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Abstract We prove that, both for the Brownian snake and for super-Brownian
motion in dimension one, the historical path corresponding to the minimal spatial
position is a Bessel process of dimension �5. We also discuss a spine decomposition
for the Brownian snake conditioned on the minimizing path.

1 Introduction

Marc Yor used to say that “Bessel processes are everywhere”. Partly in collaboration
with Jim Pitman [13, 14], he wrote several important papers, which considerably
improved our knowledge of Bessel processes and of their numerous applications. A
whole chapter of Marc Yor’s celebrated book with Daniel Revuz [15] is devoted to
Bessel processes and their applications to Ray-Knight theorems. As a matter of fact,
Bessel processes play a major role in the study of properties of Brownian motion,
and, in particular, the three-dimensional Bessel process is a key ingredient of the
famous Williams decomposition of the Brownian excursion at its maximum. In the
present work, we show that Bessel processes also arise in similar properties of super-
Brownian motion and the Brownian snake. Informally, we obtain that, both for the
Brownian snake and for super-Brownian motion, the (historical) path reaching the
minimal spatial position is a Bessel process of negative dimension.

Let us describe our results in a more precise way. We write .Ws/s�0 for the
Brownian snake whose spatial motion is one-dimensional Brownian motion. Recall
that .Ws/s�0 is a Markov process taking values in the space of all finite paths in R,
and for every s � 0, write �s for the lifetime of Ws. We let N0 stand for the �-finite
excursion measure of .Ws/s�0 away from the trivial path with initial point 0 and zero
lifetime (see Sect. 2 for the precise normalization of N0). We let W� be the minimal
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spatial position visited by the paths Ws, s � 0. Then the “law” of W� under N0 is
given by

N0.W� � �a/ D 3

2a2
; (1)

for every a > 0 (see [9, Sect. VI.1] or [12, Lemma 2.1]). Furthermore, it is
known that, N0 a.e., there is a unique instant sm such that W� D Wsm.�sm/.
Our first main result (Theorem 1) shows that, conditionally on W� D �a, the
random path a C Wsm is a Bessel process of dimension d D �5 started from a
and stopped upon hitting 0. Because of the relations between the Browian snake
and super-Brownian motion, this easily implies a similar result for the unique
historical path of one-dimensional super-Brownian motion that attains the minimal
spatial value (Corollary 1). Our second result (Theorem 2) provides a “spine
decomposition” of the Brownian snake under N0 given the minimizing path Wsm .
Roughly speaking, this decomposition involves Poisson processes of Brownian
snake excursions branching off the minimizing path, which are conditioned not to
attain the minimal value W�. See Theorem 2 for a more precise statement.

Our proofs depend on various properties of the Brownian snake, including its
strong Markov property and the “subtree decomposition” of the Brownian snake ([9,
Lemma V.5], see Lemma 3 below) starting from an arbitrary finite path w. We also
use the explicit distribution of the Brownian snake under N0 at its first hitting time
of a negative level: If b > 0 and Sb is the first hitting time of �b by the Brownian
snake, the path b C WSb is distributed under N0.� j Sb < 1/ as a Bessel process of
dimension d D �3 started from b and stopped upon hitting 0 (see Lemma 4 below).
Another key ingredient (Lemma 1) is a variant of the absolute continuity relations
between Bessel processes that were discovered by Yor [17] and studied in a more
systematic way in the paper [13] by Pitman and Yor.

Let us briefly discuss connections between our results and earlier work. As a
special case of a famous time-reversal theorem due to Williams [16, Theorem 2.5]
(see also Pitman and Yor [14, Sect. 3], and in particular the examples treated in
subsection (3.5) of [14]), the time-reversal of a Bessel process of dimension d D �5
started from a and stopped upon hitting 0 is a Bessel process of dimension d D 9

started from 0 and stopped at its last passage time at a – This property can also be
found in [15, Exercise XI.1.23]. Our results are therefore related to the appearance of
nine-dimensional Bessel processes in limit theorems derived in [12] and [11]. Note
however that in contrast with [12] and [11], Theorem 1 gives an exact identity in
distribution and not an asymptotic result. As a general remark, Theorem 2 is related
to a number of “spine decompositions” for branching processes that have appeared
in the literature in various contexts. We finally note that a strong motivation for
the present work came from the forthcoming paper [2], which uses Theorems 1
and 2 to provide a new construction of the random metric space called the Brownian
plane [1] and to give a number of explicit calculations of distributions related to this
object.
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The paper is organized as follows. Section 2 presents a few preliminary results
about Bessel processes and the Brownian snake. Section 3 contains the statement
and proof of our main results Theorems 1 and 2. Finally Sect. 4 gives our
applications to super-Brownian motion, which are more or less straightforward
consequences of the results of Sect. 3.

2 Preliminaries

2.1 Bessel Processes

We will be interested in Bessel processes of negative index. We refer to [13] for
the theory of Bessel processes, and we content ourselves with a brief presentation
limited to the cases of interest in this work. We let B D .Bt/t�0 be a linear Brownian
motion and for every ˛ > 0, we will consider the nonnegative process R.˛/ D
.R.˛/t /t�0 that solves the stochastic differential equation

dR.˛/t D dBt � ˛

R.˛/t

dt; (2)

with a given (nonnegative) initial condition. To be specific, we require that Eq. (2)
holds up to the first hitting time of 0 by R.˛/,

T.˛/ WD infft � 0 W R.˛/t D 0g;

and that R.˛/t D 0 for t � T.˛/. Note that uniqueness in law and pathwise uniqueness
hold for (2).

In the standard terminology (see e.g. [13, Sect. 2]), the process R.˛/ is a Bessel
process of index � D �˛ � 1

2
, or dimension d D 1 � 2˛. We will be interested

especially in the cases ˛ D 2 (d D �3) and ˛ D 3 (d D �5).
For notational convenience, we will assume that, for every r � 0, there is

a probability measure Pr such that both the Brownian motion B and the Bessel
processes R.˛/ start from r under Pr.

Let us fix r > 0 and argue under the probability measure Pr. Fix ı 2 .0; r/ and
set

T.˛/ı WD infft � 0 W R.˛/t D ıg;

and

Tı WD infft � 0 W Bt D ıg:
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The following absolute continuity lemma is very closely related to results of [17]
(Lemma 4.5) and [13] (Proposition 2.1), but we provide a short proof for the
sake of completeness. If E is a metric space, C.RC;E/ stands for the space of
all continuous functions from RC into E, which is equipped with the topology of
uniform convergence on every compact interval.

Lemma 1 For every nonnegative measurable function F on C.RC;RC/,

Er

h
F
��

R.˛/
t^T

.˛/
ı

�
t�0

�i
D
� r

ı

�˛
Er

h
F..Bt^Tı /t�0/ exp

�
� ˛.1C ˛/

2

Z Tı

0

ds

B2s

�i
:

Proof Write .Ft/t�0 for the (usual augmentation of the) filtration generated by B.
For every t � 0, set

Mt WD
� r

Bt^Tı

�˛
exp

�
� ˛.1C ˛/

2

Z t^Tı

0

ds

B2s

�
:

An application of Itô’s formula shows that .Mt/t�0 is an .Ft/-local martingale.
Clearly, .Mt/t�0 is bounded by .r=ı/˛ and is thus a uniformly integrable martingale,
which converges as t ! 1 to

M1 D
� r

ı

�˛
exp

�
� ˛.1C ˛/

2

Z Tı

0

ds

B2s

�
:

We define a probability measure Q absolutely continuous with respect to Pr by
setting Q D M1 � Pr. An application of Girsanov’s theorem shows that the process

Bt C ˛

Z t^Tı

0

ds

Bs

is an .Ft/-Brownian motion under Q. It follows that the law of .Bt^Tı /t�0 under Q

coincides with the law of
�

R.˛/
t^T

.˛/
ı

�
t�0 under Pr. This gives the desired result. ut

The formula of the next lemma is probably known, but we could not find a
reference.

Lemma 2 For every r > 0 and a > 0,

Er

h
exp

�
� 3

Z T.2/

0

dt .a C R.2/t /
�2
�i

D 1 �
� r

r C a

�2
:

Proof An application of Itô’s formula shows that

Mt WD
 
1 �

 
R.2/t

R.2/t C a

!2 !
exp

�
� 3

Z t^T.2/

0

ds .a C R.2/s /�2
�
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is a local martingale. Clearly, Mt is bounded by 1 and is thus a uniformly integrable
martingale. Writing ErŒMT.2/ � D ErŒM0� yields the desired result. ut
Remark An alternative proof of the formula of Lemma 2 will follow from forthcom-
ing calculations: just use formula (4) below with G D 1, noting that the left-hand
side of this formula is then equal to N0.�b � " < W� � �b/, which is computed
using (1). So strictly speaking we do not need the preceding proof. Still it seems a
bit odd to use the Brownian snake to prove the identity of Lemma 2, which has to
do with Bessel processes only.

2.2 The Brownian Snake

We refer to [9] for the general theory of the Brownian snake, and only give a short
presentation here. We write W for the set of all finite paths in R. An element of W
is a continuous mapping w W Œ0; �� �! R, where � D �.w/ � 0 depends on w and
is called the lifetime of w. We write Ow D w.�.w// for the endpoint of w. For x 2 R,
we set Wx WD fw 2 W W w.0/ D xg. The trivial path w such that w.0/ D x and
�.w/ D x is identified with the point x of R, so that we can view R as a subset of W .
The space W is equipped with the distance

d.w;w0/ D j�.w/ � �.w0/j C sup
t�0

jw.t ^ �.w// � w0.t ^ �.w0//j:

The Brownian snake .Ws/s�0 is a continuous Markov process with values in W .
We will write �s D �.Ws/ for the lifetime process of Ws. The process .�s/s�0 evolves
like a reflecting Brownian motion in RC. Conditionally on .�s/s�0, the evolution of
.Ws/s�0 can be described informally as follows: When �s decreases, the path Ws is
shortened from its tip, and, when �s increases, the path Ws is extended by adding
“little pieces of linear Brownian motion” at its tip. See [9, Chap. IV] for a more
rigorous presentation.

It is convenient to assume that the Brownian snake is defined on the canonical
space C.RC;W /, in such a way that, for ! D .!s/s�0 2 C.RC;W /, we have
Ws.!/ D !s. The notation Pw then stands for the law of the Brownian snake started
from w.

For every x 2 R, the trivial path x is a regular recurrent point for the Brownian
snake, and so we can make sense of the excursion measure Nx away from x, which
is a �-finite measure on C.RC;W /. Under Nx, the process .�s/s�0 is distributed
according to the Itô measure of positive excursions of linear Brownian motion,
which is normalized so that, for every " > 0,

Nx

�
sup
s�0

�s > "
�

D 1

2"
:
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We write � WD supfs � 0 W �s > 0g for the duration of the excursion under Nx. In a
way analogous to the classical property of the Itô excursion measure [15, Corollary
XII.4.3], Nx is invariant under time-reversal, meaning that .W.��s/_0/s�0 has the
same distribution as .Ws/s�0 under Nx .

Recall the notation

W� WD inf
0�s��

OWs D inf
0�s�� inf

0�t��s

Ws.t/;

and formula (1) determining the law of W� under N0. It is known (see e.g. [12,
Proposition 2.5]) that Nx a.e. there is a unique instant sm 2 Œ0; �� such that OWsm D
W�. One of our main objectives is to determine the law of Wsm . We start with two
important lemmas.

Our first lemma is concerned with the Brownian snake started from Pw, for some
fixed w 2 W , and considered up to the first hitting time of 0 by the lifetime process,
that is

�0 WD inffs � 0 W �s D 0g:

Then the values of the Brownian snake between times 0 and �0 can be classified
according to “subtrees” branching off the initial path w. To make this precise, let
.˛i; ˇi/, i 2 I be the excursion intervals away from 0 of the process

�s � min
0�r�s

�r

before time �0. In other words, the intervals .˛i; ˇi/ are the connected components
of the open set fs 2 Œ0; �0� W �s > min0�r�s �rg. Using the properties of the Brownian
snake, it is easy to verify that Pw a.s. for every i 2 I, W˛i D Wˇi is just the restriction
of w to Œ0; �˛i �, and the paths Ws, s 2 Œ˛i; ˇi� all coincide over the time interval
Œ0; �˛i �. In order to describe the behavior of these paths beyond time �˛i we introduce,
for every i 2 I, the element Wi D .Wi

s/s�0 of C.RC;W / obtained by setting, for
every s � 0,

Wi
s.t/ WD W.˛iCs/^ˇi.�˛i C t/ ; 0 � t � � i

s WD �.˛iCs/^ˇi � �˛i :

Lemma 3 Under Pw, the point measure

X
i2I

ı.�˛i ;W
i/.dt; d!/

is a Poisson point measure on RC � C.RC;W / with intensity

2 1Œ0;�.w/�.t/ dt Nw.t/.d!/:
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We refer to [9, Lemma V.5] for a proof of this lemma. Our second lemma deals
with the distribution of the Brownian snake under N0 at the first hitting time of a
negative level. For every b > 0, we set

Sb WD inffs � 0 W OWs D �bg

with the usual convention inf¿ D 1.

Lemma 4 The law of the random path WSb under the probability measure N0.� j
Sb < 1/ is the law of the process .R.2/t � b/0�t�T.2/ under Pb.

This lemma can be obtained as a very special case of Theorem 4.6.2 in [6].
Alternatively, the lemma is also a special case of Proposition 1.4 in [5], which relied
on explicit calculations of capacitary distributions for the Brownian snake found in
[8]. Let us briefly explain how the result follows from [6]. For every x > �b, set

ub.x/ WD Nx.Sb < 1/ D 3

2.x C b/2

where the second equality is just (1). Following the comments at the end of Sect. 4.6
in [6], we get that the law of WSb under the probability measure N0.� j Sb < 1/ is
the distribution of the process X solving the stochastic differential equation

dXt D dBt C u0
b

ub
.Xt/ dt ; X0 D 0;

and stopped at its first hitting time of �b. Since u0

b
ub
.x/ D � 2

xCb we obtain the desired
result.

3 The Main Results

Our first theorem identifies the law of the minimizing path Wsm .

Theorem 1 Let a > 0. Under N0, the conditional distribution of Wsm knowing that
W� D �a is the distribution of the process .R.3/t � a/0�t�T.3/ , where R.3/ is a Bessel

process of dimension �5 started from a, and T.3/ D infft � 0 W R.3/t D 0g.

In an integral form, the statement of the theorem means that, for any nonnegative
measurable function F on W0,

N0

�
F.Wsm/

� D 3

Z 1

0

da

a3
Ea

h
F
�
.R.3/t � a/0�t�T.3/

�i

where we recall that the process R.3/ starts from a under Pa.
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Proof We fix three positive real numbers ı;K;K0 such that ı < K < K0, and we let
G be a bounded nonnegative continuous function on W0. For every w 2 W0, we then
set

�ı.w/ WD infft � 0 W w.t/ D �ıg

and F.w/ WD G..w.t//0�t��ı.w// if �ı.w/ < 1, F.w/ WD 0 otherwise.
For every real x and every integer n � 1, write Œx�n for the largest real number of

the form k2�n, k 2 Z, smaller than or equal to x. Using the special form of F and
the fact that SŒ�W� �n " sm as n " 1, N0 a.e., we easily get from the properties of the
Brownian snake that F.WSŒ�W��n

/ D F.Wsm/, for all n large enough, N0 a.e. on the
event fW� < �ıg. By dominated convergence, we have then

N0.F.Wsm/1f�K0 � W� � �Kg/
D lim

n!1

N0.F.WSŒ�W� �n
/1fK � Œ�W��n � K0g/

D lim
n!1

X
K2n

�k�K02n

N0

�
F.WSk2�n / 1fSk2�n < 1g 1

n
min

Sk2�n �s��

OWs > �.k C 1/2�n
o�
:

(3)

Let b > ı and " > 0. We use the strong Markov property of the Brownian snake
at time Sb, together with Lemma 3, to get

N0

�
F.WSb/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o�

D N0

�
F.WSb/ 1fSb < 1g exp

�
� 2

Z �Sb

0

dtNWSb .t/
.W� > �b � "/

��

D N0

�
F.WSb/ 1fSb < 1g exp

�
� 3

Z �Sb

0

dt .b C "C WSb.t//
�2
��

D 3

2b2
Eb

h
F..R.2/t � b/0�t�T.2/ / exp

�
� 3

Z T.2/

0

dt ."C R.2/t /
�2
�i

(4)

using (1) in the second equality, and Lemma 4 and (1) again in the third one. Recall
the definition of the stopping times T.˛/ı before Lemma 1. From the special form of

the function F, and then the strong Markov property of the process R.2/ at time T.2/b�ı ,
we obtain that

Eb

h
F..R.2/t � b/0�t�T.2/ / exp

�
� 3

Z T.2/

0

dt ."C R.2/t /�2
�i

D Eb

h
G..R.2/t � b/

0�t�T
.2/
b�ı

/ exp
�

� 3

Z T.2/

0

dt ."C R.2/t /�2
�i
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D Eb

h
G..R.2/t � b/

0�t�T
.2/

b�ı

/ exp
�

� 3

Z T
.2/
b�ı

0

dt ."C R.2/t /
�2
�

� Eb�ı
h

exp
�

� 3
Z T.2/

0

dt ."C R.2/t /
�2
�ii

: (5)

Using the formula of Lemma 2 and combining (4) and (5), we arrive at

N0

�
F.WSb/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o�

D 3

2b2

�
1 �

� b � ı
b � ı C "

�2�

� Eb

h
G..R.2/t � b/

0�t�T
.2/
b�ı

/ exp
�

� 3
Z T

.2/
b�ı

0

dt ."C R.2/t /
�2
�i
:

Hence,

lim
"!0

"�1
N0

�
F.WSb/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o�

D
� 3

b2.b � ı/
�

Eb

h
G..R.2/t � b/

0�t�T
.2/
b�ı

/ exp
�

� 3
Z T

.2/
b�ı

0

dt .R.2/t /
�2
�i
:

At this stage we use Lemma 1 twice to see that

Eb

h
G..R.2/t � b/

0�t�T
.2/
b�ı

/ exp
�

� 3
Z T

.2/
b�ı

0

dt .R.2/t /�2
�i

D
� b

b � ı

�2
Eb

h
G..Bt � b/0�t�Tb�ı

/ exp
�

� 6

Z Tb�ı

0

ds

B2s

�i

D
� b

b � ı

��1
Eb

h
G..R.3/t � b/

0�t�T
.3/
b�ı

/
i

Summarizing, we have

lim
"!0

"�1
N0

�
F.WSb/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o�

D 3

b3
Eb

h
G..R.3/t � b/

0�t�T
.3/

b�ı

/
i
:

Note that the right-hand side of the last display is a continuous function of
b 2 .ı;1/. Furthermore, a close look at the preceding arguments shows that the
convergence is uniform when b varies over an interval of the form Œı0;1/, where
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ı0 > ı. We can therefore return to (3) and obtain that

N0.F.Wsm/1f�K0 � W� � �Kg/

D lim
n!1

Z K0

K
db 2n

N0

�
F.WSŒb�n / 1fSŒb�n < 1g 1

n
min

SŒb�n �s��
OWs > �Œb�n � 2�n

o�

D 3

Z K0

K

db

b3
Eb

h
G..R.3/t � b/

0�t�T
.3/

b�ı

/
i
:

The result of the theorem now follows easily. ut
We turn to a statement describing the structure of subtrees branching off the

minimizing path Wsm . In a sense, this is similar to Lemma 3 above (except that we
will need to consider separately subtrees branching before and after time sm, in the
time scale of the Brownian snake). Since sm is not a stopping time of the Brownian
snake, it is of course impossible to use the strong Markov property in order to apply
Lemma 3. Still this lemma will play an important role.

We argue under the excursion measure N0 and, for every s � 0, we set

O�s WD �.smCs/^� ; L�s WD �.sm�s/_0:

We let .Oai; Obi/, i 2 I be the excursion intervals of O�s above its past minimum.
Equivalently, the intervals .Oai; Obi/, i 2 I are the connected components of the set

n
s � 0 W O�s > min

0�r�s
O�r

o
:

Similarly, we let .Laj; Lbj/, j 2 J be the excursion intervals of L�s above its past
minimum. We may assume that the indexing sets I and J are disjoint. In terms of
the tree T� coded by the excursion .�s/0�s�� under N0 (see e.g. [10, Sect. 2]), each
interval .Oai; Obi/ or .Laj; Lbj/ corresponds to a subtree of T� branching off the ancestral
line of the vertex associated with sm. We next consider the spatial displacements
corresponding to these subtrees. For every i 2 I, we let W.i/ D .W.i/

s /s�0 2
C.RC;W / be defined by

W.i/
s .t/ D WsmC.OaiCs/^Obi

.�smCOai C t/ ; 0 � t � �smC.OaiCs/^Obi
� �smCOai :

Similarly, for every j 2 J,

W.j/
s .t/ D Wsm�.LajCs/^Lbj

.�sm�Laj C t/ ; 0 � t � �sm�.LajCs/^Lbj
� �sm�Laj :

We finally introduce the point measures on RC � C.RC;W / defined by

ON D
X
i2I

ı.�smCOai ;W
.i// ;

LN D
X
j2J

ı.�sm�Laj ;W
.j//:
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If ! D .!s/s�0 belongs to C.RC;W /, we set !� WD inff!s.t/ W s � 0; 0 � t �
�.!s/g.

Theorem 2 Under N0, conditionally on the minimizing path Wsm , the point mea-
sures ON .dt; d!/ and LN .dt; d!/ are independent and their common conditional
distribution is that of a Poisson point measure with intensity

2 1Œ0;�sm �
.t/ 1f!�> OWsm g dtNWsm .t/.d!/:

Clearly, the constraint !� > OWsm corresponds to the fact that none of the spatial
positions in the subtrees branching off the ancestral line of p�.sm/ can be smaller
than W� D OWsm , by the very definition of W�.

Proof We will first argue that the conditional distribution of ON given Wsm is as
described in the theorem. To this end, we fix again ı;K;K0 such that 0 < ı < K <

K0, and we use the notation �ı.w/ introduced in the proof of Theorem 1. On the
event where W� < �ı, we also set

ONı D
X
i2I

�smCOai ��ı.Wsm /

ı.�smCOai ;W
.i//:

Informally, considering only the subtrees that occur after sm in the time scale of the
Brownian snake, ONı corresponds to those subtrees that branch off the minimizing
path Wsm before this path hits the level �ı.

Next, let ˚ be a bounded nonnegative measurable function on the space of all
point measures on RC �C.RC;W / – we should restrict this space to point measures
satisfying appropriate �-finiteness conditions, but we omit the details – and let � be
a bounded continuous function on C.RC;W /. To simplify notation, we write W�sm

for the process .Ws^sm/s�0 viewed as a random element of C.RC;W /, and we use
the similar notation W�Sb . For every b > 0, let the point measure ON

.b/
ı be defined

(only on the event where Sb < 1) in a way analogous to ONı but replacing the path
Wsm with the path WSb : To be specific, ON

.b/
ı accounts for those subtrees (occurring

after Sb in the time scale of the Brownian snake) that branch off WSb before this path
hits �ı.

As in (3), we have then

N0

�
�.W�sm/1f�K0 � W� � �Kg˚. ONı/

�

D lim
n!1

X
K2n�k�K02n

N0

�
�.W�Sk2�n / 1fSk2�n < 1g

1
n

min
Sk2�n �s��

OWs > �.k C 1/2�n
o
˚. ON .k2�n/

ı /
�
: (6)
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The point in (6) is the fact that, N0 a.e., if n is sufficiently large, and if k � K2�n

is the largest integer such that Sk2�n < 1, the paths Wsm and WSk2�n are the same

up to a time which is greater than �ı.Wsm/, and the point measures ONı and ON
.k2�n/

ı

coincide.
Next fix b > ı and, for " > 0, consider the quantity

N0

�
�.W�Sb/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o
˚. ON

.b/
ı /

�
: (7)

To evaluate this quantity, we again apply the strong Markov property of the
Brownian snake at time Sb. For notational convenience, we suppose that, on a certain
probability space, we have a random point measure M on RC �C.RC;W / and, for
every w 2 W0, a probability measure ˘w under which M .dt; d!/ is Poisson with
intensity

2 1Œ0;�w�.t/ dt Nw.t/.d!/:

By the strong Markov property at Sb and Lemma 3, the quantity (7) is equal to

N0

�
�.W�Sb/1fSb < 1g˘WSb

�
1fM .f.t; !/ W!� � �b � "g/ D 0g˚.M��ı.WSb /

/
��
;

where M��ı.WSb /
denotes the restriction of the point measure M to Œ0; �ı.WSb/� �

C.RC;W /. Write W.ı/
Sb

for the restriction of the path WSb to Œ0; �ı.WSb/�. We have
then

˘WSb

�
1fM .f.t; !/ W !� � �b � "g/ D 0g˚.M��ı.WSb /

/
�

D ˘WSb
.M .f.t; !/ W !� � �b � "g/ D 0/

�˘WSb

�
˚.M��ı.WSb /

/
ˇ̌
ˇM .f.t; !/ W !� � �b � "g/ D 0

�

D ˘WSb
.M .f.t; !/ W !� � �b � "g/ D 0/

�˘
W
.ı/
Sb

�
˚.M /

ˇ̌
ˇM .f.t; !/ W !� � �b � "g/ D 0

�
;

using standard properties of Poisson measures in the last equality. Summarizing, we
see that the quantity (7) coincides with

N0

�
�.W�Sb/H.WSb ; b C "/ 1fSb < 1g˘WSb

.M .f.t; !/ W !� � �b � "g/ D 0/
�
;

(8)

where, for every w 2 W0 such that �ı.w/ < 1, for every a > ı, H.w; a/ WD
QH..w.t//0�t��ı .w/; a/, and the function QH is given by

QH.w; a/ WD ˘w

�
˚.M /

ˇ̌
ˇM .f.t; !/ W !� � �ag/ D 0

�
;
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this definition making sense if w 2 W0 does not hit �a. By the strong Markov
property at Sb and again Lemma 3, the quantity (8) is also equal to

N0

�
�.W�Sb/H.WSb ; b C "/ 1fSb < 1g 1

n
min

Sb�s��
OWs > �b � "

o�
:

We may now come back to (6), and get from the previous observations that

N0

�
�.W�sm/1f�K0 � W� � �Kg˚. ONı/

�

D lim
n!1

X
K2n�k�K02n

N0

�
�.W�Sk2�n /H.WSk2�n ; .k C 1/2�n/

1fSk2�n < 1g 1
n

min
Sk2�n �s��

OWs > �.k C 1/2�n
o�

D lim
n!1N0

�
�.W�SŒ�W� �n

/H.WSŒ�W��n
; Œ�W��n � 2�n/ 1fK � Œ�W��n � K0g

�

D N0

�
�.W�sm/H.Wsm;�W�/ 1f�K0 � W� � �Kg

�
:

To verify the last equality, recall that the paths WSŒ�W� �n
and Wsm coincide up to their

first hitting time of �ı, for all n large enough, N0 a.e., and use also the fact that the
function H.w; a/ is Lipschitz in the variable a on every compact subset of .ı;1/,
uniformly in the variable w.

From the definition of H, we have then

N0

�
�.W�sm/1f�K0 � W� � �Kg˚. ONı/

�

D N0

�
�.W�sm/1f�K0 � W� ��Kg˘

W
.ı/
sm

�
˚.M /

ˇ̌
ˇM .f.t; !/ W!� � W�g/ D 0

��
;

where W.ı/
sm denotes the restriction of Wsm to Œ0; �ı.Wsm/�. From this, and since W� D

OWsm , we obtain that the conditional distribution of ONı given W�sm is (on the event
where W� < �ı) the law of a Poisson point measure with intensity

2 1Œ0;�ı.Wsm /�
.t/ 1f!�> OWsm g dtNWsm .t/.d!/:

Since ı is arbitrary, it easily follows that the conditional distribution of ON given
W�sm is that of a Poisson measure with intensity

2 1Œ0;�Wsm �
.t/ 1f!�> OWsm g dtNWsm .t/.d!/:

Note that this conditional distribution only depends on Wsm , meaning that ON is
conditionally independent of W�sm given Wsm .
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Since the measure N0 is invariant under time-reversal, we also get that the
conditional distribution of LN given Wsm is the same as the conditional distribution
of ON given Wsm . Finally, LN is a measurable function of W�sm and since ON

is conditionally independent of W�sm given Wsm , we get that LN and ON are
conditionally independent given Wsm . ut

4 Applications to Super-Brownian Motion

We will now discuss applications of the preceding results to super-Brownian motion.
Let 	 be a (nonzero) finite measure on R. We denote the topological support of 	
by supp.	/ and always assume that

m WD inf supp.	/ > �1:

We then consider a super-Brownian motion X D .Xt/t�0 with quadratic branching
mechanism  .u/ D 2u2 started from 	. The particular choice of the normalization
of  is motivated by the connection with the Brownian snake. Let us recall
this connection following Sect. IV.4 of [9]. We consider a Poisson point measure
P.dx; d!/ on R � C.RC;W / with intensity

	.dx/Nx.d!/:

Write

P.dx; d!/ D
X
i2I

ı.xi;!i/.dx; d!/

and for every i 2 I, let � i
s D �.!i

s/
, s � 0, stand for the lifetime process associated

with !i. Also, for every r � 0 and s � 0, let `r
s.�

i/ be the local time at level r and
at time s of the process � i. We may and will construct the super-Brownian motion X
by setting X0 D 	 and for every r > 0, for every nonnegative measurable function
' on R,

hXr; 'i D
X
i2I

Z 1

0

ds`
r
s.�

i/ '. O!i
s/; (9)

where the notation ds`
r
s.�

i/ refers to integration with respect to the increasing
function s ! `r

s.�
i/.

A major advantage of the Brownian snake construction is the fact that it also
yields an immediate definition of the historical super-Brownian motion Y D .Yr/r�0
associated with X (we refer to [4] or [7] for the general theory of historical
superprocesses). For every r � 0, Yr is a finite measure on the subset of W
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consisting of all stopped paths with lifetime r. We have Y0 D 	 and for every
r > 0,

hYr; ˚i D
X
i2I

Z 1

0

ds`
r
s.�

i/ ˚.!i
s/; (10)

for every nonnegative measurable function ˚ on W . Note the relation hXr; 'i DR
Yr.dw/ '. Ow/.
The range RX is the closure in R of the set

[
r�0

supp.Xr/;

and, similarly, we define RY as the closure in W of
[
r�0

supp.Yr/:

We note that

RX D supp.	/[
 [

i2I

f O!i
s W s � 0g

!

and

RY D supp.	/ [
 [

i2I

f!i
s W s � 0g

!
:

We set

mX WD inf RX:

From the preceding formulas and the uniqueness of the minimizing path in the case
of the Brownian snake, it immediately follows that there is a unique stopped path
wmin 2 RY such that Owmin D mX . Our goal is to describe the distribution of wmin. We
first observe that the distribution of mX is easy to obtain from (1) and the Brownian
snake representation: We have obviously mX � m and, for every x < m,

P.mX � x/ D exp
�

� 3

2

Z
	.du/

.u � x/2

�
: (11)

Note that this formula is originally due to [3, Theorem 1.3]. It follows that

P.mX D m/ D exp
�

� 3

2

Z
	.du/

.u � m/2

�
:

Therefore, if
R
.u � m/�2	.du/ < 1, the event fmX D mg occurs with positive

probability. If this event occurs, wmin is just the trivial path m with zero lifetime.
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Proposition 1 The joint distribution of the pair .wmin.0/;mX/ is given by the
formulas

P.wmin.0/ � a; mX � x/ D 3

Z x

�1
dy
�Z

Œm;a�

	.du/

.u � y/3

�
exp

�
� 3

2

Z
	.du/

.u � y/2

�
;

for every a 2 Œm;1/ and x 2 .�1;m/, and

P.mX D m/ D P.mX D m;wmin.0/ D m/ D exp
�

� 3

2

Z
	.du/

.u � m/2

�
:

Proof Fix a 2 Œm;1/, and let 	0, respectively 	00 denote the restriction of 	 to
Œm; a�, resp. to .a;1/. Define X0, respectively X00, by setting X0

0 D 	0, resp. X00
0 D

	00, and restricting the sum in the right-hand side of (9) to indices i 2 I such that
xi 2 Œm; a�, resp. xi 2 .a;1/. Define Y 0 and Y 00 similarly using (10) instead of (9).
Then X0, respectively X00 is a super-Brownian motion started from	0, resp. from	00,
and Y 0, resp. Y 00 is the associated historical super-Brownian motion. Furthermore,
.X0;Y 0/ and .X00;Y 00/ are independent.

By (11), the law of mX0 has a density on .�1;m/ given by

fmX0
.y/ D 3

� Z

Œm;a�

	.du/

.u � y/3

�
exp

�
� 3

2

Z

Œm;a�

	.du/

.u � y/2

�
; y 2 .�1;m/:

On the other hand, if x 2 .�1;m/,

P.wmin.0/ � a; mX � x/ D P.mX0 � x; mX00 > mX0/

D
Z x

�1
dy fmX0

.y/P.mX00 > y/;

and we get the first formula of the proposition using (11) again. The second formula
is obvious from the remarks preceding the proposition. ut

Together with Proposition 1, the next corollary completely characterizes the law
of wmin. Recall that the case where mX D m is trivial, so that we do not consider this
case in the following statement.

Corollary 1 Let x 2 .�1;m/ and a 2 Œm;1/. Then conditionally on mX D x and
wmin.0/ D a, the path wmin is distributed as the process .x C R.3/t /0�t�T.3/ under
Pa�x.

Proof On the event fmX < mg, there is a unique index imin 2 I such that

mX D minf O!imin
s W s � 0g:

Furthermore, if smin is the unique instant such that mX D O!imin
smin

, we have wmin D
!imin

smin
, and in particular ximin D wmin.0/.
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Standard properties of Poisson measures now imply that, conditionally on mX D
x and wmin.0/ D a, !imin is distributed according to Na.� j W� D x/. The assertions
of the corollary then follow from Theorem 1. ut

We could also have obtained an analog of Theorem 2 in the superprocess setting.
The conditional distribution of the process X (or of Y) given the minimizing
path wmin is obtained by the sum of two contributions. The first one (present
only if Owmin < m) corresponds to the minimizing “excursion” !imin introduced
in the previous proof, whose conditional distribution given wmin is described by
Theorem 2. The second one is just an independent super-Brownian motion QX started
from 	 and conditioned on the event mQX � Owmin. We leave the details of the
statement to the reader.
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