (2.59)

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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where

H̃ψ = (I − P)Hψ = { f ∈ Hψ : f (ξ j ) = 0 for j = 1, . . . , M}. (2.60)

We note that (H̃ψ, (·, ·)ψ,m) and (Hm−1(Sd−1), 〈·, ·〉Hm−1(Sd−1)) are complementary
orthogonal subspaces of (Hψ, 〈·, ·〉ψ) in the sense of Proposition1.1. The reproducing
kernel K1 of H̃ψ was computed in [S99], and we quote

K1(ξ,η) := (I − P)ξ(I − P)ηΨ (ξ,η), (2.61)

where Ψ is the zonal kernel associated with ψ, and where the subscript denotes the
variable to which the operator applies. Furthermore, it is easily verified that

K2(ξ,η) =
M∑

k=1

Ŷk(ξ)Ŷk(η) (2.62)

is the reproducing kernel of Hm−1(Sd−1). Using Proposition1.1, the reproducing
kernel of (Hψ, 〈·, ·〉ψ) is given by K = K1 + K2, that is,

K(ξ,η) = Ψ (ξ, η) −
M∑

j=1

Ŷ j (η)Ψ (ξ, ξ j ) +
⎛

⎝−Pξ(I − P)ηΨ (ξ, η) +
M∑

k=1

Ŷk(ξ)Ŷk(η)

⎞

⎠ .

We observe that the term in the brackets, as a function of ξ, is simply an element of
Hm−1(Sd−1)whose coefficients depend upon η,we denote this asYη(ξ) and rewrite
the reproducing kernel as

K(ξ,η) = Ψ (ξ,η) −
M∑

j=1

Ŷ(η)Ψ (ξ, ξ j ) + Yη(ξ). (2.63)

It is known that K belongs to SPD(Sd−1) (see [S99, Sect. 6]) and thus (2.55) has a
unique solution of the form

s f (ξ) =
N∑

k=1

λkK(ξ, ξk) =
N∑

k=1

λk

⎛

⎝Ψ (ξ, ξk) −
M∑

j=1

Y j (ξk)Ψ (ξ, ξ j )

⎞

⎠+
N∑

i=1

λiYξi
(ξ).

The final sum in the above expression is an element of Hm−1(Sd−1) which we can
express in terms of the Lagrange basis. This observation, together with a little further
manipulation, allows us to write

s f (ξ) =
N∑

j=1

α jΨ (ξ, ξ j ) +
M∑

j=1

β j Ŷ j (ξ), (2.64)

http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
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where

α j =

⎧
⎪⎨

⎪⎩
λ j −

N∑
k=1

λkŶ j (ξk), if 1 ≤ j ≤ M,

λ j , if M + 1 ≤ j ≤ N .

(2.65)

It is easy to check that the α j satisfy the SBF side conditions given by (2.39),
specifically let Y ∈ Hm−1(Sd−1) then

N∑

j=1

α jY(ξ j ) =
N∑

j=1

λ jY(ξ j ) −
N∑

k=1

λk

M∑

j=1

Ŷ j (ξk)Y(ξ j )

=
N∑

j=1

λ jY(ξ j ) −
N∑

k=1

λk(PY)(ξk) = 0.

Thus, s f ∗ is precisely the unique ψ−based SBF interpolant to f at Ξ.

We close this section with a result that provides two important properties of the
optimal SBF interpolants.

Lemma 2.1 For a given f ∈ Hψ let s f denote its optimal ψ−based SBF interpolant,
then we have

(i) ‖ f −s f ‖2ψ = 〈 f, f −s f 〉ψ (i i) ‖ f −s f ‖ψ ≤ ‖ f ‖ψ (i i i) ‖s f ‖ψ ≤ ‖ f ‖ψ

Proof To prove (i) consider

‖ f − s f ‖2ψ = 〈 f, f − s f 〉ψ − 〈s f , f − s f 〉ψ.

Using (2.56) and the reproducing kernel property, we have

〈s f , f − s f 〉ψ = 〈
N∑

k=1

λkK(·, ξk), f − s f 〉ψ =
N∑

k=1

λk( f − s f )(ξk) = 0,

and thus (i) follows. To prove (i i) and (i i i) we use (i) to provide:

‖s f ‖2ψ + ‖ f − s f ‖2ψ = ‖s f ‖2ψ + 〈 f, f − s f 〉

= ‖s f ‖2ψ + ‖ f ‖2ψ − 〈 f, s f 〉ψ = ‖ f ‖2ψ,

where the final equality comes from 〈s f , f − s f 〉ψ = 0; inequalities (i i) and (i i i)
follow from this. �
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2.4 Framework for Pointwise Error Estimates

The undoubted appeal of the variational approach to SBF interpolation is that it
provides a physical interpretation of the construction process. The surfaces generated
minimize a certain energymeasure (bending energy in the case of cubic and thin plate
splines) and this gives a reassuring sense that they will be sensibly shaped and well-
behaved. In addition, the variational approach also provides a rather nice framework
for delivering error bounds and the following development show how easily it is to
access such bounds. We begin by choosing ψ ∈ CSPDm(Sd−1) and let s f denote the
unique ψ−based SBF interpolant to a given target function f ∈ Hψ. We observe
that the error function f − s f belongs to the Hilbert function space (H̃ψ, | · |ψ,m)

(2.60) and so, for any ξ ∈ Sd−1, we have

| f (ξ) − s f (ξ)| = |(K1(ξ, ·), f − s f )ψ,m |,

where K1 is the reproducing kernel of H̃ψ given by (2.61). Applying the Cauchy-
Schwarz inequality we have

| f (ξ) − s f (ξ)| ≤ |K1(ξ, ·)|ψ,m | f − s f |ψ,m = |K1(ξ, ·)|ψ,m‖ f − s f ‖ψ. (2.66)

The factor |K1(ξ, ·)|ψ,m is called the Lagrange power function for ψ, and we write
Lψ(ξ) = |K1(ξ, ·)|ψ,m . The square of this function can be computed explicitly since

|K1(ξ, ·)|2ψ,m = (K1(ξ, ·),K1(ξ, ·))ψ,m = K1(ξ, ξ) = L2
ψ(ξ).

Thus, employing (2.61), we have

L2
ψ(ξ) :=

M∑

i=1

M∑

j=1

Ŷi (ξ)Ŷ j (ξ)ψ(ξT
i ξ j ) − 2

M∑

i=1

Ŷi (ξ)ψ(ξT ξi ) + ψ(1), (2.67)

where {Ŷ1, . . . , ŶM} is the Lagrange basis for Hm−1(Sd−1). This ensures spherical
harmonic reproduction via

Y(ξ) =
N∑

i=1

Ŷi (ξ)Y(ξi ), for all Y ∈ Hm−1(S
d−1). (2.68)

In particular, in view of (2.66) we have

| f (ξ) − s f (ξ)| ≤ Lψ(ξ)‖ f − s f ‖ψ, ξ ∈ Sd−1. (2.69)

The Lagrange power function clearly provides a bound on the pointwise interpolation
error. However, it only makes use of information based on the subset of Ξ that is
unisolventwith respect toHm−1(Sd−1). Intuitively,wewould expect an improvement
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if the function were allowed to depend upon the whole of Ξ. In view of this, we fix
ξ ∈ Sd−1 and generalize (2.68) by selecting N real coefficients {γi }N

i=1 so that

Y(ξ) =
N∑

i=1

γiY(ξi ), for all Y ∈ Hm−1(S
d−1). (2.70)

In addition, we define a bounded linear functional onHψ by

Λξ( f ) = (δξ −
N∑

i=1

γiδξi
)( f ), for all f ∈ Hψ. (2.71)

Using Lemma 1.1, the Riesz representor of Λξ inHψ, is given by

kΛξ (·) = K(ξ, ·) −
N∑

i=1

γiK(ξi , ·), (2.72)

whereK is the reproducing kernel ofHψ, see (2.63). Now, applying the same analysis
as before we find

| f (ξ) − s f (ξ)| = |Λξ( f − s f )| = |〈kΛξ , f − s f 〉ψ| ≤ ‖kΛξ‖ψ‖ f − s f ‖ψ.

We can evoke, again, the Riesz representation theorem, to deduce that

‖kΛξ‖ψ = ‖Λξ‖ψ∗ = ‖δξ −
N∑

i=1

γiδξi
‖ψ∗ , (2.73)

where ‖ · ‖ψ∗ denotes the usual dual space norm given by

‖T‖ψ∗ = sup{|T f | : ‖ f ‖ψ ≤ 1}. (2.74)

The factor ‖kΛξ‖ψ is said to be a power function for ψ at ξ, and we write Pψ,γ(ξ) =
‖kΛξ‖ψ. The square of this function can be computed explicitly since

‖kΛξ‖2ψ = 〈kΛξ , kΛξ 〉ψ = Λξ(kΛξ ) = P2
ψ,γ(ξ),

indeed this calculation was made in [LLRS99] and, again, we quote

Pψ,γ(ξ) =
⎛

⎝
N∑

i=1

N∑

j=1

γiγ jψ(ξT
i ξ j ) − 2

N∑

i=1

γiψ(ξT ξi ) + ψ(1)

⎞

⎠
1/2

.

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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To improve the presentation, we set ξ0 = ξ and γ0 = −1, this enables us to write
the power function in the more compact form

Pψ,γ(ξ) =
⎛

⎝
N∑

i=0

N∑

j=0

γiγ jψ(ξT
i ξ j )

⎞

⎠
1/2

=
∥∥∥

N∑

i=0

γiδξi

∥∥∥
ψ∗ . (2.75)

For a given ξ ∈ Sd−1, each selection of coefficients {γi }N
i=1 satisfying (2.70),

gives rise to its own power function Pψ,γ, which, in turn, provides the following
error bound

| f (ξ) − s f (ξ)| ≤ Pψ,γ(ξ) · ‖ f − s f ‖ψ. (2.76)

Stated in this way, it is clear that a close investigation of Pψ,γ, and especially
the choice of coefficients, ought to provide an insight into the accuracy of the SBF
interpolation method. In particular, in [WuS93], Wu and Schaback solve the linearly
constrained optimisation problem of choosing the optimal coefficients {γ∗

i }N
i=1 which

minimises (2.75) subject to (2.70). In view of this we define

Pψ,γ∗(ξ) = min
{ ∥∥∥

N∑

i=0

γiδξi

∥∥∥
ψ∗ : {γi }N

i=1 satisfy condition (2.70)
}
, (2.77)

to be the optimal power function for ψ at ξ.

We remark that the error bound (2.76) may be viewed as a specific instance of the
following more general result for functions with vanishing conditions.

Proposition 2.2 Let ψ ∈ CSPDm(Sd−1) and Ξ = {ξi }N
i=1 denote a set of distinct

points on Sd−1. For any ξ ∈ Sd−1 we have the following bound

| f (ξ)| ≤ Pψ,γ∗(ξ) · ‖ f ‖ψ, where f ∈ Hψ and f (ξi ) = 0, i = 1, . . . , N .

(2.78)

Proof Let {γi }N
i=1 denote a choice of real coefficients satisfying (2.70). Set ξ0 = ξ

and γ0 = −1, then, for any f ∈ Hψ that satisfies f (ξi ) = 0, i = 1, . . . , N, we
have

| f (ξ)| = |δξ( f )| =
∣∣∣

N∑

i=0

γiδξi
( f )

∣∣∣ ≤
∥∥∥

N∑

i=0

γiδξi

∥∥∥
ψ∗ · ‖ f ‖ψ,

taking the infimum over all such choices of {γi }N
i=1 completes the proof. �
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2.5 Pointwise Error Estimate I

Letψ ∈ CSPDm(Sd−1)denote anSBFwhoseLegendre coefficients decay like (2.48),
i.e., whose native Hilbert space Hψ is equivalent to the Sobolev space Ws(Sd−1),

s = (d − 1 + α)/2. In this section we aim to estimate the uniform rate at which the
interpolant converges to its target function as the interpolation points fill the surface
of the sphere. To measure the relative density of the point set Ξ in Sd−1 we use the
so-called mesh norm

h := h(Ξ, Sd−1) := sup
η∈Sd−1

min{g(η, ξi ) = cos−1(ηT ξi ) : ξi ∈ Ξ}, (2.79)

and our specific aim is then to estimate the value p such

| f (ξ) − s f (ξ)| = O(h p), for all f ∈ Hψ and ξ ∈ Sd−1. (2.80)

The strategy we employ is again borrowed from RBF theory where we attempt
to bound the optimal power function of ψ by a function of h. We begin our analysis
with the following remarkable result from [JSW99].

Lemma 2.2 (Jetter, Stöckler and Ward) Let Ξ = {ξi }N
i=1 denote a set of distinct

data points on Sd−1 with mesh-norm h, and let K be the positive integer satisfying

1

K + 1
≤ 2h ≤ 1

K
. (2.81)

Let ξ ∈ Sd−1, then there exist coefficients {γi }N
i=1 such that

Y(ξ) =
N∑

i=1

γiY(ξi ), for all Y ∈ HK (Sd−1), (2.82)

and such that
N∑

i=1

|γi | ≤ 2. (2.83)

This result has played an important role in advancing our understanding of the
SBF interpolationmethod. Specifically, it enables us to deliver our first error estimate.

Theorem 2.7 Let ψ ∈ CSPDm(Sd−1) be an SBF whose Legendre coefficients decay
like (2.48) for some α > 0. Let Ξ = {ξi }N

i=1 denote a set distinct data points on
Sd−1 whose mesh-norm h satisfies (2.81) for some positive integer K ≥ m − 1. Let
f ∈ Hψ and s f denote its unique SBF interpolant. Then, for any ξ ∈ Sd−1, we have

| f (ξ) − s f (ξ)| ≤ C · h
α
2 ‖ f − s f ‖ψ, (2.84)

where C is a positive constant independent of h.
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Proof The assumption K ≥ m − 1 allows us to deduce that the coefficients {γi }N
i=1

from Lemma 2.2 also satisfy condition (2.70), and so, in view of (2.77), they can be
used to bound the optimal power function of ψ :

Pψ,γ∗(ξ) ≤
∥∥∥

N∑

i=0

γiδξi

∥∥∥
ψ∗ = sup

f ∈Hψ : ‖ f ‖ψ≤1

∣∣∣(
N∑

i=0

γiδξi
)( f )

∣∣∣

= sup
f ∈Hψ : ‖ f ‖ψ≤1

∣∣∣
N∑

i=0

γi

∑

k>K

Nk,d∑

�=1

f̂k,�Yk,�(ξi )

∣∣∣

≤ sup
f ∈Hψ : ‖ f ‖ψ≤1

N∑

i=0

|γi | ·
∣∣∣
∑

k>K

Nk,d∑

�=1

f̂k,�Yk,�(ξi )

∣∣∣

≤ sup
f ∈Hψ : ‖ f ‖ψ≤1

(
N∑

i=0

|γi |
)

· max
i∈{0,...,N}

∣∣∣
∑

k>K

Nk,d∑

�=1

f̂k,�Yk,�(ξi )

∣∣∣

≤ 3 · sup
f ∈Hψ : ‖ f ‖ψ≤1

max
i∈{0,...,N} |

∑

k>K

Nk,d∑

�=1

f̂k,�Yk,�(ξi )|. (2.85)

To bound the maximum value we can employ the Cauchy-Schwarz inequality
together with the addition formula (1.24). Specifically, for any ξ ∈ Sd−1, we have

⎛

⎝
∑

k>K

Nk,d∑

�=1

f̂k,�Yk,�(ξ)

⎞

⎠
2

≤
⎛

⎝
∑

k>K

Nk,d∑

�=1

f̂ 2
k,�

ψ̂k

⎞

⎠ ·
⎛

⎝
∑

k>K

Nk,d∑

�=1

ψ̂kY2
k,�(ξ)

⎞

⎠

≤ ‖ f ‖2ψ ·
∑

k>K

Nk,d ψ̂k

ωd−1
≤
∑

k>K

Nk,d ψ̂k

ωd−1
=
∑

k>K

aψ(k),

where, by (1.33), the aψ(k) denotes the kth Legendre expansion coefficient of ψ. We
can continue bounding from above by using (2.48) and (2.81) to give

∑

k>K

aψ(k) ≤ Ca

∑

k>K

1

(1 + k)α+1 ≤ Ca

∞∫

K

dx

(1 + x)α+1

= Ca

α
· 1

(1 + K)α
≤ C · hα, where C = 2αCa

α
. (2.86)

http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1
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Now, linking (2.85) and (2.86) together gives

Pψ,γ∗(ξ) ≤ C · hα/2, ξ ∈ Sd−1.

Thus, for any ξ ∈ Sd−1, we can use (2.76) to deduce that

| f (ξ) − s f (ξ)| ≤ C · hα/2 · ‖ f − s f ‖ψ, for all f ∈ Hψ,

where C is a positive constant independent of h. �

2.6 Pointwise Error Estimate II

In this sectionwewill examine a similar but local approach to bounding the pointwise
interpolation error. This development was initiated by Golitschek and Light [GL01]
and later refined in [M01]. As usual the basic idea is to bound the optimal power
function of ψ at ξ ∈ Sd−1; however, the new approach shows that this can be done
by using only those data points ξi ∈ Ξ which lie within a certain neighbourhood of
ξ. This is in contrast to Theorem 2.7 where every location in Ξ is used to bound the
power function.

In our previous result we have used the mesh-norm h to measure the relative
density of a set of data points Ξ = {ξi }N

i=1 in Sd−1. Geometrically speaking, h
represents the radius of the largest spherical cap (open geodesic ball) which can be
placed on Sd−1 without covering any ξi . In [GL01], von Golitschek and Light use
the height hd of the maximal spherical cap as an alternative mesh-norm; that is, they
define hd to be the smallest number such that

inf
η∈Sd−1

max{ηT ξi : ξi ∈ Ξ} > 1 − hd , (2.87)

is satisfied. We shall call hd the “dot product” mesh norm ofΞ.Using some elemen-
tary trigonometry we can show that hd = 2 sin2(h/2). Furthermore, if h ∈ (0, 2π/3)
then we can apply the small angle result for sin(h/2) to give

h2

8
≤ hd ≤ h2

2
(2.88)

that is, hd is equivalent to h2. The idea of using the dot product as an alternative
measure of distance will prove to be a useful one.

Definition 2.12 (Dot product neighbourhood) For every ξ ∈ Sd−1 we define an
associated a dot product distance function

dξ : Sd−1 → [−1, 1], given by dξ(η) = ξT η.
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Furthermore, we can define a dot product neighbourhood of ξ by

N(ξ, rd) = {η ∈ Sd−1 : dξ(η) > 1 − rd}, where rd ∈ (0, 1). (2.89)

Proposition 2.3 Let ξ ∈ Sd−1 be a fixed point and let rd ∈ (0, 1), then

η1,η2 ∈ N(ξ, rd) =⇒ 1 − ηT
1η2 < 4rd .

Proof For any η1,η2 ∈ Sd−1 we have the following useful relation

2 − 2ηT
1η2 = ‖η1 − η2‖2.

Furthermore, if η1,η2 ∈ N(ξ, rd) then we also know that

2 − 2ηT
i ξ < 2rd , i ∈ {1, 2},

which allows us to deduce that
√
2 − 2ηT

1η2 = ‖(η1 − ξ) + (ξ − η2)‖ ≤ ‖η1 − ξ‖ + ‖ξ − η2‖

=
√
2 − 2ηT

1 ξ +
√
2 − 2ηT

2 ξ < 2
√
2rd ,

and the proof is complete. �

The following crucial result is quoted from [GL01].

Lemma 2.3 (von Golitschek and Light) Let ξ ∈ Sd−1 and let J be a fixed positive
integer. Let Ξ = {ξ1, . . . , ξN } denote a set of N distinct data points on Sd−1 with
dot product mesh-norm hd . There is a number h0 ∈ (0, 1) such that if hd < h0, then
there exist coefficients {γi }N

i=1 such that

1. Y(ξ) =
N∑

i=1
γiY(ξi ), for all Y ∈ HJ−1(Sd−1),

2. there exists a constant K1 (independent of ξ and hd) such that if ξi /∈ N(ξ, K1hd),

then γi = 0, and

3. there exists a constant K2 (independent of ξ and hd) such that
N∑

i=1
|γi | ≤ K2.

It is pertinent to mention that Lemma 2.3 is similar in spirit to Lemma 2.2. To
illustrate this, we provide the following useful comparison list.

C1. For a sufficiently dense set of data-points, both Lemmata supply coefficients

{γi }N
i=1 which satisfy condition (2.70) and, in both cases, the quantity

N∑
i=1

|γi |
is suitably bounded.



54 2 The Spherical Basis Function Method

C2. For a given ξ ∈ Sd−1, the coefficients {γi }N
i=1 arising from Lemma 2.3 are said

to be “local” since γi �= 0 if and only if ξi ∈ N(ξ, K1hd).

C3. Lemma 2.3 is stated for a “fixed” positive integer J, whereas Lemma 2.2 is
stated for an integer K which depends upon the mesh-norm h of Ξ. In both
cases the result for m, and hence condition (2.70), follows if we assume that
m − 1 ≤ max{K, J}.

The main aim, again, is to provide a suitable bound on the optimal power function
of ψ and hence, using (2.76), deduce error estimate results for SBF interpolation.
However, in contrast to the previous attempt, we will pursue a different approach
which relies heavily on Taylor series analysis; for the convenience of the reader we
briefly compose the key arguments.

� Analysis via Taylor series. Let ψ ∈ CSPDm−1(Sd−1) be an SBF whose
Legendre coefficients decay like (2.48) for some α > 0. Let Ψ denote the zonal
kernel induced by ψ. For a fixed ξ ∈ Sd−1,we consider the function Fξ : Sd−1 → R

given by Fξ(η) = Ψ (ξ,η). In particular, we can write

Fξ(η) =
∞∑

k=m

akPk,d(ξT η). (2.90)

Our aim is to investigate the behaviour ofFξ in a local neighbourhoodN(ξ, rd) and, in
view of (2.90), we can do this by studying the local behaviour of the d−dimensional
Legendre polynomials. Specifically, we choose a suitable positive integer J and
consider the Taylor expansion

Pk,d(t) =
J−1∑

r=0

P(r)
k,d(1)

r ! (1 − t)r + RJ(k, t), t ∈ (1 − rd , 1], (2.91)

where the remainder term RJ(k, t) satisfies

|RJ(k, t)| ≤ (1 − t)J

J! sup
t∈(1−r,1]

|P(J)
k,d(t)|, for k ≥ J.

For all d ≥ 2, we can use (1.26) together with Markov’s inequality for algebraic
polynomials ([DL93, Chap.4], to deduce that

|RJ(k, t)| ≤ (1 − t)J

J! k2J , for k ≥ J. (2.92)

As a final remark we note that, for each d ≥ 2, the polynomials {Pk,d}r
k=0 form

a basis for the space of univariate polynomials on [−1, 1] of degree at most r. In
particular, for a given r ∈ N0, there exists real coefficients {αrs}r

s=0 such that

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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(1 − t)r =
r∑

s=0

αrsPs,d(t). (2.93)

With this preparation we are now in position to prove our next error estimate.

Theorem 2.8 Let ψ ∈ CSPDm(Sd−1) be an SBF whose Legendre coefficients decay
like (2.48) for some α > 0. Let Ξ = {ξi }N

i=1 denote a set distinct points on Sd−1

with mesh-norm h. Set

J = max

{
m,

�α + 1�
2

}
, (2.94)

where �x� denotes the smallest integer ≥ x, and assume that the dot product mesh-
norm hd (2.87) of Ξ satisfies

1

(K + 1)2
≤ hd <

1

K2 , (2.95)

where K > J is a positive integer. Let f ∈ Hψ and s f denote its unique SBF
interpolant. Then, for any ξ ∈ Sd−1, we have

| f (ξ) − s f (ξ)| ≤ C · hα/2 · ‖ f − s f ‖ψ, (2.96)

where C is a positive constant independent of h.

Proof The choice of integer J (2.94), allows us to evoke Lemma 2.3 to provide, for
any ξ ∈ Sd−1, a neighbourhood N(ξ, K1hd) and a set of local coefficients {γi }i∈I�oc ,
where I�oc := {i : ξi ∈ Ξ ∩ N(ξ, K1hd)}, which satisfy condition (2.70). Further-
more, these coefficients can be used to define a local power function which, in turn,
provides a bound on the optimal power function of ψ :

P2
ψ,γ∗(ξ) ≤ P2

ψ,�oc(ξ) =
∑

i, j∈I�oc∪{0}
γiγ jψ(ξT

i ξ j ) =
∞∑

k=m

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d (ξT

i ξ j ),

where we have employed the Legendre expansion of ψ. For our investigation it is
useful to split the above sum into two parts; that is, we shall consider

K∑

k=m

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j )

︸ ︷︷ ︸
sum 1

+
∞∑

k=K+1

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j )

︸ ︷︷ ︸
sum 2

.

(2.97)
We begin by considering “sum 1” of (2.97). In particular, substituting in the Taylor
expansion (2.91) of the Legendre polynomials yields

K∑

k=m

aψ(k)

⎛

⎝
J−1∑

r=0

P(r)
k,d (1)

r !
∑

i, j∈I�oc∪{0}
γi γ j (1 − ξT

i ξ j )
r +

∑

i, j∈I�oc∪{0}
γi γ j RJ (k, ξT

i ξ j )

⎞

⎠ .
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We continue our development by analysing the first sum appearing in the brackets.
Using identity (2.93) followed by an application of addition formula (1.24), gives

∑

i, j∈I�oc∪{0}
γiγ j (1 − ξT

i ξ j )
r =

r∑

s=0

αrs

∑

i, j∈I�oc∪{0}
γiγ j Ps,d(t)

=
r∑

s=0

αrs
ωd−1

Ns,d

∑

i, j∈I�oc∪{0}
γiγ j

Ns,d∑

�=0

Ys,�(ξi )Yk,�(ξ j )

=
r∑

s=0

αrs
ωd−1

Ns,d

Ns,d∑

�=0

⎛

⎝
∑

i∈I�oc∪{0}
γiYs,�(ξi )

⎞

⎠
2

.

This expression vanishes for 0 ≤ r ≤ J − 1, by part (i) of Lemma 2.3, and thus, the
bound reduces to

K∑

k=m

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j RJ(k, ξT

i ξ j ) =
K∑

k=J

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j RJ(k, ξT

i ξ j ),

since the remainder RJ(k, t) is zero for k ≤ J − 1.
Now, for any i, j ∈ I�oc we have ξi , ξ j ∈ N(ξ, K1hd), and so, by Proposition 2.3,

it follows that (1 − ξT
i ξ j )

J < (4K1hd)J . We can use this fact, together with (2.92),
to deduce

K∑

k=J

aψ(k)
∑

i, j∈I�oc∪{0}
γi γ j RJ (k, ξT

i ξ j ) ≤
K∑

k=J

aψ(k)
∑

i, j∈I�oc∪{0}
|γi γ j |

(1 − ξT
i ξ j )

J

J! k2J

≤
K∑

k=J

aψ(k)
∑

i, j∈I�oc∪{0}
|γiγ j | (4K1hd)J

J! k2J

=
K∑

k=J

aψ(k)

⎛

⎝
∑

i∈I�oc∪{0}
|γi |
⎞

⎠
2

(4K1hd)J

J! k2J .

We can now apply part (i i i) of Lemma 2.3 to give

K∑

k=m

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j ) ≤ (1+ K2)
2 (4K1hd)J

J!
K∑

k=J

aψ(k)k2J . (2.98)

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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Using the assumed decay rate of the Legendre coefficients we can write

K∑

k=J

aψ(k)k2J ≤ Ca

K∑

k=J

k2J

(1 + k)α+1 ≤ Ca

K∑

k=J

k2J−(α+1).

The definition of J guarantees that the function x �→ x2J−(α+1) is non-decreasing
on [0,∞) and hence we have the bound

K∑

k=J

aψ(k)k2J ≤ Ca

∫ K

J
x2J−(α+1)dx ≤ Ca · K2J−α ≤ Ca · h

−J+ α
2

d , (2.99)

where the final inequality follows from (2.95). Linking (2.98) and (2.99) together
gives us our final bound for “sum 1” that is,

K∑

k=m

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j ) ≤ Csum1 · h
α
2
d , (2.100)

where

Csum1 = Ca · (1 + K2)
2 · (4K1)

J

J! (2.101)

is independent of hd .

We now turn to “sum 2” of (2.97) which is easier to bound. Specifically, we use
(1.26) followed by part (i i i) of Lemma 2.3 to yield

∞∑

k=K+1

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j ) ≤
∞∑

k=K+1

aψ(k)
∑

i, j∈I�oc∪{0}
|γiγ j |

=
∞∑

k=K+1

aψ(k)

⎛

⎝
∑

i∈I�oc∪{0}
|γi |
⎞

⎠
2

≤ (K2 + 1)2
∞∑

k=K+1

aψ(k). (2.102)

Again we use the decay of the Legendre coefficients together (2.95) to deduce that

∞∑

k=K+1

aψ(k) ≤ Ca

∞∑

k=K+1

1

(1 + k)α+1 ≤ Ca

∫ ∞

K

dx

(1 + x)α+1

= Ca

α

1

(K + 1)α
≤ Ca

α
· h

α
2
d . (2.103)

http://dx.doi.org/10.1007/978-3-319-17939-1_1
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Linking (2.102) and (2.103) together provides the following bound for “sum 2”

∞∑

k=K+1

aψ(k)
∑

i, j∈I�oc∪{0}
γiγ j Pk,d(ξT

i ξ j ) ≤ Csum2 · h
α
2
d , (2.104)

where

Csum2 = (1 + K2)
2 · Ca

α
, (2.105)

is independent of hd .

Weare now in a position to provide amoremeaningful bound on the optimal power
function. In particular, in view of (2.100), (2.104) and the mesh-norm equivalence
relation (2.88), we choose to set C = 2−α/2 max{Csum1, Csum2} and deduce

P2
ψ,γ∗(ξ) ≤ P2

ψ,�oc(ξ) ≤ max{Csum1, Csum2} · h
α
2
d ≤ C · hα, (2.106)

the proof is then completed by employing this bound in (2.76). �
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