Bessel Processes, the Brownian Snake
and Super-Brownian Motion

Jean-Francois Le Gall

Abstract We prove that, both for the Brownian snake and for super-Brownian
motion in dimension one, the historical path corresponding to the minimal spatial
position is a Bessel process of dimension —5. We also discuss a spine decomposition
for the Brownian snake conditioned on the minimizing path.

1 Introduction

Marc Yor used to say that “Bessel processes are everywhere”. Partly in collaboration
with Jim Pitman [13, 14], he wrote several important papers, which considerably
improved our knowledge of Bessel processes and of their numerous applications. A
whole chapter of Marc Yor’s celebrated book with Daniel Revuz [15] is devoted to
Bessel processes and their applications to Ray-Knight theorems. As a matter of fact,
Bessel processes play a major role in the study of properties of Brownian motion,
and, in particular, the three-dimensional Bessel process is a key ingredient of the
famous Williams decomposition of the Brownian excursion at its maximum. In the
present work, we show that Bessel processes also arise in similar properties of super-
Brownian motion and the Brownian snake. Informally, we obtain that, both for the
Brownian snake and for super-Brownian motion, the (historical) path reaching the
minimal spatial position is a Bessel process of negative dimension.

Let us describe our results in a more precise way. We write (W),>o for the
Brownian snake whose spatial motion is one-dimensional Brownian motion. Recall
that (Wy),>0 is a Markov process taking values in the space of all finite paths in R,
and for every s > 0, write {; for the lifetime of W,. We let N stand for the o-finite
excursion measure of (W;),>o away from the trivial path with initial point 0 and zero
lifetime (see Sect. 2 for the precise normalization of Ny). We let W, be the minimal
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spatial position visited by the paths W, s > 0. Then the “law” of W, under Ny is
given by

3
No(Wy < —a) = 52 (1)

for every a > 0 (see [9, Sect. VI.1] or [12, Lemma 2.1]). Furthermore, it is
known that, Ny a.e., there is a unique instant s, such that W, = W, ({s,).
Our first main result (Theorem 1) shows that, conditionally on W, = —a, the
random path a + W, is a Bessel process of dimension d = —5 started from a
and stopped upon hitting 0. Because of the relations between the Browian snake
and super-Brownian motion, this easily implies a similar result for the unique
historical path of one-dimensional super-Brownian motion that attains the minimal
spatial value (Corollary 1). Our second result (Theorem 2) provides a “spine
decomposition” of the Brownian snake under Ny given the minimizing path W, .
Roughly speaking, this decomposition involves Poisson processes of Brownian
snake excursions branching off the minimizing path, which are conditioned not to
attain the minimal value W,.. See Theorem 2 for a more precise statement.

Our proofs depend on various properties of the Brownian snake, including its
strong Markov property and the “subtree decomposition” of the Brownian snake ([9,
Lemma V.5], see Lemma 3 below) starting from an arbitrary finite path w. We also
use the explicit distribution of the Brownian snake under Ny at its first hitting time
of a negative level: If b > 0 and S}, is the first hitting time of —b by the Brownian
snake, the path b + Wy, is distributed under No(: | S, < 00) as a Bessel process of
dimension d = —3 started from b and stopped upon hitting O (see Lemma 4 below).
Another key ingredient (Lemma 1) is a variant of the absolute continuity relations
between Bessel processes that were discovered by Yor [17] and studied in a more
systematic way in the paper [13] by Pitman and Yor.

Let us briefly discuss connections between our results and earlier work. As a
special case of a famous time-reversal theorem due to Williams [16, Theorem 2.5]
(see also Pitman and Yor [14, Sect.3], and in particular the examples treated in
subsection (3.5) of [14]), the time-reversal of a Bessel process of dimensiond = —5
started from a and stopped upon hitting O is a Bessel process of dimension d = 9
started from O and stopped at its last passage time at a — This property can also be
foundin [15, Exercise XI.1.23]. Our results are therefore related to the appearance of
nine-dimensional Bessel processes in limit theorems derived in [12] and [11]. Note
however that in contrast with [12] and [11], Theorem 1 gives an exact identity in
distribution and not an asymptotic result. As a general remark, Theorem 2 is related
to a number of “spine decompositions” for branching processes that have appeared
in the literature in various contexts. We finally note that a strong motivation for
the present work came from the forthcoming paper [2], which uses Theorems 1
and 2 to provide a new construction of the random metric space called the Brownian
plane [1] and to give a number of explicit calculations of distributions related to this
object.
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The paper is organized as follows. Section2 presents a few preliminary results
about Bessel processes and the Brownian snake. Section 3 contains the statement
and proof of our main results Theorems 1 and 2. Finally Sect.4 gives our
applications to super-Brownian motion, which are more or less straightforward
consequences of the results of Sect. 3.

2 Preliminaries

2.1 Bessel Processes

We will be interested in Bessel processes of negative index. We refer to [13] for
the theory of Bessel processes, and we content ourselves with a brief presentation
limited to the cases of interest in this work. We let B = (B;),>0 be a linear Brownian
motion and for every @ > 0, we will consider the nonnegative process R =

(R;“)),Zo that solves the stochastic differential equation

dR® = dB, — 1% dr, )
t

with a given (nonnegative) initial condition. To be specific, we require that Eq. (2)
holds up to the first hitting time of 0 by R®,

7@ :=inf{t > 0: R = 0},

and that R;a) = 0 fort > T'®. Note that uniqueness in law and pathwise uniqueness
hold for (2).

In the standard terminology (see e.g. [13, Sect.2]), the process R® is a Bessel
process of index v = —a — %, or dimension d = 1 — 2«a. We will be interested
especially in the cases® = 2 (d = —3) and o = 3 (d = —5).

For notational convenience, we will assume that, for every r > 0, there is
a probability measure P, such that both the Brownian motion B and the Bessel
processes R start from r under P,.

Let us fix 7 > 0 and argue under the probability measure P,. Fix § € (0, r) and
set

T .= inf{t > 0: R® =8},
and

Ts := inf{t > 0 : B; = §}.



92 J.-F. Le Gall

The following absolute continuity lemma is very closely related to results of [17]
(Lemma 4.5) and [13] (Proposition 2.1), but we provide a short proof for the
sake of completeness. If E is a metric space, C(R4, E) stands for the space of
all continuous functions from R4 into E, which is equipped with the topology of
uniform convergence on every compact interval.

Lemma 1 For every nonnegative measurable function F on C(R4+,R4),

Er[F((R:i)Tgm)tZO)] = (g) [F((an)t>o) exP( Ot(l + ) /Ta ds

Proof Write (.%;),>o for the (usual augmentation of the) filtration generated by B.
For every t > 0, set

ro\® ol to ”\T“ds
M,:z( ) exp ( )/

tINTs

An application of 1td’s formula shows that (M;),>o is an (.%;)-local martingale.
Clearly, (M,);>0 is bounded by (r/§)® and is thus a uniformly integrable martingale,
which converges as t — oo to

Mo = (g)a eXP(_M/OTﬁg

We define a probability measure Q absolutely continuous with respect to P, by
setting Q = M - P,. An application of Girsanov’s theorem shows that the process

tINTs ds
B _
o “/o B,

is an (.%;)-Brownian motion under Q. It follows that the law of (B;ar;)s>0 under Q
coincides with the law of (R(“)T (a)) » under P,. This gives the desired result. O

The formula of the next lemma is probably known, but we could not find a
reference.

Lemma 2 Foreveryr > 0 and a > 0,

E[exp(_sf”dt(ﬁRw)—z)]:1_( Ly’
' 0 ! r+a’’

Proof An application of 1t6’s formula shows that

R® \? IAT®
M= |1- —Zt exp(—S/ ds(a+R§2))_2)
R§ ) +a 0
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is a local martingale. Clearly, M, is bounded by 1 and is thus a uniformly integrable
martingale. Writing E,.[M;] = E,[My] yields the desired result. O

Remark An alternative proof of the formula of Lemma 2 will follow from forthcom-
ing calculations: just use formula (4) below with G = 1, noting that the left-hand
side of this formula is then equal to No(—b — ¢ < W, < —b), which is computed
using (1). So strictly speaking we do not need the preceding proof. Still it seems a
bit odd to use the Brownian snake to prove the identity of Lemma 2, which has to
do with Bessel processes only.

2.2 The Brownian Snake

We refer to [9] for the general theory of the Brownian snake, and only give a short
presentation here. We write % for the set of all finite paths in R. An element of #
is a continuous mapping w : [0, (] — R, where { = () > 0 depends on w and
is called the lifetime of w. We write W = w({(w)) for the endpoint of w. Forx € R,
we set #; = {w € # : w(0) = x}. The trivial path w such that w(0) = x and
{(w) = x is identified with the point x of R, so that we can view R as a subset of #.
The space # is equipped with the distance

dw,w') = [Lw) — L | + Sug [W(t A L) — W (A L)l
>

The Brownian snake (W;),>o is a continuous Markov process with values in #.
We will write {, = {w,) for the lifetime process of W;. The process ({;)s>0 evolves
like a reflecting Brownian motion in R.. Conditionally on ({;)s>0, the evolution of
(Wy)s>0 can be described informally as follows: When £, decreases, the path W; is
shortened from its tip, and, when ¢, increases, the path W; is extended by adding
“little pieces of linear Brownian motion” at its tip. See [9, Chap. IV] for a more
rigorous presentation.

It is convenient to assume that the Brownian snake is defined on the canonical
space C(Ry, %), in such a way that, for ® = (ws)s>0 € C(R4,#'), we have
W,(®w) = w;,. The notation P, then stands for the law of the Brownian snake started
from w.

For every x € R, the trivial path x is a regular recurrent point for the Brownian
snake, and so we can make sense of the excursion measure N, away from x, which
is a o-finite measure on C(R4, %#). Under N,, the process ({;)s>0 is distributed
according to the Itd measure of positive excursions of linear Brownian motion,
which is normalized so that, for every ¢ > 0,

Nx<sup§'s > s) = %

s>0
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We write o := sup{s > 0 : {; > 0} for the duration of the excursion under N,. In a
way analogous to the classical property of the It6 excursion measure [15, Corollary
XII.4.3], Ny is invariant under time-reversal, meaning that (W, —gv0)s=0 has the
same distribution as (W;)s>o under N, .

Recall the notation

A

Wy = inf Wy = inf inf W(¢),

0<s<o 0<s<0 0<t<(

and formula (1) determining the law of W, under Ny. It is known (see e.g. [12,
Proposition 2.5]) that N, a.e. there is a unique instant sy € [0, o] such that VAVSm =
We. One of our main objectives is to determine the law of W . We start with two
important lemmas.

Our first lemma is concerned with the Brownian snake started from Py, for some
fixed w € #, and considered up to the first hitting time of 0 by the lifetime process,
that is

no := inf{s > 0 : {; = 0}.

Then the values of the Brownian snake between times 0 and 7y can be classified
according to “subtrees” branching off the initial path w. To make this precise, let
(a4, Bi), i € I be the excursion intervals away from O of the process

é‘s — min é‘r
0<r<s

before time 79. In other words, the intervals («;, B;) are the connected components
of the open set {s € [0, no] : {; > ming<,<;s {,}. Using the properties of the Brownian
snake, it is easy to verify that Py, a.s. for every i € I, W, = Wg, is just the restriction
of w to [0, {,,], and the paths W;, s € [o;, B;] all coincide over the time interval
[0, £o,]- In order to describe the behavior of these paths beyond time {,, we introduce,
for every i € I, the element W' = (W!);>¢ of C(R4,#) obtained by setting, for
every s > 0,

Wé(t) = W(ai-l-f)/\ﬂi(gai +1, 0=r= Cé = é-(ai"'s)/\ﬂi - é-ai‘

Lemma 3 Under Py, the point measure

Z S(g'ui’Wl') (dt, da))

iel
is a Poisson point measure on Ry x C(R4, #') with intensity

2 l[o,g(w)] (t) dr Nw(t) (da))
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We refer to [9, Lemma V.5] for a proof of this lemma. Our second lemma deals
with the distribution of the Brownian snake under Ny at the first hitting time of a
negative level. For every b > 0, we set

Sy :=inf{s >0: W, = —b}

with the usual convention inf @ = oo.

Lemma 4 The law of the random path Ws, under the probability measure No(- |
S, < 00) is the law of the process (REZ) — b)o<;<7 under Py,

This lemma can be obtained as a very special case of Theorem 4.6.2 in [6].
Alternatively, the lemma is also a special case of Proposition 1.4 in [5], which relied
on explicit calculations of capacitary distributions for the Brownian snake found in
[8]. Let us briefly explain how the result follows from [6]. For every x > —b, set

3

up(x) == Ny(Sp < 00) = 2+ b2

where the second equality is just (1). Following the comments at the end of Sect. 4.6
in [6], we get that the law of Ws, under the probability measure No(: | S, < 00) is
the distribution of the process X solving the stochastic differential equation

A
dX, = dB, + 2(X,)dr, Xo =0,
up

7
and stopped at its first hitting time of —b. Since Z—Ib(x) = —)ﬁ we obtain the desired
result.

3 The Main Results

Our first theorem identifies the law of the minimizing path W, .

Theorem 1 Let a > 0. Under Ny, the conditional distribution of Wy, knowing that
W, = —a is the distribution of the process (R§3) — “)OstSTU)’ where R® is a Bessel
process of dimension —5 started from a, and T® = inf{t > 0 : R§3) = 0}.

In an integral form, the statement of the theorem means that, for any nonnegative
measurable function F on %4,

No(F(W,,)) = 3 /0 ” % E, [F((R?’ - a)OS,STm)]

where we recall that the process R® starts from a under P,.
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Proof We fix three positive real numbers §, K, K’ such that § < K < K’, and we let
G be a bounded nonnegative continuous function on %#j. For every w € %, we then
set

5(w) ;= inf{t > 0 : w(r) = =8}

and F(w) := G((W(1))o<i<s(w)) if Ts(W) < 00, F(w) := 0 otherwise.

For every real x and every integer n > 1, write [x], for the largest real number of
the form k27", k € Z, smaller than or equal to x. Using the special form of F and
the fact that S|_w,), 1 sm as n 1 00, Ny a.e., we easily get from the properties of the
Brownian snake that F (WS[—W*]H) = F(W;,), for all n large enough, Ny a.e. on the
event {W, < —§}. By dominated convergence, we have then

No(F(Ws, )I{—K" < Wy < —K})
- ngrgo NO(F(WS[*W*]n)l{K = [_W*]n =< K/})

dim Y No(F(Wse) USior < oobt{  min_ W > —(k+ D27"}).
K2n<k<K’'2n

3)

Letb > § and ¢ > 0. We use the strong Markov property of the Brownian snake
at time S, together with Lemma 3, to get

NO(F(WS,,) 1S, < oo} 1{ min W, > —b — s})

Sp<s<o

gsp
- NO(F(WS,,) 148, < 0o} exp ( 2 / dt Ny, (o(Ws > —b — e)))
0

= NO(F(WSb) 1S, < oo} exp ( -3 /0 ® (b+e+ st(t))_z))

3

7
— ﬂ Eb [F((R§2) — b)OstsT(z)) exp ( -3 /(; dr (8 4 R£2))—2):| (4)

using (1) in the second equality, and Lemma 4 and (1) again in the third one. Recall
the definition of the stopping times Tga) before Lemma 1. From the special form of

the function F, and then the strong Markov property of the process R® at time T,iz_) ™
we obtain that

)
E, [F((R;2> I ( —3 / dr (s + R;a)_z)]
0

7
= B[ G(RP = b)) exp (=3 /0 dr (e + R |
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@

= B G(RY = b)) exp (=3 /0 e+ R)2)
x Ep-g exp (-3 /0 et &3] )

Using the formula of Lemma 2 and combining (4) and (5), we arrive at

NO(F(WSb) 148, < oo} 1{ min W, > —b — g})

Sp<s=<o
3 b—35§ \2
—_ —— 1 _— —
2b? ( (b -8+ 8) )
2,
x E,,[G((Rﬁz’ —B)yeyeq ) OXP ( 3 / dr (e + Rﬁz’)—z)].
S=l— 0
Hence,

lim s—lNO(F(WS,,) 1S, < oo} 1{ min W, > —b — g})

Sp<s<o
3 2,
= (s @ _ _ - @)\—2
= ( PO 5))Eb[G((R, Dyererr) exp (=3 /0 ar(®?)2)].

At this stage we use Lemma 1 twice to see that

e
O 9 oo (3 [ )]

= (L)ZE;,[G((Bt —b)o<i<1,_5) €XP ( - 6/0Tb8 ds)]

b—3 B2
_(_b ! 3
=(=5) Blo@ b))
Summarizing, we have
. _1 . A~
!E}})e No (F(Wg,,) 1{S, < oo} 1{ Sbnslzga Wy > —b — s})

3
_ —Eb[G((Rf’) ~b),_, gg&)].

b3
Note that the right-hand side of the last display is a continuous function of
b € (8, 00). Furthermore, a close look at the preceding arguments shows that the
convergence is uniform when b varies over an interval of the form [§', 00), where
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8" > 8. We can therefore return to (3) and obtain that

No(F (W, )l{—=K" < Wy < —K})

K/
= lim dbano(F(st ) 1S, < oo}l{ min W, > —[b],,—z—"})
n—o00 [ bl 8 Spplp <s=<0
K/
-3 /K EE,,[G((R, —b)oﬁggﬁ)].
The result of the theorem now follows easily. O

We turn to a statement describing the structure of subtrees branching off the
minimizing path Wy, . In a sense, this is similar to Lemma 3 above (except that we
will need to consider separately subtrees branching before and after time sy, in the
time scale of the Brownian snake). Since sy, is not a stopping time of the Brownian
snake, it is of course impossible to use the strong Markov property in order to apply
Lemma 3. Still this lemma will play an important role.

We argue under the excursion measure Ny and, for every s > 0, we set

;y = g(xm—h&‘)/\a s ;Y = ;(Sm—S)VO‘

We let (Ezi,l;i), i € I be the excursion intervals of {; above its past minimum.
Equivalently, the intervals (a;, b;), i € I are the connected components of the set

{s20:65> min E,}

0<r<s

Similarly, we let (sz,lv)j), Jj € J be the excursion intervals of E‘Y above its past
minimum. We may assume that the indexing sets / and J are disjoint. In terms of
the tree .7; coded by the excursion ({;)o<s<o under Ny (see e.g. [10, Sect. 2]), each
interval (a;, 13,-) or (4, l;j) corresponds to a subtree of 7 branching off the ancestral
line of the vertex associated with sp,. We next consider the spatial displacements

corresponding to these subtrees. For every i € I, we let W = (Wv(i) )s>0 €
C(R4, #) be defined by

Wy) (t) = Wsm-‘r(ai-i-s)/\l;i(é‘»ym'i‘ai + t) ’ 0 E 4 S §5m+(&i+J)Al;i - é.Sm"'&i'
Similarly, for every j € J,
W_S(]) (t) = W&‘m—(tvl_,'+s)/\}v1j(§sm_éj + t) ’ 0 S ! S C‘Ym—(tvl_,'-FS)/\/ij - é-Sm_éj'

We finally introduce the point measures on Ry x C(Ry, #’) defined by

N =D b awiy . A =D b wo.

iel jeJ
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If o = (ws)s>0 belongs to C(Ry, #), we set ws = inf{ws() : s > 0,0 <t <

S(w -

Theorem 2 Under Ny, conditionally on the minimizing path W, the point mea-
sures A (dt,dw) and A (dt, dw) are independent and their common conditional
distribution is that of a Poisson point measure with intensity

2 1[0.{;,“] (t) l{w*>VAVA-m} dr Nme 0) (da))

Clearly, the constraint w, > VAVXm corresponds to the fact that none of the spatial
positions in the subtrees branching off the ancestral line of p;(sm) can be smaller
than W, = me, by the very definition of Wi,.

Proof We will first argue that the conditional distribution of N given W is as
described in the theorem. To this end, we fix again §, K, K’ such that0 < § < K <
K’, and we use the notation t5(w) introduced in the proof of Theorem 1. On the
event where W, < —§, we also set

S= Y B a0y

i€l
Comta; <t (W)

Informally, considering only the subtrees that occur after sy in the time scale of the
Brownian snake, .#5 corresponds to those subtrees that branch off the minimizing
path W;,, before this path hits the level —§.

Next, let @ be a bounded nonnegative measurable function on the space of all
point measures on Ry x C(R4, #') — we should restrict this space to point measures
satisfying appropriate o -finiteness conditions, but we omit the details — and let ¥ be
a bounded continuous function on C(R4, #). To simplify notation, we write W<,
for the process (Wsas, )s>0 viewed as a random element of C(R4, #), and we use
the similar notation W<g,. For every b > 0, let the point measure Jlé(b) be defined
(only on the event where S, < 0o) in a way analogous to JV:g but replacing the path
W;,, with the path Wy, : To be specific, Ji/;(h) accounts for those subtrees (occurring
after Sj in the time scale of the Brownian snake) that branch off W, before this path
hits —6.

As in (3), we have then

No (¥ (Wei) =K' = Wa = =K} D))

= Jim > NO(‘I’(WSSkz—n) 1{Siy— < oo}
K2"<k<K'2"

1{ min VAVX>—(k+1)2‘”}q§(%(k2*n))). (6)

Sip—n <s<o
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The point in (6) is the fact that, Ny a.e., if n is sufficiently large, and if k > K27"
is the largest integer such that Syo—» < oo, the paths W, and Ws,,, are the same

up to a time which is greater than t5(Wj,, ), and the point measures N5 and f/i;s(kT )
coincide.
Next fix b > § and, for ¢ > 0, consider the quantity

NO(lI/(W<Sb) 1S, < oo} 1{ min W, > —b — g} @(w“”)) %)

Sp<s<o

To evaluate this quantity, we again apply the strong Markov property of the
Brownian snake at time S;. For notational convenience, we suppose that, on a certain
probability space, we have a random point measure .# on Ry x C(R4, #') and, for
every w € #), a probability measure [1,, under which . (dt, dw) is Poisson with
intensity

2 l[oygw](t) dr NW(,) (da)).
By the strong Markov property at S, and Lemma 3, the quantity (7) is equal to
No (¥ (W5, 1S, < 00} M, (LA ({(1, @):0x < —b— &}) = 0} (Mzyqny) )

where .#/<+;(ws,) denotes the restriction of the point measure . to [0, 75(Ws,)] x

C(R4,#). Write ng) for the restriction of the path Wg, to [0, 75(Ws,)]. We have
then

M, (KA (10.0) 00 < b = 8}) = 0} D(Meq )
= My, (A ((1.0) 00 < ~b—e}) = 0)
x My, (O (Msqws,) | A ({(1,0) : 04 = b —e}) = 0)
= My, (A ((1.0) 00 < ~b—e}) = 0)
Mo (@) | A ({(1.0) s 02 < ~b—e}) = 0).

using standard properties of Poisson measures in the last equality. Summarizing, we
see that the quantity (7) coincides with

No (% (Ws,) HWs,. b+ £) 1{S) < 00} My, (A ({(1,0) : 0 < —b—}) = 0)),
®)

where, for every w € %#; such that 75(w) < oo, for every a > §, H(w,qa) :
H ((w(#))o<t<rs(w)» @), and the function H is given by

H(w,a) = qs(///) V/({(r ®): wx < —a)) = o)
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this definition making sense if w € %} does not hit —a. By the strong Markov
property at S, and again Lemma 3, the quantity (8) is also equal to

NO(W(W<S,,)H(WS,,,19 4 &) 14S, < 00} 1{ min W, > —b — s})
- Sp=<s=<

a

We may now come back to (6), and get from the previous observations that
No(¥(Way) {—K' < W < =K} &(A}))

= lim Y NO(W(WSSW)H(WSW,(k+1)2—")

n—>o0

K2n<k<K/2n
1S < 00} 1{Sk25n§1}§g W, > —(k + 1)2—"})
= tim No(%(Wsi_y,y,) HWs_y, o [-Wadi =27 K = [-We], < K'})
= No (¥ (Wzpp) HWiy, —Wa) =K' < W, < —K}).

To verify the last equality, recall that the paths Wy _,, , and W, coincide up to their
first hitting time of —§, for all n large enough, Ny a.e., and use also the fact that the
function H(w, a) is Lipschitz in the variable a on every compact subset of (4, c0),
uniformly in the variable w.

From the definition of H, we have then

No(¥ (W) UK’ = We < =K} & (A}))

= NO(lI/(WSSm)l{—K/f W <—K} M0 (@(///)‘///({(t, ©):wr < Wy)) = 0)),

where Wﬁi) denotes the restriction of Wy, to [0, ts(Wj,, )]. From this, and since Wy =
Ws,.» we obtain that the conditional distribution of .45 given W<, is (on the event
where W, < —§) the law of a Poisson point measure with intensity

210055 Wag) (D Ly o,y 47 Ny (5 (do).

Since § is arbitrary, it easily follows that the conditional distribution of N given
W<, is that of a Poisson measure with intensity

2 l[o’gwlvm] ) l{w*>W3m} dr ijm () (da))

Note that this conditional distribution only depends on W, _, meaning that N s

conditionally independent of W<, given Wi, .
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Since the measure Ny isv invariant under time-reversal, we also get that the
conditional distribution of .4” given Wj is the same as the conditional distribution
of N given W, . Finally, A is a measurable function of W<, and since N
is conditionally independent of W<, given Wy , we get that N and N are
conditionally independent given W . O

4 Applications to Super-Brownian Motion

We will now discuss applications of the preceding results to super-Brownian motion.
Let i be a (nonzero) finite measure on R. We denote the topological support of u
by supp(i) and always assume that

m := inf supp(u) > —oo.

We then consider a super-Brownian motion X = (X;),>0 with quadratic branching
mechanism v () = 2u? started from j. The particular choice of the normalization
of ¥ is motivated by the connection with the Brownian snake. Let us recall
this connection following Sect.IV.4 of [9]. We consider a Poisson point measure
Z(dx,dw) on R x C(R4, #') with intensity

p(dx) Ny(dw).
Write

P(dx. dw) =Y 8 o (dx, do)

i€l

and for every i € I, let {! = $(wi)» § = 0, stand for the lifetime process associated
with @’. Also, for every r > 0 and s > 0, let £7(¢) be the local time at level r and
at time s of the process ¢'. We may and will construct the super-Brownian motion X
by setting Xy = w and for every r > 0, for every nonnegative measurable function
g onR,

X 9) =3 /0 4, p(@)), ©)

i€l

where the notation d,¢’(¢’) refers to integration with respect to the increasing
function s — £7(¢).

A major advantage of the Brownian snake construction is the fact that it also
yields an immediate definition of the historical super-Brownian motion ¥ = (¥,),>0
associated with X (we refer to [4] or [7] for the general theory of historical
superprocesses). For every r > 0, Y, is a finite measure on the subset of #
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consisting of all stopped paths with lifetime . We have Yy = pu and for every
r>0,
(Y, @) Z/ Ayl (& d(0)), (10)
i€l
for every nonnegative measurable function @ on 7. Note the relation (X,, ¢) =
J Y (dw) o(W).
The range ZX is the closure in R of the set
| supp(X,).
r>0

and, similarly, we define A7 as the closure in # of

[ supp(¥,).

r=0

We note that

= supp(n) U (U{d);' s> 0})

iel
and
Y = supp(p) U (U{a)é 1S > 0})
iel
We set

= inf %X.

From the preceding formulas and the uniqueness of the minimizing path in the case
of the Brownian snake, it immediately follows that there is a unique stopped path
Winin € 2" such that W, = my. Our goal is to describe the distribution of wp,. We
first observe that the distribution of my is easy to obtain from (1) and the Brownian
snake representation: We have obviously my < m and, for every x < m,

u(du)
(u— x)2

(1)

P(mxy > x) = exp

Note that this formula is originally due to [3, Theorem 1.3]. It follows that

p(du) )

P(mx =m) = exp( w—m)?

Therefore, if [(u — m)~>u(du) < oo, the event {my = m} occurs with positive
probability. If this event occurs, Wi, is just the trivial path m with zero lifetime.
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Proposition 1 The joint distribution of the pair (Wnin(0),mx) is given by the
formulas

HWmﬂ»smnwfx):3[;dy(4M(5?35)“p(‘% (Sggﬂ’

for every a € [m, c0) and x € (—oo, m), and

P(mxy = m) = P(my = m, Wnin(0) = m) = exp(— % %)

Proof Fix a € [m,00), and let y’, respectively p” denote the restriction of u to
[m, a], resp. to (a, 00). Define X, respectively X", by setting X, = ', resp. X =
w1, and restricting the sum in the right-hand side of (9) to indices i € I such that
x' € [m, a], resp. x' € (a,00). Define Y’ and Y” similarly using (10) instead of (9).
Then X', respectively X” is a super-Brownian motion started from p’, resp. from u”,
and Y’, resp. Y” is the associated historical super-Brownian motion. Furthermore,
(X’,Y’) and (X", Y") are independent.
By (11), the law of mys has a density on (—oo, m) given by

Sy () = 3(/[%“] (5?33) exp ( - ; /[m!a] (531’;;2) . ye€ (—oo,m).

On the other hand, if x € (—o0, m),
P(Wnmin(0) < a, my < x) = P(myr <x, myr > my)
= [ a0 PO > ),
—00

and we get the first formula of the proposition using (11) again. The second formula
is obvious from the remarks preceding the proposition. O

Together with Proposition 1, the next corollary completely characterizes the law
of wmin. Recall that the case where my = m is trivial, so that we do not consider this
case in the following statement.

Corollary 1 Let x € (—oo,m) and a € [m, 00). Then conditionally on my = x and
wmin(0) = a, the path W, is distributed as the process (x + R§3) Jo<i<r® under
PCI_X'

Proof On the event {my < m}, there is a unique index iy, € I such that
my = min{@™" : 5 > 0}.

Furthermore, if sp;, is the unique instant such that my = ‘A’)éﬂﬁv we have Wy, =
i . . o
o™, and in particular x;,;, = Wmin(0).
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Standard properties of Poisson measures now imply that, conditionally on my =
x and Win (0) = a, @™ is distributed according to N, (- | Wi = x). The assertions
of the corollary then follow from Theorem 1. O

We could also have obtained an analog of Theorem 2 in the superprocess setting.
The conditional distribution of the process X (or of Y) given the minimizing
path wp,, is obtained by the sum of two contributions. The first one (present
only if Wpin < m) corresponds to the minimizing “excursion” w™ introduced
in the previous proof, whose conditional distribution given wp,;, is described by
Theorem 2. The second one is just an independent super-Brownian motion X started
from p and conditioned on the event mg > Wi, We leave the details of the
statement to the reader.
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