
Chapter 2
Problem Description

This chapter describes the problem setting investigated in this book. Rather than
considering unified teams of agents designed by a single designer, we consider con-
trolling a single agent on a newly created team. The following sections describe
the problem in more depth as well as the evaluation framework used to measure
performance on this problem. In addition, this chapter investigates an approach for
describing the different dimensions of ad hoc team problems.

2.1 Ad Hoc Teamwork

Robots are becoming cheaper and more durable and are therefore being deployed
in more environments for longer periods of time. As robots continue to proliferate
in this way, many of them will encounter and interact with a variety of other kinds
of robots. In many cases, these interacting robots will share a set of common goals,
in which case it will be desirable for them to cooperate with each other. In order to
effectively perform in new environments and with changing teammates, they should
observe their teammates and adapt to achieve their shared goals. For example, after a
disaster, it is helpful to use robots to search the site and rescue survivors. However, the
robotsmay come from a variety of sources andmay not be designed to cooperate with
each other, such as in the response to the 2011 Tohoku earthquake and tsunami [2–5].
These robots were used to investigate the Fukushima Daiichi Nuclear Power Station,
clear a fishing port, and find victims trapped underwater. These robots were remotely
controlled and therefore derived any cooperation from their human operators. Robots
that operate autonomously will have to be designed for cooperation as they will not
have human operators providing cooperation. If these autonomous robots are not
pre-programmed to cooperate, they may not share information about which areas

This chapter contains material from the publication: [1].

© Springer International Publishing Switzerland 2015
S. Barrett, Making Friends on the Fly: Advances in Ad Hoc Teamwork,
Studies in Computational Intelligence 603,
DOI 10.1007/978-3-319-18069-4_2

11

12 2 Problem Description

have been searched; or worse, they may unintentionally impede their teammates’
efforts to rescue survivors. Therefore, in the future, it is desirable for robots to be
designed to observe their teammates and adapt to them, forming a cohesive team that
quickly searches the area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork settings,
agents encounter a variety of teammates and try to accomplish a shared goal. Ideally,
agents designed for ad hoc teamwork try to quickly learn about their teammates and
figure out how they should try to fit into the team. Agents that reason about ad hoc
teamwork will be robust to changes in teammates and the environment. They must
be adaptive and resourceful, learning how to accomplish the team’s goals.

In this book, the word “agent” refers to an entity that repeatedly senses its environ-
ment and takes actions that affect this environment. Robots are examples of agents, as
are software agents that bid for advertisements. As a shorthand, the terms ad hoc team
agent and ad hoc agent are used in this book to refer to an agent that reasons about
ad hoc teamwork. The environment includes the dynamics of the world the agent
interacts with, as well as defining the observations received by the agent. In addition,
the ad hoc agent will have to interact with teammate agents that are attempting to
accomplish the same goals as the ad hoc agent. This book considers ad hoc agents
that explicitly reason about the behaviors of their teammates separately from the
environment because this factoring significantly reduces the complexity of the learn-
ing problem. Previous work has largely assumed that all agents in the domain will act
as a unified team and are designed to work with their specific teammates [6–9]. On
the other hand, this book will focus on creating a single agent that cooperates with
teammates coming from a variety of sources without directly altering the behavior
of these teammates. This agent will need to adapt to these different teammates and
learn to cooperate with them on the fly.

The differences of this book frompriorwork are presented visually in Fig. 2.1.One
existing area of research into how agents should behave is reinforcement learning
(RL). Generally, RL problems revolve around a single agent learning by interacting
with its environment. In RL problems, agents receive sparse feedback about the
quality of sequences of actions. Generally, RL algorithms model other agents as
part of the environment and try to learn the best policy for the single agent given
this environment. In addition, RL algorithms usually learn from scratch in each new
environment, ignoring information coming from previous environments. However,
there is a growing body of work on applying transfer learning to RL to allow agents
to reuse prior experiences [10]. Figure2.1a shows the standard RL view of an agent
interacting with its environment. Figure2.1b represents a common multiagent view
of a unified team interacting with the environment where the agents model their
teammates as being separate from the environment. In this case, the team is designed
before being deployed to cooperate with these specific agents to interact with a fixed
environment. However, these agents rely on knowing their teammates and usually
require an explicit communication and/or coordination protocol to be shared among
the whole team [11, 12]. On the other hand, this book will focus on ad hoc teams
drawn from a set of possible teammates, where the team tackles a variety of possible
environments as shown in Fig. 2.1c. In this case, the teammates are not programmed

2.1 Ad Hoc Teamwork 13

Fig. 2.1 Foci of agent based
research. a A view of a
single agent interacting with
its environment used by
many reinforcement learning
algorithms. b A standard
view of a unified team
interacting with the
environment. c The ad hoc
teamwork setting in which
an agent cooperates with an
ad hoc team of agents to
accomplish shared goals in a
given environment where the
teammates and the
environment are each drawn
from diverse sets at the
beginning of an episode

Environment

Joint
Action

State Reward

Agent

Agent

Agent

Team

(a)

(b)

(c)

to cooperate with this specific ad hoc agent, and they must be treated as fixed and
given. Instead, this research focuses on enabling the ad hoc agent to cooperate with
a variety of teammates in a range of possible environments.

In order to be responsive to different teammates and environments, a fully general
ad hoc agent needs two general classes of capabilities: (1) the ability to learn how
to act in an environment to maximize reward, and (2) the ability to reason about
teamwork and learn about its teammates. Previous work in reinforcement learning
has largely focused on how an agent should learn about the dynamics of the environ-
ment [13, 14]. Therefore, this book will leverage such past research about (1) and
expand this work in the new direction of (2), reasoning about the team and social
knowledge required for effective teamwork.

14 2 Problem Description

Adhoc teamworkproblems canbe encountered in a variety of realworld scenarios.
As described in the example above, in search and rescue scenarios, robots from
different developers need to cooperate quickly. Furthermore, as more robots enter
society, their interactions will increase. In the near future, personal assistant robots
may need to interact with other service robots to accomplish their tasks. In addition,
the introductionof autonomous cars opens up an interesting area for adhoc teamwork:
cooperating with human drivers. Cars on the road have the shared goal of reaching
their destinations quickly and safely, and they need to cooperate with the other cars
in order to accomplish these goals. These agents have very limited observations of
the other cars, and therefore must adapt quickly.

Another area where ad hoc teamwork comes into play is when robots need
to accomplish tasks in workplace settings with human teammates. These settings
include manufacturing jobs, where new robots are now able to work more closely
with humans, and using robots in warehouses for moving products. The robots are
likely to interact with a variety of humans, and therefore need to adapt quickly to
these new teammates. While the robots and humans share a common goal, com-
munication between them is limited; humans cannot quickly and fully specify their
intentions to the level used in existingmultiagent coordination algorithms. Therefore,
it is desirable for the robots to reason about ad hoc teamwork.

Another interesting application of ad hoc teamwork is in the area of games. Game-
playing agents interact with humans and need to adapt to them with only limited
observations. These interactions are incredibly complex, and existing approaches rely
heavily on heuristic approaches with only limited adaptations [15–17]. Reasoning
about ad hoc teamwork would allow virtual agents in video games to adapt to their
human teammates.

2.2 Evaluation Framework

In an ad hoc team, agents need to be able to cooperate with a variety of previously
unseen teammates. Rather than developing protocols for coordinating an entire team,
ad hoc team research focuses on developing agents that cooperate with teammates
in the absence of such explicit protocols. Therefore, we consider a single agent
cooperatingwith teammates thatmayormaynot adapt to its behavior. In this scenario,
we can only develop algorithms for the ad hoc team agent, without having any direct
control over the other teammates.

However, directly measuring teamwork is difficult. In many cases, the only easily
measurable aspect is the overall performance of the team, which makes it difficult to
assign credit to each agent. By placing an agent on a variety of teams and measuring
those teams’ performances, we can estimate how good the agent is at teamwork.

Therefore, we introduce an algorithm that evaluates an ad hoc team agent while
considering the teammates and domains it may encounter. This framework is speci-
fied in Algorithm 2.1 and visually presented in Fig. 2.2. According to this framework,
the performance of the ad hoc team agent a depends on the distribution of problem

2.2 Evaluation Framework 15

Algorithm 2.1 Ad hoc agent evaluation
1: function Evaluate:

inputs:
a � the ad hoc agent
A � the set of possible teammate agents
D � the set of possible domains

outputs:
r
n � the average performance (reward)

params:
smin � the minimal acceptable performance of a team
n � the number of iterations

2: Initialize: r = 0
3: for i = 1 to n do
4: Sample a task d from D
5: Randomly draw a subset of agents B, from A such that E[s(B, d)] ≥ smin
6: Randomly select one agent b ∈ B
7: Create the new team C = {a} ∪ B\{b}
8: r = r + s(C, d)
9: return r

n

10: If Evaluate(a0, A, D) > Evaluate(a1, A, D) and the difference is significant, we can conclude
that a0 is a better ad hoc team agent than a1 in domain d over the set of possible teammates A.

domains D and the distribution of possible teammates A that it will cooperate with.
For the team B cooperating to execute the task d, s(B, d) is a scalar score representing
their effectiveness, where higher scores indicate better performance. The algorithm
takes a sampling approach to average the agent’s performance across a range of

Fig. 2.2 A visual
representation of the
evaluation algorithm given in
Algorithm 2.1

16 2 Problem Description

possible tasks and teammates to capture the idea that a good ad hoc team player
ought to be robust to a wide variety of teamwork scenarios. We use smin as a mini-
mum acceptable reward for the team to be evaluated, because the ad hoc team agent
may be unable to accomplish a task if its teammates are too ineffective, regardless of
its own abilities. It is mainly used to reduce the number of samples required to eval-
uate the ad hoc agents and reduces the noise in the comparisons. Metrics other than
the sum of the rewards can be used depending on the domain, such as the worst-case
performance.

2.3 Dimensions of Ad Hoc Team Problems

Section2.2 specified the framework for evaluating ad hoc team agents, but this eval-
uation depends on the specific domain and teammates that the ad hoc agent may
encounter. This section identifies three dimensions of ad hoc teamwork settings
that can be used to describe these domains and teammates. We hypothesize that
domains with similar values along these dimensions can be tackled by similar algo-
rithms, while domains with very different values will need different algorithms for
good performance. For this book, we use these dimensions as a way as classifying
problems, but a promising area for future work is to apply these dimensions to predict
which algorithms will be effective on different problems.

There are many possible ways that ad hoc team domains can vary, such as the size
of the task’s state space and the stochasticity of the domain. But, for differentiating
among the algorithms in the existing literature, we find the following three to be the
most informative.

1. Team Knowledge: Does the ad hoc agent know what its teammates’ actions will
be for a given state, before interacting with them?

2. Environment Knowledge: Does the ad hoc agent know the transition and reward
distribution given a joint action and state before interacting with the environment?

3. Reactivity of teammates: Howmuch does the ad hoc agent’s actions affect those
of its teammates?

These dimensions affect the difficulty of planning in the domain in addition to how
much an ad hoc agent needs to explore the environment and its teammates. When
an ad hoc agent has good knowledge, it can plan without considering exploration,
but when it has incomplete knowledge, it must reason about the cost and benefits of
exploration. The exploration-exploitation problem has been studied previously, but
adding in the need to explore the teammates’ behaviors and the ability to affect them
considerably alters this tradeoff. Sections2.3.1–2.3.3 provide further details about
each of these dimensions, how they are measured, and why they are important for
ad hoc teamwork.

To better illustrate the dimensions, we introduce a simple domain to evaluate
across each of the dimensions. The domain is described here, and it will be revisited
in the discussion of each dimension (Sections2.3.1–2.3.3).

2.3 Dimensions of Ad Hoc Team Problems 17

MatchActions: This domain is a typical coordination game with two agents, each
of which has two actions. If they select the same action, both receive a reward of
ri , where ri is randomly selected from {0.5, 0.75, 1.0} for i ∈ 1, 2, but fixed for the
episode. On the other hand, if both of the agents select different actions, they receive a
reward of 0. In addition, both agents can observe their teammates’ previous actions.
The ad hoc agent knows that its teammate is following one of two behaviors:

• FirstAction: the teammate always chooses the first action
• BestResponse: the teammate chooses the same action as the ad hoc agent did

previously

Therefore, the state can be represented as the previous action taken by the ad hoc
agent, called s0 if the ad hoc agent chose the first action, and s1 otherwise.

2.3.1 Team Knowledge

The ad hoc agent’s knowledge about its teammates’ behaviors gives insight into the
difficulty of planning in the domain. The agent’s knowledge can range from knowing
the complete behaviors of its teammates to knowing nothing about them. Settings
with partial information are especially relevant, because inmany realworld problems,
the exact behavior of a teammate may not be known, but some reasonable guidelines
of their behaviors exist. For example, when playing soccer, one can usually assume
that a teammate will not intentionally pass to the other team or shoot at the wrong
goal. If the behaviors are completely known, the agent can reason fully about the
team’s actions, while if the behaviors are unknown, the agent must learn about them
and adapt to find a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’ behaviors, we
compare the actions the ad hoc agent expects them to take and the ground truth ofwhat
actions they take. Specifically, we compare the expected distribution of teammate
actions to the true distribution that the teammates follow. To compute the difference
between the distributions, we use the Jensen-Shannon divergence measure, which
was chosen because it is a smoothed, symmetric variant of the popular Kullback-
Leibler divergence measure. Specifically, we denote the Jensen-Shannon divergence
by JS where

JS(P, Q) = 1

2
(KL(P, M) + KL(Q, M))

and M = 1
2 (P + Q). The Kullback-Leibler divergence is given by

KL(P, Q) =
∑

i

P(i) log
P(i)

Qi

18 2 Problem Description

When the ad hoc agent has no information about a teammate’s action, we assume
that it uses the uniform distribution to represent its actions. Therefore, we define the
knowledge measure as

K (T, P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if JS(T, P) = 0

1 − JS(T, P)

JS(T,U)
if JS(T, P) < JS(T,U)

− JS(P,U)

JS(U,Point)
otherwise

(2.1)

where T is the true distribution, P is the predicted distribution, U is the uniform
distribution, andPoint is a distributionwith allweight on one point (e.g. [1, 0, 0, . . .]).
By this definition, K (T, T) = 1, so the knowledge is complete if the ad hoc agent
knows the true distribution. K (T,U) = 0, representing when the ad hoc agent
has no knowledge and relies on the uniform distribution. Finally, if the predicted
distribution is less accurate than the uniform distribution, then K (T, P) is negative,
with a minimum value of −1. This measure captures the range [0, 1] smoothly, but
can still be used for the range [−1, 0].1 However, we generally expect the prediction
to be a higher entropy distribution than the true distribution as the ad hoc agent
ought to correctly model its uncertainty in its teammates’ behaviors rather than being
confident and wrong, which keeps the measure in the range [0, 1].

We define the ad hoc agent’s knowledge about its teammates’ behaviors as the
average over the teammates and world states, specifically

TeamK =

n∑

s=1

k∑

t=1

K (TrueActiont (s),PredActiont (s))

nk

where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate, TrueActiont (s) is
the ground truth action distribution for teammate t for state s, and PredActiont (s) is
the action distribution that the ad hoc agent predicts teammate t to select for state s.
Thus, if the ad hoc agent has better information about its teammates’ behaviors, the
distance between the distributions will be smaller and TeamK will be higher.

Let us now calculate the TeamK for the MatchActions domain. The ad hoc agent
has uniform beliefs over its teammate following either the FirstAction or BestRe-
sponse behaviors. However, the teammate is actually following the BestResponse
behavior. With these beliefs, in s0, the ad hoc agent expects that its teammate will
always chose a0, so PredActions0 = [1, 0]. In s1, the ad hoc agent thinks that the
teammate will choose a0 with probability 0.5 and a1 with probability 0.5, while it
actually chooses a1 with probability 1. Thus,

1One slight anomaly of this measure is that when T is the uniform distribution (e.g. [0.5, 0.5]), K
is either 1 when P is exactly correct at [0.5, 0.5] or negative. For all other values of T, K smoothly
spans the range [−1, 1].

2.3 Dimensions of Ad Hoc Team Problems 19

TeamK = K ([1, 0], [1, 0]) + K ([0, 1], [12 , 1
2])

2
= 0 + 1

2
= 0.5

This value indicates that the ad hoc agent is somewhat knowledgeable about its
teammate’s actions as it predicts its teammate’s actions half the time better than
random guessing.

2.3.2 Environmental Knowledge

Another informative dimension is how much knowledge the ad hoc agent has about
the effects of a joint action given a state, for example the transition and reward
functions. If the ad hoc agent has complete knowledge about the environment, it can
plan about what actions it should select more simply than if it must also consider
unknown effects of actions. However, if it has incomplete knowledge, it must explore
its actions and face the standard problem of balancing exploring the environment
versus exploiting its current knowledge.

Similarly to teammate knowledge, we formally define the ad hoc agent’s knowl-
edge about the environment’s transitions as

TransK = 1

nm

n∑

s=1

m∑

j=1

K (TrueTrans(s, j),PredTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is taken from Eq. (2.1),
TrueTrans(s, j) is the ground truth transition distribution from state s given joint
action j , and PredTrans is the ad hoc agent’s expected transition distribution. If the
agent has no information about the transitions, we assume that PredTrans(s, j) is
the uniform distribution. Intuitively, if the ad hoc agent knows more about the tran-
sition function, then the distance between TrueTrans and PredTrans will be smaller
and as a result TransK will be higher. We define the agent’s knowledge about the
environmental rewards similarly

RewardK = 1

nm

n∑

s=1

m∑

j=1

K (TrueReward(s, j),PredReward(s, j))

We define the environmental knowledge as a 2-dimensional value given by EnvK =
(TransK,RewardK).

Revisiting the MatchActions domain, the ad hoc agent knows the true transition
function, as it only depends on the ad hoc agent’s previous action, so TransK = 1.
However, it only knows that the payoff for each action is uniformly drawn from
{0.5, 0.75, 1.0} and the reward is 0 if the agents’ actions do not match. There are 8
possible cases to count over, coming from 2 states, 2 actions for the ad hoc agent,
and 2 for its teammate, but the cases fall into 2 sets based on whether the actions

20 2 Problem Description

match, each set covering 4 cases. In addition, it does not matter which value each
matched action actually takes, so we can simplify the calculation. If the agents take
the different actions, the reward is correctly known to be 0. Note that there are four
reward values possible: {0, 0.5, 0.75, 1.0}. Therefore, the knowledge in this case is
K ([1, 0, 0, 0], [1, 0, 0, 0]) = 1. On the other hand, if they take the same actions, the
ad hoc agent is unsure which of the three rewards {0.5, 0.75, 1.0} it will receive, so
the knowledge in this case is K ([0, 1, 0, 0], [0, 1

3 ,
1
3 ,

1
3]) = 0.164. This leads to

RewardK = 4 ∗ K ([1, 0, 0, 0], [1, 0, 0, 0]) + 4 ∗ K ([0, 1, 0, 0], [0, 1
3 ,

1
3 ,

1
3])

8

= 4 ∗ 1 + 4 ∗ 0.164

8
= 0.582

Thus, EnvK = (1, 0.582). As the agent observes these payoffs, it can refine its
knowledge, butwe are evaluating these properties prior to the ad hoc agent interacting
with its environment.

2.3.3 Teammate Reactivity

The optimal behavior for the ad hoc agent also depends on how much its teammates
react to its actions. If its teammates’ actions do not depend on the ad hoc agent at all,
the ad hoc agent can simply choose its actions to maximize the team reward, as if
it were a single agent problem. Considering the actions of its teammates separately
from that of the environment may still help computation by factoring the domain.
However, if the teammates’ actions depend strongly on the ad hoc agent’s actions,
the ad hoc agent’s reasoning should consider what its teammates’ reactions will be.
If the ad hoc agent is modeling its teammates and its teammates are modeling the ad
hoc agent, the problem can become recursive, as is directly addressed by Vidal and
Durfee’s Recursive Modeling Method [18].

A formal measure of the teammate reactivity needs to capture how different the
teammates’ actions will be when the ad hoc agent chooses different actions. We
measure the distancebetween the resultingdistributions of the teammate joint actions,
using the pairwise Jensen-Shannon divergence measures. However, it is desirable for
the distance to be 1 when the distributions have no overlap, so we use a normalizing
constant of log 2. Thus, we define the reactivity of a domain in state s as

Reactivity(s) = 1

m(m − 1) log 2

m∑

a=1

m∑

a′=1

JS(T (s, a), T (s, a′))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a′ ≤ m is the actions
available to the ad hoc agent, and T (s, a) is the distribution of the teammates’ joint

2.3 Dimensions of Ad Hoc Team Problems 21

actions given the state s and the ad hoc agent’s action, a. We use m − 1 in the
denominator because we exclude the case where a = a′; in the numerator, the JS
measure will be 0 in this case. For the overall reactivity of the domain, we average
over the states, resulting in Reactivity = 1

n

∑n
s=1 Reactivity(s). It is possible to

consider how an action affects the teammates’ actions further in the future, but we
restrict our focus to one step reactivity for this book. Note that all of the sums in
this formulation can be converted to integrals for continuous states or actions. This
formulation is similar to the empowerment measure used by Jung et al. [19], but we
consider the ad hoc agent’s ability to change the actions of its teammates rather than
the environment state.

Let us once again explore this dimension in the context of the MatchActions
domain.Although the ad hoc agent is unsure of its teammate’s behavior, the teammate
is truly playing the BestResponse behavior. Thus, its actions are entirely dependent
on the ad hoc agent’s actions, so Reactivity = 1. If instead the teammate played
BestResponsewith probability 9

10 andFirstActionwith probability
1
10 , thenwewould

get

Reactivity = JS([1, 0], [1
10 ,

9
10]) + JS([1

10 ,
9
10], [1, 0])

2 log 2
= 0.758

Therefore, we can conclude that the agent would still be very reactive, though not as
reactive as the BestResponse agent.

2.3.4 Applying the Dimensions

In theory, calculating the dimensions over every possible state is a promising
approach. However, as the size of the state space grows, this approach rapidly
becomes computationally ineffective. Therefore, it is desirable to approximate the
values along each dimension. Specifically, we approximate these values by randomly
sampling states and teammates and summing over these samples to calculate approx-
imate values for each of the dimensions. In addition, in continuous state spaces, the
summations in the dimension definitions become integrals in the continuous case,
but we continue to sample states in these scenarios. Furthermore, the distributions
become continuous, but the JS measure can operate over continuous distributions.
Specifically, we approximate the JS measure using Monte Carlo sampling in this
book. The domains used in this book are described in Sect. 3.2, where we discuss the
values of each domain along these dimensions.

http://dx.doi.org/10.1007/978-3-319-18069-4_3

22 2 Problem Description

2.4 Chapter Summary

This chapter introduces the type of situations this book focuses on: ad hoc team
problems. In ad hoc teams, agents must adapt to new and unknown teammates with-
out prior coordination, possibly without any explicit communication channels. In
addition, this chapter introduces the evaluation framework used to evaluate ad hoc
agents. This evaluation framework relies on sampling teams and tasks and then
replacing an agent on the team with the ad hoc agent. The resulting team performs
the task and receives a reward based on its performance, which is combined with
results with other teams and tasks. Finally, this chapter describes 3 dimensions for
categorizing ad hoc team problems that indicate which approaches are expected to be
effective. These dimensions are: (1) team knowledge, (2) environment knowledge,
and (3) team reactivity. This chapter provides the framework for how the rest of
the book investigates ad hoc teamwork scenarios. The next chapter will provide an
introduction to the algorithms that this book builds upon as well as a description of
the domains used to evaluate the proposed algorithm.

References

1. Barrett, Samuel, and Peter Stone. 2012. An analysis framework for ad hoc teamwork tasks. In
Proceedings of the eleventh international conference on autonomous agents and multiagent
systems (AAMAS), June 2012.

2. Huang, Ya-Wen, Y. Sasaki, Y. Harakawa, E.F. Fukushima, and S. Hirose. 2011. Operation of
underwater rescue Robot anchor diver III during the 2011 Tohoku earthquake and tsunami. In
OCEANS 2011, Sept 2011, 1–6.

3. Murphy, R.R., K.L. Dreger, S. Newsome, J. Rodocker, E. Steimle, T. Kimura, K. Makabe,
F. Matsuno, S. Tadokoro, and K. Kon. 2011. Use of remotely operated marine vehicles at
Minamisanriku and Rikuzentakata Japan for disaster recovery. In 2011 IEEE international
symposium on safety, security, and rescue robotics (SSRR), Nov 2011, 19–25.

4. Nagatani, K., S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi,
and Y. Hada. 2011. Redesign of rescue mobile Robot Quince. In 2011 IEEE international
symposium on safety, security, and rescue robotics (SSRR), Nov 2011, 13–18.

5. Richardson, D.K. 2011. Robots to the rescue? Engineering Technology 6(4): 52–54.
6. Decker, Keith S., and Victor R. Lesser. Designing a family of coordination algorithms. In

International conference on multi-agent systems (ICMAS), June 1995, 73–80.
7. Grosz, B., and S. Kraus. 1996. Collaborative plans for complex group actions. Artificial Intel-

ligence (AIJ) 86: 269–368.
8. Stone, Peter, andManuelaVeloso. 2000.Multiagent systems:A survey from amachine learning

perspective. Autonomous Robots 8(3): 345–383.
9. Tambe, Milind. 1997. Towards flexible teamwork. Journal of Artificial Intelligence Research

(JAIR) 7: 81–124.
10. Taylor, Matthew E., and Peter Stone. 2009. Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research (JMLR) 10(1): 1633–1685.
11. Lauer, Martin, and Martin Riedmiller. 2000. An algorithm for distributed reinforcement learn-

ing in cooperative multi-agent systems. In Proceedings of the seventeenth international con-
ference on machine learning (ICML). Morgan Kaufmann, 535–542.

References 23

12. Xuan, Ping, Victor Lesser, and Shlomo Zilberstein. 2001. Communication decisions in multi-
agent cooperation: Model and experiments. In Proceedings of the fifth international conference
on autonomous agents (AGENTS).

13. Kalyanakrishnan, Shivaram, and Peter Stone. 2011. Characterizing reinforcement learning
methods through parameterized learning problems. Machine Learning (MLJ) 84(1–2): 205–
247.

14. Sutton, Richard S., and Andrew G. Barto. 1998. Reinforcement learning: An introduction.
Cambridge: MIT Press.

15. Millington, Ian, and John Funge. 2009. Artificial intelligence for games. 2nd ed. San Francisco:
Morgan Kaufmann Publishers Inc.

16. Smed, Jouni, andHarri Hakonen. 2006.Algorithms and networking for computer games.Wiley.
17. Buckland, Mat, and Mark Collins. 2002. AI techniques for game programming. Premier Press.
18. Vidal, Jose M., and Edmund H. Durfee. 1995. Recursive agent modeling using limited ratio-

nality. In International conference on multi-agent systems (ICMAS).
19. Jung, T., D. Polani, and P. Stone. 2010. Empowerment for continuous agent-environment sys-

tems. Technical Report AI-10-03, The University of Texas at Austin Computer Science Depart-
ment.

http://www.springer.com/978-3-319-18068-7

	2 Problem Description
	2.1 Ad Hoc Teamwork
	2.2 Evaluation Framework
	2.3 Dimensions of Ad Hoc Team Problems
	2.3.1 Team Knowledge
	2.3.2 Environmental Knowledge
	2.3.3 Teammate Reactivity
	2.3.4 Applying the Dimensions

	2.4 Chapter Summary
	References

