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Abstract. In recent years, the electrical consumption of data centers
has increased considerably leading to a rise in the expenditure bill and
in greenhouse gas emissions. Several existing on/off algorithms reduce
energy consumption in data centers or Clouds by turning off unused (idle)
machines. However, the turning off/on of servers consumes a certain
amount of energy and also induces the wear and tear of disks. Based
on the data streaming paradigm which deals with large amount of data
on-line, we present in this paper MERCi-MIsS, a proposal whose aim is
to save energy in data centers and Clouds and tackle the above tradeoff
problems without degrading, as much as possible, the quality of services
of the system. MERCi-MIsS dynamically estimates the future workload
based on the recent past workload, deciding if servers should then be
turned either on or off. We have implemented MERCi-MIsS on top of
Twitter Storm. Evaluation results from experiments using real traces
from Grid’5000 confirm the effectiveness and efficiency of MERCi-MIsS
algorithm to save energy and avoid disk damage while the quality of
service is only slightly degraded.

1 Introduction

In a Cloud environment, the provider renders available a great number of re-
sources for clients to perform their tasks. Cloud computing has been presented
as a green approach in front of traditional data centers since their resources are
shared by a huge number of users, optimizing, thus, the use of the resources.

Although Cloud computing seems the correct approach for saving energy,
more effort must be made in order to design efficient Cloud data centers [1].
In the Cloud, clients and providers have different responsibilities: the client is
responsible for his/her application while the provider is interested in adopting
energy-aware and cost effective policies. Furthermore, providers’ energy-aware
solutions should deal with a large number of applications. Therefore, based on
a global view of the system, providers have to apply energy saving techniques
which will not interfere in aspects which are responsibility of the clients.

One well-known approach to reduce energy consumption, called on/off algo-
rithm, consists in turning off unused (idle) machines [2, 3], since the power of
idle machines is estimated between 25-60% of the peak power [4, 5]. However,
such an algorithm entails some negative impacts. Firstly, the turning off/on of
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servers consumes energy. Hence, a server should stay off during a minimum time
period (called critical time) which compensates the energy in rebooting it when
compared with the energy of keeping it idle [3, 6]. A second negative impact is
that the reduction of the number of available resources can degrade the quality
of service (QoS) engaged by the provider through the Service Level Agreement
(SLA), i.e., an agreement between the provider and the client which sets up the
QoS that the provider should guarantee. The non satisfaction of SLAs could re-
sult in penalization to the provider. In this paper, we consider that the violation
of SLA leads to monetary charges to the provider, i.e., the latter must reimburse
the client if some service does not satisfy the SLA requirements. Finally, booting
affects disk lifetime, i.e., the probability of disk damage, and thus replacement,
increases with the number of boots [2, 7–11]. Thus, an energy saving solution
should take into account the costs of the wear and tear of disks.

Considering the above discussed points, this paper presents MERCi-MIsS 1,
a streaming-based algorithm which dynamically decides the number of servers
to turn on/off. MERCi-MIsS proposes an energy saving strategy taking into ac-
count energy cost and disk wear-and-tear cost. MERCi-MIsS exploits a streaming
model which is able to process great volume of data and, thus, decides on the fly
about the number of servers to turn on/off. It exploits global system information,
in terms of the number of required working, idle, off, turning on, and turning
off servers. It also dynamically estimates the minimum number of idle servers
which the system must keep in order to provide energy saving while ensuring
the execution of unexpected works. We have also extended the critical time in
order to take into account the wear and tear related to disk ignitions.

Performance evaluation experiments were conducted over traces concerning
the usage of French Grid’5000 platform (a scientific experiment-driven research
environment: www.grid5000.fr). Results confirm that MERCi-MIsS outperforms
some energy saving algorithms found in the literature. It also provides shorter
average time delay for processing clients’ works than these algorithms.

Roadmap. Firstly, in Sec. 2, we discuss the minimum time that a server must
be off in order to save energy boot. In Sec. 3, we present MERCi-MIsS, how it
predicts the workload, computes both the monetary cost of non-working servers
and of disk wear-and-tear. Evaluation is presented in Sec. 4. Sec. 5 discusses
some related work. Finally, Sec. 6 concludes and proposes some future work.

2 Minimal Period of Time for off Servers

The turning off and on of servers induces energy consumption. If we decide to
turn off a server, it must be off for at least a minimum period of time which
compensates the energy spent in rebooting it. In [3], the authors denote such a
period of time the critical time (TS). They also propose how to evaluate it.

Considering the parameters given in Table 1, the critical time TS is the min-
imum period of time that a server is turning off which renders the energy spent

1 Maximizing Energy and disk ReplaCement saving — MInimizing SLA penalties.
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Table 1. Event parameters for a single server

Eon→off energy cost of turning off (J) Pidle energy power of an idle server (W)
Eoff→on energy cost of turning on (J) Poff energy power of an off server (W)
δon→off time spent in turning off (sec) δtot time spent in turning off&on (sec)
δoff→on time spent in turning on (sec) δtot = δon→off + δoff→on

$E cost of the energy ($ / J) $B cost of a boot ($)

Pidle

PoffEon→off Eoff→on

δoff→onδon→off

Fig. 1. Energy consumption of different states. Real experiment in Grid’5000.

in booting a server equals to the energy in keeping it idle, i.e., TS such that
Eidle(TS) = Ereboot(TS), where the energy spent in TS seconds of an idle server
is Eidle(TS) = Pidle × TS while the energy for rebooting the server for the same
period is Ereboot(TS) = Eon→off +Poff ×(TS−δtot )+Eoff→on , (the energy spent
for both turning off and on the server plus the energy to keep it off). Hence, the

critical time TS is
Eon→off+Eoff→on−Poff ×δtot

Pidle−Poff
.

For instance, Fig. 1 shows an energy experiment conducted on a Dell Power
Edge R720 server. The energy spent in turning on and off the server (green area
in Fig. 1) is Eoff→on +Eon→off = 19, 749J, which respectively takes δoff→on +
δon→off = 158 seconds. Considering the average power of an off server and idle
is Poff = 8W and Pidle = 97W resp., a power off server consumes in TS seconds
Ereboot(TS) = 19, 749+8(TS− 158) and an idle one consumes Eidle(TS) = 97TS.
Hence, if the server keeps off at least TS = 208sec., the decision of turning it off
is an efficient one; otherwise, it is not worthwhile turning it off.

In the same paper, the authors argue that a TS must be increased with the
Tr factor which is related to the wear and tear with regard to the disk ignitions.
However, they do not explain how to compute Tr.

We propose, therefore, in this article, an estimation for Tr. To this end, we
add to Ereboot(TS) the energy cost (in Joules) associated with disk damage due
to ignitions. Considering the cost of a new disk device (in money units) and the
number of ignitions that a disk supports [8], the disk-cost of a boot (in money
units) is estimated as $B. By dividing it by the cost of the energy $E , ($B /
$E), it is possible to estimate the energy spent in Joules due to disk damage. We
have, then Ereboot(t) = Eon→off + Poff × (t− δtot ) + Eoff→on + $B / $E. Thus,
the minimum critical time TS is:

TS =
Eon→off+Eoff→on−Poff ×δtot

Pidle−Poff
+ $B

$E(Pidle−Poff ) (1)

In conclusion, an on/off algorithm must ensure this minimum critical time is
used in order to both save energy and the cost of disk replacement.
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3 MERCi-MIsS

MERCi-MIsS is an on/off algorithm based on streaming over sliding window
model. That is, data are processed on-the-fly, continuously producing an output.
We describe the MERCi-MIsS architecture in Section 3.1. On/Off algorithms
turn on and off servers according to the needs of the system and prediction of
future workload. Usually, algorithms estimate future workload based on previous
one aiming at minimizing energy consumption as well as satisfying unexpected
works, i.e., works that arrive when the system has not enough available servers.
Thus, having a minimum number of idle servers helps to solve some unexpected
situations. We denote m0 such a minimum number of idle servers. In this case,
at every time, the system can always process a new work that needs at most
m0 servers. Considering m0 idle servers and the prediction of future workload
based on the past workload, MERCi-MIsS decides about the number of servers
to turn off or on at a given time. Section 3.2 describes how MERCi-MIsS takes
decisions. In Section 3.3 we present how we evaluate the service maintainability
cost associated with the energy spent in turn on/off servers and disk replacement.

3.1 MERCi-MIsS Architecture

We consider that time is discretized in seconds, i.e., at every second it is possible
to obtain the state of each server. At any time t, MERCi-MIsS needs the infor-
mation about the current number of required servers and the current state of
the system. While the former can be inferred from the workload with which the
scheduler has to deal, the latter depends on the current processing works and
might be affected by energy-aware policies. Figure 2 presents the architecture.

The number of required servers is predicted by MERCi-MIsS based on the
history of clients’ requests sent to the scheduler. Upon receiving a request, the
scheduler decides when to execute the work. Notice, that, in some cases, clients
must wait for their requests to be serviced (e.g., the system has not enough
available servers). Hence, at any time t, the scheduler deduces the number of
required servers to satisfy clients requests and providing the history of such a
number to MERCi-MIsS, which stores it to predict future requirements.

SystemClients

〈time, # required servers〉

Scheduler

system state

on/off decisions

w
o
rk
lo
a
d

MERCi-MIsS

history
information

Fig. 2. MERCi-MIsS interaction with scheduler and system
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Concerning the system state, MERCi-MIsS continuously receives information
about it (the current number of working servers, idle servers, and off servers),
producing as output the decisions about how many servers to turn off and on.

3.2 MERCi-MIsS Turn on/off Decisions

MERCi-MIsS exploits stream processing over sliding windows. As we have al-
ready discussed, the number of current required servers can be deduced by the
scheduler workload. To this end, it keeps a window W with the most recent
number of required servers, informed by the scheduler. Concerning the state
of the system, at t, MERCi-MIsS receives as input 〈nw(t), nidle(t), noff (t)〉 and
produces as output the decisions about how many servers to turn off don→off (t)
and how many servers to turn on doff→on(t). Tab. 2 summarizes our notations.

One of the aims of MERCi-MIsS is to guarantee a minimum number, m0, of
idle servers at any time t. If some clients request more than m0 servers, some
servers must be turned on. On the other hand, when MERCi-MIsS decides to
turn off some servers, it ensures that at least m0 idle servers are on.

MERCi-MIsS, which decides either to turn on or off some servers, is described
in Algorithm 1. We point out that both actions can not be taken at the same time
since they are contradictory. If the system does not have a minimum of m0 idle
servers (lines 1-3), a number of servers will be turned on in order to ensure m0

idle servers (at most we can turn on noff (t) servers). Otherwise, MERCi-MIsS
tries to turn off some servers (lines 4-9), aiming at saving energy.

According to the critical time TS , we can turn off all the servers which will not
be used in the next TS seconds (i.e. we need to estimate the maximum number
of working servers in the next TS seconds). However, the future workload is
not known. Hence, MERCi-MIsS exploits the outliers border given in boxplot.
The latter is a statistics graph where several descriptive values of a sample are
represented. It shows five values from a data set: the upper and lower extremes,
the upper and lower hinges (quartiles), and the median [12]. Values of the data
set greater than the upper extreme are considered outliers. Hence, we can view
the upper extreme UE, as a “normal” maximum bound of the data set. MERCi-
MIsS estimates the future maximum number of working servers as the upper
extreme value related to the number of working servers over the past history.

When the system has at leastm0 idle nodes MERCi-MIsS algorithm calculates
the number of servers to turn off (lines 4-9). To energy efficiency, the number of
servers to turn off is the number of servers not used within at least the next TS

seconds. In the current time t, the maximum number of servers to be used in

Table 2. Servers type and decisions at time t

nw(t) nb. of working servers at t non→off (t) nb. of servers turning off at t
nidle(t) nb. of idle servers at t noff→on(t) nb. of servers turning on at t
non (t) nb. of power on servers at t

non (t) = nw(t) + nidle(t)
don→off (t) decision about the number of

servers to turn off at t
noff (t) nb. of power off servers at t doff→on(t) decision about the number of

servers to turn on at t
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Algorithm 1. MERCi-MIsS algorithm

Parameters: m0, minimum number of idle servers;
w, whisker length;
δoff→on , the time spends in turn on

Input: 〈nw(t), nidle(t), noff (t)〉, system state
Output: don→off (t), number of servers to turn off;

doff→on (t), number of servers to turn on
1 if nidle(t) < m0 then
2 don→off (t) = 0
3 doff→on(t) = min{noff (t),m0 − nidle(t)}
4 else
5 Q1 ← quartile(1,W)
6 Q3 ← quartile(3,W)
7 UE = Q3 + w (Q3−Q1)

8
don→off (t) = max{0,min{non (t)− UE,

nidle(t) + doff→on (t− δoff→on)−m0}}
9 doff→on(t) = 0

the next TS seconds is given by nm(t) = max{nw(s) : s ∈ [t+ 1, t+ TS ]}. Thus,
we can turn off all the other servers which are on, i.e., non(t)− nm(t).

Note that we are considering that the number of future required servers, nm(t),
is known at t and, in this case, non(t)−nm(t) represents the most efficient energy
saving. However, this is not a realistic assumption since we can not foresee the
future. Therefore, it is necessary to estimate nm(t) based on previous history of
working servers. One first idea would be to use the maximum number of these
servers in the recent history. Nevertheless, such an approach could induce a bad
estimation if an unusual situation with high number of servers took place in
recent history. In order to avoid such a mistake, MERCi-MIsS uses UE, the
upper extreme value of boxplot, to estimate the number of working servers and
the decision about the servers to turn off is (1) don→off (t) = non(t) − UE. The
upper extreme value UE is based on the first and third quartile2 (respectively,
Q1 and Q3) as well as a parameter w, called whisker length (usually w = 1.5).
The upper extreme value is, thus, computed as UE = Q3 + w (Q3−Q1). Note
that MERCi-MIsS computes quartiles over the sliding window W related to the
number of required servers.

On the other hand, in order to ensure m0 number of idle servers at time
t + 1, the maximum number of servers to turn off at time t should be equal to
nidle(t+1)−m0. However, since nidle(t+1) is unknown, MERCi-MIsS estimates
the number of idle servers at time t+1 as the number of current idle servers plus
the number of servers that MERCi-MIsS decides to turn on at time t− δoff→on ,
i.e., such servers will be on at time t+1. Hence, for guaranteeing m0 idle servers

2 Quartiles are ranked statistics which split data set into four equal groups. First
quartile, Q1, is a value that is (equal or) greater that the 25% of the data values
(resp. Q3 is equal or greater that the 75%).



22 M. Callau-Zori et al.

at t+1, we have that the number of servers to turn off satisfies (2) don→off (t) =
nidle + doff→on(t− δoff→on)−m0.

Taking into account both conditions, i.e., the number of servers not used
within at least the next TS seconds and m0 idle servers at time t+1, the number
of nodes to turn off at t is equal to the minimum of (1) and (2) (line 8).

Exploiting System Information. In the estimation of m0 at t + 1, MERCi-
MIsS considers that the number of working servers at time t+1 is the same as the
current number of working servers at t. However, there exist some cases where
the system could give more information about the number of working servers
and MERCi-MIsS could exploit it. For instance, if the workload was stored in a
queue that MERCi-MIsS could have access to, the number of working servers at
time t+ 1 could be inferred (provided that the workload queue is not empty).

3.3 Service Maintainability Cost

Service cost is composed of two costs: the service performance cost, associated
with the clients’ works execution, and the service maintainability cost related to
the energy spent in turning on/off servers as well as disk replacement. One of
the main goal of on/off algorithms is to reduce service maintainability cost as
much as possible without degrading the QoS for the clients.

Service performance cost is related to the energy consumed by working servers.
It is well-known that the energy spent by working servers depends on the work
that must be executed, i.e., the clients’ requests [13]. Estimating this energy
consumption is not a trivial task. However, we can consider that a server which
executes a given work spends the same energy regardless when the work is exe-
cuted. In other words, the energy consumed by working servers to process a fixed
workload is the same independently on the work that each server performs. Con-
sequently, the service performance cost does not depend on the energy-aware
policy. However, the turning on and off of servers introduces different energy
consumption and disk replacements. The cost associated with them depends on
the energy-aware policy and is considered as service maintainability cost. In this
section, we focus in describe the service maintainability cost.

Service maintainability cost,maintenance$, has two parts: 1) energy¬w, mon-
etary cost of energy of non-working servers (idle servers, off servers, and turning
on and off actions); and 2) the monetary cost to replace disks.

maintenance$ = $E × energy¬w + $replacementdisk (2)

At time t, the system has nw(t) working servers, nidle(t) servers, (i.e., non(t) =
nw(t)+nidle (t)), noff (t) off servers, turning off servers (don→off (t)), and turning
on servers (doff→on(t)). Note that even if these values are related to time t,
the evaluation of energy consumption concerns the whole period of time during
which the system is running. In the cost of energy¬w, both idle and off states
are quite stable in terms of energy consumption. It is then possible to have
representative average consumption values: Pidle and Poff power (Joules / sec)
for idle and off servers respectively while the energy cost to turn on (respectively,
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off) a server is Eon→off (respectively, Eoff→on). Based on the energy parameters
of Table 1 and the notations of Table 2, the energy consumed by non working
servers, energy¬w, for the whole execution period of the system is given by:

energy¬w =
∑

t

(
Pidle × nidle(t) + Poff × noff (t)+
+Eon→off × don→off (t) + Eoff→on × doff→on(t)

) (3)

The money cost associated with disk damage has a direct relation with the
number of boots. As a boot is a turning off which will be eventually followed by
a turning on, we cannot consider non→off (·)+noff→on(·) as the number of boots,
otherwise, in the whole execution of the system, we would sum twice the number
of boots. As a consequence, we consider the number of boots as the number of
turning off non→off (·) (eventually turning off servers will be power on). Hence,
the disk money cost (in $) is given by Equation 4.

$replacementdisk =
∑

t $B × non→off (t) (4)

In Sec. 2, we defined TS as the minimal critical time for saving energy which
also includes the energy associated with disk replacement. Therefore, if TS is
respected, maintenance$ represents the minimum service maintainability cost.

Besides the monetary cost, maintenance$, we must consider the time delay
to attend clients’ requests which affects the quality of service. We propose a
tradeoff metric based on the Energy-Delay product (EDP) [14], where the energy-
performance tradeoff is evaluated by multiplying the energy by the time delay.
To capture the disk damage we propose Energy&Disk-Delay product (EDDP) in
Eq. 5 as the product of the energy consumed in the whole experiment (energy of
non working servers plus disk replacement) by the average time delay to attend
to clients’ requests. Minimizing EDDP is equivalent to maximizing its inverse
which represents the “performance-per-cost”, where performance is the inverse
of average time delay (service has low performance, if the time delay is high).

EDDP =

(

energy¬w +
$remplacementdisk

$E

)

× timedelay (5)

maintenance$ estimation and EDDP concern all servers in the system during
the whole experiment. However, considering just one server, we know that if it
stays off at least TS seconds, some energy is saved when compared to keeping it
idle. In fact, the longer the period of time the server is off, the higher the energy
saved. Hence, if a server keeps offΔt time, the service maintainability saved cost,
denoted saving$, is given by Equation 6, where Etot = Eon→off + Eoff→on .

saving$(Δt) = $E × (
(Pidle − Poff )×Δt− Etot + Poff × δtot

)− $B (6)

The minimum saving$ takes place at TS + 1, i.e., saving$(TS + 1) = $E ×
(Pidle − Poff ). Notice that, if a server is off TS + a, the service maintainability
saving is saving$(TS + a) = a× $E × (Pidle − Poff ).
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4 Evaluation

In this section we firstly present the evaluation environment and input traces.
Then we give a brief description of some algorithms with which we compared
MERCi-MIsS, and finally, some comparative evaluation results are presented.

4.1 Evaluation Setup

MERCi-MIsS input (i.e., number of working servers) can be obtained by mon-
itoring the states of the nodes or by inferring from users’ reservation traces.
We used real traces from [15] corresponding to 6 months (from 1st Feb. 2009
to 27 February 2010) related to reservations in Grid’5000 (12,948 reservations).
Users made resource reservations indicating the submission time, the number of
requested nodes, and the maximum duration of the reservations (however, users
can cancel reservations before the ending time). Using the number of requested
servers, the starting time, and the ending time, the number of working servers
can be inferred. Assuming that the number of servers reserved by the users is the
number of working servers, although users cannot use some of them, we assume
that all the reserved servers must be on. Unfortunately, in the original traces,
the actual ending time is not provided. Hence, we simulate this value considering
the maximum duration as the actual duration. Energy values, cost, and duration
are summarizing in Tab. 3. Eoff→on , Eon→off , δoff→on , δon→off , Poff , and Pidle

are obtained from a real experiment where 20 Grid’5000 servers of the Lyon site,
which represent more than 20% of servers of the site, were booted 50 times (the
Lyon site has electrical consuming monitoring). The obtained results are similar
to the ones presented in [3]. The costs of a boot B$ and the cost of energy E$

are taken from [8]. According to Sec. 2, the critical time TS=1457 sec.

Table 3. MERCi model parameters

Eoff→on 24,536.04J Eon→off 1,501J Poff 9.58W Pidle 150.16W
δoff→on 120sec δon→off 10sec $B 0.5 cents/boot $E 10 cents/KWH

MERCi-MIsS evaluation experiments were conducted using Petrel-Storm on
Grid’5000 platform. Storm [16] is an event processor to streams and Petrel-Storm
is a tool for writing, submitting, debugging, and monitoring Storm topologies in
Python [17]. By exploiting Grid’5000 traces, the input stream S = {Rt}t cor-
responds to a set of reservations R at time t. In the simulation, the interaction
with the system which provides information about the system state (Sec. 3.1)
does not take place. Instead, Storm operator maintains itself the system state
(nw(t), nidle(t), noff (t)). Hence, for each time t, the operator produces the deci-
sion about turning on doff→on(t) or off don→off (t). Using the stream approach,
we have implemented:

Perfect Prediction. An ideal on/off algorithm which always has enough avail-
able servers and ensures the minimum maintenance$ cost. Thus, every arriving
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work immediately starts executing without any delay. However, the perfect pre-
diction is only feasible provided the future workload is known.

Turn-Off Algorithm. In this algorithm, idle servers are always turned off. How-
ever, the algorithm does not ensure that a server stays off TS seconds. Further-
more, the average time delay to satisfy clients’ requests can be greater compared
to other algorithms since the probability of having unexpected works which can
not be immediately executed is higher than in an algorithm which always keeps
some idle available servers.

EARI [3]. An on/off algorithm for reservation-based systems (users reserve
resources for a fixed time). EARI relies on the prediction of the next reservations.
It estimates the number of servers to turn off whenever there are no waiting
reservation requests to be scheduled. Nevertheless, no policy about turning on
servers is described. Given M possible servers to turn off, EARI estimates the
next reservation R with arrival time t using n servers. If R arrives before TS

seconds, then n servers stay on during TS and M − n servers are turned off. If
after TS seconds no reservation arrives, the above n servers are released, i.e.,
they will be considered to belong to the pool of possible servers to turn off.
The estimation of reservation values (starting time t and number of servers n)
is based on the history of previous reservations. Basically, the predicted value
is the mean of the previous values (mean(N)) corrected with the mean of the
previous errors (mean(EN)). Basically, the predicted value is the mean of the 5
previous values corrected with the mean of the 3 previous errors.

MERCi-MIsS. For performance evaluation, we consider a time-based sliding
window of size 5min, slide of 3min, and the whisker length w = 1.5. While
MERCi-MIsS bases its estimation on recent time (the last 5 minutes), EARI
uses the last (5) reservation values. Notice that we could consider a longer time
interval (till 3h) in EARI which would correspond to a much higher number of
reservations. However, the risk of loosing the correlation between time and the
number of reservations could greatly increase.

4.2 Evaluation Results

In this section, we present a comparative by evaluating: 1) the tradeoff between
the service maintainability cost and the average time delay to attend clients’s
requests; 2) the service maintainability cost; 3) the impact on the time delay and
the number of delayed reservations; and 4) the processing time to take decisions.

Tradeoff Between Maintainability Cost and Time Delay. Energy-aware
policies must try to reduce service maintainability cost without increasing time
delay for processing clients’ work which degrades QoS. Fig. 3a shows the average
time delay versus the service maintainability cost. The closer to the point (0,0),
the lower the time delay and the service maintainability cost (better energy-
aware policy). EARI has higher service maintainability cost and time delay than
MERCi-MIsS. MERCi-MIsS has also a lower time delay than the Turn-Off policy.
However, MERCi-MIsS has a slightly higher service maintainability cost than
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(a) Time delay vs. service maint. cost (b) Energy&Disk-Delay product

(c) Maintability Cost (d) Reservation delay

(e) Energy consumption rate (f) Booting rate (g) Nb. of idle servers/sec

Fig. 3. Turn Off, EARI and MERCi-MIsS performace

the latter. The results of Fig. 3b also confirm that MERCi-MIsS presents the
smallest EDDP (see Sec. 3.3). From both results, MERCi-MIsS has the best
tradeoff between energy of non working servers, disk replacement, and time delay.

Service Maintainability Cost. Fig. 3c shows such a cost ($) for each algo-
rithm. Blue and green portions of the bars are, resp., the cost related to the
energy spent by non-working servers energy¬w and disk replacement. Turn-Off
is the best for monetary cost, but, it degrades the time delay as discussed later.
In order to understand more deeply the service maintainability cost, we show
different aspects: (1) Fig. 3e concerns the energy consumption of non working
servers; (2) Fig. 3f is related to the number of boots (disk damage); and, (3)
Fig. 3g shows the average number of idle servers per second. The energy bars in
Fig. 3e are the energy consumed in the service maintainability divided by the
energy in the perfect prediction algorithm. Three different colors make distin-
guishable the fraction of energy spent in different states (boot, off, and idle). As
expected, Turn-Off algorithm consumes less energy in idle servers (the number
of idle servers is close to 0 in Figure 3g). It is, thus, the best algorithm for saving
energy. Notice that the number of idle servers in the perfect prediction is very
low (0.62 server per second in average). On the other hand, MERCi-MIsS con-
sumes 29% less energy than EARI. Fig. 3g confirms that such a reduction is due
to idle servers. Bars in Fig. 3f represent the number of boots with regard to the
perfect prediction. As expected, Turn-off performs the greatest number of boots
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which is almost twice the number in perfect prediction algorithm. In both Turn-
off and EARI, the boot rate is higher than in the perfect prediction algorithm,
contrarily to MERCi-MIsS, which presents lower boot rate than the latter (the
ratio is smaller than 1). Fig. 3g, which shows the average number of idle servers
per second, allows a better understanding of the different energy-aware policies.
Turn-Off has a number of idle servers per second close to 0 (not 0 because a
server must be in idle state to be turned off) while EARI has higher number
of idle servers per second than MERCi-MIsS (2.4 times). Observing Fig. 3e-3g,
we conclude that, during some periods, EARI maintains a large number of idle
servers which are not required (EARI fails in the future workload prediction).

Reservation Delay. Keeping servers in the off state has an impact on the QoS.
Fig. 3d shows two results: 1) in the left side (blue), the average time delay for
reservation; and 2) in the right side (green), the percent of delayed reservations.
As expected, Turn-Off has a large number of delayed reservations (almost the
whole reservation set) and the largest time delay. The impact of off servers on
the QoS in the MERCi-MIsS is lower than in the EARI (shorter time delay
and smaller number of delayed reservations). Therefore, in MERCi-MIsS, the
number of off servers induces less degradation of the QoS than in the other
algorithms. Such a result strengthens the previous one which concludes that
MERCi-MIsS provides a better prediction of the future workload than the other
algorithms. Comparing to the latter, it presents shorter time delay while using
fewer resources. Hence, it has lower service maintainability cost.

Time for Decision Processing. On/Off algorithms should present a perfor-
mance which allows the respective implementation in real environments. Tab. 4
summarizes the time spent to decide about the turn on/off actions. Obviously,
the Turn-Off is the fastest one since no information is processed to take such a
decision. EARI has a time processing close to Turn-Off due to the size of the
processed information which is quite small (the last 5 reservations). MERCi-
MIsS has the largest time processing because it considers the number of working
servers of the last 5 minutes. However, we should emphasize that MERCi-MIsS
time processing is feasible, i.e., 197 micro-sec while the time step is 1 sec. Hence,
the three policies have time processing which are suitable for real environments.

Table 4. Decision time processing in microseconds

Turn-off EARI MERCi-MIsS

3.09 5.22 169.91

5 Related Work

In [18], authors present a survey on techniques for improving the energy efficiency
of large-scale distributed systems. A taxonomy and survey of energy-efficient
data centers and cloud computing systems can be found in [19].

The first on/off algorithm which considers disk damage was proposed in
[2] where authors presented Muse, an operating system for a hosting center.
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The prediction approach focuses on estimating the resource demand of each cus-
tomer considering her/his current request load level, contrarily to MERCi-MIsS
algorithm, which characterizes the system load based on client demands, being,
thus, more suitable for environments with a huge number of clients or with a
dynamic set of users.

The concept of critical time, the minimum period of time which a server
must be off to save energy, was introduced in [3]. The article then proposes the
EARI algorithm for reservations-based environments such as Grid’5000, on top
of which they conducted some evaluation experiments. We have extended their
critical time concept with the time corresponding to the fraction that must be
added to the former in order to consider the energy spent due to disk damage.

[20] presents two algorithms (online and offline) to turn off content delivery
networks during periods of low load. The algorithms have three goals: max-
imize energy reduction, minimize the impact on client-perceived service avail-
ability, and reduce the wear-and-tear on hardware reliability. However, they have
been designed to content delivery networks which operate as application service
providers and can not be applied in other context such as infrastructure as a
software (IaaS) or software as a service (SaaS).

The article [11] presents an online algorithm based on the number of active
servers xt at any time t. It uses a cost function to minimize some costs such as
energy cost, cost related with network delay, and the cost of booting (including
delay, mitigation, and disk damage). Nevertheless, as we have discussed in previ-
ous sections, the number of active working servers are not sufficient to compute
the total energy cost because turning on and off servers consumes energy (anal-
ogous situation for power off servers). Therefore, an energy cost function must
consider other server states than just active state. Concretely, the cost related
to the disk damage is a linear function of the difference in consecutive times
xt − xt−1. Hence, it is not fair to take into account just active servers such as
in scenarios where, whenever one server concludes its turning on, the system
decides to turn off one server. In this case, the number of active servers is always
xt − xt−1 = 0 and the model does not consider any disk damage.

A different approach of on/off algorithms is based on processor dynamic volt-
age/frequency scaling [8, 21]. However, processors consist of a small fraction of
the total server power [22], entailing a moderate energy savings [13]. In [8], the
authors consider disk damage to the dynamic voltage/frequency scaling strategy.

6 Conclusions and Future Work

We have presented MERCi-MIsS whose aim is to reduce energy consumption in
data centers without degrading the provided quality of services. MERCi-MIsS
takes into account the energy spent by servers and disk damage due to wear-
and-tear of ignitions and continuously decides how many servers to power off
or on. We have conducted some simulation experiments based on real traces.
The results related to the Energy&Disk-Delay product (EDDP) metric, which
expresses the above three aspects, confirm that MERCi-MIsS reduces in more
than 39% the value of this metric when compared to the other algorithms.
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As future work, we plan to evaluate heterogeneous systems by grouping servers
according to their respective critical time and then applying MERCi-MIsS on
each group. We will also evaluate the performance over other workloads.
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