
Chapter 2
Open-Loop Control: The Stochastic
Gradient Method

2.1 Introduction

The stochastic gradient method has a rather long history. The method foundations
were given by Robbins and Monro [129] on the one hand, and by Kiefer and
Wolfowitz [93] on the other. Later on, Polyak [120, 123] gave results about the
convergence rate. Based on this work, Dodu et al. [57] studied the optimality of
the stochastic gradient algorithm, that is, the asymptotic efficiency of the associ-
ated estimator. An important contribution by Polyak [121, 122] has been to combine
stochastic gradient method and averaging techniques in order to reach the optimal
efficiency.

Such methods have also been developed in the framework of Stochastic Approxi-
mation (SA) (see [98] for a review paper). The reference book by Kushner and Clark
[96] presents the Ordinary Differential Equation method (ODE) in the nonconvex
case, which makes it possible to perform a local convergence analysis for general
stochastic algorithms. Other reference books are those of Duflo [59, 60] and again
Kushner and Yin [97], including important topics as asymptotic normality or ways
to deal with constraints. The reader is also referred to lecture notes by Delyon [54]
giving a clear and detailed presentation of the subject.

The aim of this chapter is to detail the main methods available in order to analyze
the behavior of stochastic gradient algorithms. After a brief discussion about open-
loop optimization problems in Sect. 2.2, we present

• the general idea of stochastic gradient methods, the associated probabilistic frame-
work, as well as “classical” theorems about almost-sure convergence (Robbins-
Monro) and rate of convergence (Central Limit Theorem) in Sect. 2.3,

• a convergence result of the stochastic gradient algorithm in the framework of the
Auxiliary Problem Principle in Sect. 2.4,

• the optimality analysis of the rate of convergence, that is, the optimal efficiencypro-
vided by the use of a matrix gain, and also by the averaging technique in Sect. 2.5,

• practical considerations about the numerical implementation of stochastic gradient
algorithms in Sect. 2.6.
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28 2 Open-Loop Control: The Stochastic Gradient Method

In this chapter, we often make use of several notions and terms specific to the
optimization framework (proper function, lower semicontinuity, Lipschitz conti-
nuity, differentiability, gradient, strong convexity, strong monotonicity, coercivity,
optimality conditions…). The reader is referred to Appendix A for the associated
definitions and related properties.

2.2 Open-Loop Optimization Problems

We first discuss the notion of open-loop optimization, that is, the situation in which
the decision maker is only aware of the a priori probability distribution of the random
variables involved in the problem as mentioned in Sect. 1.2.2.

2.2.1 Problem Statement

Let (Ω,A,P) be a probability space and letW be a randomvariable defined onΩ and
taking its values in ameasurable space (W,W). The probability distributionP ◦ W−1

of W is denoted by μ. Let U be a Hilbert space (with scalar product 〈· , ·〉 and
norm ‖·‖), and let U ad be a non empty closed convex subset of U. We consider
a real-valued measurable function j defined on U × W. We denote by J (u) the
expectation of the random variable j (u, W ) (we assume that the expectation exists
for all u ∈ U ad):

J (u) = E
(

j (u, W )
) =

∫

Ω

j
(
u, W (ω)

)
dP(ω) =

∫

W

j (u, w) dμ(w).

Weassume that j is differentiablew.r.t. u, and that conditions for differentiating under
the integral sign hold true. This classical issue is addressed by Integration Theory
and can be found in [137, Sect. 3, Théorème 6.3.5] (see also [134] for a similar result
about subdifferentiation). Then J is differentiable, its gradient is denoted by ∇ J (u)

and we have that
∇ J (u) = E

(∇u j (u, W )
)
, (2.1)

where∇u j is the gradient of j w.r.t. u.We are interested in the following optimization
problem:

min
u∈U ad

J (u). (2.2)

We consider here open-loop optimization problems, that is, problems in which the
decision variable u is chosenwithout further information about W than its probability
distribution.

http://dx.doi.org/10.1007/978-3-319-18138-7_1
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Under standard convexity and differentiability assumptions, provided that we are
able to compute the gradient of J for each u ∈ U ad, we may use a gradient-like
algorithm (such as steepest descent, conjugate gradient, quasi-Newton, etc.) in order
to compute the solution of Problem (2.2). The simplest is the projected gradient
algorithm which reads

u(k+1) = projU ad

(
u(k) − ε∇ J (u(k))

)
,

where ε is the gradient step size.Actually, this algorithmdirectly tackles the determin-
istic optimization problem (2.2) whereas the stochastic aspect is fully handled by the
computation of the expectation involved in the expression (2.1) of ∇ J (u(k)). How-
ever, this operation may be exceedingly costly if not impossible when the dimension
of the space W is large.

Consider Problem (2.2), and replace J (u) by its expression:

min
u∈U ad

E
(

j (u, W )
)
. (2.3)

A standard way to get around the difficulty of computing an expectation is to use the
Monte Carlo approach (see Sect.B.7). Using this idea in our optimization framework
leads to replace Problem (2.3) by the following approximation

min
u∈U ad

1

k

k∑

l=1

j (u, wl), (2.4)

where (w1, . . . , wk) is a realization of a k-sample of W .1 Note that the gradient of
the cost function of Problem (2.4), namely

1

k

k∑

l=1

∇u j (u, wl),

corresponds to a Monte Carlo approximation of the “true” gradient ∇ J (u). This
approach is known as the Sample Average Approximation (SAA), which is briefly
presented in Sect. 2.5.3 (see [141, Chap.5] for a detailed presentation). A drawback
of the formulation (2.4) is that the sample size k is fixed prior to the resolution: one
needs to solve a new optimization problem when enriching the initial sample with
new realizations.

The stochastic gradient method aims to overcome the two difficulties mentioned
above (that is, computing the true expectation or choosing the size of the sample
prior to the resolution). In the manner of Sample Average Approximation, it uses an
“easily computable” approximation of the gradient ∇ J based on a sampling of W .

1Recall that a k-sample of W is a sequence (W1, . . . , W k) of independent random variables with
the same probability distribution as W . See Sect.B.7.2 for further details.
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Moreover, the samples are incorporated successively into the algorithm in order to
produce a sequence of estimators converging towards the solution of Problem (2.3).
In a sense, iterations of the gradient algorithm are also used to refine theMonte Carlo
sampling process. Because of this sequential point of view in the introduction of new
samples, the superscript l is now denoted (l) as an iteration index. The stochastic
gradient method is presented in Sect. 2.3.

2.2.2 Sample Approximation in Stochastic Optimization

Suppose that we have built an approximation of Problem (2.3) using a k-tuple
(w(1), . . . , w(k)) of elements of W related to the random variable W (see (2.4)
for an example). The solution u(k) of the approximated problem can be viewed as a
(measurable) function of that sequence:

u(k) = ϕ(k)(w(1), . . . , w(k)).

The performance E
(

j (ϕ(k)(w(1), . . . , w(k)), W )
)
of the approximated solution u(k)

can also be viewed as a (measurable) function ψ(k) of the sequence (w(1), . . . , w(k)).
To alleviate the notation, we set:

J (k) = ψ(k)(w(1), . . . , w(k)) = E
(

j (ϕ(k)(w(1), . . . , w(k)), W )
)
. (2.5)

In the computation of J (k), it should be clear that the expectation operates on the
random variable W whereas the w(k)’s are considered as parameters (and therefore,
the result of this calculation is also a function of those parameters). Suppose that those
parameters are the result of random drawings: then J (k) is the realization of a random
variable defined on another probability space that we are going to introduce now.

To be more specific about the approximation, suppose that the k-tuple
(w(1), . . . , w(k)) is a realization of a k-sample (W (1), . . . , W (k)) of W .As explained
in Sect.B.7.2, we have to deal with two different probability spaces: the random vari-
able W is defined on the canonical probability space (Ω,A,P) whereas the k-tuple
(W (1), . . . , W (k)) is defined on (Ω̃, Ã, P̃), the infinite-dimensional product of the
probability spaces (W,W,μ):

(Ω̃, Ã, P̃) = (WN,W⊗N,μ⊗N).

Of course, (W , W (1), . . . , W (k)) can be identified with a (k + 1)-sample, so that all
randomvariables can be considered as living in the same probability space (Ω̃, Ã, P̃).
In such a setting, u(k) and J (k) are realizations of the two random variables U (k) =
ϕ(k)(W (1), . . . , W (k)) and J (k) = ψ(k)(W (1), . . . , W (k)). Using TheoremB.22, we
deduce from (2.5) that the random variable J (k) may be written as a conditional
expectation:



2.2 Open-Loop Optimization Problems 31

J (k) = E

(
j
(
ϕ(k)(W (1), . . . , W (k)), W

) ∣∣
∣ W (1), . . . , W (k)

)
.

In this text, we simplify our notation and denote the space (Ω̃, Ã, P̃) by (Ω,A,P).
Remember that such a space has to be sufficiently big to contain an infinite-
dimensional sample of W .

In order to assess the quality of the approximated problem, we need to study the
statistical properties of the estimators U (k) and J (k). For example, the bias of the
approximated optimal cost is evaluated by computing E(J (k)) and comparing it to
the true optimal cost J � of Problem (2.3). It is important to realize that the point
we are interested in is the dependency of the solution w.r.t. the sampling. In this
chapter, we mainly focus on the asymptotic properties of the sequence {U (k)}k∈N
(convergence and convergence rate).

2.3 Stochastic Gradient Method Overview

We now present the general method of the stochastic gradient algorithm, as well as
convergence results related to the method.

2.3.1 Stochastic Gradient Algorithm

Algorithm
The stochastic gradient algorithm applies to Problem (2.3) and consists in devising
a method where the optimization variable u evolves over the iterations using the
gradient of j evaluated at successive realizations of the random variable W , rather
than using the gradient of J . Otherwise stated, one uses gradient iterations to perform
the optimization task and, in the same process, to visit successive realizations of W
with the purpose of evaluating the expectation as in a Monte Carlo technique.

Algorithm 2.1 (Stochastic Gradient Algorithm).

1. Pick up some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)) and update u(k+1) by

the formula: u(k+1) = projU ad

(
u(k) − ε(k)∇u j (u(k), w(k+1))

)
.

4. Set k = k + 1 and go to step 2.

Algorithm2.1 corresponds to thenumerical implementation of the stochastic gradient
methodwith a computer. The valuesw(k) involved inAlgorithm2.1 are drawn in such
a way that the sequence (w(1), . . . , w(k)) is a realization of a k–sample of W (the
reader is referred to Sect.B.7.4 for further details). This assumption is of paramount
importance in order to ensure that Algorithm2.1 converges towards the solution of
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Problem (2.3). Note that we did not set a stopping test in the previous algorithm.
This point is discussed in Sect. 2.6.

In order to study the convergence properties of such an algorithm, it is nec-
essary to cast it in the adequate probabilistic framework. We thus consider a
infinite-dimensional sample {W (k)}k∈N of W (as defined in Sect.B.7.2). Step 3 of
Algorithm2.1 can be interpreted as an iterative relation involving random variables,
namely

U (k+1) = projU ad

(
U (k) − ε(k)∇u j (U (k), W (k+1))

)
. (2.6)

Eachvalueu(k) computedbyAlgorithm2.1 corresponds to a realization of the random
variable U (k). The projection in (2.6) is to be understood ω per ω.

Example: Estimation of an Expectation
Let us illustrate Algorithm2.1 in the framework of statistical estimation, more pre-
cisely as an application of theMonte Carlomethod. Let W be a real-valued integrable
random variable defined on (Ω,A,P), and suppose we want to compute an estimate
of its expectation

E(W ) =
∫

Ω

W (ω) dP(ω).

Away to do that is to draw a realization of a k-sample (W (1), . . . , W (k)) of W and to
compute the associated arithmetic mean. In terms of random variables, the estimator
of the expectation associated with the k-sample is

U (k) = 1

k

k∑

l=1

W (l). (2.7)

By the strong law of large numbers (Sect.B.7, TheoremB.27), the sequence of ran-
dom variables {U (k)}k∈N almost surely converges toE(W ). From (2.7), we have that

U (k+1) = 1

k + 1

k∑

l=1

W (l) + W (k+1)

k + 1

= 1

k

k∑

l=1

W (l) − 1

k + 1

(
1

k

k∑

l=1

W (l) − W (k+1)

)

= U (k) − 1

k + 1

(
U (k) − W (k+1)

)
.

Using the notations ε(k) = 1/(k + 1) and j (u, w) = (
u − w

)2
/2, the last expression

of U (k+1) writes
U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)). (2.8)
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Recalling that the expectation of W may be interpreted as the value which minimizes
the dispersion of the random variable, namely

E(W ) = argmin
u∈R

1

2
E

(
(u − W )2

)
, (2.9)

we conclude that the recursive form (2.8) of the Monte Carlo method exactly
matches the stochastic gradient algorithm applied to the optimization problem (2.9).
In the present case, U ad is the whole space R so that projU ad (·) is the identity
function on R.

This basic example makes it possible to enlighten some salient features of the
stochastic gradient method.

• The step size ε(k) = 1/(k + 1) goes to zero as k goes to infinity, whereas the step
size may be constant for deterministic optimization algorithms. Note however that
ε(k) goes to zero “not too fast”, that is,

∑

k∈N
ε(k) = +∞.

Of c ourse, it would be awkward for the series {ε(k)}k∈N to be convergent, because
it should be clear that the algorithm would converge to a limit which depends on
the initial point u(0) and on the sequence {ε(k)}k∈N itself. For example, consider
the caseU ad = R and j (u, w) = |u| (hence∇u j (u, w) = −1 for u < 0). Starting
from u(0) < −1 with step sizes ε(k) = 1/2k+1, Algorithm2.1 leads to

u(k+1) = u(0) +
k+1∑

l=1

1

2l
, so that lim

k→+∞ u(k) = u(0) + 1 < 0,

whereas the solution of the optimization problem minu∈R |u| is u� = 0.
• The underlying convergence notion in this example is the one of the strong law
of large numbers, that is, almost sure convergence. It is thus reasonable to expect
such a convergence for the stochastic gradient algorithm (rather than a weaker
notion as convergence in distribution or convergence in probability).

• As the central limit theorem applies to this example (TheoremB.28), we can expect
a similar result for the rate of convergence of the sequence {U (k)}k∈N generated
by the stochastic gradient algorithm.

Probabilistic Considerations
Iteration k of the stochastic gradient method (2.6) can be represented by the general
relation

U (k+1) = R(k)
(
U (k), W (k+1)). (2.10)

We assume that the random variable U (0) is constant, equal to u(0) ∈ U ad, and that
the mappings R(k) are measurable.



34 2 Open-Loop Control: The Stochastic Gradient Method

• Let F(k) be the subfield generated by the k-sample (W (1), . . . , W (k)):

F(0) = {∅,Ω} , F(k) = σ
(
W (1), . . . , W (k)

)
.

The sequence {F(k)}k∈N is a filtration, that is, F(k) ⊂ F(k+1).
• By induction on (2.10), U (k) is driven by (W (1), . . . , W (k)). The random vari-
able U (k) is thus F(k)-measurable for all k.

• Defining the function ϕ(k) as

ϕ(k)(u) = E
(R(k)(u, W )

)
,

using the fact that the random variables W (k) are independent and that U (k) isF(k)-
measurable, one obtains from TheoremB.22 that

E
(
U (k+1)

∣∣ F(k)
) = E

(R(k)(U (k), W (k+1))
∣∣ F(k)

)

= ϕ(k)
(
U (k)

)
,

that is, for almost every ω ∈ Ω ,

E
(
U (k+1)

∣∣ F(k)
)
(ω) =

∫

Ω

R(k)
(
U (k)(ω), W (ω′)

)
dP(ω′).

The conditional expectation ofU (k+1) givenF(k) thus consistsmerely of a standard
expectation.

• As observed in the previous example, the candidate convergence notion for study-
ing (2.10) is the almost sure convergence. Note that the almost sure convergence
of the sequence {U (k)}k∈N towards a constant u� has the following intuitive mean-
ing: almost every run of Algorithm2.1 produces a sequence {u(k)}k∈N converging
to u�.

2.3.2 Connection with Stochastic Approximation

A classical problem considered in the Stochastic Approximation (SA) framework is
to determine the zero of a function h using noisy evaluations of this function. Let U
be the finite-dimensional Hilbert space Rn . We consider a mapping h : U → U, and
we assume that the observation of h(u) is perturbed by an additive random variable ξ.

The standard Stochastic Approximation algorithm consists in determining the zero
of h by the following recursive formula:2

2The positive sign in front of ε(k) in the update formula (2.11) is explained later on.
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U (k+1) = U (k) + ε(k)
(

h(U (k)) + ξ(k+1)
)
. (2.11)

This algorithm is strongly related to the stochastic gradient algorithm. Indeed, con-
sider the minimization problem (2.3) and assume that the admissible setU ad is equal
to U. The projection onto U ad is, accordingly, the identity operator, and the k-th
iteration of the stochastic gradient algorithm writes

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)). (2.12)

Defining the mapping h and the random variables ξ(k+1) as

h(u) = −∇ J (u) , (2.13a)

ξ(k+1) = ∇ J (U (k)) − ∇u j (U (k), W (k+1)), (2.13b)

the stochastic gradient recursion (2.12) is identical to (2.11). Note that the problem
of finding a point u� ∈ U such that h(u�) = 0 is equivalent to solving ∇ J (u�) = 0,
a necessary condition for u� to be a solution of Problem (2.2).

In the next two paragraphs, we deal with the Stochastic Approximation formu-
lation and we present two important results about the sequence {U (k)}k∈N gener-
ated by (2.11). In such a setting, a filtration {F(k)}k∈N is given, and {ξ(k)}k∈N is a
sequence ofU-valued random variables. The random variable U (0) is used to initiate
the recursion (2.11).

Robbins-Monro Theorem
Here we focus on the convergence of the sequence {U (k)}k∈N of random variables
generated by (2.11). According to the observations made about the example consid-
ered in Sect. 2.3.1, the step sizes ε(k) should be positive and should go to zero “not
too fast”. We first specify such a behavior.

Definition 2.2 A positive real sequence {ε(k)}k∈N is a σ-sequence if it satisfies the
two properties ∑

k∈N
ε(k) = +∞,

∑

k∈N

(
ε(k)

)2
< +∞.

We make the following assumptions on the different components involved in (2.11).

Assumptions 2.3

1. The random variable U (0) is F(0)-measurable.
2. The mapping h : U −→ U is continuous, such that

• ∃ u� ∈ R
n, h(u�) = 0 and

〈
h(u) , u − u�

〉
< 0, ∀u �= u�;

• ∃ a > 0, ∀u ∈ R
n, ‖h(u)‖2 ≤ a

(
1 + ‖u‖2 )

.

3. The random variable ξ(k) is F(k)-measurable for all k, and
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• E
(
ξ(k+1)

∣∣ F (k)
) = 0,

• ∃ d > 0, E
(‖ξ(k+1)‖2 ∣∣ F (k)

) ≤ d
(
1 + ‖U (k)‖2).

4. The sequence {ε(k)}k∈N is a σ-sequence.

Remark 2.4 Assumption2.3-2 implies that u� is the unique zero of h. ♦

Remark 2.5 The stepsize ε(k) could be considered as the realization of a random
variable ε(k) satisfying Definition2.2 P-a.s.. It would then be necessary to add the
assumption that ε(k) is measurable with respect to F(k). ♦

Theorem2.6 below is a particular case of the standard Robbins-Monro theorem pre-
sented in [129] or in [60].

Theorem 2.6 Under Assumptions2.3, the sequence {U (k)}k∈N of random variables
generated by (2.11) almost surely converges to u�.

For a proof, see [60, Sect. 1.4].
Let us detail the connection between the assumptions we may formulate about

the initial problem (2.3) and the assumptions of Theorem2.6. We assume that the σ-
field F(k) is generated by

(
W (0), . . . , W (k)

)
, so that we deduce from (2.13) that ξ(k)

is F(k)-measurable. We assume that the function j is strictly convex, coercive, con-
tinuously differentiable w.r.t. u and measurable w.r.t. w. Then J is strictly convex,
coercive and continuously differentiable. The first part of Assumption2.3-2 is related
to these assumptions which ensure the existence and uniqueness of the solution of
Problem (2.3), whereas the first part of Assumption2.3-3 is an immediate conse-
quence of (2.13). As for the second parts of Assumptions2.3-2 and 2.3-3, they may
be connected with a linearly bounded gradient (LBG) assumption on j , that is,

∃c1 > 0, c2 > 0, ∀u ∈ R
n, ∀w ∈ W, ‖∇u j (u, w)‖ ≤ c1 ‖u‖ + c2,

which implies that (hint: use (a + b)2 ≤ 2(a2 + b2))

∃ c3 > 0, c4 > 0, ∀u ∈ R
n, ∀w ∈ W, ‖∇u j (u, w)‖2 ≤ c3 ‖u‖2 + c4,

‖∇ J (u)‖2 ≤ c3 ‖u‖2 + c4.

These assumptions about the cost function j are natural in the convex optimiza-
tion context. In Sect. 2.4, we give a more general convergence result concerning the
stochastic gradient algorithm.

Remark 2.7 Theorem2.6 can be extended to more general situations.

• As in Algorithm2.1, a projection operator can be added to (2.11):

U (k+1) = projU ad

(
U (k) + ε(k)

(
h(U (k)) + ξ(k+1))

)
.

Here U ad is a non empty closed convex subset of U.
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• A “small” additional term R(k+1) can be added to (2.11):

U (k+1) = U (k) + ε(k)
(
h(U (k)) + ξ(k+1) + R(k+1)).

Such a term may be interpreted as a bias on h(u) which vanishes asymptotically,
as considered in the Kiefer-Wolfowitz algorithm [93].

The reader is referred to [54, 59] for further details. ♦

Rate of Convergence
We now recall a central limit type theorem for the stochastic approximation method,
that is, a result about the asymptotic normality of the randomvariablesU (k) generated
by (2.11), together with an estimation of the rate of convergence of such an algorithm.
Here we need to be more specific about the notion of σ-sequence and we give the
following definition.

Definition 2.8 A positive real sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence if it is
such that

ε(k) = α

kγ + β
,

with α > 0, β ≥ 0 and 1/2 < γ ≤ 1.

An immediate consequence of this definition is that a σ(α,β, γ)-sequence is also a
σ-sequence.

We retain Assumptions2.3 to ensure that the sequence {U (k)}k∈N almost surely
converges to u�, and we make the following additional assumptions.

Assumptions 2.9

1. The mapping h is continuously differentiable and has the following expression
in a neighborhood of u�

h(u) = −H(u − u�) + O(
∥∥u − u�

∥∥2),

where H is a symmetric positive-definite matrix.3

2. The sequence
{
E

(
ξ(k+1)(ξ(k+1))�

∣
∣F(k)

)}
k∈N of conditional covariancematrices

almost surely converges to a symmetric positive-definite matrix Γ .
3. There exists δ > 0 such that sup

k∈N
E

(‖ξ(k+1)‖2+δ
∣∣ F(k)

)
< +∞.

4. The sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence.
5. The square matrix (H − λI ) is positive-definite, λ being defined as

λ =
{

0 if γ < 1,
1

2α
if γ = 1.

3The symbol O corresponds to the “Big-O” notation: f (x) = O
(
g(x)

)
as x → x0 if and only if

there exist a positive constant α and a neighborhood V of x0 such that | f (x)| ≤ α |g(x)|, ∀x ∈ V .
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Remark 2.10 If we refer back to the initial problem (2.3) where h = −∇ J , we
notice that H is the Hessian matrix of J at u�

H = ∇2 J (u�).

Moreover, since E
(∇u j (u�, W )

) = 0, the matrix Γ introduced in Assumption2.9-2
is equal to the covariance matrix of ∇u j evaluated at u�

Γ = E

(
∇u j (u�, W )

(∇u j (u�, W )
)�)

. ♦

The rate of convergence of the random variables U (k) generated by (2.11) is given
by Theorem2.11. This theorem is a particular case of the one presented in [59].

Theorem 2.11 Under Assumptions2.3 and 2.9, the sequence of random variables{
(1/

√
ε(k))(U (k) − u�)

}
k∈N converges in law4 to a centered gaussian distribution

with covariance matrix Σ , that is,

1√
ε(k)

(
U (k) − u�

)
D−→ N (

0,Σ
)
, (2.14)

in which Σ is the solution of the so-called Lyapunov equation

(
H − λI

)
Σ + Σ

(
H − λI

) = Γ. (2.15)

For a proof, see [59, Chap.4]; see also [54] for a detailed step-by-step proof.

Remark 2.12 As alreadymentioned inRemark2.7, theRobbins-MonroTheorem2.6
remains valid when one adds a projection operator to (2.11). This is not true for
Theorem2.11 which only deals with unconstrained problems (U ad = U), or at least
with problems such that u� belongs to the interior of the set U ad. ♦

For the sake of completeness, we recall the characterization of solutions of Lya-
punov equations. The following theorem can be found in [92, Theorem4.6].

Proposition 2.13 Let H be a positive-definite matrix and Γ be a symmetric positive-
definite matrix. Then, the Lyapunov equation

HΣ + Σ H� = Γ (2.16)

admits a unique symmetric positive-definite solution Σ given by:

Σ =
∫ +∞

0
e−t H Γ e−t H�

dt. (2.17)

4See Sect.B.3.4 for this convergence notion and for the associated notation
D−→.
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Remark 2.14 This result remains true if Γ is a nonnegative-definite matrix: then,
the matrix Σ given by (2.17) is a nonnegative-definite matrix, and is the solution
of Eq. (2.16). ♦

In order to be more accurate about the convergence rate given by Theorem2.11,
let us examine the respective influence of the coefficients α, β and γ entering the
expression of step sizes ε(k) defined in Assumption2.9-4.

• The convergence result of Theorem2.11 can be rephrased as

k
γ
2

(
U (k) − u�

)
D−→ N (

0,αΣ
)
, (2.18)

so that the coefficient β has in fact no influence on the convergence rate. The way
in which β alters the transient behavior of the algorithm is explained in Sect. 2.6.2.

• It follows from (2.18) that the optimal choice for γ, that is, the value achieving the
greatest convergence rate in (2.14), is γ = 1. We recover the “classical” rate 1/

√
k

provided by a Monte Carlo estimator.

The next question is: which choice of α induces a covariance matrix αΣ in (2.18)
as small as possible (in the cone of positive-definite matrices)? This problem is
addressed in Sect. 2.5. Observe, for the time being, that the simplistic reasoning
which consists in taking α as small as possible in order to minimize the covariance
in (2.18) does not hold. Indeed, using the optimal value γ = 1, the solution Σ of
the Lyapunov equation (2.15) depends on λ and hence on α, so that the covariance
matrix αΣ is not a linear nor a monotonic function of α. For example, in the scalar
case (n = 1), H and Γ are real numbers and the solution of (2.15) is

Σ = αΓ

2αH − 1
.

Minimizing αΣ w.r.t. α leads to the optimal value α� = 1/H , which is compatible
with the condition α > 1/2H imposed by Assumption2.9-5.

2.4 Convergence Analysis

We now consider a generalization of the stochastic gradient Algorithm2.1 derived
from the so-called Auxiliary Problem Principle, and we give a convergence result
for this generalized algorithm.
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2.4.1 Auxiliary Problem Principle

Consider the following optimization problem

min
u∈U ad

J (u). (2.19)

Let u� ∈ U ad be a solution of this problem. We recall (see TheoremA.10) that the
associated optimality condition writes

〈∇ J (u�) , u − u�
〉 ≥ 0, ∀u ∈ U ad. (2.20)

In the deterministic framework, the Auxiliary Problem Principle5 (APP) consists in
replacing Problem (2.19) by a sequence of auxiliary problems indexed by k ∈ N.
Let K be a real-valued differentiable function defined on U and let ε be a positive
constant. At iteration k, knowing u(k) ∈ U ad, consider the auxiliary problem

min
u∈U ad

K (u) +
〈
ε∇ J (u(k)) − ∇K (u(k)) , u

〉
. (2.21)

Its solution u(k+1) is used to formulate the (k + 1)-th auxiliary problem.
The interest of such a principle lies in the fact that the resolution of the auxiliary

problem (2.21) may be much easier to obtain than the solution of the initial problem
(2.19). Namely, the function K appearing in (2.21) is part of the algorithm design
(K is called a core). The choice of K being subject to rather mild conditions, one can
take advantage of a proper choice in order to obtain many special features for Prob-
lem (2.21). The main properties of the Auxiliary Principle Problem are examined
hereafter.

• APP is consistent. Assuming that the sequence of solutions {u(k)}k∈N converges
to some u� and taking the limit in the optimality condition of Problem (2.21)

〈
∇K (u(k+1)) + ε∇ J (u(k)) − ∇K (u(k)) , u − u(k+1)

〉
≥ 0, ∀u ∈ U ad,

we obtain the optimality conditions (2.20), up to a factor ε, by cancellation of the
gradients of K (we assume that ∇K is continuous at u�). This shows that u� is a
solution of Problem (2.19) at least in the convex case.

• APP encompasses numerous classical optimization algorithms. For example,
using a quadratic core K (u) = (1/2) ‖u‖2, Problem (2.21) writes

min
u∈U ad

1

2
‖u‖2 +

〈
ε∇ J (u(k)) − u(k) , u

〉
,

5See [39] for a reference about the Auxiliary Problem Principle.
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and its solution has the following closed-form expression

u(k+1) = projU ad

(
u(k) − ε∇ J (u(k))

)
.

We thus obtain the well-known projected gradient algorithm.
• APP allows for decomposition. Assume that the space U is the Cartesian product
of N spaces:

U =
N∏

i=1

Ui .

Assume, moreover, that the admissible set U ad is the Cartesian product of N
sets (U ad

1 , . . . , U ad
N ), with U ad

i ⊂ Ui . That is, the constraint u ∈ U ad is equivalent
to the set of N independent constraints ui ∈ U ad

i for the components ui of u. If we
choose a core function K additive according to that decomposition of u, namely
K (u) = ∑N

i=1 Ki (ui ), Problem (2.21) becomes

min
(u1,...,uN )∈U ad

1 ×···×U ad
N

N∑

i=1

(
Ki (ui ) +

〈
ε∇ui J (u(k)) − ∇Ki (u

(k)
i ) , ui

〉)
.

This problem splits up into N independent optimization subproblems, the i th
subproblem being

min
ui ∈U ad

i

Ki (ui ) +
〈
ε∇ui J (u(k)) − ∇Ki (u

(k)
i ) , ui

〉
.

The reader is referred to [39–41] for a detailed description of the APP (see also the
more recent lecture notes [38]).

2.4.2 Stochastic Auxiliary Problem Principle Algorithm

Let us consider the optimization problem(2.3), that we repeat here for convenience

min
u∈U ad

J (u), (2.22)

with J (u) = E
(

j (u, W )
)
. In order to mix the ideas of the Auxiliary Problem Prin-

ciple and of the Stochastic Gradient Method, we first replace Problem (2.22) by the
associated sequence of auxiliary problems, namely

min
u∈U ad

K (u) +
〈
ε∇ J (u(k)) − ∇K (u(k)) , u

〉
.
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Then, in each auxiliary problem, we replace the gradient of J by the gradient of j
evaluated at sampled realizations of W ; moreover, the “large” (constant) step size ε
must be replaced by “small” (going to zero as index k goes to infinity) step sizes ε(k).
The k-th instance of the stochastic auxiliary problem is thus

min
u∈U ad

K (u) +
〈
ε(k)∇u j (u(k), w(k+1)) − ∇K (u(k)) , u

〉
, (2.23)

w(k+1) being a realization of the random variable W . This results in the following
algorithm.

Algorithm 2.15 (Stochastic APP Algorithm).

1. Pick up some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Update u(k+1) by solving the auxiliary problem (2.23):

u(k+1) ∈ argmin
u∈U ad

K (u) +
〈
ε(k)∇u j (u(k), w(k+1)) − ∇K (u(k)) , u

〉
.

4. Set k = k + 1 and go to step 2.

As already pointed out when devising Algorithm2.1, the values w(k) involved in
Algorithm2.15 are drawn in such a way that the sequence (w(1), . . . , w(k)) is a
realization of a k–sample of W .

Remark 2.16 With the choice K (u) = ‖u‖2 /2, the auxiliary problem (2.23)
becomes

min
u∈U ad

1

2
‖u‖2 +

〈
ε(k)∇u j (u(k), w(k+1)) − u(k) , u

〉
.

Its unique solution u(k+1) is given by

u(k+1) = projU ad

(
u(k) − ε(k)∇u j (u(k), w(k+1))

)
.

This relation precisely corresponds to the stochastic gradient iteration of
Algorithm2.1. ♦

We now focus on the convergence analysis of the stochastic APP Algorithm2.15.
We restrict ourselves to the differentiable case, but everything remains valid for
subdifferentiable functions (see [45, 47] for further details).

2.4.3 Convergence Theorem

As in Sect. 2.3, we consider the stochastic APP Algorithm2.15 in terms of random
variables. Let {W (k)}k∈N be an infinite dimensional sample of W . The auxiliary
problem at iteration k is
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min
u∈U ad

K (u) +
〈
ε(k)∇u j (U (k), W (k+1)) − ∇K (U (k)) , u

〉
, (2.24)

and the minimization in (2.24) is to be understood ω per ω. Assume that the set-
valued random mapping corresponding to the argmin of Problem (2.24) admits a
measurable selection U (k+1) (this is justified in the proof of the following theorem).
The convergence properties of the sequence of randomvariables {U (k)}k∈N generated
by (2.24) and the connectionwith the initial problem (2.22) are stated in the following
theorem.

Theorem 2.17 We make the following assumptions.

1. U ad is a non empty closed convex subset of a Hilbert space U.
2. The function j : U×W → R is a normal integrand,6 and E

(
j (u, W )

)
exists for

all u ∈ U ad.
3. The function j (·, w) : U → R is proper, convex, lower semi-continuous and

differentiable on an open subset containing U ad, for all w ∈ W.7

4. The function j (·, w) has linearly bounded gradients (LBG), uniformly in w:

∃c1 > 0, ∃c2 > 0, ∀w ∈ W, ∀u ∈ U ad, ‖∇u j (u, w)‖ ≤ c1 ‖u‖ + c2.

5. The function J is coercive on U ad.8

6. The core function K is proper, strongly convex with modulus b, lower semi-
continuous and differentiable on an open subset containing U ad.

7. The sequence {ε(k)}k∈N is a σ-sequence.

Then the following conclusions hold true.

1. Problem (2.22) has a non empty set of solutions U �.
2. Problem (2.24) has a unique solution U (k+1).

3. The sequence of random variables {J (U (k))}k∈N almost surely converges to
min

u∈U ad
J (u).

4. The sequence of random variables {U (k)}k∈N is almost surely bounded, and every
cluster point of a realization of this sequence belongs to the optimal set U �.

At last, if J is strongly convex, U � is a singleton {u�} and the sequence {U (k)}k∈N
almost surely converges to the unique solution u� of Problem (2.22).

Proof The proof of Theorem2.4.3 is rather long and technical. This is the reason
why it has been postponed to the end of the present chapter, and we just give here
a sketch of the proof. The proof of the first two statements is based on classical
theorems in the field of convex optimization. The property that the solution U (k+1)

of Problem (2.24) is a random variable (hence, measurable) is a consequence of the

6See Definition8.22. This implies that j (u, W ) : Ω → R is measurable ∀u ∈ U ad.
7Note that the semi-continuity of j (·, w) stems from the fact that j is a normal integrand.
8See (A.5) for the meaning of this term.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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fact that the criterion j is a normal integrand. The proof of the last two statements
involves four steps.

1. Select a Lyapunov function Λ. Let u� ∈ U � be a solution of (2.22) and consider
the function

Λ(u) = K (u�) − K (u) − 〈∇K (u) , u� − u
〉
.

From the strong convexity of K , we have that

∥∥U − u�
∥∥2 ≤ 2

b
Λ(U ), P-a.s.. (2.25)

2. Bound from above the variation of Λ. The optimality conditions for the aux-
iliary problem (2.24) evaluated at U = U (k) together with the strong convexity
of K imply that

∥∥U (k+1) − U (k)
∥∥ ≤ ε(k)

b

∥∥∇u j (U (k), W (k+1))
∥∥, P-a.s.. (2.26)

From the LBG assumption and using (2.25), we obtain that there exist positive
constants α and β such that

∥∥∇u j (U (k), W (k+1))
∥∥2 ≤ αΛ(U (k)) + β, P-a.s.. (2.27)

All these inequalities are combined to obtain the following inequality:

E
(
Λ(U (k+1))

∣∣ F(k)
) ≤ (1+α(k))Λ(U (k)) + β(k)−

ε(k)
(
J (U (k)) − J (u�)

)
, P-a.s.. (2.28)

with α(k) = (α/b)(ε(k))2 and β(k) = (β/b)(ε(k))2.
3. Prove the convergence. A straightforward application of the Robbins-Siegmund

Theorem2.27 shows that the sequence
{
Λ(U (k))

}
k∈N almost surely converges to

a finite random variable Λ∞, and that the series
∑

ε(k)
(
J (U (k))− J (u�)

)
almost

surely converges.
4. Characterize the sequence limits. The convergence of

{
Λ(U (k))

}
k∈N together

with (2.27) imply that the sequence
{∇u j (U (k), W (k+1))

}
k∈N is almost surely

finite. Thank to (2.26), Lemma2.28 applies, so that the sequence {J (U (k))}k∈N
almost surely converges to J (u�). From (2.25), we obtain that the sequence
{U (k)}k∈N is also almost surely finite: by a compactness argument, there exist
subsequences converging to elements belonging to the set U �. �
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2.4.4 Conclusions

We have given a general convergence theorem for the stochastic Auxiliary Problem
Principle method. This theorem encompasses the standard stochastic gradient algo-
rithm (obtained using the core function K (u) = ‖u‖2/2), as well as the so-called
matrix-gain algorithm (the core function being in this case K (u) = 〈u , Au〉 /2, A
being a positive definite matrix).

From a theoretical point of view, Theorem2.17 has been proved under natural
assumptions. As a matter of fact, the convexity and differentiability assumptions
are standard in the framework of convex optimization. Note moreover that, even if
an explicit convexity property is not required in the Robbins-Monro Theorem2.6,
Assumption2.3-2 plays in fact a very similar role.

As far as decomposition is concerned, the Auxiliary Problem Principle opens this
possibility as a way to solve large stochastic optimization problems of the type (2.3).

2.5 Efficiency and Averaging

In this sectionwe focus on the convergence rate of the stochastic gradientmethod.We
use the setting considered in Sect. 2.3.2 for a non constrained stochastic optimization
problem, that is,

min
u∈Rn

J (u), (2.29)

with J (u) = E
(

j (u, W )
)
. Using a σ(α,β, γ)-sequence {ε(k)}k∈N, that is, step

sizes ε(k) of the form α/(kγ + β), we know from Theorem2.11 that

k
γ
2

(
U (k) − u�

)
D−→ N (

0,αΣ
)
.

It has already been noted that the choice γ = 1 leads to the largest convergence
rate. We want now to improve the convergence speed by minimizing the covariance
matrix αΣ w.r.t. the symmetric positive-definite matrix cone.

2.5.1 Stochastic Newton Algorithm

In deterministic optimization, it is well-known that pre-multiplying the gradient of
the function to be optimized by a (cleverly chosen) matrix can significantly improve
the algorithm behavior. For example, using the inverse of the Hessian matrix leads
to the Newton algorithm, which yields a (local) quadratic convergence rate whereas
the convergence rate of the gradient method is only linear. It is of course unrealistic
to expect such a nice result in the field of stochastic approximation because the step
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size ε(k) goes to zero as k goes to infinity, but we can expect some improvement of
the method by a proper preconditioning of the gradient.

In order to apply this idea to the stochastic gradient method, we choose a sym-
metric positive-definite matrix A of dimension n. The step sizes ε(k) are then built
using the optimal choice γ = 1 and replacing the scalar gain α by the matrix gain A.
Using these choices, the stochastic gradient iteration (2.12) becomes

U (k+1) = U (k) − 1

k + β
A∇u j (U (k), W (k+1)),

which in the Stochastic Approximation setting (2.11)—(2.13) writes

U (k+1) = U (k) + 1

k + β

(
Ah(U (k)) + Aξ(k+1)

)
. (2.30)

The results stated in Sect. 2.3.2 are thus available, provided that we make use of
modified data, namely a mapping Ah, noises Aξ(k) and step sizes 1/(k + β). In the
context of (2.30), Assumption2.9-5 reads: AH − I/2 is a positive-definite matrix.
Theorem2.11 applies, so that the sequence {U (k)}k∈N generated by (2.30) is such that

√
k
(

U (k) − u�
)

D−→ N (
0,ΣA

)
. (2.31)

The asymptotic covariance matrix ΣA is the unique solution of

(
AH − I

2

)
ΣA + ΣA

(
H A − I

2

)
= AΓ A, (2.32)

H and Γ being respectively the Hessian matrix of J and the covariance matrix of j ,
both evaluated at u�. Let CH be the set of symmetric positive-definite matrices A,
such that AH − I/2 is a positive-definite matrix. The next theorem characterizes the
optimal choice for the gain matrix A over the set CH .

Theorem 2.18 The choice A� = H−1 for the matrix gain A in (2.30) minimizes
the asymptotic covariance matrix ΣA defined by (2.32) over the set CH , that is,
(ΣA − ΣA� ) is a nonnegative-definite matrix for all A ∈ CH . The expression of the
minimal asymptotic covariance matrix is

ΣA� = H−1Γ H−1.

Proof We look for the asymptotic covariance matrix ΣA appearing in the Lyapunov
equation (2.32) in the equivalent form

ΣA = H−1Γ H−1 + ΔA.
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Plugging this expression in (2.32) yields

(
AH − I

2

)
ΔA + ΔA

(
H A − I

2

)
= (

A − H−1)Γ
(

A − H−1).

The matrix ΔA thus satisfies another Lyapunov equation, the right-hand side of
which is a nonnegative-definite matrix whatever the choice of A. According to
Proposition 2.13 and Remark 2.14, the solution ΔA is a nonnegative-definite matrix,
with ΔA = 0 if A = H−1. We deduce that the inequality ΣA ≥ H−1Γ H−1 (in the
sense of symmetric nonnegative-definite matrices) is valid for any matrix A ∈ CH ,
the equality being obtained for the optimal value A� = H−1 ∈ CH . �
Remark 2.19 The gain H−1 corresponds to the inverse of the Hessian matrix of J
evaluated at u�, hence the name “Stochastic Newton Algorithm” given to (2.30)
with the optimal gain choice. Note, however, that the step sizes associated with
the stochastic algorithm have a length 1/k, whereas the length is equal to 1 in the
deterministic Newton algorithm. This is the reason why the convergence speeds are
essentially different:

• in the deterministic case, the use of the Newton algorithm leads to a quadratic
convergence speed (that is a2k , with |a| < 1),

• whereas in the stochastic case, the convergence speed of both the scalar and the
matrix gain algorithms is a/

√
k.

In the stochastic case, the improvement provided by using a matrix gain arises from
a better multiplicative constant9 and not from the speed

√
k. ♦

We give the following definition, characterizing algorithms providing the same
asymptotic convergence rate as the stochastic Newton algorithm.

Definition 2.20 A stochastic gradient algorithm is Newton-efficient if the sequence
{U (k)}k∈N it generates has the same asymptotic convergence rate as the stochastic
Newton algorithm, namely

√
k
(

U (k) − u�
)

D−→ N (
0, H−1Γ H−1).

According to this terminology, the iterates U (k) generated by such an algorithm are
asymptotically unbiased Newton-efficient estimators of u�.

We have seen that Newton-efficient algorithms are in some sense optimal in the
stochastic gradient algorithms class. A natural question then arises. How to imple-
ment a Newton-efficient stochastic algorithm? The problem we have to tackle is the
following: the implementation of the stochastic Newton algorithm requires the prior
knowledge of the optimal gain H−1, that is, the Hessianmatrix of J at the solution u�

we are looking for! Rather than approximating H−1 as the algorithm runs, we now
introduce an averaging method leading to a Newton-efficient algorithm.

9In fact a better covariance matrix.



48 2 Open-Loop Control: The Stochastic Gradient Method

2.5.2 Stochastic Gradient Algorithm with Averaging

In order to overcome the difficulty of implementing a Newton-efficient stochastic
algorithm, in [121, 122], Polyak proposed a modification of the standard stochastic
gradient method which consists in adding an averaging stage in the algorithm. More
precisely, assuming that the admissible set U ad is equal to the whole space U, the
standard stochastic iteration

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)), (2.33)

is replaced by

U (k+1) = U (k) − ε(k)∇u j (U (k), W (k+1)), (2.34a)

U (k+1)
M = 1

k + 1

k+1∑

l=1

U (l). (2.34b)

The first stage (2.34a) is identical to (2.33), whereas the aim of the second stage
(2.34b) is to compute the arithmetic mean of the iterates U (k) obtained at the first
stage. An equivalent recursive form for stage (2.34b) is

U (k+1)
M = U (k)

M + 1

k + 1

(
U (k+1) − U (k)

M

)
. (2.34c)

The algorithm associated with this averaging idea is summarized as follows.

Algorithm 2.21 (Stochastic Gradient Algorithm with Averaging).

1. Select some u(0) ∈ U ad and choose a positive real sequence {ε(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .

3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)), and update u(k+1) by
formula: u(k+1) = u(k) − ε(k)∇u j (u(k), w(k+1)).

4. Update u(k+1)
M by formula: u(k+1)

M = u(k)
M + 1

k+1

(
u(k+1) − u(k)

M

)
.

5. Set k = k + 1 and go to step 2.

As before, the value w(k) involved in Algorithm2.21 is such that the sequence
(w(1), . . . , w(k)) is a realization of a k-sample of W .

Remark 2.22 Observe that u(k)
M is not recycled in the algorithm, that is, the stochastic

gradient is evaluated at u(k) and not at u(k)
M . This u(k)

M is just an additional output of
the algorithm which does not influence its dynamics. ♦

By Cesàro’s lemma, the almost sure convergence of the sequence {U (k)}k∈N
implies the almost sure convergence of the averaged sequence {U (k)

M }k∈N. But the
salient feature of the averaged recurrence (2.34) is its asymptotic convergence speed.
We use here similar assumptions as those made for Theorem2.11, but we now sup-
pose that the exponent γ is strictly smaller that 1, replacing Assumption2.9-4 by
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Assumption 2.23 The sequence {ε(k)}k∈N is a σ(α,β, γ)-sequence, with
1/2 < γ < 1.

According to Theorem2.11, with γ < 1, the convergence speed achieved by the
sequence {U (k)}k∈N is strictly smaller than 1/

√
k, so that the associated convergence

rate is not optimal. Better convergence properties are, however, obtained regarding
the averaged sequence {U (k)

M }k∈N, as shown by the following theorem.

Theorem 2.24 Under Assumptions2.3 and 2.9, where Item 2.9-4 is replaced by
Assumption2.23, the averaged stochastic gradient algorithm is Newton-efficient:

√
k
(

U (k)
M − u�

)
D−→ N (

0, H−1Γ H−1).

For a proof, see [59, Chap.4].
We are thus able to easily implement a Newton-efficient stochastic gradient algo-

rithm. The averaged stochastic gradient algorithm is also referred to as the robust
approach in Stochastic Approximation. Such a terminology is justified in Sect. 2.6.

2.5.3 Sample Average Approximation

As illustrated by Eqs. (2.33) or (2.34a), the random variables W (k) are incorporated
one at a time in the different versions of the stochastic gradient algorithm. Such
iterative methods belong to the Stochastic Approximation approach (SA). There is
another method, called the Sample Average Approximation (SAA), which makes
use of all the W (k) at once. As already mentioned in Sect. 2.2.1, the Sample Aver-
age Approximation method consists of replacing the expectation to be minimized
by a Monte Carlo approximation. This approach is widely used in stochastic opti-
mization for large classes of one-stage and multi-stage problems, and there is an
extensive literature on Sample Average Approximation. For references on the issue
of convergence10 treated in the framework of epi-convergence, see, for example, [5,
62]. The issue of epi-convergence of the Sample Average Approximation method
is also discussed in Sect. 8.4 of this book. Central Limit Theorem-like results under
regularity conditions are also available ([62] and [138]), as well as results based on
large deviations theory [140]. See also [141, Chap.5] for an overview of the method,
and [108] for a comparison between the Sample Average Approximation method
and the Stochastic Approximation approach.

Consider Problem (2.2), and replace J (u) by its Monte Carlo approxima-
tion J (k)(u) obtained using a k-sample (W (1), . . . , W (k)) of W :

J (k)(u) = 1

k

k∑

l=1

j (u, W (l)).

10Consistency in the terminology of Statistics.

http://dx.doi.org/10.1007/978-3-319-18138-7_8
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The Sample Average Approximation method consists of minimizing J (k)(u) for
some ω ∈ Ω:

min
u∈U ad

1

k

k∑

l=1

j
(
u, W (l)(ω)

)
. (2.35)

The set of minimizers of Problem (2.35) is denoted by

Υ (k)(ω) = argmin
u∈U ad

1

k

k∑

l=1

j
(
u, W (l)(ω)

)
.

The properties of measurability, convergence and convergence rate of sequences
{U (k)}k∈N such that U (k)(ω) ∈ Υ (k)(ω) are given in [62]. Here, we just recall the
main result concerning the convergence rate of such sequences [62, Theorem4.8].
Among various technical assumptions,11 it is assumed that

• the solution u� of Problem (2.2) is unique and belongs to the interior of U ad,
• the function J is twice continuously differentiable with nonsingular Hessian H
at u�,

• the sequence of random variables
{√

k ∇u J (k)(u�)
}

k∈N converges in law to a
centered gaussian distribution with covariance matrix Γ .

Then, there exists a sequence
{
U (k)

}
k∈N of minimizers of (2.35) such that

√
k
(

U (k) − u�
)

D−→ N (
0, H−1Γ H−1).

Under mild technical assumptions, the matrix Γ is the covariance matrix of j
evaluated at u� (recall that E

(∇u j (u�, W )
) = 0) :

Γ = E

(
∇u j (u�, W )

(∇u j (u�, W )
)�)

.

The asymptotic covariance matrix obtained in that case is thus equal to the optimal
covariance matrix obtained when using the stochastic Newton algorithm described
in Sect. 2.5.1: the sequence {U (k)}k∈N generated by the Sample Average Approxi-
mation (2.35) is Newton-efficient.

2.6 Practical Considerations

In order to successfully implement a stochastic gradient algorithm, one has to keep
in mind some typical difficulties that we comment upon now.

11See [62, Sect. 4] for further details.
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2.6.1 Stopping Criterion

A first question is related to the convergence assessment of the stochastic gradient
algorithm. Of course, a stopping test based on the difference norm ‖u(k+1) − u(k)‖
cannot be used, since this difference is forced to zero because of the assumptions on
the step sizes ε(k).Moreover, the normof the “descent” direction‖∇u j (u(k), w(k+1))‖
does not give any information about convergence since what is minimized is J .

However, the expectation of the random variable ∇u j (U (k), W (k+1)) converges
towards the true gradient ∇ J (u�) at the optimum, and is accordingly usable to test
the convergence. An estimation of ∇ J (u�) being given by

(
k∑

l=1

ε(l)

)−1 (
k∑

l=1

ε(l)∇u j (u(l), w(l+1))

)

it would be possible to test whether a certain degree of convergence has been reached.
A common practice consists of fixing a given—sufficiently large—number of

iterations, and to check (through plots representing the evolution of quantities related
to the problem: components or norm of the variables, of the gradient…) whether
convergence is achieved. This is a major difference with the deterministic case for
which stopping criteria are usually available.

2.6.2 Tuning the Standard Algorithm

A fundamental issue pertains to the choice of the step sizes ε(k). In order to satisfy the
assumptions of the convergence Theorem2.6, it seems reasonable to take ε(k) shaped
as 1/kγ , with 1/2 < γ ≤ 1. This is why taking a σ(α,β, γ)-sequence is quite
natural. The three coefficients α, β and γ, entering the choice of ε(k) are determined
according to the following guidelines.

• From Theorem2.11, the optimal convergence rate is reached for γ = 1, leading
to the well-known 1/

√
k rate of the Monte Carlo approximation.

• According to (2.18), the multiplicative coefficientα also plays a role in the asymp-
totic behavior. From Eq. (2.15), with λ = 1/(2α), it is easy to figure out that the
covariance matrix αΣ asymptotically grows as α goes to infinity. On the other
hand, using a too small value of α generates small gradient steps, which may
exceedingly slow down the convergence.12 The choice of α thus corresponds to a
trade-off between stability and precision.

• Ultimately, the coefficient β makes it possible to regulate the transient behavior
of the algorithm. During the first iterations, the term kγ may be ignored w.r.t. β

12From Assumption2.9-5, the condition α > 1/(2c) is required, c being the strong convexity
modulus of J . It is easy to produce a simple problem with extremely slow convergence in the



52 2 Open-Loop Control: The Stochastic Gradient Method

if this is chosen large enough. The coefficient ε(k) is approximately equal to α/β,
which thus corresponds to the initial gradient step size. If α/β is too small, the
transient phase may be slow. On the contrary, taking a too large ratio may lead to a
numerical burst during the first iterations. Note that a first guess for the ratioα/β is
given by the step size to be used by the gradient method applied to the underlying
deterministic problem.

Let us illustrate the influence of parameter α with the help of a quadratic Gaussian
example. The optimization problem under consideration is

min
u∈R10

E

(1
2

u� Au + W �u
)
,

where A is a symmetric positive definite matrix, W being a R
10-valued Gaussian

random variable with expectation m and covariance matrix Γ . The solution of this
problem is obviously u� = −A−1m. The classicalMonte Carlo estimator Û (k) of u�,
namely

Û
(k) = −1

k

k∑

l=1

A−1W (l), (2.36)

is an efficient estimator of u�, that is, its normalized variance reaches the Cramer-Rao
lower bound (see e.g. [90] for details):

kVar
(
Û

(k)) = A−1Γ A−1. (2.37)

Using step sizes ε(k) = α/(k + β), the stochastic gradient iteration writes

U (k+1) = U (k) − α

k + β

(
AU (k) + W (k+1)). (2.38)

Figure2.1 displays four runs of the algorithm for different values of α (namely α =
0.3, 1.0, 5.0 and 10.0), the ratio α/β being constant and equal to 0.1. For each run,
we have plotted the Monte Carlo estimator (k �→ ∥∥û (k) − u�

∥∥—black curve) and
the stochastic gradient algorithm estimator (k �→ ∥∥u(k) − u�

∥∥—light gray curve),
where û (k) and u(k) correspond to realizations of the random variables Û (k) and U (k)

respectively. Obviously, a “small” value of α = 0.3 (upper left-hand side plot)
prevents the algorithm from converging in a reasonable time, whereas “large” val-
ues α = 5.0 and 10.0 (lower plots) lead to excessive oscillations. In this particular
example, the choiceα = 1 (upper right-hand side plot)may be considered as optimal.

(Footnote 12 continued)
case when this condition is not satisfied. For example, with j (u, w) = (1/2)u2 (deterministic cost
function such that c = 1), with ε(k) = 1/(5k) and starting from u(0) = 1, the solution obtained
after one billion iterations is about 0.015, hence relatively far from the optimal solution u� = 0
(see [108] for details).
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Fig. 2.1 Standard stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

In order to go further into the asymptotic analysis, let us compute the covariance
matrix of the iterates U (k). From Eq. (2.38), denoting the identity matrix by I , we
obtain that

Var
(
U (k+1)) = Var

((
I − ε(k) A

)
U (k) − ε(k)W (k+1)

)

= (
I − ε(k) A

)
Var

(
U (k)

)(
I − ε(k) A

) + (
ε(k)

)2
Γ.

The limit of the sequence of the normalized covariance matrices kVar
(
U (k)

)
induced

by this relation is then compared to the Cramer-Rao bound (2.37). The lowest and
greatest eigenvalues λmin and λmax of these matrices are reported in Table2.1 for
different values of (α,β). We notice that the greatest eigenvalue of the Cramer-
Rao bound and of the “best” covariance matrix (obtained using α = 1) are nearly
identical.

This remark enlightens a result given in [57], asserting that the greatest eigenvalue
of the “optimal” covariance matrix is about (M/c)2, c being the strong convexity
modulus of j and M being an upper bound of the norm of the gradient of j .

As a conclusion, the implementation of the stochastic gradient algorithm is not
straightforward and often requires several experiments. A common error is to con-
sider that convergence has occurred when in fact the sequence {ε(k)}k∈N is just badly
scaled.
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Table 2.1 Extreme eigenvalues of the covariance matrix for different values of (α,β)

Standard stochastic gradient algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3—β = 3.0 0.192 6170.542

α = 0.6—β = 6.0 0.347 24.523

α = 1.0—β = 10.0 0.556 11.286

α = 2.0—β = 20.0 1.083 15.244

α = 5.0—β = 50.0 2.664 32.056

α = 10.0—β = 100.0 5.299 60.936

Remark 2.25 Many other adaptation rules have been developed in order to improve
the efficiency of the stochastic gradient algorithm. For example, Chen’s projection
method [35]—a theoretical tool which alleviates the assumptions required for con-
vergence in Stochastic Approximation (see [54] for further details)—also makes it
possible to prevent numerical bursts in the transient phase of the algorithm. The
idea is to project the iterates U (k) on compact subsets of U forming an increasing
sequence. Another approach, namely Kesten’s algorithm [91], is precisely described
in [55]. There, the underlying idea is to decrease the step size ε(k) only when the
directions of two consecutive gradients are opposite. More precisely, we define a
(random) sequence of integers Nk by

N(k+1) = N(k) + 1{〈
∇u j (U(k−1),W(k)) ,∇u j (U(k),W(k+1))

〉
<0

},

1Ω0 being the indicator function of the set Ω0 ⊂ Ω . The step size is then given by

ε(k) = α
(
N(k)

)γ + β
.

Let us mention that there exist multiplicative rules [119] for the adaptation of the
step size, which allow for a faster convergence towards an approximate solution of
the original problem, and that numerous references deal with stochastic algorithms
using constant step sizes (see e.g. [17]). ♦

2.6.3 Robustness of the Averaged Algorithm

From a theoretical point of view, the averaged stochastic gradient is, in some sense,
optimal because it has the same asymptotic convergence rate as the stochasticNewton
algorithm (see Theorem2.24). From the practical point of view, the implementation
of the averaged algorithm is feasible because it does not require the knowledge
of the optimal matrix gain H−1. The step sizes ε(k) form a σ(α,β, γ)-sequence,
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with 1/2 < k < 1. The following considerations are relevant when choosing the
parameters α, β and γ.

• The value γ = 2/3 is considered as a good choice by some authors (see [54] for
further details).

• The tuning of parameters α and β is much easier than for the standard algorithm.
Indeed, the problem of “too small” step sizes arising from a bad choice of α is not
so critical because the term kγ goes down more slowly towards zero. Of course,
the ratio α/β must always be chosen in such a way that numerical bursts do not
occur during the first iterations of the algorithm.

Remark 2.26 It seems wise not to start the averaging process from the very first
iteration, because thewhole transient phase of the algorithm is then taken into account
in the averaged values U (k)

M . It would be preferable to start the averaging process once
the iterates U (k) given by (2.34a) are oscillating near the convergence zone, but it
is usually difficult to detect such a starting point. Another possibility is to average
the stochastic gradient algorithm iterates U (k) on a sliding window, with leads to the
same asymptotic properties (see [99] for details). ♦

We now apply the averaged stochastic gradient algorithm to the example used
in Sect. 2.6.2, namely

U (k+1) = U (k) − α

kγ + β

(
AU (k) + W (k+1)),

U (k+1)
M = 1

k + 1

k+1∑

l=1

U (l).

We use the same values of α and β as for the standard stochastic algorithm, γ being
now equal to 2/3. The four runs of the averaged algorithm are plotted in Fig. 2.2.
For each run, we have again plotted the Monte Carlo estimator given by (2.36)
(k �→ ‖û (k) − u�‖—black curve), the stochastic gradient algorithm estimator
(k �→ ‖u(k) − u�‖—light gray curve), and finally the averaged stochastic gradient
algorithm estimator (k �→ ∥

∥u(k)
M − u�

∥
∥—dark gray curve). The changes of para-

meter α (from 0.3 to 10.0) affect the behavior of the stochastic gradient algorithm
estimator, the oscillations of which increase withα. Nevertheless, the behavior of the
averaged stochastic gradient algorithm estimator remains remarkably stable, hence
the term “robust” given to the averaged algorithm.

It is again possible to iteratively compute the covariance matrices of the iter-
atesU (k)

M .The lowest and greatest eigenvalues of thesematrices are given in Table2.2
for the different values of α. We observe that the full spectrum of the Cramer-Rao
bound is obtained whatever the value of α.
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Fig. 2.2 Averaged stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

Table 2.2 Extreme eigenvalues of the covariance matrix for different values of (α,β)

Averaged stochastic gradient algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3—β = 3.0 0.108 11.360

α = 0.5—β = 5.0 0.108 11.318

α = 1.0—β = 10.0 0.108 11.288

α = 2.0—β = 20.0 0.108 11.273

α = 5.0—β = 50.0 0.108 11.264

α = 10.0—β = 100.0 0.108 11.262

2.7 Conclusion

In this chapter, we have tried to give a broad (of course non exhaustive) overview
of the stochastic gradient method. After recalling some classical results from Sto-
chastic Approximation, we have presented an algorithm based on both the Stochastic
Gradient Method and on the Auxiliary Problem Principle, for which we provided
a detailed convergence analysis. We then presented some issues related to the effi-
ciency of the stochastic gradient algorithm. Finally, we have made some practical
considerations about the algorithm implementation. Note that this domain is still very
active, as demonstrated by the recent paper [162] providing new adaptive step length
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schemes in order to improve the performance of stochastic gradient algorithms, and
by the paper [108] comparing the Sample Average Approximation method with a
properly modified Stochastic Approximation approach. About the last paper, it is
interesting to remark the strong connections between the Mirror Descent Stochastic
Approximation method and the Auxiliary Problem Principle. Although restricted to
the computation of open-loop solutions,13 the stochastic gradient method is a basic
component of stochastic optimization which can be embedded in many dynamic
situations, when some control variables have to be decided upon once and for all or
some static parameters have to be tuned. It is the case for two-stage stochastic opti-
mization problems, for which the first time step decisions are open-loop decisions. It
is also the case for multistage stochastic optimization problems when it is possible to
restrict the admissible feedback laws to a particular class of functions which can be
characterized in terms of a finite number of parameters, e.g., (s, S)-policies, impulse
control, etc. See [148], and also [145] for a more recent application.

Throughout this book, in addition to the challenge of dealing with expectations
(which was the main purpose of this chapter), we will deal with the additional diffi-
culty related to the issue of information, that is, the measurability constraints.

2.8 Appendix

This last section is devoted to the proof of the main convergence Theorem2.17. The
proof is based on two results, namely the Robbins-Siegmund theorem and a technical
lemma, that are beforehand recalled.

2.8.1 Robbins-Siegmund Theorem

The following theorem is one of the keys to Stochastic Approximation.

Theorem 2.27 Let {Λ(k)}k∈N, {α(k)}k∈N, {β(k)}k∈N and {η(k)}k∈N be four posi-
tive sequences of real-valued random variables adapted to the filtration {F(k)}k∈N.
Assume that

E
(
Λ(k+1)

∣∣ F(k)
) ≤ (

1 + α(k)
)
Λ(k) + β(k) − η(k), ∀k ∈ N,

and that ∑

k∈N
α(k) < +∞ and

∑

k∈N
β(k) < +∞, P-a.s..

13There however exist extensions of the stochastic gradient method to closed-loop optimization
problem: see [14] for further details.
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Then, the sequence {Λ(k)}k∈N almost surely converges to a finite14 random vari-
able Λ∞, and

∑
k∈N η(k) < +∞, P-a.s..

A proof can be found e.g. in [60, Theorem1.3.12].

2.8.2 A Technical Lemma

The following lemma is also used in order to prove the convergence of the stochastic
APP algorithm.

Lemma 2.28 Let J be a real-valued function defined on a Hilbert space U. We
assume that J is Lipschitz continuous with constant L. Let {u(k)}k∈N be a sequence
of elements of U and let {ε(k)}k∈N be a sequence of positive real numbers such that

(a)
∑

k∈N
ε(k) = +∞,

(b) ∃ μ ∈ R,
∑

k∈N
ε(k)

∣∣J (u(k)) − μ
∣∣ < +∞,

(c) ∃ δ > 0, ∀k ∈ N,
∥∥u(k+1) − u(k)

∥∥ ≤ δε(k).

Then the sequence
{

J (u(k))
}

k∈N converges to μ.

Proof Let α be a given positive real number. We define the subset Nα of N and its
complementary N c

α as follows:

Nα = {
k ∈ N,

∣∣J (u(k)) − μ
∣∣ ≤ α

}
and N c

α = N \ Nα.

From the definition of N c
α, we have that

∑

k∈N c
α

ε(k)
∣∣J (u(k)) − μ

∣∣ ≥ α
∑

k∈N c
α

ε(k),

and Property (b) implies that

∑

k∈N c
α

ε(k)
∣∣J (u(k)) − μ

∣∣ ≤
∑

k∈N
ε(k)

∣∣J (u(k)) − μ
∣∣ < +∞.

We thus deduce that the series
∑

k∈N c
α
ε(k) converges, that is,

∀β > 0, ∃nβ ∈ N,
∑

k∈N c
α , k≥nβ

ε(k) ≤ β. (2.39)

14A random variable X is finite if P
( {

ω ∈ Ω
∣∣ X (ω) = +∞} ) = 0.
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Then, from (2.39) and Property (a), we obtain that Nα is not a finite set.
For each ε > 0, we choose α = ε/2 and β = ε/(2Lδ). Let nβ be the integer

defined by (2.39). For any k ≥ nβ ,

• either k ∈ Nα and, we have, by definition

∣∣J (u(k)) − μ
∣∣ ≤ α < ε,

• or k ∈ N c
α; then let m be the smallest element of Nα such that m > k (such an

element exists because Nα is not a finite set); using the Lipschitz assumption on J
and Property (c), we obtain

∣∣J (u(k)) − μ
∣∣ ≤ ∣∣J (u(k)) − J (u(m))

∣∣ + ∣∣J (u(m)) − μ
∣∣ ≤ L

∥∥
∥u(k) − u(m)

∥∥
∥ + α

≤ Lδ

(
m−1∑

l=k

ε(l)

)

+ α ≤ Lδ

⎛

⎝
∑

l≥nβ ,l∈N c
α

ε(l)

⎞

⎠ + α ≤ ε,

hence the result. �

2.8.3 Proof of Theorem 2.17

Here we give the complete proof of the main convergence theorem.

Proof The proof of the first statement is based on classical theorems in the field of
convex optimization (see TheoremA.8). The existence of a random variable U (k+1)

solution of Problem (2.24) is a consequence of the fact that the criterion to be min-
imized in (2.24) is a normal integrand, so that the argmin is closed-valued and
measurable, and thus admits measurable selections (see [135, Theorem14.37] for
further details). The solution U (k+1) is unique because K is strongly convex.

The proof of the last two statements involves four steps.

Select a Lyapunov function Λ. Let u� ∈ U � be a solution of (2.22). We consider
the so-called Lyapunov function Λ : U → R, defined by

Λ(u) = K (u�) − K (u) − 〈∇K (u) , u� − u
〉
.

From the strong convexity of K , we have that

b

2

∥∥u − u�
∥∥2 ≤ Λ(u). (2.40)

The Lyapunov function Λ is thus bounded from below and coercive.

Bound from above the variation of Λ. We consider the difference

Δ(k) = Λ(u(k+1)) − Λ(u(k)),
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{u(k)}k∈N being the sequence of solutions generated by Algorithm2.15 for a realiza-
tion (w(1), . . . , w(k), . . . ) of the infinite-dimensional sample of W :

Δ(k) = K (u(k)) − K (u(k+1)) − 〈∇K (u(k)) , u(k) − u(k+1)〉

︸ ︷︷ ︸
T1

+ 〈∇K (u(k)) − ∇K (u(k+1)) , u� − u(k+1)〉

︸ ︷︷ ︸
T2

.

• From the convexity of K , we have that

T1 ≤ 0.

• Let r (k) = ∇u j (u(k), w(k+1)). The optimality condition of Problem (2.23) writes

〈∇K (u(k+1)) + ε(k)r (k) − ∇K (u(k)) , u − u(k+1)〉 ≥ 0, ∀u ∈ U ad. (2.41)

Evaluating (2.41) at u = u� leads to

T2 ≤ ε(k)
〈
r (k) , u� − u(k+1)〉

≤ ε(k)
〈
r (k) , u� − u(k)

〉

︸ ︷︷ ︸
T3

+ε(k)
〈
r (k) , u(k) − u(k+1)〉

︸ ︷︷ ︸
T4

.

– From the convexity of j (·, w(k+1)), we have that

T3 ≤ j (u�, w(k+1)) − j (u(k), w(k+1)).

– The evaluation of (2.41) at u = u(k) and the strong monotonicity of ∇K imply
that

b
∥∥u(k+1) − u(k)

∥∥2 ≤ ε(k)
〈
r (k) , u(k) − u(k+1)〉.

Using the Schwartz inequality, we obtain

∥∥u(k+1) − u(k)
∥∥ ≤ ε(k)

b

∥∥r (k)
∥∥. (2.42)

Applying also the Schwartz inequality to the term T4 and using (2.42) yield

T4 ≤ ε(k)

b

∥∥r (k)
∥∥2.

An equivalent form for the LBG assumption is that there exist positive con-
stants c3 and c4 such that

∥∥r (k)
∥∥ ≤ c3

∥∥u(k) − u�
∥∥ + c4. Taking the square of
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the last inequality, using (a +b)2 ≤ 2(a2 +b2) as well as (2.40), we obtain that

∃α > 0, ∃β > 0, ∀k ∈ N,
∥∥r (k)

∥∥2 ≤ αΛ(u(k)) + β,

and, consequently,

T4 ≤ ε(k)

b

(
αΛ(u(k)) + β

)
.

Collecting the upper bounds obtained for T1, T3 and T4, we deduce that

Δ(k) ≤ ε(k)
(

j (u�, w(k+1)) − j (u(k), w(k+1))
)

+
(
ε(k)

)2

b

(
αΛ(u(k)) + β

)
.

Consider this inequality in terms of random variables. Taking the conditional expec-
tation w.r.t. the σ-field F(k) generated by (W (1), . . . , W (k)) on both sides, recalling
that W (k+1) is independent of the previous W (l) and that U (k) is F(k)-measurable,
we obtain that

E
(
Λ(U (k+1)) − Λ(U (k))

∣∣ F(k)
) ≤ α(k)

E
(
Λ(U (k))

∣∣ F(k)
) + β(k)

+ ε(k)
(

J (u�) − J (U (k))
)

, (2.43)

α(k) = (α/b)(ε(k))2 and β(k) = (β/b)(ε(k))2 being the terms of two convergent
series. Thanks to the optimality of u�, we have that J (u�) − J (U (k)) ≤ 0.

Convergence.A straightforward applicationof theRobbins-SiegmundTheorem2.27
shows that the sequence

{
Λ(U (k))

}
k∈N almost surely converges to a finite random

variable Λ∞, and that

+∞∑

k=0

ε(k)
(
J (U (k)) − J (u�)

)
< +∞, P-a.s.. (2.44)

Sequence Limit. As proved in the previous step, the sequence
{
Λ(U (k))

}
k∈N

almost surely converges to a finite random variable, and hence is almost surely
bounded. According to (2.40) and the LBG assumption, we deduce that both
sequences {U (k)}k∈N and

{∇u j (U (k), W (k+1))
}

k∈N are almost surely bounded.
Thanks to (2.42), the same holds true for the sequence

{‖U (k+1) − U (k)‖/ε(k)
}

k∈N.

This last fact together with (2.44) make it possible to use Lemma2.28 to claim that
the sequence {J (U (k))}k∈N almost surely converges to J (u�).

Let Ω0 denote the subset of Ω such that
{
Λ(U (k))

}
k∈N is not bounded, and

let Ω1 denote the subset of Ω for which (2.44) does not hold: P(Ω0 ∪ Ω1) = 0.
Pick some ω /∈ Ω0 ∪ Ω1. The sequence of realizations {u(k)}k∈N of {U (k)}k∈N
associated with ω is bounded, and each u(k) belongs to the closed subset U ad. By a
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compactness argument,15 there exists a convergent subsequence {u(Φ(k))}k∈N (note
that the subsequence itself depends on ω); let ū be the limit of this subsequence. By
the lower semi-continuity of function J , we have that

J (ū) ≤ lim inf
k→+∞ J (u(Φ(k))) = J (u�).

We thus deduce that ū ∈ U �.
We ultimately consider the case when J is strongly convex with modulus a. Then

Problem (2.22) has a unique solution u�. Thanks to the optimality condition (2.20),
the strong convexity property of J writes

J (U (k)) − J (u�) ≥ 〈∇ J (u�) , U (k) − u�
〉 + a

2

∥∥U (k) − u�
∥∥2

≥ a

2

∥
∥U (k) − u�

∥
∥2.

Since J (U (k)) converges almost surely to J (u�), we deduce that
∥∥U (k) −u�

∥∥ almost
surely converges to zero. The proof is complete. �

15A subset of U is compact if it is closed and bounded, provided that U is a finite-dimensional
space. If U is an infinite-dimensional Hilbert space, such a property remains true only in the weak
topology, and the lower semi-continuity property of J is preserved in that topology because J is
convex. See [64] for further details.
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