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Abstract. In the current fast-changing and turbulent operational envi-
ronments, the organizations are continually being pressured by many
endogenous and exogenous environmental variables. Many and complex
effects occur simultaneously and large volumes of data are available. For
this reason, in a process-based organization, when change is demanded
(e.g., business processes re-engineering) it is difficult to collect, and inter-
pret, the complete information about the current state of the organiza-
tion. Therefore, a problem is how to decide which design actions should
be enacted with the incomplete information available from the executed
business processes. In this context, this paper combines information
systems engineering (DEMO business transactions design) and opera-
tion research (Markov theories) to contribute to the decision-making
body of knowledge. As the result, this solution enforces the organization
with resiliency capabilities that are triggered whenever any misalignment
occurs. The proposed solution is evaluated through argumentation and
by a qualitative comparison between two Markov theories (MDP and
POMDP) based on a real-world case study.

Keywords: Decision-making · Management · MDP · Observation ·
POMDP · State · Value

1 Introduction

Decision-making is a management competence [16,20] that encompasses: the
intelligence to discover the organizational problems, the design of potential solu-
tions, the choosing of the best solution, the implementation of the solution and
the verification if the new solution fulfills the desired goals. These stages occur
in many levels of organizational management, e.g., project management, opera-
tional management, middle management, etc..

On the one hand, multiple endogenous and exogenous factors promote the
need to enforce a continuous decision-making process, for instance, requirements
change, legal changes or fraud attempts. In response to these multiple changes,
it is necessary to have native decision-making capabilities that continuously find
innovative solutions to adapt the organizational operation to be more efficient
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and effective. In this context, the study of mechanisms to engineer the informed
decision-making [24] are key competence for the success of the organization’s
management.

On the other hand, the business processes play a dual role: (i) they are the
result of applying design constraints for a particular organizational reality [15],
and are valid over a given period of time, and (ii) operational support to the
actions performed by actors, by other words, business process guide actors in
acting. The actors have an active and autonomous role in the execution of busi-
ness processes, therefore, it is not guaranteed that the requirements of business
processes are met properly on the daily routines. For example, if a company’s
recommendation is to always obtain a written record when contacts are made
to the clients, nothing limits the ability of an actor to contact a client directly,
by phone, without leaving any trace of the communication. The same example
can be applied to the financial markets, with a huge adverse impact potential to
the organization and to its environment.

In this context, combining decision-making with business processes, under
complex process-based environments, raise the following challenges (i) inability
to map the current operational observations with the current state where the
organization actually is [17], e.g., when actors perform workarounds [1] and over-
ride the previous defined prescriptions then the manager need to collect more
information to interpret what, in fact, was executed; and (ii) incomplete observa-
tions [3], e.g., because its too expensive to collect information, or, if the business
processes are partially performed in paper by humans and partially machine-
based. Therefore, in the majority of the situations, the management should sup-
port their decisions in partial information about the surrounding environment
(also named as partial observable environments).

In light of this, in this paper, we narrow the decision-making management
problem to the business transactions operation optimization. So forth, we pro-
pose and evaluate an innovative approach combining DEMO-based business
process design [5,7]) and operations research (using Markov decision process
(MDP) and partial observable Markov decision process (POMDP) theories [19]).
DEMO obliges the full specification of business transaction dynamics and MDP
and POMDP yields the greatest amount of utility over some number of decision
steps.

Figure 1 provides an overview of our approach. The steering cycle of obser-
vation (cf. Fig. 1(1)), assessing the environment (cf. Fig. 1(2)), designing the
potential solutions (cf. Fig. 1(3)) and choosing the best solution (cf. Fig. 1(4)).
These steps recall to the management competences and we emphasize that they
are mainly human based. Nevertheless, we argue and show how automatic tools
deliver support to the managers, aiding at some point in their decision-making
tasks.

The rest of the paper follows a simplified design science research (DSR)
approach [14], encompassing the iterations of: problem statement, design of a
solution for the given problem and evaluation phase. Firstly, Sect. 2 identifies
the problem statement boundary and the background concepts (MDP, POMDP
and DEMO) that are needed in the rest of the paper. Then, in Sect. 3, the design
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Fig. 1. Overview of our approach.

for an informed decision-making process is detailed. After that, Sect. 4 is devoted
to the explanation of a case study that was previously introduced in [11]. Next,
from the preceding results, Sect. 5 evaluates the solution for the given case study,
using argumentation and a qualitative comparison between MDP and POMDP
when applied to the context of business transactions. Afterwards, Sect. 6 presents
the conclusions and future work.

2 Background Concepts

2.1 Markov Theories

In probabilities theory, a Markov process is a stochastic process that satisfies
the Markov property [19]: if the transition probabilities from any given state
depend only on the actual state and not on previous history. By other words,
the predictions for the future are solely based on its present state. Its future and
past are independent. Markov theories are applied to systems that are controlled
or uncontrolled (autonomous) versus observable or partial observable. Where, a
system is completely observable if every state variable of the system affects some
of the outputs. And, a process is said to be completely controllable if every state
variable of the process can be controlled to reach a certain objective in finite
time by some unconstrained control action.

A Markov chain is used to refer to a process which has a countable and dis-
crete set of state spaces, yet not controllable. When the states of the process are
only partial observable, then an hidden Markov model (HMM) should be used.
From this point forward, to engineer the decision-making process, we narrow our
research in the controllable systems.

A Markov decision process (MDP) is able to solve the problem of calculating
an optimal policy in an accessible and stochastic environment with a known
transition model [18]. A MDP is defined by the tuple (S,A, T,R, γ).

In partial accessible environments, or whenever the observation does not pro-
vide enough information to determine the states or the associated transition prob-
abilities, then the hidden Markov model (HMM) or partially observable Markov
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decision process (POMDP) solutions should be considered. The difference is that
HMM is applied to uncontrolled systems and POMDP to controlled systems.
A POMDP solution provides a rich framework for planning under uncertainty [11].
A POMDP finds a mapping between observations (not states) to actions. In prac-
tice, two different states could appear to be observed equally. A POMDP is defined
by the tuple (S,A,Z, T,O,R, γ).

The definitions for the MDP and POMDP tuples are: S is a set of states,
representing all the possible underlying states the process can be in, even if state
is not directly observable; A is a set of actions, representing all the available
control choices at each point in time; Z is a set of observations, consisting of all
possible observations that the process can emit; T : A×S ×S → ∏

(S) is a state
transition function, where

∏
(.) is a probability distribution over some finite set,

encoding the uncertainty in the system state evolution; O : A × S × Z → ∏
(Z)

is an observation function, relating the observations to the underlying state;
R : A × S × S × Z → R is an immediate reward function, giving the immediate
utility for performing an action of the underlying states; γ: discounted factor of
future rewards, meaning the decay that a given achieved state suffers through
out time.

For a POMDP, at each period, the environment is in some state s ∈ S. The
manager takes an action a ∈ A, which causes the environment to transition to
state S′ with probability T (S′|S, a). And because the manager does not know
the exact state the system is then the manager must estimate a probability
distribution, known as belief state, over the possible states S. This estimation is
used as a seed to be refined by the POMDP executions.

Figure 2(1) presents a system transiting from state S to state S′, supported
by MDP. Also, Fig. 2(2) presents a diagram with a system transiting from state
S to state S′, supported in a partial observation, and using a belief state to
achieve the reward on S′. Without knowing the actual state S at time t (cf.
Fig. 2(2)), the partial observation triggers the possibility of having one or more
belief states. The challenge of solving a POMDP is to maximize the reward of a
given action A achieving the state S′ at time t+1, from the belief states. In the
end, a control policy will yield the greatest amount of utility over some number
of decision steps. As a summary, both POMDP and MDP require a set of states,
a set of actions, transitions and rewards. The actions’ effects on the state in a
POMDP is exactly the same as in an MDP. The difference is in whether or not
we can observe the current state of the process. In a POMDP we add a set of
observations to the model. So instead of directly observing the current state,
we obtain an observation which provides a hint about what state it is in. The
observations are probabilistic; therefore, an observation model encompassing the
probability of each observation for each state in the model should be defined.

2.2 DEMO Theory and Methodology

From the business processes point of view, DEMO theory and methodology [5]
introduces capabilities to deal rigorously with the dynamic aspects of the process-
based business transactions using an essential ontology that is compatible with
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Fig. 2. State transition from state S to state S′. MDP (1) and POMDP (2) solutions.

the communication and production, acts and facts that occur between actors in
the different layers of the organization. A DEMO business transaction model [6]
encompasses two distinct worlds: (i) the transition space and (ii) the state space.

On the one hand, the DEMO transition space is grounded in a theory named as
Ψ-theory (PSI), where the basic transaction pattern includes two distinct actor
roles: the Customer and the Producer. The goal of performing such a transac-
tion pattern is to obtain a new fact. The transactional pattern is performed by a
sequence of coordination and production acts that leads to the production of the
new fact. In detail, encompasses: (i) order phase that involves the acts of request,
promise, decline and quit, (ii) execution phase that includes the production act of
the new fact itself and (iii) result phase that includes the acts of state, reject, stop
and accept. Firstly, when a Customer desires a new product, he requests it. After
the request for the production, a promise to produce the production is delivered by
the Producer. Then, after the production, the Producer states that the production
is available. Finally, the Customer accepts the new fact produced. DEMO basic
transaction pattern aims specifying the transition space of a system that is given
by the set of allowable sequences of transitions. Every state transition is exclu-
sively dependent from the current states of all surrounding transactions. There is
no memory of previous states. This memoryless property holds with Markov theo-
ries. On the other hand, the DEMO state space delivers the model for the business
transactions facts, which are products or services, and that are obtained by the
business transaction successful execution. Throughout the business transaction
execution more intermediate facts are required.

Based in the stated above, we conceptualize the DEMO business transac-
tions as a set of triples using the dimensions of: actor roles, acts and facts.
This conceptualization could also be aligned with the Subject-oriented Business
Process Management [8] work where the three core dimensions of a business
processes are: subject, predicate and object. This possible alignment will be
further assessed in detail in the near future.
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Fig. 3. Business transaction space prescription example. Adapted from [13]

3 Solution

First, we anchor the DEMO business transaction model definition in the partial
observable Markov decision process (POMDP) specification. For that end, each
DEMO business transaction (BT) state is defined by the following triple: Si =<
Acti, Facti, ActorRolei >, whereas, Act represents coordination or production
act of a BT, Fact represents a fact related with a BT, ActorRole represents the
performing actor role involved in the Act or Fact, and i identifies the state. The
set of triples S represent the trajectory prescribed for the organization. Figure 3
exemplifies one possible trajectory prescription1 as previously introduced in [13].

However, considering a partial observable system, each observation cannot
be directly related with a specific Si. By other words, what we observe from a
state is not the same as the state itself. For instance, the state of order deliver
could be partially observed by a signed document by the customer. Therefore,
the order deliver state is an abstraction, that by its turn, is instantiated in
the operation of the organization, when a document is signed. Leaving to the
manager, the difficult task of relating a signed document with the achievement
of a given state. In this sense, our solution, follows the POMDP premise that
an observation does not correspond to a 1:1 state definition. In POMDP, each
observation is used to compute the state where the system is believed to be
(belief state).

The pseudo-code of the informed decision-making solution is given in Algo-
rithm 1. The method starts by modeling the business transactions using a
1 These S triples conform to the representation proposed by [23] where a triple

describes each system state and supports the subsequent simulation results.
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methodology with (at least) the capabilities of modeling the transition, the state
and actor role spaces, e.g., DEMO [5], SBPM [8], BPMN [10], etc. Afterwards,
the business transactions models are converted in a set of memory less triples
as introduced previous in this section (cf. Fig. 3). The advantage of decoupling
steps 1 and 2 is because is easier to find the triples after producing a business
transactions model. Then, step 3, P is populated with the POMDP tuple esti-
mation. Usually, it corresponds to a file creation in the POMDP format2. To
facilitate the generation of the POMDP file (summing up to 7500 configuration
lines in our case study, cf. Sect. 4) a JAVA application was specially developed
for this purpose. After that, from step 4 until 11, the POMDP is computed: (1)
execute the action that the current node tells us; (2) receive the resulting obser-
vation from the world; (3) transition to next node based on the observation; (4)
repeat to step (1). In the end, a policy graph mapping Z → A is delivered (cf.
shadowed ellipse area in Fig. 2). Finally, the policy graph is rendered using any
graphical tool.

Algorithm 1. Method to compute the informed decision-making.
Require: Business transaction prescriptions
Ensure: Control policy graph (Z → A)
1: Set M ← Model the prescribed business transactions.
2: Convert M in a set of triples: Si =< Acti, Facti, ActorRolei >.
3: P ← POMDP tuple (S, A, Z, T, O, R, γ) estimation.
4: for all node of P do
5: for each Z do
6: Calculate Prob(Z)
7: Calculate Belief State
8: Calculate R
9: Calculate A

10: end for
11: end for
12: Render the computed policy graph (Z → A) using a graphical tool.

4 Case Study

An agro-food industry company focusing the transformation of fresh fruits to
preparations that are sold to other companies is considered. Its clients are indus-
tries of milk-based products, ice creams, cakes and beverages products. To guar-
antee the product quality, fruit producers are subject to a ratification process
before starting supplying fruit. The fruit passes through three stages: (i) raw
material, (ii) ingredients after raw material preparation, and (iii) finished prod-
uct after ingredients transformation. Until reaching the end consumer, a com-
plex value chain is executed including the actor roles of: client, fruit producer,
raw material receptionist, ingredient preparator (e.g., weighing and cleaning),

2 An example of this standard format could be consulted at [2].
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Fig. 4. Ator transaction diagram of Agro-food case study.

ingredient transformer (e.g., mixing components, adding water, sugar or other
products accordingly with the recipe), finished product transporter and storage
company (when the agro-food company is not able to locally store all the pro-
duction). The production starts when a client order is received (produce to order
policy). Then, five stages are performed: receive supply, ingredients preparation,
ingredients transformation, finished product cellarage and dispatch. Besides sell-
ing to other companies, they also sell a small part of finished products directly
to the end consumer. Table 1 explains the result obtained with each business
transaction. In more detail, Fig. 4 depicts the business transactions involving
the actor roles by an actor transaction diagram (ATD) in DEMO [5].

Due to the value chain raising complexity, including many other companies
(e.g., suppliers), and also, due to the food safety legal obligations, traceabil-
ity is a core functionality to identify the products throughout the production
value chain. It encompasses three basic considerations: the product identifica-
tion, the product origin and the product destination. When a lot infection is
detected, traceability aids the identification of its location and removing it from
the market. A lot infection may occur due to many workarounds, e.g., recipe not
followed by ingredient transformer, allergenic material infection at ingredient
preparation, contamination during transportation, bad temperature conditions
for transportation or fruit disruption stock.

Table 2 synthesize the POMDP variables that are estimated for this case
study3. To begin with, S is given by the ATD DEMO model depicted in Fig. 4,

3 The full POMDP file is public available with doi:10.13140/2.1.4433.2326.

http://dx.doi.org/10.13140/2.1.4433.2326.
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Table 1. Transaction product table of Agro-food case study.

Transaction kind Product kind

T01 - Production order P01 - Client Order CO is completed

T02 - Receive supply P02 - Supply Order SO is completed

T03 - Ingredients preparation P03 - Ingredients I of Client Order are preparated

T04 - Ingredients transformation P04 - Ingredients I of Client Order are transformed

T05 - Finished product dispatch P05 - Finished product FP of Client Order is dispatched

T06 - Finished product cellarage P06 - Finished product FP of Client Order is stored

T07 - Ratification process P07 - Process P is ratified

T08 - Sell finished products P08 - Finished product FP is sold

and in detail by the DEMO business transaction space (cf. Fig. 5) where each
state is grounded by the triple Si =< Acti, Facti, ActorRolei >. For clear expla-
nation, the triple is simplified by the pair: Si =< Acti, ActorRolei > avoiding
the fact types involved in all business transactions being. A full usage of DEMO
business transaction space is explained in [12]. Nevertheless, this simplification
does not affect the nature of the obtained decision-making results and conse-
quent conclusions. In the right part of Fig. 5, four flows of work operated by
the organization are identified: (i) production to client order, (ii) cellarage, (iii)
fruit supply and (iv) selling products to end consumer.

Recalling Table 2, Z and A represent respectively the observation and the
actions. Z differs from S in the sense that is much simpler and is totally business-
oriented. Managers are able to observe if products are being delivered correctly, if
any complaint was received, if stock is below a certain threshold, if any problem
occurred while the products are being transported or else if it is running correctly
(OK) so far. Therefore, in this example, there exist 40 possible states defined
from the business transactions model (cf. Fig. 5), but only 5 possible observations
may occur in operation.

The POMDP variable A specifies the capability of management to take actions.
Four distinct actions are possible: no action (no op), to cancel a previous order
requested by a client (cancel client order), to request more ingredients from a
fruit producer (request more ingredients) and to send quality questionnaire to the
clients to assure their level of satisfaction (send quality questionnaire).

Regarding T matrix, for each action a probability is estimated assuming that
transition from an initial to a final state occurs. On the one hand, the no op action
do not have impact in the normal progress of the business transactions operation.
For simulation purposes, we assumed that in 95 % of situations if no op is enacted
then the states follows as described in Fig. 5. However, when action send quality
questionnaire is enacted then a 50 % chance of sending it to the client exists if the
selling business transactions are at stating transition step (S19 and S39). On the
other hand, cancel client order and request more ingredients actions changes
their normal operational progress. The first one, restarts the produce to order flow
(jump to S01), and the second one, invokes the fruit supply flow (jump to S26).
With correspondingly 90 % and 75 % chance of happening.



28 S. Guerreiro

Table 2. POMDP variables definition for Agro-food case study.

POMDP variable Value

S 40 states (S01 . . . S40) following the DEMO standard
pattern of a transaction: { <
T01 request,Client>, . . . , < T01 accept,Client>, . . . , <
T08 request,End consumer>, . . . , < T08 accept,End
consumer> }. Full specification in Fig. 5

Z {product delivered, complaint, stock break,
transport disrupt, running-ok}

A {no op, cancel client order, request more ingredients,
send quality questionnaire}

T : A × S× A = no op → Proceed states cf. Fig. 5 by 95 % of situations

S →∏(S) A = send quality questionnaire AND S ⊂ [19, 39] → true
in 50 % of situations

A = cancel client order AND S ⊂ [1..20] → restart S01
else proceed states cf. Fig. 5 by 90 % of situations

A = request more ingredients AND S ⊂ [1..20] → invoke
fruit supply (S26) else proceed states cf. Fig. 5 by 75 %
of situations

O : A × S× Regarding the end state of producing and selling products:

Z →∏(Z) S = (20 OR 40) AND Z = product delivered → 70 %

S = (20 OR 40) AND Z = stock break → 10 %

S = (20 OR 40) AND Z = complaint → 10 %

S = (20 OR 40) AND
Z = (transport disrupt OR running ok) → 5 %

Regarding cellarage end state: S = 23 AND
Z = transport disrupt → 20 % else 80 %

Regarding all other end states: Z = running ok → 95 %
else 5 %

R : A × S× Flow of work ends: {S20, S25, S35, S40} → R = 1

S × Z → R complaint OR stock break OR transport disrupt are
observed → R = −5

γ 5 %

Start state S01

Start action request more ingredients

Regarding the O matrix, for all A that moves to end state S it delivers an
observation Z with probability P. The estimation follows the reasoning: in the
majority of the situations (95 %) running ok is observed. When the end state
of producing (S20) or selling the products (S40) is achieved, the observations of
stock break or complaint could happen with 10 % probability each. Also, when
the cellarage is being executed (S23) the transport disrupt could be observed
with 20 % probability, e.g., when a truck has an accident.
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Fig. 5. Model of business transaction space for Agro-food case study (40 states). Left
axis: acts, right axis: flows of work, and bottom axis: actor roles.

Finally, regarding R matrix, if any flow of work is terminated successfully then
a reward of 1 is assigned. Otherwise, a negative reward of −5 is used as a penalty.

5 Qualitative Evaluation

We operationalized our proposal for the Agro-food case study by applying MDP
and POMDP solvers. The POMDP was performed cf. Algorithm 1 where the
solver is APPL toolkit [2], which is a recent C++ implementation running
in Linux environment4. The delivered policy graph is rendered using GraphViz [9]
tool. The MDP is computed by a Matlab c© toolbox5 using a linear programming
algorithm. The intent of our proposal is to explore the benefits of using stochas-
tic approaches to aid the management decisions. This goal can be achieved if
4 Others POMDP solvers are available, e.g., Perseus [22] implementation of random-

ized point-based approximate value, Tony Cassandra [4] solver, the ZMDP solver for
POMDP and MDP [21].

5 Toolbox public available at http://www7.inra.fr/mia/T/MDPtoolbox.

http://www7.inra.fr/mia/T/MDPtoolbox.
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Fig. 6. Agro-food POMDP control policy, graph-max-depth=6, graph-min-prob=2.5%.

engineers are empowered with full pertinent information to forecast the impacts
of their decisions in the near future of the organization.

On the one hand, a POMDP delivers a policy graph mapping the observations
(Z) into actions (A), maximizing the reward, and yielding the greatest amount of
utility over the different decisions through out a time-wide horizon. Whenever a
decision is needed, this policy graph guides the engineer. By other words, it serves
as a decision map. Unlike the usual challenge of finding the best path in a graph,
our solution offers the graph to be followed by the organization. Figure 6 depicts
the policy graph with time horizon concerning 6 consecutive observations, whereas
the occurring probability is greater than 2, 5% (except for the first run).

An ellipse represents a belief state (S’) that is reached by taking an action (A)
and a branch represents an observation (Z). Given the initial state and action
the graph follows from the left to the right side, expanding the different actions
that are recommended as a reaction for each observation. The value represented
in each branch is the probability of occurring a given observation (Prob(Z)). The
value represented in each ellipse is the actual reward value (R) of taking that
path throughout execution. Regarding the results delivered by Fig. 6, we identify
that the actions that maximize the utility of this specific configuration is given
by the path through the actions no op. After 6 consecutive run ok observations
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Fig. 7. Agro-food MDP valuation. Each stage is an observable state (S01...S40).

the belief state is S31 and the R = 0, 668. However, in the case of occurring
other observations, Fig. 6 fully describe the rewards for the future actions that
should be taken in order to obtain a local maximization.

On the other hand, a MDP solves the problem of calculating an optimal policy
in an accessible and stochastic environment with a known transition model.
Figure 7 delivers the result of valuating the execution of all consecutive states
(S01..S40) when each state correspond directly to an observation. S,A,R and γ
hold with the definitions contained in Table 2. The transition state T is simpler
because only one action is recognized for each state transition. For simulation
purposes, the no op action has been considered. In this experimental setup, we
find that if no action is taken and the business transactions follows as prescribed
the value rise along with the execution of the flows of work.

Comparing POMDP and MDP solutions in terms of benefits for the engi-
neering of decision-making, we find that two different purposes are fulfilled.
First, the POMDP results are mapped in a time-wide horizon that forecast the
probabilistic belief states from the observations and enacted actions. This result
allows the business manager to focus in a black-box perspective of the orga-
nization, supporting the decision-making process with more information, even
when the business processes are not fully observable. In addition, the business
managers are able to dynamically regenerate their strategic plans, whenever any
estimation variable or organizational dynamics change. Second, a MDP fore-
casts local (and global) valuation for business transactions execution assuming
that business processes are fully observable. Applying MDP to different business
processes design decisions, the optimal (and sub-optimal) solutions that meet
the organizational goals could be anticipated prior to its implementation.

6 Conclusions and Future Work

The aim of this paper is to contribute to solve the problem of organizational
decision-making (e.g., business processes re-engineering) in partially known
environments (usually named by partially observable). Specifically, this paper
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addresses the environments of business processes execution that are supported
by enterprise information systems, which by its turn, are complex and partially
observable. The solution support the management decisions, providing maps that
express the impacts of management decisions on the organizational operation.
Therefore, it minimizes the risk of making wrong decisions (e.g., incorrect change
of business processes) and power up a positive impact on the national economy
services industry.

To obtain this result, we analyzed the contemporary problems for decision-
making and designed a novel solution that combines DEMO-based business
process design and operation research (MDP and POMDP Markov theories). In
the daily operation, manager and engineers take decisions that are based upon
the available observations at each instant in time. Because of partially available
information, these observations do not fully describe the actual state of the orga-
nization and impose to the manager the problem of guessing what state it is in.

Our solution valuates the actions that could be enacted from the available
partial observations, using a probabilistic approach, where an initial estimation
effort for the tuple (S,A,Z, T,O,R, γ) is demanded. In the end, managers and
engineers are empowered with full pertinent information to forecast the impacts
of their decisions in the near future of the organization.

Future work will involve two main threads of work: (i) the technical inte-
gration between the Markov theories and DEMO theory and methodology. On
the one hand, the results delivered by this work will benefit from the theoretical
POMDP and MDP advances regarding the algorithmic performance optimiza-
tion and from all the aspects related with fast-approach solution convergence.
On the other hand, the estimation of T and O matrices is actually a complex
task that demands the development of automatic tools; (ii) more case studies
are needed in order to achieve a broader generalization of the results and more
empirical findings.
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