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Abstract. Existing standards for crisp description logics facilitate in-
formation exchange between systems that reason with crisp ontologies.
Applications with probabilistic or possibilistic extensions of ontologies
and reasoners promise to capture more information, because they can
deal with more uncertainties or vagueness of information. However, since
there are no standards for either extension, information exchange be-
tween such applications is not generic. Fuzzy-syllogistic reasoning with
the fuzzy-syllogistic system *S provides 2048 possible fuzzy inference
schema for every possible triple concept relationship of an ontology. Since
the inference schema are the result of all possible set-theoretic relation-
ships between three sets with three out of 8 possible fuzzy-quantifiers,
the whole set of 2048 possible fuzzy inferences can be used as one generic
fuzzy reasoner for quantified ontologies. In that sense, a fuzzy syllogistic
reasoner can be employed as a generic reasoner that combines possibilis-
tic inferencing with probabilistic ontologies, thus facilitating knowledge
exchange between ontology applications of different domains as well as
information fusion over them.

Keywords: Relational data - Ontology learning - Syllogistic reasoning -
Fuzzy logic

1 Introduction

Relational modelling facilitates maintaining data consistency, whereas ontolog-
ical modelling facilitates logical reasoning with the data [30]. Since most data
of every enterprise is usually maintain in relational models, there is increasing
demand for automating reasoning with the relational data, in order to further
utilise the information systems as decision support systems (Fig. 1). The objec-
tive of this paper is to review state-of-the-art in ontology learning and reasoning
and to suggest a common possibilistic reasoner for probabilistic and quantified
ontologies.

A variety of approaches for ontology learning have been proposed, ranging
from unstructured data, like internet text search results, over semi structured
data, like partially normalised data, to structured ones, like object-oriented data
[29,51] or normalised relational data [37,20]. Here we will focus on relational data
only.
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In most approaches, first an ontology is generated manually for a given re-
lational data schema, thereafter the ontology is used in conjunction with the
relational schema for reasoning with the data [18].

Ones an ontology is available for a particular relational data schema, an ap-
propriate ontology reasoner can be chosen, which will then enable reasoning over
the relational data, via the ontology. While an ontology is usually stored sepa-
rately in a file or database, a reasoner is part of the semantic web application.

It is widely accepted that uncertainties of a domain that find reflections in the
relational data, can be represented with related probabilities within ontologies.

Reasoners for probabilistic ontologies are mostly based on Bayesian networks.
If data about such probabilities is unavailable, fuzzy ontologies [42,8,5] or pos-
sibilistic! ontologies [34] and reasoners may be preferred instead for processing
vague information [28].
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Fig. 1. Utilising relational data sources in the semantic web

The lack of standards for ontologies with probabilist or possibilistic extensions,
prevent from efficient knowledge exchange between semantic web applications
(Fig. 1) that have such extensions.

Here we propose the fuzzy-syllogistic (FS) reasoning system as a common
logic for ontology reasoning. The 2048 syllogistic moods of the system cover any
possible inference for any transitive concept relationship of the ontology [49].
Every such syllogistic inference has a fixed truth ratio [23], which can however
change relative to the cardinalities of the probabilistic samples that make up
the concepts and their relationships within the probabilistic ontology. A sam-
ple design for FS reasoning with an ontologies that was learned from text was
presented elsewhere [49].

! In this work we will use the term “possibilistic” as a generic term that includes
possibilistic logics as well as fuzzy logic, since fuzzy-syllogistic systems cover both.
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Reasoning with fuzzy quantifiers or intermediate quantifiers is referred to
as approximate reasoning [47]. Fuzzy syllogism refers to individual syllogistic
moods that have fuzzy quantifiers [48]. Whereas fuzzy syllogistic system refers
to the whole set of all 256 syllogistic moods, along with the truth ratio of
every individual mood [24], where moods may have classical quantifiers or fuzzy
quantifiers [22].

The paper is organised as follows. First the literature on ontology learning and
reasoning with probabilistic and possibilistic approaches is reviewed, thereafter
F'S reasoning for ontology learning and reasoning is proposed as common reasoner
for quantified ontologies with probabilist and possibilistic extensions.

2 Ontology Learning and Reasoning

Before we review approaches for learning ontologies, particularly database on-
tologies and approaches for reasoning with them, we briefly explain ontolo-
gies, database ontologies and how database ontologies can be compiled from
databases.

2.1 Ontologies

An ontology is an object-oriented conceptualisation of a particular domain, such
that it allows for logical reasoning about the domain. It is used to specify and
share a domain in a common language. Ontologies are always attached with
uncertainties, whether they emerge from probabilistic data or are created from
possibilistic knowledge, but such extensions are not always reflected on the on-
tology.

An ontology consists of the following primitives [29]:

— Domain objects: Classes and instances.

Object attributes: Aspects, properties, features, characteristics, parameters.
— Object relationships: Qualitative or quantitative relations between attributes.
Processes & events involving objects: Functionalities modifying attribute
values.

Logic: Rules for valid reasoning information from attribute values.

— Uncertainties: Probabilities attached to anyone of the above primitives.

— Vagueness: Possibilities attached to anyone of the above primitives.

An ontology usually does not store or reference samples for any of its prim-
itives, but could be extended with such a capability. Such an extension for
database ontologies [27] is discussed below.

Database Ontologies

The relational database model is a derivation from first-order predicate logic [12].
However, there are no reasoners available for databases. Since ontologies are also
based on first-order predicate logic, the primitives of the different models can be
transformed into each other, based on common logical concepts. For instance,
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valid column values of a database table can be specified with predicate-logical
quantifiers, which is analogous to valid values of an attribute of an ontology class
(table 1).

Table 1. Mapping between relational data concepts and ontological concepts

Relational Ontological
Entity Table Class
Relation Table Class Relationship
1-n Relationship™ Superclass-Subclass Relationship
n-n Relationship™ Multiple Superclass-Subclass Relationships
View Process
Foreign Key Attribute
Primary Key Relational Instance
Attribute Attribute
Attribute Value Attribute Value
Row Class Instance
Not Null; Unique Cardinality Constraints

TPossible class-instance relationships instead of class hierarchy

2.2 Compiling Database Ontologies

Formal transformations between the models are one way for generating database
ontologies.

Transformations could be performed principally bidirectional, if formal def-
initions for mapping the elements between the two models [26] are available.
Whereby the time complexity of such mapping algorithms is usually linear [26].
However, since most solutions transform unidirectional, from database to ontol-
ogy, we prefer the term compiling.

Two major approaches are distinguished for compiling an ontology from a
database, reverse engineering and schema transformation. The former trans-
form relational schema into ontological schema [18,44,21,1,26], whereas the latter
transform entity-relationship (ER) schema into ontology schema [45,15,32]. The
latter has the advantage that the generated ontology can be used for performing
relational database operations via the ontology [27]. Even transformations of
fuzzy extended ER into fuzzy ontologies are proposed [50].

In such systems the ontology can be used for strategic decisions using the data
concept relationships, while the database is used for retrieving sample data that
supports these decisions [38]. Ontological decision making is discussed below
under reasoning with ontologies.

2.3 Learning Database Ontologies

Learning an ontology is achieved by conceptualising objects of the applica-
tion domain, their attributes and relationships. This can be accomplished with



Generating Ontologies from Relational Data 25

probabilistic approaches that can identify regularities in the data. Therefore,
probabilistic ontologies are the result of logical evaluations of domain statistics.

There are various approaches for learning database ontologies [20]. We will
focus on approaches that work at least partially automated on the database and
that learn either crisp, probabilistic or possibilistic database ontologies (table 2).

Table 2. Tools for ontology learning from relational models

Ontology Learning Source Data Model Ontology Logic

RDBToOnto [10] ER® Schema & Relational Schema Crisp
MASTRO [14] ER Schema Crisp
PROGNOS [13] Relational Schema Probabilistic
SoftFacts [43] Relational Schema Fuzzy

SER: Entity-Relationship

Some approaches do not generate an ontology, but aim at learning probabilis-
tic models from large relational data [17]. Popular probabilistic approaches are
mostly based on Bayesian updating and inferencing, like Multi-Entity Bayesian
Networks (MEBN) [25], for learning from relational data [33].

Data mining is rich on techniques for learning regularity of a data set that
may be structured or unstructured. Some of these techniques have been adapted
to learning database ontologies too. RTAXON is such a learning technique that
transforms statistically identified relational data into ontological relationships
[11]. It takes both as input, the relational schema and the entity-relationship
schema, and can discover data relations not specified in either schema, but found
in the data [10].

Interesting is further a data mining example for learning fuzzy ontologies
from unstructured data of a hyper-media database that can learn time-varying
dynamics of the domain. The adaptive ontology is used in return, to adapt
querying the dynamically changing database [7].

2.4 Reasoning with Ontologies

Formal systems have the disadvantage of having no learning capability. However
they have the advantage that they can be axiomatised and formally checked
for consistency, satisfiability, subsumption or redundancy. Such formal methods
have to be part of any reasoner [28]. Any ontology, whether specified, compiled
or learned, needs to be validated formally, in order to be acceptable as common
knowledge.

Inferencing is rule execution in propositional logic. An inference engine is an
implementation of the logic, with the objective to execute rules of the knowl-
edge base according to given inference rules, ie resolving rules in forward or
backward chaining. The engine may additionally use utility functions, like the
Rete algorithm [16], for improving efficiency of rule searching (Fig. 2).
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Fig. 2. Probabilistic/possibilistic extensions of logics used in ontology reasoners

Description Logic Reasoners

Most description logic reasoners use existing inference engines and utilise further
techniques, such as decision tree, tableau algorithm or subsumption hierarchy,
for handling specifics of description-logical (table 3).

Ontology Reasoners
An ontology reasoner is an implementation of a description logic reasoner for
a particular domain ontology. Both reasoners may be extended separately with
probabilistic or possibilistic information (Fig. 2).

For instance, the fuzzy ontology reasoner HyFOM extends the Fuzzy DL fur-
ther with Mamdani inferencing [46]. Likewise SoftFacts extends Pellet and Fuzzy
DL further with fuzzy database query features [43] (table 3).

Table 3. Ontology reasoners and underlying logics

Ontology Reasoner Ontology Logic Reasoning Logic DL Reasoner
MASTRO [14] Crisp - Presto [36]
MEBN [25] Probabilistic Bayesian MEBN
BUNDLE [35] Probabilistic Probabilistic Pellet™ [39]
HermiT [31] Fuzzy Hyper-Tableau [31] HermiT [31]
FIRE [41] Fuzzy - Fuzzy DL [40]

FuzzyDL [3] Fuzzy Fuzzy Rough Sets; Pellet
Fuzzy; Lukasiewicz [5]

DeLorean [2] Fuzzy Zadeh, Godel Fuzzy Operators Pellet

HyFOM [46] Fuzzy Mamdani Fuzzy DL

SoftFacts [43] Fuzzy DB Fuzzy Pellet

KAON [34] Possibilistic Possibilistic Possibilistic

#Ontology reasoners extended DL reasoners to a specific reasoning logic
*Pellet implements tableau reasoning
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3 Applications

Some of the above discussed ontology learning and reasoning approaches have
been implemented as plug-in extensions for ontology development tools, such as
Protégé [19] or KAON [34]. Fuzzy Protg is such a sample plug-in [19].

It turns out that only a few applications can learn database ontologies and
reason with them probabilistically or possibilistically (table 4). We require these
capabilities for our further extension of such systems with FS reasoning.

Table 4. Sample applications that use uncertain ontology learning or reasoning

Application Originality Ontology
Learning Tool Reasoning Tool
PROGNOS [13]  Knowledge Fusion ~MEBN [25] MEBN [25]
UnBBayes [9] Knowledge Fusion =~ MEBN [25]  MEBN [25]
FEER2FOnto [50] Semantics-Preserving Probabilistic DeLorean [2]

Multi-Entity Bayesian Networks (MEBN) [25] extends first-order proposi-
tional ontologies with probabilistic information and infers within Bayesian net-
works of those probability distributions. Whereby the probability distributions
are learned again Bayesian. Thus applications that use MEBN can learn and rea-
son probabilistically. PROGNOS [13] and UnBBayes [9] use MEBN for knowl-
edge fusion over relational databases.

FEER2FOnto [50] is interesting in that it combines probabilist learning and
fuzzy reasoning with the reasoner DeLorean [2].

4 Fuzzy-Syllogistic Reasoning

Fuzzy-syllogistic (FS) reasoning is based on a fuzzy-logical extension of the syl-
logistic system that consists of all possible combinations of the well known cate-
gorical syllogisms. We interpret the system as one complex approximate reasoner
that consists of all possible fuzzy-inferences for any given triple concept of an
ontology. Here we introduce the fuzzy-syllogistic system *S that consists of four
affirmative and four negative quantifiers.

4.1 Fuzzy-Syllogistic System

A categorical syllogism ¥1W,Ws F is an inference schema that concludes a quan-
tified proposition @3 = S¥W3 P from the transitive relationship of two given quan-
tified proportions @1 = { MW, P, P¥U1 M} and @9 = {SW M, MW, S}:

WU F = (&) = MW, P, PU M, &y = SUM, MW, S, &3 = SW3P) (1)
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where F={1, 2, 3, 4} identifies the four possible combinations of ¢; with P,
namely syllogistic figures and W={A=all; 3I=most; 2I=half; !I=several;
A=allNot; 3I=mostNot; 2I=halfNot; !I=severalNot} are the fuzzy quantifiers.
Every syllogistic figure produces 82=512 permutations, which are called fuzzy-
syllogistic moods. Thus the whole system *S has in total 2048 fuzzy-syllogistic
moods.

Every mood has a structurally fixed truth ratio in [0,1], which is calculated
algorithmically [24] by relating the number of its true cases to the number of
false cases [23] (table 5 shows sample inferencing in the system S, since these
are easier to follow manually). Moods of the FS system become inferences in F'S
reasoning.

Table 5. Sample fuzzy-syllogistic moods, their truth cases, truth ratios and sample
interpretations of the fuzzy-syllogistic system S

Mood WV W3 F AAAL, AAIT EEI1, 2, 3, 4
Cases Af t: 0100101 t: 0110010; t: 1010010
t: 1110010; f: 1110000
Truth Ratio 7 1t/(1t+0f)=1.0" 3t/(3t+1£)=0.75
Interpretation of - At least P NS # & is missing
false cases™
Example All primates are mammals Not All are {Turks, Muslim}
All humans are primates Not All are {Orientals, Turks}
{All, Some} humans are mammals  Some Orientals are Muslim
Concluding with All is true, All four examples that can be
Interpretation of  probably without exception; loaded into the four moods are
Example concluding with Some is true only possibly more true than false,

for the possible All case in Some however possibly not fully true

Tt=true case; f=false case

“The conclusions of the examples assume that P NS # & equals the truth ratio 7 of
the mood

# A; syllogistic case i=[1,96]; all possible distinct space permutations of the possible
7 spaces of three sets

4.2 Fuzzy-Syllogistic Learning and Reasoning

The objective of FS reasoning is to find the best matching fuzzy-syllogistic in-
ference for a given triple concept with transitive relationships. The objective
of FS reasoning within the learning process is to accumulate the samples for
all possible 7 spaces of three sets, since their 96 possible distinct permutations
constitute the universal set, from which the fuzzy-syllogistic moods match some
as true syllogistic case and some as false [22]. The outcome of learning is an
ontology with quantified relationships.

The FS reasoner calculates for every triple concept with transitive relation-
ships a truth ratio using the very same algorithm for calculating the truth ratios
of the individual moods/inferences [22]. In case of learning a fuzzy-syllogistic
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database ontology (Fig. 3) data quantities can easily be determined from the
related tables.

Learning Fuzzy Fuzzy Syllogistic
DB Ontology Reasoning (FSR)

DB Fuzzy Syllogistic
v Reasoning (FSR)

Preserving Quantities

Relational
Schema

Relational

Fig. 3. Learning fuzzy syllogistic ontologies from relational databases using fuzzy syl-
logistic reasoning

5 Conclusion

We have reviewed state-of-the-art in ontology learning and reasoning, with an
emphasis on database ontologies. We have pointed out that there are no stan-
dards for probabilist or possibilistic extensions of such system and therefore
knowledge exchange between them is currently not efficient. Based on these ob-
servations, we have suggested fuzzy-syllogistic (FS) reasoning as a common logic
for both, learning F'S ontologies and reasoning with them. Principally any prob-
abilist learning approach can be extended with FS reasoning, provided that all
quantities of the data samples that lead to ontological concepts and their re-
lationships can be calculated during the learning process and remain available
along with the F'S ontology after learning.

We have briefly discussed FS reasoning using the FS system “S that consists
of 4 affirmative and 4 negative quantifiers.

Since FS reasoning is based on clear FS systems like, S or #S, it could be used
as a common possibilistic reasoner for probabilistic ontologies, thus facilitate
knowledge exchange in the semantic web. The reasoner can further adjust itself
to changing quantities of the domain data, by applying the most suitable FS
system ™S to every triple concept relationship individually. With the F'S reasoner
individual optimisations are not required, like with fuzzy aggregation operators
[6] or fuzzy integrals [4].
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