Chapter 6
Nonlinear Systems

Up to now, we have considered linear systems. If for such a linear system the
existence of a solution can be shown for a certain finite time interval, then the
solution exists for all times provided that the control keeps its regularity. For
nonlinear systems, the situation is completely different. In a nonlinear hyperbolic
system, the solution can loose a part of its regularity after a finite time. For example,
classical solutions typically break down after finite time since there is a blow up in
certain partial derivatives.

6.1 The Korteweg-de Vries Equation (KdV)

JOoHN ScoTT RUSSELL (1808-1882), a Scottish engineer, has made the following
observations about waves (Report of the fourteenth meeting of the British Asso-
ciation for the Advancement of Science, York, September 1844 (London 1845),
pp. 311-390, Plates XLVII-LVII):

“I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass
of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed it
on horseback, and overtook it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a foot to a foot and
a half in height. Its height gradually diminished, and after a chase of one or two
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90 6 Nonlinear Systems

miles I lost it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon which I have
called the Wave of Translation”.

As a model for the movement of water the Korteweg-de Vries equation (KdV
equation)

aty + yaxy + axxxy =0 (6.1)

is considered. An overview about the research about the KdV equation is given
in [48]. In Interaction of Solitons in a Colisionless Plasma and the Recurrence of
Initial States (Phy. Rev. Let. 15, 240-243, 1965) N.J. Zabusky and M.D. Kruskal
describe certain traveling waves that solve the KdV equation, so-called solitons.

In this chapter we consider the KdV equation on a finite space interval [0, L] with
boundary control action. We consider the partial differential equation

0y + 0,y + 0y +y0,y =0 (6.2)

with the extra term d,y (see [6]). With the extra term the waves move in the positive
direction. Equation (6.2) can be considered as a perturbed transport equation

dy + d,y = 0.
The boundary conditions are
y(,0) = ur (1), y(t.L) = ur (1), yx(t, L) = u3(7).
The initial condition has the form
¥(0.x) = yo(x), x € (0,L)
with
yo € L*(0,L).

In the sequel we consider the boundary control with u; = u; = 0and u(t) = u3(t) €
L*(0,T) (see [12]). We consider the initial boundary value problem for small initial
data, that is with an assumption of the form

Ivollr2¢0.0) < 6

with a number § > O that is chosen sufficiently small.

6.1.1 Well-posedness of the linearized system

We start with a result about the well-posedness of the initial value problem for the
linearized system. For this purpose we consider the linearized partial differential
equation

3:)’ + aJ\y + axxxy = il (63)
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where
heL'((0,T), L*0,L)).
We consider the spatial differential operator
Ay =Y — Yo 6.4)
with the domain
D(A) = {y € H(0, L) : y(0) = y(L) = y'(L) = 0}.

For all w € D(A) we have

L L
/ wAwdx = / w(=w' —w")
0 0
L 1 L
— ) (_5 WZ)/ + /(; W/W"
L
—0+ [ Gy
0 2
1 ’ 2
= 0+0—§(w(0))
<0.
If such an inequality fOL wAwdx < 0 holds whenever w € D(A), the operator A is

called dissipative (see [9, 58]). The adjoint operator A* is A* : w — w' + w'” with
the domain

D(A™) = {y € H*(0, L) : (0) = y(L) = y'(0) = 0}.

This is shown using integration by parts. For all w € D(A*) we have
L L
/ wA*wdx = / ww' 4+ w'")
0 0
L 1 L

— / (_ WZ)/ _ / W/W//

0o 2 0

1 ’ 2

= 0+0—5(W(L)) <0.

Hence A* is also dissipative. This implies that A generates what is called a strongly
continuous semigroup of contractions (see for example Chapter 3 in [54], [4], [8]).
Here is the corresponding definition:
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Definition 6.1. Let X be a Banach space and L(X) denote the set of linear operators
on X. A strongly continuous semigroup of contractions is a map

T : [0, 00) — L(X),

that we denote as a family of linear operators T, that satisfies the following
conditions:

1. Ty = I, that is T is the identity.
2. Forallty, t; € [0, 00) we have Ty, 4,, = T, T,
3. For all x € X we have

lim ||T,% —X|x = 0.
t—0+

4. Forall t € [0, 00) and all X € X we have | T, X||x < ||%]x-

The fact that the closure of A generates a strongly continuous semigroup of
contractions follows from the LUMER-PHILLIPS THEOREM, that is stated in the
language of functional analysis, see [58].

Lumer-Phillips Theorem [58] Let X be a Banach space and (A,D(A)) a
densely defined operator. If A and A* are dissipative, the closure of A generates
a strongly continuous semigroup of contractions.

An excellent exposition of the use of semigroups in control is given in [54]. Using
the semigroup T; we can write the solutions of the initial value problem

¥(0,x) = yo(x), x € (0, L)
0y + 0y + 0y =0 (6.5)
y(t, 0) =y L) = 0yt L) =0
in the form
T;yo.
In fact, the following theorem holds.

Theorem 6.1 ([9] Prop. 11, Prop. 13, [12], Lemma A1). For all yo € L*(0, L) the
initial value problem (6.5) has a unique solution

y € C([0, TJ; D(A)) N C'([0, T]; L*(0, L)).
With u € L*(0,T) and
h e L'((0,T), L*0, L))
the initial boundary value problem

y(09x) = yO(-zC)s X € (OvL)
dy=Ay+h (6.6)
y(t, 0) = y(t, L) = 0, dyy(t, L) = u(r)
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where the spatial operator A is as in (6.4) has a solution y € C([0, T]; L? 0.L)) N
L*((0,T); H'(0,L)). There exists a constant C > 0 such that for all yo, h, u the
following inequality holds:

Il cqo, 71, 20,0y + IVIle2(0, 7, 11 0.1
2 7112 2 12
E C <||y0||L2(0,L) + ”h”Ll((O,T),LZ(O,L)) + "u”LZ(O,T)) . (67)

Proof of Theorem 6.1. For the homogeneous case h=0,u=0we get the solution
of (6.5) from Proposition 2.1.5 from [54]. In order to obtain the solution for the
inhomogeneous case, we consider the following reduction to the homogeneous case.
We define the auxiliary function

¢@)=—%AL—@.
Then we have ¢(0) = ¢(L) = 0 and ¢'(L) = 1. For
Y (1,x) = @(x) u(®)

this implies ¥ (z,0) = ¥(z,L) = 0 and ¥,(¢, L) = u(f). We define
f= (v +Ay +h)

and the initial value problem with an inhomogeneous differential equation and
homogeneous boundary conditions

z(0,x) = yo(x), x € (0,L)
0z=Az+f (6.8)
z(t, 0) = z(¢t, L) = d,z(t, L) = 0.

For a regular control u € C*(0,T) with u(0) = 0, Duhamel’s formula yields the
solution

z(t,) = Tiyo + /(; T,—f (s) ds.

We define
y=z+1y.
Then we get
o=+
=Az+f+ Y,
=Az4+AY — Y+ h+ ¥,
=AG@+V)+h

=Ay+h
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Moreover y satisfies the inhomogeneous boundary conditions. Thus y solves the
initial value problem for u € C?(0,T). By a density argument this implies the
desired result for all u € L*(0,T). Inequality (6.7) follows by multiplication of
the pde with special test function and integration by parts (see [9]). Thus we have
proved Theorem 6.1. O

6.1.2 A traveling waves solution for the linearized system

In order to get a better understanding of the linearized KdV-equation, we consider
a traveling waves solution. In this case, the solution is the sum of three traveling
waves.

Let real numbers w;, w;, and w3 be given such that for all i € {1,2, 3} we have

a)l3 —w; = A\,
where A = w; w, w;. We define the function
y(t,x) = [w3 — wy] cos(wix + At)
+ [w1 — ws] cos(wx + A1)
+ [w2 — w1] cos(wsx + At).
Then we have the time-derivative
vi(t,x) = —A [w3 — w;] sin(w;x + At)
—A [w) — ws3] sin(wyx + A1)

—A [w; — wy] sin(wsx + A t).

Moreover, for the trigonometric function ¢;(x) = cos(w;x + A t) we have the
derivatives

@l (x) = —w; sin(wix + A 1),
o' (x) = —w} cos(wix + A 1),
n

¢ (x) = a)l3 sin(wix + At).
Thus we get for all i € {1, 2, 3}

Pl(xX) + ¢ (x) = (—w; + @}) sin(wx + A 1) = Asin(A ¢ + wx).
This implies

0y(t, x) = =0y — 0y,
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hence y solves the linearized KdV equation. Moreover, for x = 0 we have
y(t,0) = [w3 — wy] cos(A 1) + [w; — ws] cos(A f) + [wr — wi] cos(A t) = 0.
Since for the partial derivative with respect to x we have
Vi(t, x) = —wi[w; — ws] sin(wx + At)
—wr[w) — w3] sin(wax + A t) — ws[wr — wi] sin(wsx + A 1),

we also have y,(¢,0) = 0.

6.1.3 Well-posedness for the nonlinear system

In this section we examine the well-posedness for the nonlinear system. In a first
step we consider the nonlinear term y d,y and show that it can be considered as a
source term in the linear equation.

Lemma 6.1 (See [47], Proposition 4.1). For ally € L*>((0,T), H'(0,L)) we have
yye € L'((0,T), L*(0, L)) and the mapping y — y yx is continuous.

Proof of Lemma 6.1. Let y, z € L*((0,T),H'(0,L)) be given. Let K denote the
norm of the embedding of H'(0, L) in L>°(0, L). Then we have the inequality

T
Iy ye — 2zl 0.1).02 0.0 S/ Iy = 2)yellr20.0) dt

0
T

4 / 120 — 2020 di
0
T

5](; ly — zllizee .0y 1yxll 20, At
T

4 f Vel Iy — 2z, dr
0

T
<K /0 by = Zllon Iyl dr

T
LK / Vel o s — 22l 20 dr
0

< Klly — zll 20,11 0.0 1Y 22¢0,7).11 0.1
+ Klzllz2o,m.m1 0.0 1Y = 2l 20.1).80 0.0 dt
= K(||y||L2((O,T).H1(O,L)) + ||Z||L2((0.T),H1(0,L)))

ly — Z||L2((0,T).Hl (0,L))"
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If we insert z = 0, we see that we have yy, € L!((0,T),L*(0,L)). Moreover the
inequality implies the continuity of the map y + yy,. This finishes the proof of
Lemma 6.1. O

Now we show the well-posedness of the initial boundary value problem

¥(0.0) = yo). x € (0.0)
0y = =0,y = Oxxy =y Oy + h (6.9)
y(t, 0) = y(t, L) = 0, d,y(t, L) = u(t).

Lemma 6.2 ([11], Proposition 14). Let L > 0 and T > 0 be given. Define the set
B = C([0,T],L*(0,L)) N L*((0,T), H' (0, L)).

There exist numbers ¢ > 0 and C > 0 such that for all h € L'((0, T), L*(0, L)), all
u € L*0,T) and all yy € L*(0, L) with

||’~1||L1((0.T),L2(0,L)) + lull 20,1y + Ivoll 2y < €
the initial boundary value problem (6.9) has a solution y with

Il < € (120l o200y + Nl 2oy + Ivoll o) - (6.10)

Proof of Lemma 6.2. For z € B we define the map
M:B—B

by M(z) = y where y denotes the solution of the initial value problem

50,9 = yo(). x € O.L)
ati’ = _axj}_axxxy_zaxz'i_h (6.11)
y(t, 0) =y, L) = 0, 0,3(t, L) = u(?).

Theorem 6.1 implies the existence of a solution y that satisfies (6.7). We are
looking for a fixed point y of M. For this purpose, we want to apply BANACH’s fixed
point theorem. Inequality (6.7) and Lemma 6.1 imply that there exists a number
D > 0 such that

M)z <D [”il”Ll((O,T).LZ(O,L)) + llull 201y + ol 20y + ||Z||%3] (6.12)

Moreover we have

IM(z1) =M(22)lls = D (|21l + ll221l8) llz1 — 22ll5-

Now we choose numbers R > 0 and ¢ > 0 sufficiently small such that

1
R< —and ¢ < —.
2D 2D



6.1 The Korteweg-de Vries Equation (KdV) 97

We consider the set
Z={zeB: |zlls = R}.

Then M(Z) C Z since for all z € Z we have the inequality
,n _ R >, R
IM@ls <Dl + R <5 +DR =3+ (DRR

<-4+ —-=R
_2+2

The map M is a contraction in Z with the Lipschitz constant
Ly =2DR < 1.

Now BANACH’S fixed point theorem implies the existence of a unique fixed point
z € Z with M(z) = z. Since D ||z||g < DR < 1/2 inserting the fixed point in (6.12)
yields (6.10) with C = 2D. Thus Lemma 6.2 is proved. O

6.1.4 A traveling wave solution for the nonlinear system

Also for the nonlinear system there is a traveling wave solution that satisfies the
homogeneous KdV equation. We make the ansatz

o
tX) = —5——. 6.13
¥t x) cosh’(ax + bt) (©.13)
Then we get the partial derivatives
inh bt
Yilt, x) = —2q X T oD 3(‘” +b0 (6.14)
cosh’(ax + bt)
inh bt
yolt, ) = —2g SR@XH DD 6.15)
cosh’(ax + br)
inh? bt 1
Yuelt, ) = 6022 4(” 0D 2oy _ 2, (6.16)
cosh®(ax + br) cosh“(ax + bt)
inh? bt
Vet x) = —24g 2 24XTOD 5(” 60 5 (6.17)
cosh’(ax + bt)
+ 120 sinh(ax + b4t) cosh(ax+ bt) 2 (6.18)
cosh®(ax + bt)
inh bt
sinh@x + 0 5 (6.19)

cosh*(ax + bt)
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Since sinh?(z) = cosh?(z) — 1 this implies

inh bt inh bt
Veae(t. 3) = 2400 sin 5(ax +bt) £ — 24 sin 3(ax +bt) 2 (6.20)
cosh’(ax + bt) cosh’(ax + br)
inh bt inh bt
+ 12 h— 3(ax+ ) & + 4o 2 3(ax+ ) a (6.21)
cosh’(ax + bt) cosh’(ax + br)
inh bt inh bt
= 24«a St S(ax—i- ) @ — 8a o 3(ax+ ) a. (6.22)
cosh’(ax + bt) cosh’(ax + bt)
This yields the product
, sinh(ax + b1)
Y = 2 — 4.
cosh’(ax + bt)
Thus we get
Vi F Vxxx T YYe — Vi (6.23)
inh bt
= [20a—8ad +20b] ST DD (6.24)
cosh’(ax + bt)
inh bt
+ [~202a + 240 d’] Sms(“;Jr) (6.25)
cosh’(ax + bt)
With the choice

o =12a* und b = a(l + 44%)
we obtain the traveling waves solution

12 a?

Y X) = et t (1 )

for (6.2). The speed (1 + 4a?) can become arbitrarily large and fixes the height of
the wave.

Remark 6.1. For the viscous Burgers equation
V=Y F Y+ VYx
with viscosity v > 0 there also exists a traveling wave solution that has the form
y(t,x) = o tanh(ax + bt). (6.26)
Exercise 6.1. Show that the ansatz (6.26) yields a traveling wave solution of the
viscous Burgers equation with the choice « = 2a v und b = a. Thus for v > 0 and

a = 1/v we get the solution y(¢, x) = 2 tanh((x + ¢)/v). Note that the limit function
for v — 0+ is not continuous.

Remark 6.2. A detailed discussion of interacting solitary waves that solve the KdV
equation can be found in [56].
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6.1.5 The linearized system with critical length: An example
Jor a system that is not exactly controllable

In this section we study the linearized system for a special choice of the length L and
show that the system is not exactly controllable. This result is due to L. Rosier, [47].
We are looking for a length L, for which the overdetermined system

3:)’ = _axy - axxxy
2
Wi, 0) = y(t. L) = 0. dyy(t. 0) = dyy(r. L) = 0 ©:27)

has a nontrivial solution. For this purpose we consider the traveling wave solution
from Section 6.1.2. As an example, let

w] = — wy) = —

Nz
Then we have A = w; wy wy = %ﬁ and
(0 —w) (@ — o) (0 — w3)

= - [w1 + w3 + w3] w? + [0y + wrw3 + W3] w — A

=w’—w-— L
VT
We define
L=2n7.
Then we have
y(t, L) = [w3 — wy] cos(w L+ At)
+ [w1 — ws] cos(wL + Ax)
+ [wy — w1] cos(wsL + A¥)
= [w3 — w;] cos(—2m + A1)
+ [w; — w3] cos(—4m + A1)
+ [wy — @] cos(6 + At)



100 6 Nonlinear Systems

Moreover we have

vi(t, L) = —wi[ws — ws] sin(w L + A1)

— wr[w; — w3 sin(w,L + A1)

— w3wy — wi]sin(wsL + A1)

= —wi|w; — wy] sin(—2w + At)

— wr[wy — ws3]sin(—4w + A¥)

— w3wy — w1]sin(—6 + A¥)

= y:(1,0) = 0.
Hence for L = 27 +/7 the function y solves our system with the overdetermined
boundary conditions. Figure 6.1 shows the solution on the time interval [0, 30].

Remark 6.3. A key fact for the generalization of this example is the equation

2142114
L=2nv7=2n %

Space L

Time T

Fig. 6.1 A nontrivial traveling waves solution of the system (6.27) with overdetermined boundary
conditions
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In general nontrivial solutions of (6.27) exist for lengths

P
LeN = %271,/”%:1',%{1,2,3,...}}

(see [47]). In particular, such a solution can only exist, if L is sufficiently large, that
isif L > 2!

The solutions of (6.27) are invisible for an observer in the following sense: If the
value y,(t, 0) is observed, then the observation is always zero, no matter how long
it is observed (with zero control).

Exercise 6.2. Consider the length L = 2+/13 7. Determine a nontrivial solution
for the system (6.27) with overdetermined boundary conditions.

Solution of Exercise 6.2. We put w; = —J%, wy = —%ﬁ, wy =

5l
W

Exercise 6.3. Define the set of numbers

|12 — ko ks + K2
M={2x %ﬁ?’ ko ks € Zoko # ks, koks #0

Show that for all L € M there is a nontrivial solution for the homogeneous
system (6.27) with overdetermined boundary conditions. Use solutions of the type
defined in Section 6.1.2.

Solution of Exercise 6.3. Let the numbers ky, ks € Z,ky # ks, ky k3 # 0 be given.
We define

127
= ———(ky + k3),
W] L3(2+ 3)

127
= ———(—2k + k3),
w2 L3( 2+ k3)

12n(k 2%s)
w3 = ———(ky — .
’ L3 :

Then we have w, # w3, w1 # Wy, and w1 # ws.
Hence the solution from Section 6.1.2 is nontrivial.
We have w, + w, + w3 = 0. Moreover

4 72
912
472

=35 [ + kaks — i3]

W ) + 01 w3 + Wy W3 [(ka + k3)(—k2 — k3) + (—2ka + k3) (k2 — 2k3)]
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Hence for all L € M on account of

L? = 472

k% —ky k3 + k%
—3 .

we have the equation | w, + W) w3 + wy w3 = —1. Thus we have

(@ — o) (@ —o)(w—w3) =0 —0—o0 0,

as required in Section 6.1.2.

vt L) =

Thus we have y(t,0) = 0 = y,(¢,0). Moreover
[ws — wp] cos(w L + A¢)

[w1 — ws3] cos(w L + Ax)
[ws — w1] cos(wsL + A1)

= [w3 — wp] cos(w L + A¥)

and

(2, L) =

[w) — ws] cos(w L+ At+2mky)
[wy — wi] cos(@1 L+ At + 27 k3)

—w1[w; — w;] sin(w L+ At)

wy[wy — ws] sin(wyL + A t)

w3[wy — wi] sin(wsL + A t)

—w1 w3 — w;] sin(w L+ At)

wr[w; — ws]sin(w,L + At + 21 k)
w3wy; — wp]sin(wsL + At + 27 k3)
0.

Therefore y(t, x) is a nontrivial solution for (6.27).

Exercise 6.4. Show that for the set M that is defined in Exercise 6.3 we have

Use the equation

M=N.

kK —koks + 15 = (ko —k3)* + (ko — k3)ks + 3.
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In order to analyze the exact controllability, we consider the linear operator
Fr:L*0,T) — L*0,L),
that maps a control u € L*(0,7T) to the corresponding terminal state y(7,-) €
L2(0, L) that is generated starting from the initial state yo = 0. The System (6.6)
with 7 = 0 is exactly controllable if and only if F is surjective. To analyze the

surjectivity of Fr we use a theorem from functional analysis (see [58]), where the
adjoint map F* plays a central role. Therefore, let us look at F7*.

Lemma 6.3 (Lemma 2.28 in [10]). Let 77 € D(A*) be given. Then we have
Frr@") = z(. L),
where z € C([0, T), H*(0, L)) solves the following problem:
2T, x) =77 (x), x € (0,L)
0,7 = —A*z, (6.28)
z(t,-) € D(A™).

Proof of Lemma 6.3. Let u € C2([0, T]) with u(0) = 0 and the solution y of the
initial boundary value problem

y(0,x) =0, x € (0,L)
0y =Ay (6.29)
y(t, 0) = y(t, L) = 0, d,y(t, L) = u(?)

be given. Then by the definition of Fr we have
Fr(u) = y(T, ).

Integration by parts implies
L
| @ Ao ax
0
L L
== / 2" () (T, x) dx — / 2(0, x) y(0,x) dx
0 0

T L
= / / 3,(zy) dx dt
0 0

T L
= / / (—=A*2)y + z(Ay) dx dt
o Jo
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T L
=/ / —0OxZy — Z0xey — 0x2y — 2 0xy dx dt
0 0

T L
= / / —3m2y —Z axmy dxdt
0 0

T oL
= / / 0,2 0y + 052 0y dx dt
o Jo
T T
— / 8xxzy|fc‘:0 dt—[ z8XXy|f;:0 dt
0 0
T pL
= / / _axz 8xxy + axz axxy dx dt
o Jo

T T T
_ / Doyl di — / Bullydr + / 8,2 0,y|l_y dt
0 0 0

With the boundary conditions this yields
L
| #wFwwa
0
T T T
= [ actatgdi— [ duertigar— [ zouli
0 0 0

T
=/ 0yz(t, L) u(t) dt
0

and the assertion follows. Thus we have proved Lemma 6.3. [J
Now we can apply the following general result about the surjectivity of F.

Theorem 6.2 (Closed Range Theorem). Let H| and H, be Hilbert spaces and F
a continuous linear mapping from H, to H,. Then F is surjective if and only if there
is a constant k > 0 such that for all x, € H, we have the inequality

17 Gl = el (6.30)

Inequality (6.30) is called observability inequality. According to Lemma 6.3 for our
KdV system it has the form

10:2(t, L)l 20,1y = K”ZT”U(O.L)’ (6.31)

where z is the solution of (6.28).

Now we consider the traveling waves solution y from Section 6.1.2. We define
ZI'(x) = y(T, x). For the singular lengths L € A/ the function y solves the system
(6.27) with overdetermined boundary conditions. Therefore for the singular lengths
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L € N the function z(z,x) = y(t,x) solves (6.28). Thus we have 9,z(¢,L) = 0.
Hence inequality (6.31) cannot hold, since the left-hand side is zero, but z7 (x) # 0.
By Theorem 6.2 this implies that for the singular lengths from the set A/ the
linearized KdV system is not exactly controllable.

Remark 6.4. We have seen in Section 6.1.1 that for all w € D(A) we have

L 1
/ wAwdx = ——(w'(0))%
A 2

Let y denote a nontrivial solution of the overdetermined system (6.27). Then y €
D(A*) N D(A). Now we consider the evolution of the L>-norm

L
E@t) = % /0 O(t, x))* dx.

For the time-derivative we get

L L
E@) = /0 y(t, x) ,y(¢t, x)dx = / y(t, x) Ay(t, x) dx = 0.

0

Hence the function E is constant, that is the L?-norm is a conserved quantity.

Remark 6.5. For L ¢ N the linearized KdV system is exactly controllable
(see [47)).

Remark 6.6. For L ¢ N also the nonlinear system is locally exactly controllable.
Locally means that the L?>-norm of the initial and the terminal state has to be
sufficiently small. In fact, the nonlinear KdV system is also exactly controllable
for L € N, see [9].

6.2 The isothermal Euler equations

As an example for a quasilinear 2 x 2 system we consider the isothermal Euler
equations that can be used as a model for the flow of gas through pipelines:

pt+%c=0,

) (6.32)
a + (L + a*p), = —56 114

Here p is the density and g the flow rate of the gas. The first equation guarantees
the conservation of mass. In the second equation, a is the sound speed and 6 = %
where § is the diameter of the pipe and f, is a friction parameter. To see the
connection to the wave equation, let us look at the velocity

V==,
P
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For the applications the subcritical flows are interesting, where we have

|v|=‘z <a
P

that is the velocity is less than the sound speed. For sufficiently regular solutions v
solves a quasilinear wave equation, namely

3
vy = (a% — 0?) vy — 2005 — 20,0, — 20(0y)% — O|v] v, — 591} [v| vy. (6.33)

Exercise 6.5. Show that the velocity v satisfies the quasilinear wave
equation (6.33)!

Solution of Exercise 6.5. Since g = pv, the equation p; + q, = 0 implies p; +
oV + pvy = 0, hence we have

Pt + Vpx = —P Uy (6.34)

Since we do not consider the vacuum case, for the density we have p > 0, therefore
we can write the above equation in the form

LY (6.35)

With the variable In(p) this yields

d:(In(p)) + v d:(In(p)) = —vy. (6.36)

Hence we have

v, |1
0x(In(p)) = —-= — — 0:(In(p)). (6.37)
The second equation in (6.32) yields
2 2 1

v o+ pv; = —(pv° +a” ) — §9v lv] p.

With (6.34) this implies
2_ 2 1
V(=vpy — pUy) + pU;, = =2pVV, — PV —apy — 3 Ov |v| p.

Division by p yields

1
v+ v v, = —a*d,In(p) — 3 fvlvl. (6.38)
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Replacing the term d,In(p) in (6.38) by the right-hand side of (6.37) yields

a? , U 1
vt v, = ?8t(ln(p))+a F—§9v|v|. (6.39)

By multiplication with v this implies
1
v, + V2 v, = a® 3,(In(p)) + a° vy — 3 6 v? |v]. (6.40)
By partial differentiation of (6.40) with respect to x we get
2 2 2 2 3
Ve Uy 4+ VU + 07 Uy + 20(vy)” = a” 9, 9,(In(p)) + a” vy — 5 Bv|v|lv,. (6.41)
By partial differentiation of (6.38) with respect to t we obtain
Vi + U Uy + U Uy = —a?d, 0xIn(p) — 6 |v]| v, (6.42)
Adding (6.41) and (6.42) yields
2 2 2 3
Vi 4 20, U; + 20 U + 07 Uy +20(0,)° = a” v — 0 || > vu,+vu ). (643)

Thus we get (6.33).

Let Z denote the identity operator. We have the equation
Ve — (a% — V?) vy + 200, + 20,0, + 20(vy)?

[0; + (a + v)dy + v Z][0; — (@ — v)0d,] v (6.44)
= [at - (Cl - U)ax + UxIJ [at + (a + U)ax] v.

Exercise 6.6. Show equation (6.44)!

Thus the solutions of the equations

v, — (a—v)v, =0, (6.45)
v+ (a+v)v, =0 (6.46)

also solve the quasilinear wave equation (6.33) with 6 = 0, that is
Vi — (@ — V")V + 2 [0V + v, + v(0:)] = 0. (6.47)

Equations (6.45), (6.46) are called (nonviscous) BURGERS equations. Often these
equations appear with a = 0.
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The solutions of these equations can be determined with the method of char-
acteristics. The characteristic curves £V(s, x, t) are defined as the solutions of the
initial value problems

EV(t, x, 1) = x, 0,V (s, x, 1) = £a + v(s, £'(s, x, 1)). (6.48)

Hence the £V (s, x, f) solve the integral equations

E'(s,x,t) =xtals—1) + [Sv(r, E'(t, x, 1)) dr.

Now we consider the values of v along the characteristic curves. For the correspond-
ing auxiliary function

h(s) = v(s,&"(s, x, 1))
we have
K (s) = v, + 0,0, = v, + (v £ a) v,.

For a solution v of (6.45) ((6.46) respectively) this implies #’'(s) = 0, hence v is
constant along the characteristic curves. This implies that the characteristic curves
have constant slopes, hence they are straight lines. Therefore in general different
characteristic curves will intersect after finite time. In this case the solution in the
sense of characteristics breaks down and a shock develops, namely a discontinuity
of the solution. Before this happens, waves that appear in the solution become
steeper and steeper. It can also happen that the characteristic curves diverge. In this
case, a so-called rarefaction fan develops. Thus we see that classical solutions of
quasilinear equations can break down after finite time.

On the other hand, for many quasilinear systems there exist so-called semi-
global classical solutions that have the following property: For a given time T > 0
there exists a classical solution on the time interval [0, T}, if the initial data and
the boundary data are sufficiently small with respect to the C'-norm and satisfy the
C'-compatibility conditions at the points where both the initial conditions and the
boundary conditions hold at the initial time.

A well-written introduction to the mathematical theory of waves is given in [37].
A detailed account of controllability and observability for quasilinear hyperbolic
systems in the framework of semi-global classical solutions is given in [43]. In the
next section, we present a result about semi-global Lipschitz-continuous solutions.

6.3 An initial boundary value problem for the Burgers
equation

Theorem 6.3 states that for Lipschitz continuous initial data and boundary data
that is Lipschitz-compatible with the initial state and sufficiently small (that is
with sufficiently small maximum-norm and Lipschitz constant) the initial boundary
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value problem (BARWP) for the Burgers equation has a semi-global Lipschitz-
continuous solution on the time-interval [0, T] for a given time T > 0 in the sense
of characteristics.

Theorem 6.3 (Quasilinear initial boundary value problem). Let T > 0 and a €
(0, 00) be given. Assume that the function v, is Lipschitz continuous on [0, 00) and
that u is Lipschitz continuous on [0, T]. We consider the system

v(0,x) = vy(x), x € (0, c0)
(BARWP) § v(t,0) = u(r), t € (0,T)

v =—(a+v)odw.
Define the numbers
m= inf u(t), vo(x)}, M = su u(t), vo(x).
(l,x)e[().T]x[(),oo){ (). vo(x)} (t.X)G[O,T]E)([(),oo){ (1), vo(x)}
We assume that
m> —a, (6.49)
and
M <a. (6.50)
We define

k = max {—m, M} < a.

Assume that the C°-compatibility conditions between vy and u hold, that is
v9(0) = u(0). Let

Lg

denote a common Lipschitz constant for u and vy on [0, T] x {0} U {0} x [0, o0),
such that we have

|u(t) — vo(x)| < Lg |at + x| (6.51)
forallt € [0,T] and x > 0. Assume that
1
1. T< o
2. T < &£
Lg
and
K 1 _ a—«
3T <( —;) =

Then there exists a solution of (BARWP) on [0, T] in the sense of characteristics.

Remark 6.7. To make sure that the solution exists on a given, possibly large time
interval [0, T7, the Lipschitz constant Lg must be sufficiently small.
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Fig. 6.2 We assume that the t
joint function that consists of

u and vy glued together at the

corner at 0 is Lipschitz

continuous in the sense

of (6.51) around the corner

where the functions u and v,

are glued together.

For a given value of Lg, Theorem 6.3 guarantees the existence of the solution
only on a possibly short time interval [0, T7.

Remark 6.8. Condition (6.51) (see also (6.57) below) means that u and v, are
Lipschitz continuous around the corner that is depicted in Figure 6.2.

Proof of Theorem 6.3. We consider a solution in the sense of characteristics. For the
characteristic curves we have for x > 0 the explicit representation

£(s,x,0) = x+ (a + vo(x)) s (6.52)
and forz > 0
£(s,0,1) = (@ + u(@®) (s —1). (6.53)

Due to the Lipschitz-continuity of u# and vy and the compatibility condition vy(0) =
u(0), the Picard-Lindel6f Theorem implies that the functions £(-, x, f) are uniquely
defined as the solutions of the initial value problems (6.48) for sufficiently small
s > 0, ¢t > 0. Moreover, no regions in (0,7) x (0, 00) occur, that do not contain
characteristics, that is no rarefaction fans occur.

Now we determine a time interval, where it is impossible that the characteristic
curves intersect.

In our case of the Burgers equation the breaking time can be estimated
quite accurately. There are three possibilities how two characteristic curves can
intersect:

1. Two characteristic curves of the type (6.52) intersect:
The equation £(s, x1, 0) = £(s, x2, 0) implies
_ 1
() —vp(x)
X2 — X1
Thus for a point s of intersection we have

1

s| > =—.

Lg

Hence if T < ZL’ an intersection of this kind cannot occur.
‘R
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2. Two characteristic curves of the type (6.53) intersect:
The equation £(s, 0, 1) = £(s, 0, 1) implies

_ M(lz) — Ll(tl) st M(ll) H — Lt(tz) %)

h—nh h—1n
_ u(ty) — u(ty) n (u(t) —u()ty + u)(h — 1)
h—1 h—1
u(try) — ul(t u(tr) — ul(tr
_ ) (1)—t1 (1) (1)—u(t2).
h — h h—1
Hence we have
P s u(t>)
ls il= u(t2)—u(t1)
h—n
a—k
> —
Lg
Thus if T < %=, an intersection of this kind cannot occur.

3. A characterlstlc curves of the type (6.52) intersects a characteristic curves of the
type (6.53): The equation £(s, 0, 1) = £(s, x, 0) implies

o —x —at — u(n)t
= o — )
= Taima O S

and thus we get the inequality

1 u(t) 1
sl = | v o= | — 1=t + ) ————
=Ty b0 () — u(r)
1 k1
- ZR alg

K 1
(1-5) -
a’ Lg

IfT < (1 — g) ZL an intersection of this kind cannot occur.
‘R

Thus we have proved Theorem 6.3. [J

Remark 6.9. In order to extend the solution if a shock has developed, only a solution
in a weaker sense can be chosen. However, in general the weak solutions are not
uniquely determined. It makes sense to choose the solution that is obtained as a
limit of the solutions of the viscous Burgers equation for vanishing viscosity (see
Exercise 6.1).
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6.4 The Burgers equation with source term

In the applications, often source terms appear in the balance laws, for example
to model the effects of friction. Thus in this section we study the solutions of an
initial boundary value problem for the Burgers equation with a source term. Let a
continuous function

g:R—-R
with g(0) = 0 and 0, L, € [0, co) be given, such that for all z € [—a, a] we have:
8| < flz*.
Assume that for all z;, z, € [—a, a] we have the Lipschitz inequality
lg(z1) — 8(z2)| = Lglz1 — 22l
Theorem 6.4 (Quasilinear initial boundary value problem with source term).
Let T > 0 and a € (0,00) be given. Assume that the function vy is Lipschitz

continuous on [0, 00) and that u is Lipschitz continuous on [0, T|. We consider the
system

v(0,x) = vy(x), x € (0, o)
(QARWP) ¢ v(t,0) = u(t), t € (0,7)

v =—(a+v)dov +g).
Define the numbers
m= inf u(t), vo(x)}, M = su u(t). vo(x)Y.
(t.x)E[O,T]X[O.oo){ (). vo(x)} (t.x)G[O,T]I>)<[0,oo){ (), vo(x)}

We assume that

m> —a, (6.54)
and
M <a. (6.55)
We define
k = max {—m, M} + 0T d* (6.56)

and assume that

K <a.
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Assume that the C°-compatibility conditions between vy and u hold, that is
v9(0) = u(0). Let

Lg
denote a common Lipschitz constant for u and vy on [0, T] x {0} U {0} x [0, 00),
such that we have
|u(t) = vo(x)| < Lg |at + x| (6.57)
forallt € [0, T) and x > 0. Assume that there exists a number Ly > Lg, such that

vy (1+afk)]<1

2

Lionr := T exp(Ly T) |:Lg (1+LyT)+ P

and
2

~ a
exp(Ly T) [Lg Ly T + +Le (14 )} < Ly.

a—K a—K

Then there exists a solution of (QARWP) on [0, T| in the sense of characteristics.

Remark 6.10. Due to the source term, in general now the characteristic curves are
not given by straight lines. In contrast to the case g = 0 for nonvanishing source
term in general the constant states are not stationary, since the solutions are not
constant along the characteristic curves.

For the following proofs we use a fundamental Lemma of THOMAS HAKON
GRONWALL, (1877-1932).

Lemma 6.4 (Gronwall’s Lemma). Let real numbers L > 0, Uy > 0, € > 0, and
a continuous function U be given.
Assume that for all t € [0, T| we have the integral inequality

t
0<U@ < Uy +/ LU(7) + edr.
0
Then for all t € [0, T) for U(t) we have the upper bound

Lt
—1
U(t) <Uye! + ¢ c

Proof of Lemma 6.4. We define the auxiliary function
t
F(t) = Uy + / LU(7) + edr.
0

Then we have F'(t) = LU(t) + ¢ and U(¢) < F(¢). Since L > 0 this implies the
inequality F'(r) < LF(¢) + .
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We define H(t) = e™* F(¢). Then H(0) = F(0) = Up. The product rule for

differentiation implies

H'(1) = —LH(t) + e % F'(r)
—LH®@) +e 1 (LF@t) +¢)

—LH(t) +LH() +e ¢

—Lt

A

= &€

—Lt

By integration, the inequality H'(7) < se™"" yields

H(1)—H(0) = [)tH’(r) dr
' —Lt
d
< /(; e T
= s%(l —e ).

Hence we have

U(t) < F(t) = e" H(r)

<el (H(O) + s%(l — e_L’))

1
= eL’UO—i—sZ (eL’— 1).

Thus we have proved Lemma 6.4. O

For the proof of Theorem 6.4 we consider again the solution of our system in
the sense of characteristics that is described by characteristic curves. For a given
function v, the following lemma guarantees the existence of the characteristic curves
without intersection on a given (possibly large) time interval [0, T7.

Lemma 6.5. Let T > 0 be given. Let v € C([0, T]x [0, 00)) be Lipschitz continuous
with respect to x with the Lipschitz constant L,. Assume that there is a real number

Umax Such that for all (t,x) € [0, T] x [0, 00)
[v(t, x)| < Vmax < a.
Then the characteristic curves £V (s, x, t) exist for all

(s,x,7) € [0,T] x [0,00) x [0, T].
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The functions £V (s, x, t) are continuously differentiable with respect to s with a
Lipschitz continuous derivative (with the Lipschitz constant a + Vpmax)-

For all w € C(]0,T] x [0, c0)) (with the Lipschitz constant L,,) we have the
inequality

! exp(Lys) — 1

£V (s, x, 1) —=E"(s,x, )| < [[v—w] o) T
C([0,T]%]0, 00)) Lv (6.58)

< Texp(LyT)[lv—wlcqorx0.00)-

If (t,x) € [0, T] x [0, 00) is such that for all s € [0, T] we have £"(s, x, t) > 0, we
define t’(x,t) = 0. Else we define t’(x, t) € [0, T] as the solution of the equation

EV((x, 1), x, ) = 0.

Then we have the inequality

1
|tv(x, 1) — tW(x, t)| < ﬁT exp(L, T)||v — W||C([0, T]x[0,00)) - (6.59)

max

For all x1, x; € [0,00), s, t € [0, T| we have
[E%(s, x1,8) — EV(s, x2,1)| < |x1 — x2| exp(Ly $) (6.60)

and

1
[ (x1, 1) =17 (2, )] < ——— exp(LyT) |x1 — x2]. (6.61)

— Umax

Proof of Lemma 6.5. We define a fixed point iteration for £ (s, x, 1) = £V(s, x, t). For
this purpose we extend v on the whole x-axis by defining v(¢,x) = v(¢,0) if x < 0.
Then the extension is continuous on [0, 7] x R and Lipschitz continuous with respect
to x with the Lipschitz constant L,. Now we consider the integral equation

', x,t)=x+als—1) + /S v(z, £'(z, x, 1)) dt (6.62)

t

for (s,x,1) € [0,T] x R x [0, T]. In order to show the existence of a unique solution
we consider the corresponding PICARD-LINDELOF iteration with the starting point

E(l)(s,x, H=x4a(s—1)

and

0D (5. x 1) = x +als — 1) + /5 v(z, E¥(z, x, 1)) dt

t
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fork € {1,2,3,...}. Forall k € {2,3,4...} we have the inequality

|£6FD (s, x, 1) — ED (s.x, 1)

f ' v(z, V(1 x, 1) —v(r, €4 V(z, x,1)) dv

=L,

/ 1E® (1, x, 1) — %V (z, x, 1)| dt
t

We have

|§(2)(S,x, 1) —EWD (s, x, t)i =

/ ' v(z, EV(z, x, 1)) dt

t

IA

Umax |t — 5.

By induction this implies

1 _
— Umax Lﬁ ! |t—s|k

|E(k+])(ssxst)_S(k)(svxv[)| S k'
= Umax 1 (It —s| L)
L, k! o

On account of

[ =

(It = s|L,)" = exp (|t = 5] L,) < 00

b

!

o0
k=0
this implies: The sequence (£ (s, x, 1)) is a Cauchy sequence in the space

C([0,T] xR x [0, T])

and hence convergent, since we have

m—1
D OEsx ) — W (s x|

£ (s.x, 1) — £ (s, x,1)| <
k=n
v mly
< o= — (lt—s ka
<7 X Gl

— 0 for m, n - oo.
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Hence there exists a limit function & (s, x, r) € C([0, T] x R x [0, T]) that satisfies the

integral equation (6.62). Now let ¥ (s, x, t) be an arbitrary solution of the integral
equation (6.62). Then we have

|:§(s,x, l) - W(S, X, t)| =<

/S v(t, E(s,x, 7)) —v(T, ¥(s,x,7))dt

t

/ 2 Umax dT
t

<2 |t — $| Vimax-

=

Hence for all s, ¢ € [0, T], x € R we have
[ECs, x,8) — Y (s,x, )] <2V |t— ]|

By induction this implies

Umax 1
[E(s, x, 1) — Y (s, x, 1) < 2L—"‘ ];Lﬁ |t — |k

which yields

max 1
sup |E(s 1) — W(s,x )| < 220X (L T = 0 (k — o0).
s5,t€[0,T], xeR L, k!

Hence the solution of the integral equation (6.62) is uniquely determined.

Now we show that (6.58) holds. The integral equation (6.62) implies
|§" (s, x, 1) — € (s, x, 1)
- / u(, £ x, 1) — (T, £¥(x, x, 1) dt
t

IA

/S v(t, £%(z, x, 1)) —v(z, £Y(z, x, 1)) dT

t

+ /s v(t, &"(z, x, 1)) —w(z, " (7, x,1))dt

=L,

/Slév(t, x, 1) — €(z, x, )| dr

+ |t —s| |v(t, 2) —w(T, 2)].

max
(7,2)€[0,T]%[0,00)
Now we can apply Lemma 6.4. We define

U(S) = |€U(s»x» t) - sw(s’ X, t)| .
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Then we have the integral inequality

U(s) < [ L, U(r) + lv = wlleomxo.00)) 97| -

t

Gronwall’s Lemma (Lemma 6.4) yields

exp(Lys) — 1

U(s) < flv— W”c([o,T]x[O.oo)) L
v

Hence we have shown (6.58). Now we show (6.59). Without restriction of generality
we assume that

(x, 1) >t (x,1) = 0.

We have
™ (x,1)

EV([ (x, 1), x, 1) — EV(F (x, 1), x, 1) = / 9" (s, x, 1) ds

1V (x,1)

™ (x,1)

= / a+w(s, £ (s, x, 1) ds

v (x.1)

> (@ — W) [t7(x, 1) — 17 (x, 1)] .
Moreover we have

V(" (x, 1), x, 1) — V(' (x, 1), x, 1)
=0—-&"("(x,0), x, 1)
=E @ (x, x ) =" (x 1), x, 1)
< T exp(LyT) [[v = wllcqo,r1x[0,00))
where the last inequality follows from (6.58). Putting the last two inequalities
together yields (6.59). Now Gronwall’s Lemma also yields (6.60).
Exercise 6.7. Show that (6.60) holds.

Now we show (6.61). Let x1, x, € [0, 00) be given. Without loss of generality
we assume that x; < x,. Then we have

' (x1,1) = t°(x2,1).

Case 1: If ' (x,t) = 0, then t”(xp, t) = 0 and thus ¥ (x;, ) — t(x2,1) = 0.
Case 2: If ' (x1,t) > 0, we have

EV(t (x1,1), x1, 1) = 0.
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This implies
17 (x1.)

EV(" (x1, 1), x1, 1) — EV (1" (x2,0), X1, 1) = [ 05&%(s, x1, 1) ds

1V (x2,1)

> (@ — Vmax) [1'(x1,0) — ' (x2, )]
On the other hand we have
Ev(ti(xl»t)v X1, t) - Ev(tU(XZ’ t)9 X1, t)

=0- EU(IU(JQ,I)’ X1, t)

< EU(t' (x2, 1), x2, 1) — EV(t" (2, 1), X1, 1) <exp(Ly T) |x1 — x2]

where the last inequality follows from (6.60). Thus (6.61) holds and we have shown
Lemma 6.5. (J

Proof of Theorem 6.4. We use a fixed point argument to show the existence of the
solution v. Assume that Ly, is as in Theorem 6.4 and define the set

M = {v : v is continuous and Lipschitz continuous with respect to x on [0, T] x [0, 00)

with a Lipschitz constant L, < Ly and |v| < k}

where « is as in (6.56). Now we consider a mapping P that is defined on the set M.
For a given function v € M we have v € C([0,T] x [0, 00)) with the Lipschitz
constant L, < Ly, and we have

[v(t,x)| <k <a.

Now Lemma 6.5 implies the existence of characteristic curves £. We use these
characteristic curves for the definition of the map ®. We define

D) (t,x) = v’ (x, 1), £ (x, 1), x, 1))

+ /tv(x.t)g(v(r, &' (t, x, 1)) drt.

Note that we have

u(t’(x, 1)) if t" (x, 1) > 0,

Ve 0, E( 00, x, 1) = { Vo (E(0, x, 1)) if (x. 1) = 0

hence the corresponding values are determined by u and vy.
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Now we consider the fixed point iteration that is defined by the equation
Vi1 (7, x) = v (@™ (x, 1), ™ (™ (x, 1), x, 1))

* / g (i(z, §%(z, x, 1)) dt

Yk (x,1)

= O(v)(t, x).

Our aim is to apply Banach’s fixed point theorem. We divide the corresponding
analysis in 3 steps.

Step 1: The velocity remains subcritical For all vi € M we have
lvi(t,x)| < max{—m, M} + 0Ta* =« <a.
By induction this implies that for all k € {0, 1,2, ...} we have
[vit1(t,x)| <k < a. (6.63)

By (6.63) forall k € {1, 2,3, ...} we have a subcritical flow. In particular Lemma 6.5
guarantees the existence of the characteristic curves, hence the fixed point iteration
is well defined.

Let L,, denote a Lipschitz constant of v, with respect to x.

Exercise 6.8. Show that the Lipschitz constants L,, can be chosen in such a way
that the sequence (L, ) is bounded by Ly,.

Step 2: The Lipschitz constants are uniformly bounded.

Now we consider the Lipschitz constants of ®(v) with respect to x.
For all x;, x, € [0, c0) we have the inequality

[ D), x1) — P(V) (¢, x2)| =< fit, %) + (2, %),
with

St x) = [ (x1, 1), §°(1 (x1, 1), x1, 1) — v (" (32, 0), §7 (1" (32, 1), X2, 1))

and
fa(t, %)
= /ﬂrmt)g(v(r, §"(xx, t),xl,t))dr—ft:(xz’l)g(v(r, E'(t(x2, 1), %2, 1)) dt
= /[t g(v(r, §"(x(n,0),x1,0)) = g(v(z, §"(x (02, 1), %2, 1)) dT

V(x1,t)
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1 (x2.1)
+ / g(z, %(t(x2,1),x2,1)) dt
t

Y (x1.t)

=L /0 [v(z, €' (z, x1, 1)) —v(t, £°(t, x2, 1))| d7
+ | (x1, 1) — 1°(x2, 1)| Od®

=L /0 [v(z, £%(z, x1, 1)) —v(z, E°(7, X2, 1))| dT

+ 0d?

exp(Ly T) |x1 — x2
a—K

where we have used (6.61) from Lemma 6.5. Inequality (6.60) implies

Al <L, [0 (e, £ (1. 31, 1)) — vz, E°(z, x2. 1) dt

+ 0d?

exp(Ly T) |x1 — x2|
a—K

<Ly TL, exp(Ly T) |x1 — x2|

+ 0d* exp(L, T) |x1 — x2|
a—«k
0a®
=[L, TL, + Jexp(Ly, T) |x1 — x2].
a—«k
Hence
2
L, = [Lg TL, + ] exp(L, T)
a—«k

is a Lipschitz constant of f;.
To get a Lipschitz constant for f; we distinguish three cases.
Without loss of generality we assume that

' (x1,1) < °(x2,1).

Case 1.:1f ' (x1,t) > 0, we have £V (t" (x1, 1), x1, 1)=0and &' (¢" (x2, 1), X2, 1)=0.
This implies

St x) < fu(t” (e, 1) — u(t’ (x2,1))|
< Lg |t (x1,0) — " (x2, 1)

SZR

— exp(L.T) i — ol
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Case 2.: If t'(x2,1) = 0, we have '(x;,f) = 0 and £"(¢"(x1,1), x1, t) > O,
EV(t°(x, 1), x2, 1) > 0. This implies

fi(t,x) < |vo(§°(0, x1, 1)) — vo(§"(0, x2, 1))
< Ly |E°(0, x1, t) — £(0, x2, 1)
<l exp(L,T) |x; — x2].

Case 3.: If t'(x5,¢) > 0 and ¢’ (x, t) = 0, we have

fi(t,x) = vo(§Y(0, x1, 1)) — u(t"(x2, )|
< Lg lat’(x, 1) + £°(0, x1, 1)]

13

<Lgal|f’(xs,t)—0] + Lg |EY(0, x;, 1) — 0]
< Lpal|t’(xa,t) —(x1.0)| + L |E°(0, x1, 1) — £(0, &, 1)
<lga exp(LyT) |x1 — X2

a—K

+ Lg exp(L,T) |x; — x3|.
Here X is the point between x; and x, with £,(0,Xx,7) = 0.
Case 1-Case 3 yield the Lipschitz constant L, for f; that is given by the equation

~ a
Li = Lz exp(L,T) [1 + —]
a—KkK

Thus we get the Lipschitz constant L for ®(v) that is given by

Ly =L + L,

0a> ~ a
= exp(Ly T) |L, T L, + + Ik (1+ )
a—K a—kK

<Ly

where the last inequality follows from our assumptions in Theorem 6.4. Therefore
the Lipschitz constants are uniformly bounded by L), during the fixed point iteration.

In Step 1 we have shown that the solution remains subcritical during the iteration.
Hence for all v € M we have ®(v) € M, that is

dM) C M.

Step 3: Contractivity Now we show that ® is a contraction. For all v, w € M
we have the inequality

|P(v) —P(w)| <A+1
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with
A= (" (x, 1), E'(1° (x, 1), x, ) —w(t"(x, 1), E"(" (x, 1), x, )],
I = /t:(xqt) gu(t, £°(t(x, 1)) dr — /t::(x,t) ew(t, £¥(z(x,1))) dt
= /ﬂ;,t) g((r. £'(t(x.1)) — gw(r. " (x(x. 1)) dt
[ " g, £ (et 1) d
()
=L /OI lv(z, §"(z, x, 1)) —w(z, §"(r. x, )| dr
+ | (x, 1) — ' (x,1)| Oa’
=L /Ol lv(z, §(z, x, 1)) —w(z, §"(r. x, )| d
+ Qaza —T exp(Ly T)l|v = wleqo. 70,00
We have

I <L, /t lv(z, €' (z, x, ) —v(z, (7, x, 1))| dT
0

+ L, /t lv(z, " (z, x, 1)) —w(z, £(z, x, 1)| dt
0

2
+

) exp(Ly ) [[v — wllcqo. 71x[0.00)

< Lg TL, Texp(LU T) ||v — W”C([O,T]X[O.oo))

+ L T [lv — wllcqo.r1x[0.00))

2
+

L exp(Lo Dlv = wlieqo. xqo.00)

=Ly T [1 + Ly Texp(Ly T)] [[v — wllcqo.r1x0.00))
2

+ T exp(Ly T)|lv — wllcqo, 1x[0.00))

a—K
2

= T[Lg (1+L, Texp(L,T)) + p—

exp(Ly T)} v —wlleqo, 71x10.00))-

123
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Now we consider again three cases. Without loss of generality we assume that
' (x, 1) < "(x,1).

Case 1.: If t(x,t) > 0, we have £V('(x, 1), x, 1) = O and £ (¢"(x, 1), x, 1) = 0.
Hence we get

A < u(t(x, 1) — u(®" (x.1)]

< Le " (x,1) = 1" (x, )|

SZR

P Texp(LyT) [lv — wllcqo. 71x[0.00)-

Case 2.: If ¥(x,t) = 0, we have t'(x,f) = 0 and &"(¢"(x,1), x, 1) > O,
EY("(x, 1), x, t) > 0. Thus we get

A = |vo(§°(0. x, 1)) — vo(§"(0, x, 1))
< Lg |EY(0, x, 1) — £"(0, x, 1)|
< Lg Texp(L,T) [|v — wlleqo, 1ix[0.00))-

Case 3.: If t"(x,t) > 0 and 1’ (x, 1) = 0, we have

A = v (§"(0, x, 1)) — u(t"(x.1))]
< Lg lat’(x,t) + £°(0, x, 1)|

<Lgal|t(x,1)—0| + Lg |€°(0, x, 1) — O
<Lpa|t(x.t) =" (.0 + Lg |£°(0, x, 1) — £"(0, x, 1)
<lIlga p— T exp(LyT) [[v — wllc(o, 1x[0.00))

+ Lg Texp(L,T) [|[v — w|lc(o. 11x[0.00))-

Here £%(0, x, f) < 0 is defined by the extension of the characteristic curves
for (s, x, t) € [0,T] x (—o0, co0) x [0, T]. For this purpose w is extended on
(—00,0)x[0, T] by w(x, 1) = w(0,t) (x < 0). Note that this extension is Lipschitz
continuous.

From Case 1-Case 3 we get

[@(v) — PW)lco.71%[0.00))

< Lionr |[v —w|lcqo,11x70.00))
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with the Lipschitz constant

2

Lkontr =T [Lg (1 + Lv Texp(Lv T)) + exp(Lv T)j|

a—K

5 1 3
Fp MY (Lo T) + Lk Texp(L,T).
=

Thus we have shown that if 7'[Lg + L, + 0] is sufficiently small the map ® is a
contraction. Now Banach’s fixed point theorem implies the existence of a unique

fixed point of ® in M, which is the solution of the quasilinear initial boundary value
problem (QARWP). Thus Theorem 6.4 is proved. [
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