Chapter 2

Topological Classification of Geodesic
Flows on Revolution 2-Surfaces

with Potential

A.T. Fomenko and E.O. Kantonistova

Abstract The paper is devoted to a short explanation of the topological classification
(up to Liouville equivalence) of the integrable geodesic flows of two-dimensional
surfaces of revolution with potential. The classification is given in the terms of
so-called “marked molecules,” i.e., Fomenko—Zieschang invariants for integrable
systems with two degrees of freedom on three-dimensional isoenergy sufraces.

2.1 “Atoms” and Morse Functions

The critical point is called nondegenerate if the second differential
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is nondegenerate at this point. There are three possible types of nondegenerate critical
points for functions on two-dimensional surfaces: maximum, minimum, and saddle
(see Fig.2.1).

A smooth function is called a Morse function if all its critical points are non-
degenerate. The Morse functions are everywhere dense in the space of all smooth
functions on a smooth manifold.

By ¢ we shall denote critical values of f, i.e., those in whose preimage there is at
least one critical point. By arbitrary small perturbation, one can do so that, on every
critical level c there is exactly one critical point. In other words, the critical points
which occur in the same level can be moved close but in different levels. If each
critical level f~!(c¢) contains exactly one critical point, then f is called simple Morse
function.
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Fig. 2.1 Types of critical
points
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Let f be a Morse function on a compact smooth manifold X". For any a € R,
consider the level surface f~!(a) and its connected components which can be as
called fibers. As a result, on the manifold there appears the structure of a foliation
with singularities. By declaring each fiber to be a point and introducing the natural
quotient topology in the space I" of fibers, we obtain some quotient space. It can be
considered as the base of the foliation. For Morse function, the space I' is a finite
graph. The graph is called the Reeb graph of the Morse function f on manifold
X". Consider, for instance, the two-dimensional torus in R? embedded as shown in
Fig.2.2, and take the natural height function to be a Morse function on the torus.

Fig. 2.2 Reeb graphs for
height functions
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Then its Reeb graph has the form as shown in the same figure.

It is a natural problem to give the classification of Morse functions on two-
dimensional surfaces up to the fiber equivalence. To solve it, first we need to study the
local question, namely, to describe the local topological structure of singular fibers.

We begin with the informal definition. An atom is defined to be the topological
type of a two-dimensional Morse singularity. In other words, this is the topological
type of singular fiber of the foliation defined on a two-dimensional surface by a
Morse function. More precisely, we can reformulate this as follows.

Definition 2.1 An atom is a neighborhood P? of a critical fiber (which is defined by
inequality ¢ — ¢ < f(x) < ¢ + ¢ for sufficiently small ¢), foliated into level lines of
f and considered up to the fiber equivalence. In other words, an atom is the germ of
the foliation on a singular fiber.

The atom P? is called simple, if the Morse function f in the pair (P2, f) is simple.
The other atoms are called complicated. The complexity of an atom is a number of
critical points on its critical level f(x) = c. The atom is called orientable (oriented)
or nonorientable depending on whether the surface P? is orientable (oriented) or
nonorientable.

First, consider a nonsingular level line which is close to a local maximum point.
This line is a circle. As the regular value tends to the local maximum, the circle
shrinks into a point (Fig.2.3). Let us represent this evolution and the bifurcation in
the following conventional, but in quite visual manner. Every regular level line (a
circle) we represent as one point is located on the level a (Fig.2.3). As a changes,
this point moves running through a segment. At the moment, when the value of
the function becomes critical (equal to c¢), a circle has shrunk into a point. Denote
this event by the letter A with a segment going out of it. This segment is directed
downwards. In the case of minimum, we proceed the similar way (Fig.2.3).

If c is a critical saddle value, then the singular level line looks like a figure eight
curve. As a tends to ¢, two circles are getting closer and, finally, touch at a point.
After this, the level line bifurcation happens and, instead of two, we obtain just one
circle, see Fig.2.4.

Let f be a simple Morse function on a compact closed surface X2 (orientable
or nonorientable). Consider Reeb graph I'. The vertices of I" correspond to critical
fibers of f. Let us replace these vertices by corresponding atoms (either A, or B, or B,
which is nonorientable version of B). The graph obtained is called a simple molecule
W. In fact, the notion of the simple molecule does not differ yet from that of the Reeb
graph. However, for complicated Morse functions the molecule W will carry more
information than the Reeb graph I' (Fig.2.5).

A minimal simple Morse function on the pretzel, i.e., on the sphere with two
handles, is realized as the height function on the embedding of the pretzel, presented
in Fig.2.8. The corresponding simple molecule is also shown here.
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Fig. 2.5 Minimal simple A f A
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and its simple molecule B
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2.2 Complicated Atoms and Molecules

Recall that an atom is complicated if critical connected level surface of function f
contains several critical points. Such objects naturally arise in many problems in
geometry and physics (see Fig.2.6).

We now give a simple example. Suppose that a finite group G acts smoothly on a
surface X2, and let f be a G-invariant Morse function; then, as a rule, such function
will be complicated. Indeed, if, for instance, the orbit of a critical point x entirely
belongs to a connected component of the level line {f (x) = const}, then this level
contains several critical points.

Of course, a small perturbation can make the function simple by moving criti-
cal points into different levels. However, this destroys the symmetry. Thus, in the
problems that require studying symmetries of different kinds, one has to investigate
complicated Morse functions as an independent object. The molecules W classify
Morse functions on M2 up to fiber equivalence, see [1].

It is convenient to denote every atom (P2, K) by some letter with number of
incoming and outgoing edges. The end of each edge corresponds to a certain boundary

Fig. 2.6 Complicated Morse ~ Complicated "atoms" =
functions bifurcations of the level
curves of the function f
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circle of the surface P. It is important to emphasize that, generally speaking, the ends
of an atom (P, K) are not equivalent; because the boundary circles of the surface
P are not equivalent in the sense that not every two of them can be matched by a
homeomorphism of the pair (P, K) onto itself. Some atoms of low complexity (both
orientable and nonorientable) are listed in Fig.2.7. In the same table, one can see the
corresponding pairs of f-graphs, as well as the surface P obtained from P by gluing
disks to all of its boundary circles. See details in [1].

2.3 Topology of Integrable Hamiltonian Systems
with Two Degrees of Freedom

Consider symplectic manifold M?" with closed nondegenerate skew-symmetric two-
form w. It defines on the space of smooth functions on M?" Poisson bracket

{f.g) = 0~ '(df, dg).

The system of ordinary differential equations defined by vector field v is called
Hamiltonian system if there exists such function H (called Hamiltonian) that for any
function g on M?" the equality holds v(g) = {g, H}. We denote v = sgradH.

The system is integrable in Liouville sense, if there exists exactly n functionally
independent commuting integralsfi, . . ., f,;, and all vector fields sgradf; are complete.
They define the so-called Liouville foliation (see Fig.2.8). The Liouville theorem
states, that if the regular (i.e., f; are functionally independent on it) common level
surface of these functions is compact and connected, then it is a torus 7"*. The solution
(integral trajectory) in general case determines almost periodic motion on this torus.

This class of Hamiltonian systems contains many important examples from
physics an classical mechanics: the different cases of motion of rigid body (Euler
case, Lagrange top), geodesic flow on ellipsoid, interaction of the material points,
located on the line or on the circle S'. The classification of such systems is a very diffi-
cult task. It turns out, however, that in case of n = 2 the full topological classification
exists.

Consider a symplectic manifold M* with an integrable Hamiltonian system
v = sgradH; let Qfl be a nonsingular compact connected isoenergy 3-surface in
M*. Let f be an additional integral of the system v that is independent of H. We
denote its restriction to Q?, by the same letter f. It is assumed to be a Bott function
(nondegenerate, see [1]) on Q,31. Our aim is to investigate the topology of the Liou-
ville foliation on Q?l defined by the given integrable system. Its nonsingular leaves
are Liouville tori, and the singular ones correspond to critical levels of the integral f
on Qi.

Now consider a topologically stable (see [ 1]) integrable system with Bott integral
on anisoenergy 3-surface QZ and take some singular leaf L of the corresponding Liou-
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Fig. 2.7 Several atoms of low complexity
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Fig. 2.8 The two-dimensional “cross-section” of Liouville foliation in three-dimensional invariant
submanifold around singular leaf

ville foliation on Qi. Consider a neighborhood of this leaf, i.e., a three-dimensional
manifold U (L) with the Liouville foliation structure and fixed orientation. By anal-
ogy with the two-dimensional case, as neighborhood U (L), we take the connected
component of the set ¢ — ¢ < f(x) < ¢ + ¢ that contains the singular leaf L (same
as in previous section f(L) = c is a critical value of f). Such an object is naturally
called a 3-atom. However, from the formal viewpoint, we have to be more careful.
We shall assume two such 3-manifolds U(L) and U’(L) with the structure of the
Liouville foliation to be fiberwise equivalent if

(1) there exists a diffeomorphism between them that maps the leaves of the first
Liouville foliation into those of the second one,

(2) this diffeomorphism preserves both the orientation on 3-manifolds and the ori-
entation on the critical circles defined by the Hamiltonian flows.

Definition 2.2 The equivalence class of the three-dimensional manifold U(L) is
called a 3-atom. The number of critical circles in the 3-atom is called its atomic
weight or complexity (for details, see [10, 11]).

Consider 3-atom U (L) with the structure of a Seifert fibration on it. Let
7 :U(L) — P?

denote its projection onto a two-dimensional bas P> with the embedded graph K =
m(L). Let us mark those points on the base P2, into which the singular fibers of the
Seifert fibration (i.e., the fibers of type (2, 1)) are projected. Recall that the base P2
has a canonical orientation. The point is that an orientation is already fixed on U (L),
as well as on the fibers of the Seifert fibration. It is clear that, as a result, we obtain
some oriented 2-atom (P2, K).
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Fig. 2.9 3-atoms A, B and B*

Theorem 2.1 (Fomenko). Under the projection w : U(L) — P2, the 3-atom U(L)
turns into the 2-atom (P2, K); and moreover, the singular fibers of the Seifert fibration
on the 3-atom are in one-to-one correspondence with the star-vertices of the 2-atom.
This correspondence between 2-atoms and 3-atoms is bijection.

The example of 3-atom is shown in the Fig.2.9.

Let us describe 3-atom A (see Fig.2.9). This 3-atom is presented as a solid torus
foliated into concentric tori, shrinking into the axis of the solid torus. In other words,
the 3-atom A is the direct product of a circle and a disk foliated into concentric circles.
From the viewpoint of the corresponding dynamical system, A is a neighborhood of
a stable periodic orbit. The examples of saddle 3-atoms are presented in the Fig.2.9.

Now we make more precise the definition of the Liouville equivalence for inte-
grable Hamiltonian systems. From now on, we shall assume that two Liouville folia-
tions are Liouville equivalent if and only if there exists a diffeomorphism that sends
the leaves of the first foliation to those of the second one and satisfies two conditions
related to the orientation. Namely, it preserves the orientation of 3-manifolds Qz and

o4 ,31; and moreover, it also preserves the orientation on the critical circles given by
the Hamiltonian flows. The molecule W contains a lot of essential information on
the structure of the Liouville foliation on Q?l. However, this information is not quite
complete. Indeed, the molecule of the form A—A, for example, informs us that the
manifold QZ is glued from two solid tori foliated into concentric tori in a natural way.
However, it does not tell us how this gluing is made, and what three-dimensional
manifold is obtained as a result. Therefore, we have to add some additional infor-
mation to the molecule W, namely, the rules that clarify how to glue the isoenergy
surface Qz from individual 3-atoms. As it was discovered by A.T. Fomenko and
H. Zieschang, the molecule W, which corresponds to integrable Hamiltonian sys-
tem, can be endowed by some numerical marks in such a way, that these marked
molecules W* will classify such a systems up to Liouville equivalence. In short, the
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marked molecule W* is molecule W, equipped with three sets of numbers r;, &; and
ny called marks, see [1].

Theorem 2.2 (Fomenko, Zieschang). Two integrable systems (v, Q,31) and (V/, Q’fl)
are Liouville equivalent if and only if their marked molecule W* and W*' coincide.

The marks cannot be chosen arbitrary, as there are several important conditions
on them. Any marked molecule W* with marks, which satisfy these conditions, is
called abstract marked molecule.

Theorem 2.3 Any abstract marked molecule W* is realized as a marked molecule
of some integrable Hamiltonian system.

Corollary 2.1 (1) There exist a one-to-one correspondence between the Liouville
equivalence classes of integrable systems and marked molecules. In particular, the
set of Liouville equivalence classes of integrable systems is discrete (countable) and
has no continuous parameters.

(2) There exists an enumeration algorithm for marked molecules (i.e., classes of
integrable systems).

(3) There exists an algorithm for comparison of marked molecules, i.e., the algorithm
that gives answer to the question whether two integrable systems corresponding to
given molecule are Liouville equivalent or not.

2.4 Geodesic Flows with Potential on the Surfaces
of Revolution

Consider a manifold M, which is diffeomorphic to a cross product of finite interval
(a, b) and circle S!. Let us define a metrics ds* = dr? + fz(r)dw2 on M, where
r is a natural parameter on f(r). f(r) is a smooth positive function on (a, b), and
f(a) = f(b) = 0; and, moreover, we assume that a surface of revolution obtained by
rotation of this function around the axis Oz is a smooth manifold. ¢ is a conventional
angle coordinate on a circle S I Let V(r) be a smooth function on the surface of
revolution, obtained by the rotation of f(r). It plays a role of a potential of the
system.

Definition 2.3 We call a system, defined by pair (f (r), V (1)), a system on the surface
of revolution.
The phase space of this system has a dimension of four: it has coordinates

(r9 (p9pi”v p(ﬂ)

Lemma 2.1 The system given by a pair (f (r), V (r)) is integrable Hamiltonian sys-
tem on T*M (on the cotangent bundle of M) for any smooth potential function V (r).
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This statement is clear since the investigated system has two integrals of motion: H
— energy, and p, — linear first integral, the mechanical sense of the later being the
projection of kinetic moment on axis of rotation. Hence, according to the definition
of Liouville integrability (see [1-3, 12]), this system is integrable.

The Hamilton function of this system has a form

p: P,
r %
== V(). 2.1
2+2f2(r)+ (r) 2.1
We can rewrite the function H in the form

H = g/(rpipy + V (1). (2.2)

According to a famous Maupertuis principle, there exists a value of energy H =
ho > max(V (r)), such that for any & > hq the integral trajectories of the vector field
v = sgrad H on the isoenergetic level Q3 ={H (r,~¢, Dr» Pp) = h} coincide v!ith the
integral trajectories of the vector field v = sgrad H, where the Hamitonian H has a
form .

g"(r)

g &0
h—V(r)

PrPy- (2.3)

It is clear that the vector field v defines a geodesic flow of a Riemannian metrics g%
on the manifold 7*M, where 3V (r) = (h — V (r))g" (r).

So, we can consider the system on the surface of revolution as a geodesic flow
with the potential on the surface of revolution.

2.5 The Case of Gravitational Potential: Topological
Classification

Now let us examine the systems on the surfaces of revolution, which are defined by
pairs (f(r), V(r)), where the function f(r) gives us a smooth surface of revolution
on (0, ), and the potential function V (r) = cos r, which means that we have the
action of the gravitational field in such systems.

In this chapter, we want to give the topological classification of such systems. For
this purpose, it is necessary to define some useful notions.

Definition 2.4 We will call the map

¢ : M_> R2 : (r5 (paprva) = (H(ra (paprvp(p),p(p(n (07pr’p(p)) (2'4)

the momentum map.
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Definition 2.5 If the rank of d® (x) is less than 2, then x is a critical point of the
momentum map, and @ (x) is its critical value. A set of critical values ¥ = {§ =
@ (x), x is a critical point} is called a bifurcation diagram.

For more details, see [7-9].

Let us define an effective potential function:

2
Ueft (P, 1) = % + V(r). (2.5)

Assume that the following conditions are satisfied:
1. In all points r;, which are the solutions of the system

{ 3Ueﬁf(ry[7(p) =0

BZU;vzr,p(p) _ O (26)

ar2

we have 3
0° Uegr (ri, Py)
ar3

£0 2.7)

(it is a condition of the existence of semicubical point of return on the bifurcation
diagram);

2. In all points r; where the function U (7, py) has a local minima, all the values
of Ugy (r, py) are different for the fixed py,. (this condition provides the existence of
atoms of only two types A and B in the system).

Theorem 2.4 If the system satisfies the conditions above, then the bifurcation dia-
gram of this system is constructed of the curves of three types:

(1) The curve of a “parabole” type (see Fig. 2.10)

(ii) Two points of the rank 0 with coordinates (H, p,) = (%1, 0). The point
(—1, 0) has a center—center type, the point (1, 0) has a focus—focus type (see Fig.2.11)

(iii) The curve of a “beak” type (see Fig. 2.11: a, b, ¢ particular cases, d the general
case)

And besides, the bifurcation diagram may consist of only one curve of type (i) and
of any number of the curves of type (iii).

Example 2.1 Let us consider a function f (r) = sin r (this system called a “spherical
pendulum system” (this system was studied in [13])). In this case, the bifurcation
diagram has a very simple form: it has no curves of type (iii). The function f(r) and
the bifurcation diagram are shown in the Fig.2.12.

Example 2.2 Consider a function f(r), which gives us a surface with two local
maxima at the points a and b (see Fig.2.13a)). In this case, the bifurcation diagram
also has the curves of type (iii) (see Fig.2.13b)).

With the help of the bifurcation diagrams, we can construct the molecules. All
the molecules consist of atoms of only two types A and B.
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2.6 Topological Equivalence Between Different
Integrable Systems

Now we continue to study the equivalence in the sense of Liouville. As soon as
we have constructed the molecules, we have some information about the Liouville
fibration of the system. But this information is not full (see Chap. 3). Let us consider
an arbitrary rib of the molecule. In the preimage of any regular point from this rib, we
have one regular torus in 7*M. So we can choose two regular tori, which correspond
to the regular points of the rib near both edges of this rib.

Then, we choose a basis on each of these two tori, and we deform these bases
toward each other. As a result, we obtain two bases on the torus, which correspond
to the central (regular) point of the rib. We can write the transition matrix from one
coordinate system to another, and this matrix gives us information about the way of
gluing two tori in the ends of the rib (see Fig.2.14).


http://dx.doi.org/10.1007/978-3-319-19075-4_3
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D 1/

B

Fig. 2.14 The way of gluing two tori defined by matrix

We can choose the basis on a torus in different ways, therefore gluing matrix
depends on the coordinate systems. But we can calculate some numbers given by
this matrix, which do not depend on the coordinate system. These invariants are
called the marks on the ribs of the molecule. The molecule with the marks is called
a Fomenko—Zieschang invariant (or simply a marked molecule).

Theorem 2 says that the Fomenko—Zieschang invariant is the invariant of topo-
logical equivalence of the system. Namely, if two integrable Hamiltonian systems,
defined by their Hamiltonian vector fields v = sgradH and v = sgradFI , have the
same Fomenko—Zieschang invariants on the isoenergetic surfaces Q3 and 03, these
systems are equivalent in the Liouville sense.

Hence, it is reasonable to calculate the marked molecules of integrable systems.

There exist three types of marks: r, & and n. The mark r is defined by the rule

a
_ | pmodl € Q/Z, b #0
r= I . b0 (2.8)
The mark ¢ can be calculated in the following way:
| signb, b#0
b= [ signb, b =0 2:9)

The mark »n has a more complicated definition (see [4-6, 14]).

Theorem 2.5 If all the conditions of the Theorem 4 are satisfied, then the marked
molecules of the systems with gravitational potential consist of the ribs of the fol-
lowing types: (a) the rib A—A with the mark r = 0, if Q> = {H = h < 1}; and with
the markr = 1/2, ifQ3 ={H = h > 1}. The mark ¢ = +1 in both cases;

(b) the rib A—B with the mark r = 0 and the mark ¢ = +1;

(c) the rib B—B with the mark r = 0o and the mark ¢ = —1, if the rib is symmetric
relative to the axis OH; and the mark ¢ = +1 in other case;

(d) if the system admits the atoms of type B, then there exist marks of type n. If
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(b)
(a) A A
r=0 r=1/2
£ =+1 E =+1
A A

’= {H=h<1}; Q’= {H=h>1
Qi Qritionad] Q’= {H=h<1} -> n=1; Q= {H=h>1} -> n=2

Fig. 2.15 The marked molecules for the systems from the examples 1 and 2

Q® = {H = h < 1}, then the mark n = 1, and if Q° = {H = h > 1}, the mark
n=>2.

The marked molecules for the examples 1 and 2 are shown in Fig. 2.15.

Corollary 2.2 The molecule of the example 2 (when the energy H > 1) coincides
with a molecule in the classical integrable Hamiltonian system called Zhukovskii
system. Almost all marks on the ribs of these molecules coincide except for one
mark ¢ on the rib B—B. So, the systems are different in the Liouville sense, but their
invariants almost coincide.
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