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Abstract In this paper, we presented a 3-D computer-aided co-segmentation tool
for tumor/lesion detection and quantification from hybrid PET/MRI and PET/CT
scans. The proposed method was designed with a novel modality-specific visibil-
ity weighting scheme built upon a fuzzy connectedness (FC) image segmentation
algorithm. In order to improve the determination of lesion margin, it is necessary to
combine the complementary information of tissues from both anatomical and func-
tional domains. Therefore, a robust image segmentation method that simultaneously
segments tumors/lesions in each domain is required. However, this task, named co-
segmentation, is a challenging problem due to (1) unique challenges brought by each
imagingmodality, and (2) a lack of one-to-one region and boundary correspondences
of lesions in different imaging modalities. Owing to these hurdles, the algorithm is
desired to have a sufficient flexibility to utilize the strength of each modality. In this
work, seed points were first selected from high uptake regions within PET images.
Then, lesion boundaries were delineated using a hybrid approach based on novel
affinity function design within the FC framework. Further, an advanced extension
of FC algorithm called iterative relative FC (IRFC) was used with automatically
identified background seeds. The segmentation results were compared to the refer-
ence truths provided by radiologists. Experimental results showed that the proposed
method effectively utilized multi-modality information for co-segmentation, with a
high accuracy (mean DSC of 85%) and can be a viable alternative to the state-of-the
art joint segmentation method of random walk (RW) with higher efficiency.
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1 Introduction

Multimodal imaging techniques make use of different but complementary imaging
modalities within a single system. While PET/CT sequentially acquires computed
tomography (CT) and positron emission tomography (PET) images from a patient,
PET/MRI simultaneously acquires PET and magnetic resonance (MR) images, and
provides very accurate spatial and temporal image fusion. With PET/MRI and
PET/CT, the spatial distribution of radiotracer activity from PET can be precisely
analyzed with anatomical details revealed by MRI or CT, leading to more accu-
rate localization and characterization of pathology. PET/MR and PET/CT have thus
emerged as a mean of achieving higher sensitivity and specificity than either compo-
nent modality alone. Most automated tumor/lesion segmentation methods are either
solely based on PET images and ignore complementary MRI or CT information, or
vice versa. Lately, the requirements for joint analysis of lesions in both structural
and functional image domains led researchers to develop co-segmentation methods
for robust quantification of lesions [1, 2].

In this paper, as an alternative to the state-of-the-art methods, we propose an effi-
cient framework for hybrid imaging modalities segmentation. Our proposed method
is based on a fuzzy connectedness (FC) image segmentation [3], which effectively
utilizes amodality-specific visibilityweighting scheme through a novel fuzzy affinity
function.Ourmethod is flexible towithstandvarious visibility conditions of the object
of interest in different modalities. In clinical routines, high uptake regions of radio-
tracers in PET images are usually determined by the visual assessment of radiologists
based on the fused information. This process is labor intensive and time consuming.
Thresholding, edge detection, region growing, and watershed approaches have also
been employed to determine the region boundaries [4], but these algorithms were
developed solely on functional images without incorporating anatomical informa-
tion. Therefore, the methods are limited in accuracy, robustness, and reproducibility.
Recently, a few co-segmentation methods have been proposed for quantification of
PET/CT images [1, 2, 5, 6]. Feature extraction and classification, considering both
PET and CT information for distinguishing tumor from normal tissue in the head and
neck regions, is presented in [5]. In [6], localization and initial segmentation were
performed over PET images, which is further refined by voxel classification in CT.
The above methods [5, 6] are based on classification, which lack the capability of
concurrent segmentation from both modalities. Markov Random Field (MRF) model
was employed for PET/CTco-segmentation in [1]; graphoptimizationwas performed
to simultaneously minimize the total MRF energy obtained from both PET and CT
images. The MRF-based method was shown to be effective; however, it works on a
2-D slice plane and requires a precisely defined seed set provided by user interaction.
In [2], randomwalk (RW) co-segmentationwas applied to find the correct anatomical
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boundaries in CT images, driven by the uptake regions from the corresponding PET
images. The RW-based algorithm was shown to perform better than MRF in both
accuracy and speed. In this paper, we propose an alternative method to these state-
of-the-art methods [1, 2]. An automatic 3-D co-segmentation method was designed
based on the FC framework with a novel fuzzy affinity function. Our method has
the flexibility to segment tumors/lesions jointly through a modality-specific weight
mechanism; experiments have been conducted on images from hybrid PET/MRI and
PET/CT scans.

2 Methods

In this section, the theory of FC is presented, followed by co-segmentation formula-
tion.

In the FC framework, a fuzzy topological construct characterizes how voxels
of an image hang together to form an object through a predefined function called
affinity [7]. Assuming V ⊂ Z

3 denotes a 3-D cubic grid representing the image
space, where each element of V is called a voxel, a topology on an image is given in
terms of an adjacency relation (μα). Theoretically, if p and q are α-adjacent to each
other, then μα(p, q) = 1, ‘0’ otherwise. In practice, we set α = 26 for 3-D analysis.
While affinity is intended to be a local relation, a global fuzzy relation called fuzzy
connectedness, is induced on the image domain by the affinity functions. This is
done by considering all possible paths between any two voxels p and q in the image
domain, and assigning a strength of fuzzy connectedness to each path. The level of
the fuzzy connectedness between any two voxels p and q is considered to be the
maximum of the strengths of all paths between p and q.

An affinity relation κ is the most fundamental measure of local hanging together-
ness of nearby voxels. For a path π, which is a sequence of voxels 〈p1, p2, . . . , pl〉
with every two successive voxels being adjacent, given fuzzy affinity function
μκ(pi , pi+1), the strength of the path is defined as the minimum affinity along the
path:

μN (π) = min
1≤i<l

μκ(pi , pi+1). (1)

Then, the strength of connectedness μK(p, q) between any two voxels p and q is
the strength of the strongest path between them as

μK(p, q) = max
π∈P(p,q)

μN (π), (2)

where P(p, q) denotes the set of all paths between p and q. Therefore, a fuzzy
connected object O in an image can be defined for a predetermined set of seeds
S. Since the level of FC between any two voxels p and q is considered to be the
maximum of the strengths of all paths between them, for multiple seeds, the fuzzy
object membership function for O or the strength of connectedness of O is defined
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as follows:
μO(p) = max

s∈S
μK(p, s). (3)

An efficient computational solution is presented in [3] for computing μO(p), given
κ and S and an image.

Absolute FC segmentation is based on computing the FC strength between a set
of seed points and all other voxels within the image and set a proper threshold to
the resulting FC image for generating the binary segmentation result. However, the
threshold determination is usually manual. On the other hand, IRFCmethod is based
on several seed sets Si , i = 1, 2, . . . , k. FC strength is first computed at every voxel
for each of the seed sets individually, and then the voxel is labeled as belonging the
seed set with maximum FC value. In this way, the thresholding step is avoided. In
this study, we investigated both the application of FC and IRFC.

2.1 Image Co-segmentation with Novel Affinity Function

Effectiveness of the FC/RFC algorithm depends on the choice of the affinity func-
tion. The most prominent affinities used so far are (i) adjacency-based μα, (ii)
homogeneity-based μψ , and (iii) object feature-based μφ such that fuzzy affinity
is defined as

μκ(p, q) =
{
1, if p = q;

μα(p, q)
√

μψ(p, q)μφ(p, q), otherwise,
(4)

where μψ(p, q) captures the homogeneity between p and q, with a higher value
for similar pairs. For object feature-based affinity, μφ(p, q) defines the hanging-
togetherness of p and q in the target object based on likeliness of their feature values
with respect to the expected feature distribution of the target object. The general form
of μψ(p, q) and μφ(p, q) are

μψ(p, q) = e
− | f (p)− f (q)|2

2σ2
ψ , (5)

μφ(p, q) = min

⎛
⎝e

− | f (p)−m|2
2σ2

φ , e
− | f (q)−m|2

2σ2
φ

⎞
⎠ , (6)

where σψ and σφ are two different standard deviation parameters used for homo-
geneity and object feature distribution, m is the mean object feature value, and f
denotes image intensity function: f : V → L ⊂ Z.

In order to introduce a co-segmentation framework, we introduce two intensity
functions corresponding to anatomical (A: MRI or CT) and functional (F : PET)
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image domain, f A and f F , respectively. Similarly, for each image modality A and
F , we define a new fuzzy affinity function by combining fuzzy affinity functions
corresponding to anatomical and functional images (i.e., μA

κ (p, q) and μF
κ (p, q)) as

μκ(p, q) =
{
0, ifμA

κ (p, q) or μF
κ (p, q) = 0;

wAμA
κ (p, q) + wFμF

κ (p, q), otherwise;
(7)

where weights wA and wF are used to combine affinities, and were determined by
considering target visibility of different modalities such that they were constrained
as 0 ≤ wA, wF ≤ 1, and wA + wF = 1.

We also designed a new object feature-based affinity function specific to the image
modality by analyzing the characteristics of individual imaging modalities. A non-
uniform Gaussian formulation was utilized for this purpose. The functions designed
for this purpose are illustrated in Fig. 1. As can be seen from the first row of the
figure that since the hot regions are more active for a PET image, thus inferring more
reliable target volume, we can define an expected value m from the image intensity
distribution that shapes the non-uniform Gaussian formulation as

μF
φ (x) =

⎧⎨
⎩
1, if f F (x) > m;

e
− | f F (x)−m|2

2σ2
φ , otherwise.

(8)

In a similar fashion, to model the object feature-based affinity function, higher and
lower intensity variations can be combined with respect to an object feature as
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Fig. 1 Non-uniform Gaussian formulation for object feature similarity μφ
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μA
φ (x) =

⎧⎪⎪⎨
⎪⎪⎩

e
− | f A(x)−m|2

2σ2
φH , if f A(x) > m;

e
− | f A(x)−m|2

2σ2
φL , otherwise,

(9)

where σφL < σφH. Second and third rows in Fig. 1 demonstrate the object feature-
based affinity functions used for CT and MRI modalities, respectively. Once all
affinity functions were defined, Eq.3 was solved to obtain segmentation results.

3 Experiments and Results

Data and Evaluation Metrics: A retrospective study was performed on 9 PET/MRI
and 9 PET/CT images. For comparison with the state-of-the-art algorithm of RW [2],
we have used the same dataset, reference segmentation, and evaluation crite-
rion. For PET/MRI scans, voxel sizes were 1.1 × 1.1 × 6 mm3 for MR images
and 4.17 × 4.17 × 2 mm3 for PET images. For PET/CT scans, voxel sizes were
0.97 × 0.97 × 1.5 mm3 for CT images and 2.65 × 2.65 × 3 mm3 for PET images.
Each patient’s scan was positive for at least one mass tumor in the neck, thorax,
abdomen, or pelvis pertaining to Von Hippel-Lindau disease, pheochromocytoma,
or hereditary leiomyomatosis and renal cell cancer, as previously identified (but not
circumscribed) by a radiologist. Manual delineations from two expert observers on
PET/CT and PET/MR images were used as reference for evaluation, and the seg-
mentation performance was evaluated using two conventional segmentation metrics,
the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). Note that DSC
calculates the ratio of overlap between two segmentation results and HD measures
the boundary mismatch between two segmentations. Higher DSC and lower HD are
desirable for a segmentation algorithm. Seed points are manually determined, and
variations are allowed given that FC is the most robust method for seed selection [8].

3.1 Qualitative and Quantitative Evaluation

The experiments were conducted on a machine with 2.7 GHz CPU, 16GB memory,
andMacOSX system. Average running time for the proposed co-segmentation algo-
rithmwas less than 10 seconds.RFCdoubles the time complexity of FC, andwe found
no statistical significant difference between FC and IRFC results regarding segmenta-
tion accuracy. Figure2 shows examples of the co-segmentation results fromPET/MR
images under different visibility conditions of the target object. The second column
displays the fused images overlaid by segmentation results (green boundaries) and
manual references (blue boundaries). The first and the third columns show corre-
sponding PET and MR images. As illustrated, the visibility of the target object and
contrast with surrounding tissues are more prominent in PET for the first row (show-
ing a small tumor); the target object is almost equally visible for the second row
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Fig. 2 Co-segmentation results for PET/MR images under different visibility conditions. The first
column PET images in three different anatomical levels. The second column hybrid PET/MR image
with segmentation results (green contours) and manual references (blue contours) overlaid. The
third column corresponding MR images. Target object is more visible in PET for the first row
(small tumor); almost equally visible for the second row (big tumor); and more visible in MRI for
the third row (lung mass)

(showing a larger tumor); and the target object is more prominent in MRI for the
third row (showing lung mass). Qualitatively, the co-segmentation results agree well
with the anatomical boundaries, as well as hot regions from functional images. Sim-
ilarly, results for PET/CT images are qualitatively presented in Fig. 3. The second
column is the fused images overlaid by segmentation results (green boundaries) and
manual references (blue boundaries). The first and the third columns are correspond-
ing PET and CT images. The first row illustrates a consolidation case where the
contrast between consolidation region and surrounding tissue in CT image is subtle
for the human eye, as pointed out by the red arrow (consolidation) and the yellow
arrows (blood vessels). The second row presents a tree-in-bud case where the con-
trast is higher, but the infected region contains complex structures in the CT image.
As can be observed, when contrast between the target region and the surrounding
tissue is subtle, human observers tend to rely more on the PET image, while the
automatic algorithm is able to capture the difference in both images. Note that in the
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Fig. 3 Co-segmentation results for two PET/CT images. The first column PET images in two
different anatomical levels. The second column hybrid PET/CT image with segmentation results
(green contours) and manual references (blue contours) overlaid. The third column corresponding
CT images. Contrast between target region and surrounding tissue is subtle for the first row (con-
solidation), as pointed out by the red arrow (consolidation) and the yellow arrows (blood vessels),
differentiating vessels and consolidations is almost impossible visually. Target region has higher
contrast but contains complex structures in the second row (tree-in-bud)

Fig. 4 DSCs andHDs for segmentation results, given by differentmethods andmanual delineations
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CT images in Fig. 3, the target object is only partially defined by lung and is discrim-
inant from the surrounding soft tissues with subtle contrast; therefore, segmentation
solely based on CT images is often not feasible for the experimental data. Mean and
standard deviation of the delineations’ DSCs and HDs are presented in Fig. 4. As
illustrated, co-segmentation on PET/MR and PET/CT images helps to improve the
results over MRI, CT, or PET alone, and it performs better than or comparable to
inter-observer variation. Also, although CT alone has poor intensity resolution and
gives partial description of the target object, it helps to improve the segmentation
with additional boundary constraint.

4 Discussion and Conclusion

In this paper, we proposed a co-segmentation framework using both anatomical
and functional images. The proposed method was performed in 3-D image domain,
with flexibility to segment various lesions under different visibility conditions. The
performance of the method was evaluated using PET/MR and PET/CT images, and
high accuracy was achieved. In comparison with the RW image co-segmentation [2],
which achieves a DSC of 86%, our proposed method had a similar performance with
heightened efficiency; therefore, our method can be an alternative to the state-of-the-
artmethod. Indeed, the proposed framework performs delineation of the lesions about
four times faster than the RW co-segmentation method. Note that perfect registration
is assumed for the input anatomical and functional images, and proper registration is
needed in presence of mismatches. Also, motion correction could be applied before
segmentation to account for inter- and intra-scan motions during imaging. These two
issues are important factors for the final accuracy, although they are out of the scope
of the proposed framework. Furthermore, it will be meaningful in our future work to
test the proposed method on heterogeneous tumors considering the strength of FC
in handling variations of local image intensities.
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