Chapter 2
The Spherical Basis Function Method

2.1 Introduction

Since the early 1990s the radial basis function (RBF) method has become a well
established tool for reconstructing functions and for solving partial differential equa-
tions based on data prescribed at scattered locations throughout a domain in R¢. The
method is extremely flexible, it has good approximation properties and does not
become more elaborate as the space dimension increases. In the past decade or so
approximation on spheres has become an area of growing interest with applications
to physical geodesy, potential theory, geophysics, oceanography and meteorology.
As more satellites are launched into space, the acquisition of global data is becoming
more widespread and the demand for spherical data processing and solving prob-
lems of a global nature is increasing. In this chapter we will introduce the spherical
basis function (SBF) method; the spherical analogue of the famous RBF method.
In particular, we will use tools from Chap. 1 to construct a theoretical framework
within which we can analyse the accuracy of the method. Specifically, we present
two point-wise error bounds which both rely on the remarkable fact that, provided
the data locations fill up the sphere sufficiently well, then it is possible to annihi-
late spherical harmonics of a certain order by using only a linear combination of
point evaluations. The first error bound we encounter uses a global annihilation, i.e.,
every data location is used in the linear combination of point evaluations. In this case
the relationship between the density of the data locations and the order of spherical
harmonics to be annihilated is explicit and this is crucial to the error analysis that
follows. The second error bound delivers a result of the same strength but uses a local
annihilation of spherical harmonics and from this perspective one may consider this
to be a stronger result. A drawback of this local approach is that, unlike the global
case, there is no explicit connection between the density of the points and the degree
of spherical harmonics to be annihilated and, as a result, much more additional work
is required to establish the final result. The payoff for putting in this extra effort will
be realized in the next chapter where the local error bound plays a key role in making
significant improvements in the error bounds.
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30 2 The Spherical Basis Function Method

2.2 A Brief History of the RBF Method

There already exists several excellent textbooks on the subject of radial basis func-
tions [Fass07, Wen05, Buh03]. In view of this, the aim of this section is simply to
establish the idea behind the method and also to highlight some of the crucial ideas
and pioneering discoveries. This will set the scene for the rest of the chapter where
we will demonstrate how these ideas can be recast onto the spherical setting.

The problem of interpolating data measured at scattered locations in Euclidean
space R? (d > 1) arises in many areas of science and engineering. The importance of
this problem is reflected in the literature, where a large number of different methods
for its solution have been proposed. The problem itself is stated as follows.

Problem 1 GivenasetX = {x; }?]:1 of distinct data points in R? and a target function

f :RY — R, find a function s : RY — R that satisfies the interpolation conditions
s(xi) = f(xi), 1<i=<N. (2.1

The radial basis function (RBF) approach proposes a solution of the form

N
s(X) = D Ajdd(x.x;)), for \j€R, 1<j<N, 2.2)
j=1

where d(x,y) = ||x —y|| is usually the Euclidean metric and ¢ : [0, co) — Ris the
RBF. Applying the interpolation conditions (2.1) provides the linear system

ApX = f, where Ay e RVN 1 Ay = d(d(xi,x;)), 1<i,j<N. (23)

Thus a unique RBF interpolant exists if and only if the interpolation matrix A is
non-singular. One of the most attractive features of the RBF method is the fact that
a unique interpolant is often guaranteed under rather mild conditions on the data
points. In particular, if we choose our basis function to be any one of the following

o(r) = e (Gaussian),
_ 2 2\—4 . . .
or)=(@"+c )1 2 (inverse multiquadric), F>0. ¢>0. 2.4)
o(r) = (r* + ¢*)2 (multiquadric),
or)=r (linear),

then uniqueness is guaranteed provided that the N data points (N > 2) are distinct,
which is as simple a condition as one could wish for.
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Two other commonly used RBFs are

#(r) =r?logr (thin plate spline),

0. 2.5
o(r) = I (cubic), "= (23)

Now, in contrast to the previous candidates (2.4), there is no guarantee that the
resulting interpolation matrix Ay will be non-singular. Indeed, for the thin plate
spline we can choose X2, . . ., Xy to be any distinct points on the unit sphere centred
at X1, in which case the first row and column of A4 consists entirely of zeros, and
hence is singular. In such cases, it is usual to add to s a polynomial of degree k > 1,
and so consider an interpolant of the form

N M
SO0 = D N x))) + D pjpj(x), (2.6)

j=1 Jj=1

where M = dim [Ty (R%) and {p1, ..., pm} is a basis for [Ty (R?). If we then impose
the usual interpolation conditions

N M
Do Niddxi X))+ D pipjxi) = f(x), 1<i<N, 2.7)

j=1 j=1

we observe that the addition of the polynomial introduces an extra M degrees of
freedom. These are usually taken up by insisting that the RBF coefficients satisfy the
following moment conditions:

N
S Ajpix) =0, 1<i<M, 2.8)
j=1

or equivalently, we have the linear system

(70) G2) - () e

where A, is as in (2.3) and where P € RV*M

is given by
Pijj=pjx;), forl<i<Nand1<j=<M. (2.10)

Thus a unique augmented RBF interpolant exists if and only if the augmented inter-
polation matrix (2.9) is non-singular.
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One of the earliest examples of an RBF interpolant dates back to the late 1960s
when the cubic spline method was developed for interpolating a univariate function
f i [x1, xy] — R at distinct data points x; < --- < xp. The resulting interpolant s
is composed of cubic polynomial pieces, that are joined so that the second derivative
of s is continuous. A good account of the cubic spline method is given in [Pow81]
where it is shown that in order to guarantee the uniqueness of the interpolant, it is
necessary to impose suitable end conditions at x; and xy. One useful condition is
to set

s"(x1) = 5" (xn) =0, (2.11)

in which case s is called the “natural” cubic-spline and has the form

N
s() =D Njlx —x;P +a+bx, xeR. (2.12)
j=1

We remark that the end conditions (2.11) are equivalent to the moment conditions
> Aj = 2 Ajx; = 0 which appear in (2.8), and thus we may regard the natural
cubic-spline method as a special case of univariate RBF interpolation with ¢(r) = r3.
The natural cubic spline is a good starting point because the method itself has several
interesting theoretical properties. In particular, if we consider the following function
space

H={(f cL®):|f|:= (/R |f”<x>|2dx)2 < o0}, (2.13)

then |-| is a semi-norm with null space I7; (R) making A a semi-Hilbert space. Further,
itis well known that (2.12) is the unique solution to the following variational problem

minimise {|s| : s € H and s(x;) = f(x;) 1 <i <N}. (2.14)

For a detailed account of the many aspects of spline interpolation see [dB78].

The next appearance of an RBF came in 1971 when Rolland Hardy, a geoscientist,
first suggested the use of the multiquadric basis function (see (2.4)) to interpolate
scattered data in the plane. The discovery of this function arose from a purely heuristic
approach to a problem in topography and the success of the resulting interpolation
scheme, for solving 2D contour and mapping problems, is reported in [Ha71]. This
appears to be the first application of the RBF method beyond the univariate setting.

The next landmark discovery occurred in 1977 when Jean Duchon [Du77]
approached the data fitting problem from the variational perspective. Duchon was
one of the first mathematicians to generalise the notion of a natural cubic spline to
higher dimensions and, to illustrate his contribution, consider a non-negative integer
m > d /2 which indexes the following space of functions

Hpa={f € Ly(RY) : D*f € Ly(RY), for all || = m}). (2.15)
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This space is then equipped with the semi-norm
1/2

|
Fna = X5 [ 10 i) 2.16)

la|=m

with null space ITy_ (RY).

We note that, for d = 1 and m = 2, this space is the same as H above. More
generally, H,, 4 is closely related to the Sobolev space W™ (R?) and shares many of
its properties. In particular, since m > d /2, we know from the Sobolev embedding
theorem that H,, 4 is a semi-Hilbert space of continuous functions. Thus, following
the cubic spline approach, for any f € H,, 4 the following variational problem was
considered:

minimise{|s|, 4 : 5 € Hy g and s(x;) = f(x;) 1 <i <N}. 2.17)

Using sophisticated techniques from distribution theory Duchon showed that the
solution to (2.17), which he termed the D" (R?) —spline, has the form of an augmented
RBF (2.6), where

(—=)"r2m=dlogr (with n =m — %), if d is even,

2.18
(=Dmr2m=d  (withn =m — 451y, if d is odd, (@18

o(r) == [

and where the augmented polynomial is of degree n — 1. We note again that ford = 1
and m = 2 we recover the natural cubic spline.

A year later Duchon [Du78] presented a study of the accuracy of D (R?)—spline
interpolation. To set the scene, it is assumed that we wish to interpolate a function
f € Hy, 4 over aset of distinct data points X = {x; }?/:1 , located in a smooth, bounded
domain £2 C R?. The density of the set X C £2 is measured by using the mesh-norm

h:=h(X, £2) := sup min |y — x;||, (2.19)
yeR Xi€

and our aim is to investigate how the D" (R?)—spline interpolant s £ approximates
f as the data points become dense in §2, that is, as h — 0.

Definition 2.1 (The Duchon strategy) The Duchon strategy for delivering error
bounds for RBF interpolation consists of the following steps:

1. construct a scalable quasi-uniform mesh for the domain, that is a collection of
points on §2 so that it can be covered by a union of small open balls B; (centred
at each of the mesh points) that have uniformly bounded overlap:

2. estimate the local interpolation error using data prescribed on each B;;

3. by way of a suitable extension operator create the gluing result which combines
the local error estimates to provide a final estimate for £2.
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The justification for each of the three steps above is provided in [Du78], where
geometric arguments and techniques from Sobolev space theory play a prominent
role. Moreover, employing the strategy yields error bounds of the form

_d d
Isf = fllL,c2) = OW""277), pel2 00l (2.20)

In 1982, Richard Franke [F82] published the results of his survey on scattered
data interpolation methods for R2. In his report, over 30 different methods are tested
including Hardy’s multiquadric and Duchon’s thin plate spline. Each method was
assessed over a range of criterion including accuracy, ease of implementation and
visual smoothness. Of all the methods tested Hardy’s multiquadric scheme performed
the best and Duchon’s thin plate spline was also highly rated. These findings were
particularly intriguing since, at the time, there was no mathematical basis to justify
the use of multiquadric interpolation. In view of this Franke proposed the conjecture
that the interpolation matrix (2.3) corresponding to the multiquadric basis function
is non-singular.

The invertibility of the interpolation matrices associated with the common RBFs
was proven in two stages. First, Schoenberg [Sch38] in 1938 proved the unique
solvability of (2.3) for a small class of RBFs. Then, in 1986, Micchelli [Mi86]
extended Schoenberg’s result and established a larger class of RBFs for which (2.9)
is uniquely solvable. In particular, Micchelli showed how this extension could be used
to settle Franke’s conjecture on the multiquadric basis function. For the convenience
of the reader, we present a brief account of the Schoenberg-Micchelli theory.

Definition 2.2 (Positive Definite Functions) A continuous function ¢ : [0, c0) — R
is said to be positive definite (¢ € PD) if, for any d > 1 and any set X = {x; }?]:1 of
distinct points in RY, the quadratic form

N N
ATAN =D N \o(d(x;. x0)) 2.21)

j=1k=1

is non-negative for all A\ € RV Furthermore, if (2.21) is positive for all A € RV\ {0}
then we say that ¢ is strictly positive definite (¢ € SPD).

In addition, we consider the following interesting class of functions first studied
by Bernstein in the early 1930s.

Definition 2.3 (Completely Monotone Functions) A continuous function f : [0, c0)
— R is said to be completely monotone on (0, co) if f € C*(0, co) and

(=D Oy =0, forall r>0and [=0,1,2.... (2.22)

In [Sch38] Schoenberg provided the following important theorem
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Theorem 2.1 (Schoenberg) A continuous function ¢ : [0, 00) — R, belongs to PD
if and only if the function f = ¢(/-) is completely monotone on (0, 00). Moreover,
if, in addition, f is not a constant then ¢ belongs to SPD.

Using Schoenberg’s theorem we can immediately deduce that the Gaussian and
inverse multiquadric basis functions belong to SPD. This observation establishes the
solvability of the RBF method for these cases.

Following on from Schoenberg’s work we consider the following, more general,
class of functions.

Definition 2.4 (Conditionally Positive Definite Functions) A continuous function
¢ : [0,00) — R is said to be conditionally positive definite of order m € N
(¢ € CPD(m)) if, for any d > 1 and any set X = {x;}"_, of distinct points in R,
the quadratic form (2.21) is non-negative on the subspace

N
Vi1 ={AeRY: D> Aip(xi) =0 for all p e M, 1(RY)}. (2.23)

i=1
Furthermore, if (2.21) is positive for all A € V,,_1\{0} then we say that ¢ is condi-
tionally strictly positive definite of order m (¢ € CSPD(m)).

For augmented RBF interpolation (2.6) it is usual to insist that the geometry of
the locations satisfy the following mild property.

Definition 2.5 (Unisolvency) Let m be a positive integer and let M=dim IT,,_;
(]Rd). A set of distinct points {xi, ..., Xy} is said to be unisolvent with respect
to Hm_l(Rd) if the only element of Hm_l(]Rd) to vanish at each x; is the zero
polynomial.

The following theorem establishes a unique solution to the augmented interpola-
tion problem (2.9) in the case where ¢ € CSPD(m).

Theorem 2.2 Let ¢ € CSPD(m) and X = {x1,...,xn} denote a set of N distinct
data points in R? such that

(i) N =M =dim 1,1 (R,
(ii) X contains a subset that is unisolvent with respect to Il _1 (Rd).

Then the augmented interpolation problem (2.9) has a unique solution.

Proof 1t is sufficient to show that, if A € RV and p € RM satisfy the homogeneous

linear system
Aps PY(AY _ (0
(56) (2)= ) @2t

then they are zero vectors. We note that PT X = 0 implies that A € V,,_1, and thus
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0 =X"(AX+ Pu) = ATA N + (u" (PTA)T = ATA N

Since A, induces a positive definite form on V,,_1, this implies that A = 0.
Let{p1, ..., pu} denote the basis of IT,,_ (R?) used to define the matrix P (2.10)
and let p*(x) = 21]\_/1:1 1jpj(x). Now, since A = 0 we have that

Pp=(p*x1),..., p*xy)T =0,
and so, using the unisolvency of X, we conclude that = 0. O

Inspired by Schoenberg’s characterisation theorem, Micchelli proved the follow-
ing important extension.

Theorem 2.3 (Micchelli) A continuous function ¢ : [0,00) — R, belongs to
CPD(m) if the function f = ¢(y/-) is such that (—1)" £ is completely monotone
on (0, 00). Moreover; if, in addition, f € C"'[0, 0c0) and is not a polynomial of
degree at most m, then ¢ belongs to CSPD(m).

We note in passing that, as Micchelli suspected, the converse of this theorem is also
true and this was settled in 1993 by Guo et al. [GHS93]. As it stands, Micchelli’s
theorem serves as an important source of applicable RBFs. The popular choices are
the generalised Duchon splines

o(r) = (=D Xlogr e CSPD(k+1), keN,

o(r) = (=20 eCSPDUAI+ 1), G>0ad GgN,
and the generalised multiquadrics
o(r) = (=D G2+ N e csPD(1B]+1), B>0and B ¢N, 226)

o) =+’ € SPD, B <0.
In addition, Micchelli also proved the following important theorem concerning
CSPD(1) functions.

Theorem 2.4 Let —¢ be CSPD(1) with ¢$(0) > O then the corresponding interpo-
lation matrix Ay given by (2.3) is non-singular.

Proof By definition the matrix A, induces a positive definite form on the N — 1
dimensional hyperplane, given by

N
Vo=(A=0...an" eRY: D"\ =0}

i=1

Thus Ay has at least N — 1 positive eigenvalues. However trace(44) < 0, and so the
remaining eigenvalue must therefore be negative. (]
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In view of Franke’s numerical findings this theorem is particularly important, for
it establishes the solvability of Hardy’s original multiquadric interpolation scheme.
Indeed, Micchelli’s overall contribution has encouraged a large communities of math-
ematicians to study the properties of RBFs.

One of the most important of the post-Micchelli discoveries is the so-called vari-
ational approach, i.e., that every RBF interpolant can be viewed as the solution to
a minimal norm interpolation problem in some reproducing kernel Hilbert space
(commonly called the Native space). This approach, which can be viewed as a gen-
eralization of Duchon’s work, was developed by Madych and Nelson in the early
19805 and finally published in 1990 [MN90]. Over the years many researchers have
studied the original Madych-Nelson approach and, as a result, a sound theoretical
framework for RBF interpolation has emerged where error estimates can easily be
delivered. To give a flavour of the Madych-Nelson theory, we consider the following
definition.

Definition 2.6 Let @ € C(RY) be of polynomial growth, i.e., there exists k € No,
such that |®@ (x)| = O(||x|[¥) as ||x|| = oco. A continuous function @ : R4\{0} — R
is said to be the generalised Fourier transform of @ if there exists m € Ny, such that

/ @ (X)J(X)dx = / ? (w)y(w)dw (2.27)
Rd Rd

holds for all functions v from the subspace
Sm_1(RY) = {y € S(RY) : / v(x) p(x)dx = 0 for all p € M,_1(RY)}.
Rd

Furthermore, the minimal choice of m is called the order of .

We now quote a specialisation of a result due to Iske, which can be found in [195].

Theorem 2.5 Let ¢ € C[0, 00) and assume that @ (x) = ¢(||x|)) is of polynomial
growth, then the following are equivalent

(i) ¢ € CPD(m);

(ii) @ possesses a generalised Fourier transform ) of order m which is non-
negative and not identically zero on R4\ {0}.

It turns out that the generalised Fourier transforms of the most commonly used
basis functions ¢ € CSPD(m) are positive on R4\ {0} [SWO1]. This fact allows us
to define the so-called native space by

Ho=1{f € LL@®"): |f|§:/ T )If(w)lzdw < o0}, (2.28)

where | - |4 is a semi-norm whose kernel is IT,,_ | (R%).
For a given o € CSPD(m), the nature of H is largely determined by the decay
rate of @ (w). Specifically, if @ (w) has a polynomial rate of decay then H, is closely
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related to a certain Sobolev space. On the other hand, if D (w) decays exponentially
quickly then H, is a smaller space of C*° functions. Madych and Nelson were the
first to illustrate the importance of the native spaces. Specifically, they showed that
given any f € Hy, the solution to the following Duchon-like variational problem

minimise{|s|s : s € Hy and s(x;) = f(x;) 1 <i <N}, (2.29)

is precisely the unique ¢—based RBF interpolant.

Micchelli’s non-singularity results and the Madych-Nelson variational framework
are the fundamental starting points from which a whole host of theoretical and prac-
tical advances have been made; the reader is encouraged to consult the textbooks
highlighted earlier to discover more.

All of the candidate RBFs that we have encountered so far are globally sup-
ported. When implementing algorithms on large data sets the global support can be
a drawback; the associated dense interpolation matrices can be poorly conditioned
and also the evaluation of resulting interpolants can be expensive. In the mid 1990s
several researchers set about overcoming these issues by constructing tailor made
strictly positive definite RBFs that have compact support, for these examples the
interpolation matrices are sparse and better conditioned and the evaluation of their
interpolants is simpler as it requires relatively few evaluations of the RBF. Unlike
their global counterparts the compactly supported RBFs are dimension dependent so
Michelli’s theorem does not apply. Instead we appeal to a famous and more general
result of Bochner which tells us that a candidate RBF ¢ is strictly positive definite on
R4 (where d is fixed) whenever the d —dimensional Fourier transform of its induced
kernel @ (x) = ¢(||x|)) (x € RY) is positive, i.e., whenever

5(w) >0, for all we RY.
One of the most commonly used families of compactly supported RBFs examples
are the Wendland functions (named after their discoverer). In order to introduce these

functions we begin by investigating the following family of parameterised basis
functions defined by:

. 1 ! N 2 2\t
Ppa(r) :m/r (1 -0kt (t —r) dr for re[0,1], (2.30)

where > —1, a > 0. It well known (see [Gne02]) thatif « = k € {0, 1,2, ...}
then the function ¢,, x generates a strictly positive definite function on R4 if and only
if > d%l + k. In [Wen95] Wendland considers the case where

d
p=10:= bJHH’ 2.31)
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i.e., the smallest allowable integer that still allows positive definiteness. In practical
cases it is usual to introduce a support parameter € > 0 and define

€ a—1 1
¢”()—m/(1—t)‘Z (7= @?)" ar for re|:0,z:|.

It is known that the functions (bff}{ are polynomial of degree 2k +£¢on0 <r < 1/e,
and furthermore it is shown in [Hub12] that they are given explicitly by

k+1%) S 2i
(i + 5) (er)

© —1 kzka[ :

P r(r) = (=1) > r(i —k+1)@+2k—2i)020)!

i=0
L5

(2.32)

(k+i)!(€r)2k+2i+l
B g; i!(€—2i—l)!(2k+2i+l)!:|'

By construction each Wendland function induces aradial kernel on the appropriate
RY whose d—dimensional Fourier transform is positive. Furthermore, it can also be
shown that there exists positive constants C; and C; such that

e2k+1 2k+1

€

4’?;1(‘0) = O @R

The Madych-Nelson variational theory applies equally to the more general dimen-
sion dependent RBFs. In particular, in the case of the Wendland functions we note
that the polynomial decay rates of their Fourier transforms (2.33) ensures that their
corresponding Native spaces (2.28) are norm equivalent to certain Sobolev spaces.

2.3 The Spherical Basis Function Method

The global spherical interpolation problem is as follows:

Problem 2 Given a set & = {El} —; of distinct data points on $9=1 and a target
function f : $¢~! — R, find a function s : §9~! — R that satisfies the interpolation
conditions

s(€)=f&), 1<i<N. (2.34)

In this setting we can consider specializing the RBF method to the sphere by
considering an interpolant of the form

N
() =D (g€, &), &es (2.35)

j=1
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where g denotes the geodesic metric on §¢~!

g&m) =cos ' €y, & nesi. (2.36)

and where ¢ : [0, 7] — R is a continuous function which we will call the spherical
basis function (SBF). Applying the interpolation conditions (2.34) provides the linear
system

Ay = f, where Ay e RNV 0 Ay =(g(€.€). 1<i.j<N. (237

Thus a unique SBF interpolant exists if and only if the interpolation matrix Ay is
non-singular.

Just as polynomial reproduction is important in Euclidean data fitting problems it
is also common, in the spherical setting, that one requires that an interpolant should
reproduce the low order spherical harmonics. Following the RBF approach we can
conveniently add to s (2.35) a spherical harmonic of order k, which gives the form

N M
s@) =D (g &)+ D BYiE), &es, (2.38)
j=1

j=1

where M = dim H; (S9~1), and {1, ..., V) is a basis for Hy (S¢~1).
The interpolation conditions (2.34) now provide N linear equations in N + M
unknowns, and so, following RBF theory, it is usual to impose M linear constraints

N
D€ =0, 1<i<M, (2.39)

J=1

which leads to the augmented linear system

(5) (3)- () a0

where Ay isasin (2.37) and ¥ € RV*M 5 given by
Yij=Yj;), wherel <i <N, and1<j <M. (2.41)

Thus a unique augmented SBF interpolant exists if and only if the augmented inter-
polation matrix in (2.40) is non-singular. In order to make a transfer of the RBF
machinery to the spherical setting we require the spherical analogue of Michelli’s
discovery, i.e., a notion and characterization of positive and conditionally positive
definite functions on spheres. Recasting from the Euclidean setting we have the
following definitions.
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Definition 2.7 (SPD functions on spheres) A continuous function ¢ : [0, 7] — R
is said to be strictly positive definite on gd-1 ) € SPD(Sd_l)) if, for any set
g={ }?/:1 of distinct points on $7~!, the quadratic form

N N

Ay =" ajart(g(€;€0) (2.42)

j=lk=1

is positive on RV\ {0}.

Definition 2.8 (CSPD functions on spheres) Let m be a positive integer. A contin-
uous function ¢ : [0, 7] — R is said to be conditionally strictly positive definite of
order m on $4~! (1) € CSPD,, (8%~ 1)) if, for any set & = {§; }?’:1 of distinct points
on S9-1 the quadratic form (2.42) is positive on the subspace

N
Wi—1 = {a € RM\{0 : Za,y(si) =0 for all Y € Hpu_1(S97H}).  (2.43)

i=1

Following the story of the RBF method it is clear that any ¢» € SPD(S4~!) func-
tion can be used to provide a unique interpolant of the form (2.35). Furthermore, it
is straightforward to show that ) € CSPD,,(S¢~") can be used to provide a unique
augmented interpolant (2.38) provided that the following spherical unisolvency con-
dition holds:

Definition 2.9 (Unisolvency on the sphere) Let m be a positive integer and let M =
dim H,,—1(S91). A set of distinct points & = {§; }?’i | is said to be unisolvent with
respect to H,,—1(S?1) if the only element of H,,_; (S?=1) to vanish at each & is
the zero spherical harmonic.

So far we have a method in theory. The following partial characterization theorem
is the result which allows us to practically implement this method and to perform
in depth analysis of its properties, it can be viewed as a modification/extension of
Schoenberg’s pioneering work from the early 1940s.

Theorem 2.6 If ) € CSPD,,(S?~"), then it has the following form

o
$(0) = ay(k)Pra(cos ), (2.44)
k=0
such that
o
ay(k) =0 for k=m and ) ay(k) < oo, (2.45)
k=0

where {Py 4} denote the d—dimensional Legendre polynomials (1.24).
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The above theorem gives rise to several remarks and observations. Firstly, given
that cos(g(€, n)) = &1 we may view our SBF 1 as a function of the inner product.
Secondly, we note that SPD functions are contained in Theorem 2.6 by consider-
ing the case m = 0; in view of this we shall take ¢ € CSPDy(S%~1) to mean
) € SPD(SY~1). Thirdly, and finally, we remark that a complete characterization of
functions of the form (2.44) satisfying (2.45) has been established for d > 3 by Chen
et al. [CMS03] who show that, in this case, a necessary and sufficient condition is
that the set {k € No\{0, 1, ..., m — 1} : ar > 0} must contain infinitely many odd
and infinitely many even integers. The case of d = 2 remains an open problem. For
our purposes we will only consider SBFs whose Legendre coefficients satisfy the
sufficient condition that they are all positive for k > m.

We now turn to developing a variational setting for SBF interpolants. This begins
with an application of the addition formula (1.24) which shows that for every 1) €
SCPD,,(5%~1) we can associate a zonal kernel ¥ (€, n) = w(an) which has a
unique spherical Fourier expansion, given by

oo Nkd

WE ) =D >tk @), (2.46)

k=0 (=1

where ({ﬁ\k)kzo denote the spherical Fourier coefficients (1.33) of . We say that the
coefficients decay at a polynomial rate as k — oo if there exist positive constants
A1, Az and « independent of k such that

AL+ k)~ < < Ay(1+ k)91 k>, (2.47)

otherwise they decay exponentially quickly. We remark that if (2.47) holds for the
spherical Fourier coefficients then, using formula (1.33) together with (1.19), we can
deduce that there exists constant .4 and A; (again independent of k) such that

A+ 07 < g, < AL +)70FY a0 >0 k>m. (2.48)

With this insight we define the so-called Native space for the SBF 1) as follows.

Definition 2.10 (Native space of the SBF) Let 1) € SCPD,,(S9~") and let {¢t }i=m
denote the spherical Fourier coefficients of its associated zonal kernel (2.46). We
define the native space of ¥ to be

S & | feel
Hopm = {f € L2 |f15,,=D.D =k (2.49)
k=m =1 ¥k

where | - |, 1S a (semi-)norm induced via the (semi-)inner product
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00 Nkd o

o gim = 3> Lot Kg" 3 (2.50)

k=m £=1

We note that this definition is analogous to the RBF native spaces (2.28) where
) (w),w € R?is acounterpart to ({/;k)kzo and f(w) corresponds to f7( ¢. The Sobolev
spaces W* (8?=1), s > 0 (see Definition 1.54) are a special instance of native spaces
generated by the kernel whose Fourier coefficients are 1 = (1 + Ax)™*. One can
easily show that there exists constants A; and A; such that

AI+E)™ <1+ )7 <A1 +0)7, k=0,

and, in view of this, we can see that the native space of an SBF ¢ € SPD(S?~1) for
which (1/Jk) k>0 (the Fourier coefficients of its induced kernel) decay at a polynomial
rate (2.47) is norm equivalent to the Sobolev space W* (S?~ 1), s = (d —1+a)/2. The
Sobolev embedding theorem guarantees that this is a space of continuous functions
or, in the language of Chap. 1, the pair (Hw,o, ¢, ~)w,0) is a RKHS.

When m > 0 the native space is a semi-Hilbert space with the spherical harmonics
Hpm—1(5?~1) being the null space of the induced semi-norm. In this case, in order
to make use of the Hilbert space theory as presented in Chap. 1, it is common to
modify (f, g)y,m so that it becomes a genuine inner product; we do this by defining
an appropriate inner product for the null space and add this to the semi-inner product.
One common approachis to selectaset{£, . .., &;;} whichis unisolvent with respect
to Hyn—1(S¢~1) and use this to define the following inner product

M
(o Oy ysi-1y = D FEDGED. frgeHma(ST™H. (@251

i=1
We now propose the following modified native space.

Definition 2.11 (Native Hilbert space of the SBF) Let i) € SCPDy, (89=1) and let
{1k }k>m denote the spherical Fourier coefficients of its associated zonal kernel (2.46).
We define the native Hilbert space of i to be

0o Ned o

Hy = {1 € Lo : IIfIIf/)—Z FEN)+>2> 'f“' <o} @52

k=m (=1
where || - || is the norm induced via the inner product
(fs 9 = (s Dy sa-1) + (s Dopm- (2.53)

We remark that as all norms are equivalent on finite dimensional spaces, we
can use the same arguments as above (for the m = 0 case) to deduce that if the
spherical Fourier coefficients exhibit the polynomial decay rate (2.47) then Hy is
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norm equivalent to W* (8471, withs = (d — 1 + @) /2. This means both spaces
coincide as sets and there exist constants 0 < k., < K4, such that

kegll - llws(sa-1y < I - Iy < Keg |l - s (sa-1y- (2.54)

When the coefficients decay exponentially quickly then Hy, is a much smaller
subspace of infinitely differentiable functions.

With this preparation we now investigate the following variational problem:

Proposition 2.1 (Optimal interpolation in the native space) Let & = {§; }f.V: | denote
a set of distinct points on S\ and ) € CSPD,,(S"1). Assume further that
{&1,...&y) C & is unisolvent with respect to Hm_l(Sdfl), and let (Hq/,, (-, '>v‘))
denote the native Hilbert space of 1 (2.52). Then, for any f € Hy, the solution to

the variational problem:
minimise{ Islly : subject to s € My and s(&) = £(&). & € :] (2.55)

is the unique v—based SBF interpolant to f at &.

Proof Given that (H@,, (-, '>1/)) is a Hilbert function space we know, from Sect. 1.3,
that the solution has the form

N
sp(€) =D MK, &), (2.56)

k=1

where K is the reproducing kernel of H;. Thus, we need to compute K. We begin this
process by defining a projection operator from H,, onto H,,—1(S?~1). Specifically
we use the subset of = that is unisolvent with respect to H,,—| (8?=1) to define the
unique “Lagrange” basis {371, e ?M} for H,,—1(S9™1) satisfying

- 1, if i =},
i(§;) = 2.
Vi€)) [0’ Wi (2.57)
The “Lagrange” projection P : H, — Hp—1(S971) is given by
M o~
(PFIE =D Vi€ f (&), where £ e8!, (2.58)

J=1

This operator maps each f € H,, to its unique spherical harmonic interpolant based
on {§j }/J‘.”:l. In particular, (PY)(&) = V(&) forall Y € Hop—1(5971), and we have
the following decomposition

Hy = Hy @ Hypo1(S471), (2.59)
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where
Hy=(I—-P)Hy={f €Hy: f(&)=0 for j=1,...,M}. (2.60)

We note that (Flw, (-, Jy,m) and (M, (891, (., )H,,_, (sd-1)) are complementary
orthogonal subspaces of (Hy, (-, -),) in the sense of Proposition 1.1. The reproducing
kernel Ky of Hy, was computed in [S99], and we quote

Ki(€,m = U—=P)l —P)pg¥ (& n, (2.61)

where ¥ is the zonal kernel associated with v, and where the subscript denotes the
variable to which the operator applies. Furthermore, it is easily verified that

M
Ka(&.m) = D V(& Vi (m) (2.62)

k=1

is the reproducing kernel of H,,_1(S?~!). Using Proposition 1.1, the reproducing
kernel of (Hy, (-, -)y) is given by K = K| + Kp, that is,

M M

KEm=wE&n— Y Vim¥EE)+ (—735(1 — P& m+ D 37k<£>37k(n)) :
j=1 k=1

We observe that the term in the brackets, as a function of &, is simply an element of

Hom—1(S4~1) whose coefficients depend upon 7, we denote this as Yy, (§) and rewrite

the reproducing kernel as

M
KEm) =¥ En)— D VP EE)+ Vy©). (2.63)

j=1

It is known that K belongs to SPD(Sd_l) (see [S99, Sect.6]) and thus (2.55) has a
unique solution of the form

N N M N
&) =D MKE &) =D M (we, &)= D V€W (. s,->> + DNV, (9.

k=1 k=1 j=1 i=1
The final sum in the above expression is an element of H,,_| (Sd_l) which we can
express in terms of the Lagrange basis. This observation, together with a little further

manipulation, allows us to write

N M
RGED I AR DED RIS (2.64)

j=1 j=1


http://dx.doi.org/10.1007/978-3-319-17939-1_1
http://dx.doi.org/10.1007/978-3-319-17939-1_1

46 2 The Spherical Basis Function Method

where
N ~

Aj— 2 NYi€), if 1<j<M,
k=1

Ajs it M+1<j<N.

aj = (2.65)

It is easy to check that the «; satisfy the SBF side conditions given by (2.39),
specifically let Y € H,, (891 then

N N

N
a;VE) =D \VE) -
1 k

M
AN D Vi EDVE)
1 j=1

j=

j=1
N N

=D NVED = D MPYIE) =0.
j=1

k=1
Thus, 5 7* is precisely the unique 1)—based SBF interpolant to f at 5.

We close this section with a result that provides two important properties of the
optimal SBF interpolants.

Lemma 2.1 Foragiven f € Hy lets s denote its optimal ) —based SBF interpolant,
then we have

() ||f_sf||12p =(fif=splp WD) Nf=spllpy =W flly  GiD) lsplly < 11y
Proof To prove (i) consider
Lf = splly = (o f =sp)o— (s [ = sp)u.

Using (2.56) and the reproducing kernel property, we have

N N
(. f = sy = QMK &, f—sphy =D M(f —s7) (&) =0,
k=1

k=1 =

and thus (i) follows. To prove (ii) and (iii) we use (i) to provide:

IsplIZ, + ILf = sellf = lsglls + (f f —s7)
P 1)

= lIsg 3, + 115 = (fosp)e = 117,

where the final equality comes from (s¢, f — s¢)y = 0; inequalities (ii) and (iii)
follow from this. O
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2.4 Framework for Pointwise Error Estimates

The undoubted appeal of the variational approach to SBF interpolation is that it
provides a physical interpretation of the construction process. The surfaces generated
minimize a certain energy measure (bending energy in the case of cubic and thin plate
splines) and this gives a reassuring sense that they will be sensibly shaped and well-
behaved. In addition, the variational approach also provides a rather nice framework
for delivering error bounds and the following development show how easily it is to
access such bounds. We begin by choosing ¢ € CSPD,,(S¢~!) and let s r denote the
unique ¢)—based SBF interpolant to a given target function f € H,. We observe
that the error function f — sy belongs to the Hilbert function space (Hy, | - [y,m)
(2.60) and so, for any & € §9=1 we have

Lf (&) —sp O] =&K& ), f =5 )pml,

where K; is the reproducing kernel of ﬁv given by (2.61). Applying the Cauchy-
Schwarz inequality we have

Lf (&) — 57O = K1, pml [ = splpm = K1 (& Npmll [ —splly.  (2.66)

The factor |K{ (&, )|y, m is called the Lagrange power function for v, and we write
Ly(&) = IK1(&, -)|y,m- The square of this function can be computed explicitly since

K1(€, )5 = K1(€, ), K1 (€, )ym = Ki1(§, &) = L3(6).
Thus, employing (2.61), we have
M M . . M .
L3&) =D > Vi©Vi@©vE €) —2> Vi©wE € + (1), (2.67)
i=1 j=1 i=1

where {jﬂ, R ?M} is the Lagrange basis for H,,—1 (Sd_l). This ensures spherical
harmonic reproduction via

N
V&) =D Vi©OVE), forall Y eHyu (57, (2.68)

i=1
In particular, in view of (2.66) we have
&) = 5@ <Ly@©If —sslly, €5 (2.69)

The Lagrange power function clearly provides a bound on the pointwise interpolation
error. However, it only makes use of information based on the subset of = that is
unisolvent with respect to H,,, _1 (S~ ). Intuitively, we would expect an improvement



48 2 The Spherical Basis Function Method

if the function were allowed to depend upon the whole of &' In view of this, we fix

€ € S9! and generalize (2.68) by selecting N real coefficients {7; }f\]: | so that
N
V) =D V&), forallyeHy, 154", (2.70)
i=1
In addition, we define a bounded linear functional on H, by
N
Ag(f) = (5 — D 7ibe)(f). forall f e Hy. 2.71)
i=1
Using Lemma 1.1, the Riesz representor of A¢ in Hy, is given by
N
kag() =K(E ) — D %K, (2.72)

i=1

where K is the reproducing kernel of H,;, see (2.63). Now, applying the same analysis
as before we find

&) —sp O =1Ac(f —sp)l = [kag, [ =sp)ol < lkagllpllf —sglly.

We can evoke, again, the Riesz representation theorem, to deduce that

N
keaglly = Il Agllye = lI5e — D ~ide, llye (2.73)
i=1
where || - ||+ denotes the usual dual space norm given by
1Ty = sup{IT f1: I flly = 1} (2.74)

The factor [[k 4 [l 1s said to be a power function for v at €, and we write Py, ,(§) =
kA llyp- The square of this function can be computed explicitly since

lkaclly, = (kag kaghy = Aglkay) = Py, (&),
indeed this calculation was made in [LLRS99] and, again, we quote

1/2

N N N
Pyr(@) = [ DD i€l &) —2 D i (€€ + (1)

i=1 j=I i=1
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To improve the presentation, we set £, = & and 79 = —1, this enables us to write
the power function in the more compact form

12
Pyo(8) = ZZ%%M&% )| = Hiwéﬁ, Hw*' (2.75)
i=0

i=0 j=0

For a given £ € S?~!, each selection of coefficients {’y,} _ satisfying (2.70),
gives rise to its own power function Py, -, which, in turn, provides the following
error bound

1) =57 =Py - I f —splly. (2.76)

Stated in this way, it is clear that a close investigation of P -, and especially
the choice of coefficients, ought to provide an insight into the accuracy of the SBF
interpolation method. In particular, in [WuS93], Wu and Schaback solve the linearly

constrained optimisation problem of choosing the optimal coefficients {; }N | which
minimises (2.75) subject to (2.70). In view of this we define
Py (&) = mln{ ”Z’y, ¢ H {fyl ;= satisfy condition (2. 70)} 2.77)

to be the optimal power function for ¢ at .
We remark that the error bound (2.76) may be viewed as a specific instance of the
following more general result for functions with vanishing conditions.

Proposition 2.2 Let 1) € CSPD,,(S"") and & = {&; }?/:1 denote a set of distinct
points on 1. For any & € S~ we have the following bound

[ [N < Py (&) - I flly, where f € Hyand f(§) =0, i=1,...,N.
(2.78)

Proof Let {~; }ﬁ\’: | denote a choice of real coefficients satisfying (2.70). Set £, = &
and vp = —1, then, for any f € H, that satisfies f(§;) =0,i =1,...,N, we
have

Nl

F©] = ()] = }iw&i(f)\ < Hi%% .
i=0 i=0

taking the infimum over all such choices of {'y,} ; completes the proof. ]
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2.5 Pointwise Error Estimate 1

Lety € CSPD,,(S%~!) denote an SBF whose Legendre coefficients decay like (2.48),
i.e., whose native Hilbert space H, is equivalent to the Sobolev space W* (891,
s = (d — 1 4+ «)/2. In this section we aim to estimate the uniform rate at which the
interpolant converges to its target function as the interpolation points fill the surface
of the sphere. To measure the relative density of the point set & in S~! we use the
so-called mesh norm

h:=h(E, 8" = sup_ min{g(n, &) =cos ' (n'&) : & € B}, (2.79)

nesi—

and our specific aim is then to estimate the value p such
[f(&) —sr(&)]=0MhP), forall feHy, and £ € sé=1, (2.80)
The strategy we employ is again borrowed from RBF theory where we attempt

to bound the optimal power function of ¢ by a function of . We begin our analysis
with the following remarkable result from [JSW99].

Lemma 2.2 (Jetter, Stockler and Ward) Let & = {§; }ﬁ\’: | denote a set of distinct
data points on S~ with mesh-norm h, and let K be the positive integer satisfying

1 1
<2h < —. (2.81)
K+1 K
Let &€ € S, then there exist coefficients {~; }ﬁvzl such that
N
VE) = > V&), forall ¥ e Hg(s), (2.82)
i=1
and such that
N
> il =2 (2.83)
i=1

This result has played an important role in advancing our understanding of the
SBF interpolation method. Specifically, it enables us to deliver our first error estimate.

Theorem 2.7 Letv) € CSPD,,(S%~1) be an SBF whose Legendre coefficients decay
like (2.48) for some o > 0. Let & = {§; }ﬁ\;] denote a set distinct data points on
S9=1 whose mesh-norm h satisfies (2.81) for some positive integer K > m — 1. Let
f € Hy and s ; denote its unique SBF interpolant. Then, for any § € S9=1 we have

1F &) —sp @ <C-h3|f —sflly, (2.84)

where C is a positive constant independent of h.
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Proof The assumption K > m — 1 allows us to deduce that the coefficients {~; }?’:1
from Lemma 2.2 also satisfy condition (2.70), and so, in view of (2.77), they can be
used to bound the optimal power function of ¢ :

N N
P@b,’y*(&) = H 'Vi(s&i ) sup ( %551)(f)‘
Z Y feH I f <l ;
Ni.,d
‘Z% Z Z fk Zyk E(ﬁl
fEHz) Hf“1 <l k>K (=1
Ni.d
sup Z il - ‘Z > FeeVee(€)
fEHL lfllyp =1 i=0 k>K =1
N de
< sup | max
.f'eHU:|f|u<1(§ ) el MR S
Ni.d
< 3. sup | S e Vi e (€)1 (2.85)
FEM: I fllp<] iel0.ev) k>ZK€Z;‘

To bound the maximum value we can employ the Cauchy-Schwarz inequality
together with the addition formula (1.24). Specifically, for any &€ € S?~!, we have

2

Ni.a Nia fk , Ni.d R
DD RV ®] =D Z DD BVE©
k>K =1 k>K =1 k>K (=1

Nk,d{/';k Nk,d{/')\k
<IF15- > < D == =Dy,
k>K Wd—1 k>K Wd—1 k>K

where, by (1.33), the a,, (k) denotes the k' " Legendre expansion coefficient of 1. We
can continue bounding from above by using (2.48) and (2.81) to give

Za¢(k) = CHZW - /(1+x)a+1

k>K

C 1 ZOIC
=“. — < C-h® where C= =
a (1+K)0°

(2.86)
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Now, linking (2.85) and (2.86) together gives

Py (&) <C-h*?, gesi™h
Thus, for any & € $9-1 " we can use (2.76) to deduce that

1fE) —sp@I<C-h2 | f —sflly, forall feMHy,

where C is a positive constant independent of /. (]

2.6 Pointwise Error Estimate 11

In this section we will examine a similar but local approach to bounding the pointwise
interpolation error. This development was initiated by Golitschek and Light [GLO1]
and later refined in [MO1]. As usual the basic idea is to bound the optimal power
function of ¢ at & € S9~!; however, the new approach shows that this can be done
by using only those data points §; € & which lie within a certain neighbourhood of
&. This is in contrast to Theorem 2.7 where every location in & is used to bound the
power function.

In our previous result we have used the mesh-norm % to measure the relative
density of a set of data points & = {5,-}?’:1 in $9~!. Geometrically speaking, &
represents the radius of the largest spherical cap (open geodesic ball) which can be
placed on §9~! without covering any ;. In [GLO1], von Golitschek and Light use
the height /4 of the maximal spherical cap as an alternative mesh-norm; that is, they
define 4 to be the smallest number such that

inf max{n’¢; & € B} > 1— hy, (2.87)
nesd—l

is satisfied. We shall call /4 the “dot product” mesh norm of &. Using some elemen-
tary trigonometry we can show that iy = 2 sin?(h/2). Furthermore, if 1 € (0, 27/3)
then we can apply the small angle result for sin(%/2) to give

h? h?
< hy < — 2.88
) (2.88)

that is, kg is equivalent to 4. The idea of using the dot product as an alternative
measure of distance will prove to be a useful one.

Definition 2.12 (Dot product neighbourhood) For every € € S4~! we define an
associated a dot product distance function

dg : S*" = [=1, 1], given by de(n) =¢&"n.
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Furthermore, we can define a dot product neighbourhood of £ by

N, rg)={ne sa-1. de(n) > 1 —rq}, where rg € (0, 1). (2.89)
Proposition 2.3 Ler & € S~ be a fixed point and let ry € (0, 1), then

N, MmeNE rg) = 1— 77{"72 < 4ry.
Proof For any 177, 1, € S9~! we have the following useful relation
2-2mimy = Iy —mall*.
Furthermore, if 7, 1, € N(&, r4) then we also know that
2-2nl€ <2rg, i€{l,2},

which allows us to deduce that

V2=2nim=1m — &+ E—m)l < ln — &I+ 1€ —nal

= J2—mle+ 2 —omle <22,

and the proof is complete. (]

The following crucial result is quoted from [GLO1].

Lemma 2.3 (von Golitschek and Light) Ler € € S¢~! and let J be a fixed positive
integer. Let & = {£1, ..., &y} denote a set of N distinct data points on SA=1 yith
dot product mesh-norm hq. There is a number hy € (0, 1) such that if hg < ho, then
there exist coefficients {7; }f/: | such that

1. V(&) = Zw@) forally € Hy_1(8471),

2. there exlsts a constant K1 (independent of § and hg) such that if §; ¢ N(&, K1ha),
then v; = 0, and
N
3. there exists a constant Ky (independent of € and hg) such that > |vi| < Ka.
i=1

It is pertinent to mention that Lemma 2.3 is similar in spirit to Lemma 2.2. To
illustrate this, we provide the following useful comparison list.

C1. For a sufficiently dense set of data-points, both Lemmata supply coefficients
N

{vi }f\’: | Which satisfy condition (2.70) and, in both cases, the quantity > |v;|
i=1

is suitably bounded.
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C2. Foragiven & € S¢~!, the coefficients {; }ﬁvzl arising from Lemma 2.3 are said
to be “local” since v; # O if and only if §; € N(&, K1hg).

C3. Lemma 2.3 is stated for a “fixed” positive integer J, whereas Lemma 2.2 is
stated for an integer K which depends upon the mesh-norm 4 of Z. In both
cases the result for m, and hence condition (2.70), follows if we assume that
m — 1 < max{K, J}.

The main aim, again, is to provide a suitable bound on the optimal power function
of ¢ and hence, using (2.76), deduce error estimate results for SBF interpolation.
However, in contrast to the previous attempt, we will pursue a different approach
which relies heavily on Taylor series analysis; for the convenience of the reader we
briefly compose the key arguments.

o Analysis via Taylor series. Let ) € CSPD,,_1(S%") be an SBF whose
Legendre coefficients decay like (2.48) for some o > 0. Let ¥ denote the zonal
kernel induced by ¢. For a fixed £ € S9!, we consider the function F ¢ §4-1 5 R
given by Fe¢(n) = ¥ (&, n). In particular, we can write

Fe(m) =D arPra€ n). (2.90)

k=m

Our aim is to investigate the behaviour of F¢ in alocal neighbourhood N (§, r4) and, in
view of (2.90), we can do this by studying the local behaviour of the d —dimensional
Legendre polynomials. Specifically, we choose a suitable positive integer J and
consider the Taylor expansion

J—1 P]((rgj(l)
Pra(t) = z ’r‘ (I=0"+Ryk,1), te—rygll, (2.91)

r=0

where the remainder term R;(k, t) satisfies

(1-n’

|Rj(k, 1)| <
JU rea=nn

Py, for k>,

For all d > 2, we can use (1.26) together with Markov’s inequality for algebraic
polynomials ([DL93, Chap.4], to deduce that

1—1)
IR (k, 1)] < %kﬂ, for k > J. (2.92)

As a final remark we note that, for each d > 2, the polynomials {P 4};_, form
a basis for the space of univariate polynomials on [—1, 1] of degree at most r. In
particular, for a given r € Ny, there exists real coefficients {c};_ such that
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r

A =0"=>" arPsalt). (2.93)
i

With this preparation we are now in position to prove our next error estimate.

Theorem 2.8 Let 1) € CSPD,,(S?~) be an SBF whose Legendre coefficients decay
like (2.48) for some o« > 0. Let & = {§; }?’:1 denote a set distinct points on S~
with mesh-norm h. Set

[a+ 1] ]

2

J — max Hm (2.94)

where [x7 denotes the smallest integer > x, and assume that the dot product mesh-
norm hq (2.87) of & satisfies

1 1

where K > J is a positive integer. Let f € Hy and sy denote its unique SBF
interpolant. Then, for any & € S4~1, we have

1f(€) —sr@©] <C-h |1 f —spllys (2.96)

where C is a positive constant independent of h.

Proof The choice of integer J (2.94), allows us to evoke Lemma 2.3 to provide, for
any £ € §d-1 a nelghbourhood N (&, K1hg) and a set of local coefficients {v;}icr,,,.,
where Iy, :_ {i 1 & € ENN(E, Kihg)}, which satisfy condition (2.70). Further-
more, these coefficients can be used to define a local power function which, in turn,
provides a bound on the optimal power function of v :

o0
Pl o€ <P &= D yv@Elen=> ayk) D viviPraEl€).
i,j€lpocU{0} k=m i,j€lpocU{0}

where we have employed the Legendre expansion of . For our investigation it is
useful to split the above sum into two parts; that is, we shall consider

K 00
Dlaptk) DL vviPea@lEN+ D ap) D vivPral€l€).
k= i, j€ltocU{0} k=K+1 i, jeltocU{0}
sum 1 sum?2

(2.97)
We begin by considering “sum 17 of (2.97). In particular, substituting in the Taylor
expansion (2.91) of the Legendre polynomials yields

J—1 P(r) (1)

Zaw<k><z kd D =g+ D vw,»RJ(k,e,Tsj)).

r=0 : i, j€lgocU{0} i, j€lgocU{0}
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We continue our development by analysing the first sum appearing in the brackets.
Using identity (2.93) followed by an application of addition formula (1.24), gives

2 w0 =€) = 3 wiPea)
s=0

isjEIZucU{O} i,jEIeo(-U{O}
r Wi—1 Nr,d
=D any— 2L % 2 VeV €)
s=0 S el Ul0} =0

2
Ns.a

:Za”u;vd—_;z D> Ve
s=0 5

£=0 \i€lpU[0})

This expression vanishes for 0 < r < J — 1, by part (i) of Lemma 2.3, and thus, the
bound reduces to

K K
Doag) D Rk E €N =D apk) D iRk, E]E),

k=m i, j€liocU{0} k=J i, j€lgoc U0}

since the remainder Ry (k, t) is zero fork < J — 1.
Now, forany i, j € Iy, we have &;, £j € N(&, K1hg), and so, by Proposition 2.3,

it follows that (1 — SiTSj)J < (4K1hg)’. We can use this fact, together with (2.92),
to deduce

c T d a- 5?5)/ 2J
Dlaptky D Rk g EH) <D apty D lvjl———tk
k=J

i, j€lgocU{0) k=J i, j€lgocU{0) S
K
(4Kiha) 5,
=2 al® X bl ek
k=J i,j€lpocU{0}

2
K
(4K ha)!
=D a [ D hul) — k.
k=J

|
iGI[(,CU{O} J

We can now apply part (iii) of Lemma 2.3 to give

K K

4K hg)’
>lapk) D yiviPrale! 54;)5(1+K2>2%§ ay (kY. (2.98)
k=m

i9j€IZucU{O} k=J
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Using the assumed decay rate of the Legendre coefficients we can write

K 2J

K K

k _
2 aw(k)kl] < Ca E (l +k)a+1 < Ca § kQJ (OH—l).
k=J k=J k=J

The definition of J guarantees that the function x — x*~(@*D is non-decreasing
on [0, co) and hence we have the bound

K K «a
> ayk < ¢, / XMty < ¢, kY < ¢, ntE (2.99)
k=J I

where the final inequality follows from (2.95). Linking (2.98) and (2.99) together
gives us our final bound for “sum 1 that is,

K
Slap®) D viPra€l€)) < Coum by (2.100)
k=m i, j€lpocU{0}

where
4Ky’

Coumt = Ca - (1 +K2)” - =

(2.101)
is independent of hg.

We now turn to “sum 2” of (2.97) which is easier to bound. Specifically, we use
(1.26) followed by part (iii) of Lemma 2.3 to yield

o o0
Doapt) D wvPea@léN < D apt) D il
k=K+1 i)j €l U{0} k=K+1 i,j€lpocU{0}
2
o o0
= > ap® | D il =&+ D ayk). (2.102)
k=K+1 i €150 U{0} k=K+1

Again we use the decay of the Legendre coefficients together (2.95) to deduce that

ad ad 1 00 dx
ay (k) < C, — __<c(C P
k;—l o= ak;—l (1+ ket = a/K (1 + )]
C 1 C, ¢
- <2.n:. (2.103)

T aK+Dr T
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Linking (2.102) and (2.103) together provides the following bound for “sum 2”

o0
z a’l/)(k) Z ’Yi’Yij,d(ging) < Csum2 - hdj, (2.104)
k=K+1 i, j€lrocU{0}
where .
Coumz = (1 + K2)* - E (2.105)

is independent of /4.

We are now in a position to provide a more meaningful bound on the optimal power
function. In particular, in view of (2.100), (2.104) and the mesh-norm equivalence
relation (2.88), we choose to set C = 2~2 max{Cyum1, Csum2} and deduce

P (&) < P} 1pe(€) < max{Cyum1, Couma} - hj < C-h, (2.106)

the proof is then completed by employing this bound in (2.76). (]
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