Maxwell’s Equations: Continuous and Discrete

Ralf Hiptmair

1 Introduction

These lecture notes are meant to be a gentle introduction to the spatial discretization
of electromagnetic field problems. To a large extent, emphasis is on lucidity and
intuitive understanding, sometimes at the expense of rigorous developments. The
reader can be assured that there is a rigorous underpinning for all results mentioned
in these notes, but the details may be outside their scope and can be found in the
references supplied in the beginning of each of the following sections.

A geometric perspective is favored with emphasis on structural properties of the
Maxwell equations. Those become most apparent when using exterior calculus as a
tool for mathematical modeling. Thus, differential forms, their discrete counterparts,
and related numerical analysis techniques will play a prominent role throughout this
text.

The notes are organized in three sections. The first presents Maxwell’s equations
from the angle of exterior calculus covering the basic equations up to variational
formulations. The second section introduces finite element exterior calculus aiming
for a spatial Galerkin discretization of Maxwell’s equations in variational form. The
final section then delves into the numerical analysis of the discretized equations in
order to establish a priori convergence estimates.
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2 Maxwell’s Equations

Bibliographical Notes

In this section Maxwell’s equations are first put in the framework of exterior calculus
of differential forms. This calculus is a core subject in differential geometry and
covered in standard textbooks, see, for instance, [38, Chaps. V, X, XI, & XII] and
[39, Chaps. 8 & 9]. In these books it is mainly presented from a formal algebraic
and differential calculus perspective. A more geometric approach is adopted in [21,
Chap.IV] and, in particular, in the work of Bossavit, see the original articles [13—
16], and the review articles [18], [19, Chaps. I & II]. Since the author has been much
inspired by A. Bossavit, he recommends these latter two works as supplementary
reading and as a source for many more useful references. Moreover, in parts this
section follows [35, Sect. 2] and some more details can be found in that survey.

2.1 Fields

Electrodynamics is a continuum field theory and, from a classical non-relativistic
perspective, its key quantities, the various fields, are functions of spatial position
x and time ¢. In this section I will try to explain in intuitive terms why viewing
electromagnetic quantities as mere vectorfields R3 — R? fails to capture important
structural aspects and differences.

2.1.1 The Electric Field

To grasp the nature of a physical quantity, we recommend to study ways how it
is measured. There are two ways to measure the first fundamental electrodynamic
quantity, the electric field e (units 1%):

1. (Hypothetical) local measurement in point x at time ¢ by determining the virtual
work it takes to displace a test charge g by dx:

SW =ge(x,1)-0x .
From this perspective
e(x, 7) is a linear mapping from displacements into R.

2. (Almost practical) non-local measurement from the work required to move a test
charge along a directed path y
W =gq / e-ds.
Y
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This formula reveals that

e is a quantity that can be integrated along directed curves.

2.1.2 The Magnetic Induction

The second fundamental electrodynamic quantity, the magnetic induction b (units
1%) can also be measured in two ways:

1. (Hypothetical) local measurement at (x, ) from the virtual work needed to turn
a tiny magnetic needle (magnetic moment m)

Sw = (b(x,7) xm) - 6r = b(x,?) - (m X ér) ,

where the vector §r € R3 is directed along the axis of rotation and its length
represents the angle of rotation, see Fig. 1a. We may conclude that

b(x, ) should be read as an anti-symmetric bilinear mapping (ér, m) — R.

2. (Almost practical) non-local measurement that relies on the work required to
move a current carrying wire loop:

W:I/b'ndS,
z

where I is the current and X is the orientable surface swept by the loop with unit
normal vector field n, see Fig. 1b. This leads to the interpretation that

b is a quantity that assigns a total flux to oriented bounded surfaces.

(a) (b)
or
/m
|y e
/ h
Turning a magnetic needle moving a wire loop

Fig. 1 Local (a) and non-local measurement (b) of the magnetic induction b
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2.2 Differential and Integral Forms

Now we learn about classes of functions on a piecewise smooth n-dimensional mani-
fold £2 that fit quantities like the electric field e and the magnetic induction b as
introduced above. Of course, in classical electrodynamics §2 is a domain in R3, but
the manifold perspective is necessary for dealing with boundary conditions properly.

2.2.1 Fundamental Concepts

The first concept is related to “non-local measurements”. To state it we denote

AM($2): the set of piecewise smooth compact oriented {-dimensional sub-
manifolds of 2,0 < ¥{ < n.

Notion 1 (Integral Form [35, Def.1]) An (integral) {-form w, 0 < £ < non 2 is
a continuous (*) and additive (xx) mapping @ : #;(2) > K(K =R or K = C).
The vector space of {-forms on 2 will be denoted by F*(2).

(*) Continuity of w is with respect to a “deformation topology”, made precise in
the special field of “geometric integration theory”, cf. [19, p. 125].
(*%) Additivity of @ means that its value for the union of disjoint sub-manifolds is
the sum of the values for each of them.

The evaluation of an £-form for a sub-manifold of suitable dimension is usually
written as integration:

we FHR): /a):zw(z), Y e HMy(2).
X

In light of Notion 1, the considerations of Sects. 2.1.1 and 2.1.2 teach us that

¢ the electric field e should be viewed as a 1-form, and
 the magnetic induction can be regarded as a 2-form.

Already Maxwell had this insight, since in his 1891 “Treatise on Electricity and
Magnetism” he wrote
Physical vector quantities may be divided into two classes, in one of which the quantity is

defined with reference with respect to a line, while in the other the quantity is defined with
reference to an area.

Now we turn to a concept of £-forms corresponding to the local measurement
procedures described above. This is the usual approach in differential geometry as
in [38, Sect. V.3] or [22, Sect.2.1], because its rigorous mathematical handling is
easier than that of integral forms.
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Definition 1 A (continuous) differential {-form ® on a C'-manifold £2 is a
(continuous) mapping w : 2 — AY(Tq(:)), that is, w assigns to every x € 2 a
unique alternating £-multilinear form on the tangent space T, (x) at £2 in x.

We write COAY(£2)/C>®AY(2) for the vector space of continuous/smooth
differential £-forms on £2.

For a domain (open subset) £2 C R” we find To(x) = R” forevery x € §2 so
that an {-form on 2 is a function with values in A*(R").

Simple formal considerations establish the connection between integral and
differential £-forms and connect the non-local and local point of view. Tacitly
smoothness is assumed.

Differential Form — Integral Form

The integration of continuous differential forms is a standard technique, see [38,
Chap. XI] and often introduced using charts (coordinates). Here, we follow [19,
Rem. 6.1] and give a lucid explanation for the transition from differential forms to
integral forms for £ = 1,2 and a domain £2 C R”. It goes without saying that
there is a close link between the local and integral point of view: every piecewise
smooth curve can be arbitrarily well approximated by tiny line segments. Similarly,
any oriented surface can be tiled with flat triangles, which inherit its orientation, cf.
Fig.2 for n = 3. The next step can be viewed as Riemann summation. For £ = 1
we just sum up the values that @ assigns to the line segments, where the position
arguments are taken as their midpoints. For £ = 2, we feed the vectors spanning the
parallelograms to the differential 2-form w evaluated at their centers of gravity, and
then add the values returned.

Integral Form — Differential Form

Again, we restrict ourselves to a domain §£2 C R” with the simple tangent space
To(x) = R” for all x € 2. Then we can perform localization as follows: For

Fig. 2 Flat tilings plus Riemann integration switch from local to integral forms, cf. [19, Fig. 6.1]
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“continuous (*)” @ € .#*(£2) we can define for any vieR,j=1,....¢
2!
oX)(vi,...,v):=1lim— [ o,
=0t 5,
X, = convex{x,x + tvi, ..., x + tvg}, (H

where the integral is set to zero, in case X collapses to a lower-dimensional patch. If
the limit exists, obviously w(x) € A‘(R"), because swapping two spanning vectors
changes the orientation of Y.

2.2.2 Euclidean Vector Proxies in 3D

For a domain £ C R” consider € C°AY(R) := {2 — AYR") continuous}.
From linear algebra we know that dim A*(R") = (2’) Hence, after picking an
arbitrary basis of A“(R"), w can be represented by its (2‘) coefficient functions. In
other words, (continuous) vector fields provide an isomorphic model of C®A*(£2).
Clearly, the concrete vector field representative for ® € C°A*(£2) will depend
on the choice of basis. In other words, it will depend on coordinates. Admittedly,
the vector field model captures entire exterior calculus. However, the involvement
of coordinates often conceals essential coordinate-independent properties and the
different nature of quantities like the electric field and magnetic induction.

A special choice of basis for n = 3 is stipulated by orthogonality requirements
and the resulting vector field representatives have been dubbed “vector proxies” by
Bossavit [14, Sect. 1.4]. The concrete definition of the underlying isomorphism can
be inferred from Table 1. Usually, vector proxies will be distinguished by an overset

arrow (€, b, h, d, u etc.). Occasionally, we will use the notation V.P.(w) for
the Euclidean vector proxy of a differential form w.

Table 1 Relationship between differential forms and vectorfields in three-dimensional Euclidean
space (V, vy, Vs, v3 € R?), ¢f Table 2.1 in [35]

Differential form Related function u/vectorfield u

=0 |x o) T (x) 1= w(x) 2R

(=1 x> {v> 0x)} T(x) v :i= ox)(v) T2 >R

(=2 x> {(vi,vp) > T(X) - (V] X V2) := ox)(v], v2) T2 >R
o(X)(vi,V2)}

=3 |x {(Vi,V2,V3) > 7(X) det(vy, v2,v3) := w(X)(Vy, V2, V3) TR —>R

(x)(V1, V2, v3)}

@3

The operation
also [5, Table 2.2]

is the canonical inner product in Euclidean space, “X” the cross product. See
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The integration of differential forms expressed in terms of their vector proxies
u/u according to Table 1 gives rise to familiar integrals:

O-form w € CO°A°(2) : [ ® = u(x) Vx e,
X
I-form w € C°AY(2) : fo=[u-ds Vye.#(2),
14 14 (2)
2-form o € C°A%(2) : [o=[u-ndSVE e #(R2),
¥ ¥
3-form o € C°A3(R2) [o= [ux)dx VV € #(R2) .
v v

Here, n is a unit normal vector field to X, whose direction is induced by the
orientation of X.

2.2.3 Transformation of Forms

Let @ stand for a diffeomorphism mapping the n-dimensional manifold £2 onto £2.
It can be used to “pull back™ any integral form on 2 to §2 according to the following
definition [39, Sect. 8.2.1]:

Definition 2 Given w € .Z(R2) its pullback ®*w € .F(82) is defined by

[¢*w::/ o VY e#(2).
@(5)

b))

This induces a linear isomorphism @* : Z¢(2) — .Z(2).

There is a local version of the pullback for differential forms and it reads
ie,
Q’j S TQ (.i') s

3

(D*0)E) (1, ..., V) = (P ®) (DS RE)V1, ..., D R)V)

where D@ is the differential of @. The pullback for Euclidean vector proxies in
3D can be computed from (3) and the corresponding vector analytic operations are
listed in Table 2.

If ¥ C £2 is a sub-manifold of 2, the pullback associated with the canonical
embedding tx : ¥ — 2 provides the trace operators ty = 1% 1 FHR) —
ZY(X). For Euclidean vector proxies in 3D they become point trace, tangential
trace, and normal component, respectively, see Table 2. The notation ty is used for
forms and vector proxies, alike.

Equality of traces on interfaces supplies suitable compatibility conditions that
make it possible to glue integral forms across the interface.
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Table 2 Pullback and trace of Euclidean vector proxies differential forms of degree £ on 2 C R?,
[35, (2.16)-(2.19)]

Forms/vector proxies Pullback Trace onto 952

=0 |u=V.P.(0), TE) =W (kx) too 7 (x) = @ (x)
T =V.P.(*w)

(=1 |d =V.P.(o), VE) =Do®) T W (x) tho W (x) = W,(x)
V =V.P.(9*w)

(=2 |d =V.P.(o), V&) = tho W (x) = ¥ &) n(x)
YV =V.P.(9*w) det D@ (%)DP (X)W (x)

(=3 | =V.P.(o), T (®) = det DS ®) W (x) -

T =V.P.(*w)

Lemma 1 (Compatibility Condition for Integral Forms [19, Sect.7], [32,
Thm.8]) Given a partition 2 = 2, U 25 of a manifold 2 into “nice” sub-
manifolds §2\ and $2,, £, N 2, = @, and two integral forms w; € 3‘%(!21),
wy € F(82,), we have for

w; on§2
w:=1" "' that we FUR) &  tro=tros,
wy on 2

where I' 1= 2, N §2,.

The idea behind Lemma 1 is to consider £-dimensional oriented sub-manifolds
of £2 that are contained in I". The value w assigns to those must be unique.

2.3 Topological Electrodynamic Laws
2.3.1 Circulation and Flux Laws

Let {X'()},cg. be a family of orientable, compact, and piecewise smooth 2-surfaces,
whose elements vary smoothly with time #, thus forming a “space-time tube”.
Then the first “axiom” of electrodynamics, Faraday’s law can be stated as (for any
1, € R)

i/e(r)dt: / b(t1) — / b(n) <« /e(l)z—%/b(t).

1 93(1) (1) 2(tr) EBI0) bl0)
(FL)

Faraday’s law links electric field and magnetic induction through integrals that
perfectly fit the integral forms interpretation of the fields, recall Sect. 2.2.
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The second law, that we treat as another “axiom” is Ampere’s law and it links two
electrodynamic quantities that have not been mentioned so far, the magnetic field h
(units lr%), the electric displacement d (units 1%), and the electric current j (units

14):
f [ woa= [ aw- [ aw- / [ i

t 0X(7) XY (1) X(n) n XY(q)
d
& /h(t)zd_t / d(r) + /j(t). (AL)
X (1) (1) (1)

Ampere’s law expects us to consider integrals of the magnetic field h along curves,
whereas d and j enter through their fluxes through surfaces. Matching this with our
notion of (integral) forms, we find

* that the magnetic field h should be regarded as a I-form,
* that 2-forms are the right device to describe both d and j.

Remark 1 The electric current can play the role of sources in electrodynamic mod-
els. Then j will be a prescribed quantity reflecting the interaction of electromagnetic
fields with other physical systems. Hence, from now, think of j as given.

Remark 2 Another subtle distinction can be made labeling the quantities in
Ampere’s law twisted forms, see [16, Sect. 2] and [21, Sect. 28]. This is not needed
for our purposes and I am not going to dwell on this.

2.3.2 Exterior Derivative

Integration of forms over boundaries features prominently both in (FL) and (AL).
Recall that the boundary of an oriented piecewise smooth manifold of dimension d
is an orientable d — 1-dimensional manifold that can be equipped with an induced
orientation, see Fig. 3. This induced orientation is implicitly imposed through the
boundary operator d. For an in-depth discussion of orientation refer to [19, Sect. 4].

Definition 3 (Exterior Derivative) Let 2 be an n-dimensional manifold. Then the
exterior derivative dy : F4(2) — FT1(R2),0 < £ < n, is defined by

/dza)::/ w VZEQ//(.H(.Q),
) X

andd, w := 0 forw € F"(2).
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‘._

Fig. 3 One-, two-, and three-dimensional submanifolds of R3 and the induced orientation of their
boundaries. Remember that the orientation of a path is given by its direction, the orientation of a
surface by an internal sense of turning, and the orientation of a volume by a corkscrew rule

By the very definition of d; we can now state (FL) and (AL) concisely as

Faraday’s law die=—0;b, (FL)
Ampere’s law dh=0dd+j. (AL)

We highlight an immediate consequence of Definition 3:

Corollary 1 The exterior derivative d; : .F* FR2) —~> FHR) is a linear operator
and commutes with the pullback: ®*od; = d[ o @* for any diffeomorphism @
2 >0 (dz is the exterior derivative on F* (.Q))

Hence, if e, b solve (FL) and h, d satisfy (AL), then the transformed fields & *e,
@*b, and ®*h, @ *d again solve (FL) and (AL), respectively, where @ : R? — R3
is any diffeomorphism. In other words, we can warp space in arbitrary ways and the
induced transformations take solutions of Maxwell’s equations to other solutions
of Maxwell’s equations. Therefore (FL) and (AL) have been labelled “topological
laws”; their set of solutions is invariant under arbitrary pullbacks connected with
diffeomorphic deformations of space.

The evident fact that “the boundary of a boundary is empty”, d o d = @, permits
us to conclude a fundamental property of the exterior derivative:

Theorem 2 For € € {0,...,n — 1} holds .

Thus, a simple consequence of applying d, to (AL) is the continuity equation
0=0,dd+drj=0p+hj, C))

where p := dyd € .%3(£2) is a 3-form modeling the density of electric charges.
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Assuming “smoothness” of an (integral) form, the exterior derivative can be
localized [22, Sect. 2.3], [38, Sect. V.3]:

Theorem 3 (Generalized Stokes’ Theorem) On a domain 2 C R”" the exterior
derivative of a differential {-form w € C' AY(R2) is

{+1

(e @)@ V1o Ver1) 1= ) (D DO @1 Vit Vit V)
k=1

for all x € 2 and “tangent vectors” vi € R". Here Dw : 2 — L(R", AY(R")) is
the (Fréchet) derivative of w.

This paves the way for computing the vector proxy incarnations of the exterior
derivatives [5, Sect. 2.3]:

gradu ,forl =0,
V.P.(d;w) = jeurlu ,forl =1, . u/u:=V.P.(»), we C'AYRQ).
divu ,ford =2,
%)

The classical Gauss’ and Stokes’ theorem confirm that these operators comply
with Definition 3. By (5), for vector proxies _e>, B), E), Tl), and T of the various

electromagnetic fields, the local versions Faraday’s and Ampere’s law read

(FL) =  curl® =—-9,b , (6)

— - -
(AL) = curlh =9,d + j . 7

This is the classical form of Maxwell’s equations written as first order partial
differential equations for vector fields with three components.

Remark 3 The use of exterior calculus for the description of electromagnetic fields
and the statement of electromagnetic models is well established, see [8], [39,
Sect.9.8], [21, Chap. VI], or [31, Sect.3.5]. Surprisingly, as discovered in [37],
the perspective of differential forms also sheds fresh light on boundary integral
formulations for acoustics and electromagnetics.

2.3.3 Potentials

The converse of Theorem 2 holds under some assumption on the topological class
of the manifold on which the forms are defined.
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Theorem 4 (Existence of Potentials) If the manifold S2 has trivial topology, that
is, all Betti numbers except the first vanish, then

Ker(dy) := {w € ZY(R2): dyw =0} =di—; Z(2) .

The £ — 1-form whose exterior derivative yields an £-form @ with dgw = 0, is
called a potential for w. The proof of this theorem for differential forms makes use
of so-called Poincaré liftings, see [38, Sect. V.4].

Let us sketch a formal justification of Theorem 4 for 2 = R"” and { = 1. For
every x € £2 let y(x) be the line segment connecting x and 0. Given n € .7 (£2),
define w € .Z7°(£2) (a plain function) by w(x) := fy(x) n. For any directed path 7
with endpoints xp, x; this O-form satisfies

/doa)—w(xl)—a)(xo)—/ 77—/ 772/77,

y(x1) y(xo0)

since 0—/d1n—/ n—/n—/ /
V(xl) V(xo)

where X is the 2-surface bounded by 7, y(xo), and y (x;) (with suitable orientation).
For general £2 this surface may not exist owing to topological obstructions.

A similar argument settles the case £ = 2 for £2 = R". Now, write X (y) for the
oriented surface generated by retracting the directed path y to 0. By the retract of a
set to 0 we mean the union of all line segments connecting points of the set with 0.
Given n € .#2(£2) withdy n = 0 we fix w € .F'(£2) by

/w:z/ n Vye. ().
Y Z(y)

For an arbitrary I' € .#,(52) let V stand for the volume defined by its retract to 0.

Then
Joo=f o= L n= [t o= e+ [
r ar 2r) v r 1% r
=0

Also here, topology may thwart the existence of a suitable V.
There is also a local version of Theorem 4 for differential forms, and in terms of
Euclidean vector proxies it tells us that in 2 = R3
curlu=0 = If:2 —>R: u=gradf (f is a scalar potential.),
(®)

divu=0 = If: 2 >R: u=curlf (fis a vector potential.)
)
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Remark 4 For general §2 an {-form in Ker(dy) is still the exterior derivative of
some 7 € .Z~1(R2) after adding a correction from a finite-dimensional cohomology
space. Since 2 = R? for Maxwell’s equations, we need not worry about topological
obstructions. The situation is completely different in the case of so-called magneto-
quasistatic models (eddy current models), where scalar potentials for curl-free
magnetic fields outside conductors may fail to exist.

Electromagnetic Potentials
Another axiom in electrodynamics is the non-existence of magnetic monopoles,

that is, d, b = 0 at “initial time” ¢ = 0. Then we conclude from Theorem 2 and
Faraday’s law (FL) that

d d> b(0)=0
de=-0b — d;dob=0 — d,b=0 V.

As a consequence, there exists a magnetic vector potential a € .F'(£2) such that
b = d, a. Plugging the vector potential into Faraday’s law, we arrive at

die=—d,dia — die+0a) =0 == e FAQ): e=—da—dyv.

This O-form (= function) v is known as electric scalar potential. In vector proxy
notation the two potentials satisfy

T)) =curla , €+ 8,_3) = —gradv , (10)

where we identified the function v and O-form v.

Gauge Freedom

Even for given fields e and b, the potentials will not be unique, because for any
w € .Z°(£2) holds

[
b=4da, vEvdw b=d a,

, t = an
e=—da—dyv a’=a+/wdt e=—0a —dyv .
0
This possibility to modify the potentials without affecting the fields proper is known

as gauge freedom. It takes so-called gauge conditions, that is, extra constraints on
the potentials, to render them unique [17].
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2.4 Energies and Material Laws
2.4.1 The Exterior Product

There is a special bilinear way to combine two alternating forms into another
alternating form whose degree is the sum of the degrees of the factors. This binary
operation is called the exterior product (wedge product). By pointwise definition it
can be extended to continuous differential forms on a manifold £2 [5, Sect. 2.1]

[ CA@) x CAn(2) > AT
’ (w,n) oA,

The most important formulas connecting the exterior product and other operations
on differential forms are (w € C°AY(2) ,n € COA™(2),0 < £, m < n)

(Anti-)commutativity: wAn=(=D)"nAw), (12)

Commutes with pullback: @*o AS*n =S (w A7), (13)

Leibniz rule: degm@An) =diw A+ (=)0 Ad, 1) .
(14)

Standard bilinear pointwise operations are recovered when considering A on the
side of Euclidean vector proxies:

- -
uxyv forl=m=1,

VPwAn={UW-V ,ford=2,m=1
UV ford=0,m=1,2

W/ = V.P.(0), w € C'AY),
YV :=V.P.(n), n € C'A™(R2) .

15)

Following [5, Sect.2.2], we introduce Hilbert spaces of £-forms on a piecewise
smooth manifold £2

we FHR): x> wx)(v) € LX(R2)

L*AYR) =
(62) for every smooth vectorfield v on §2

For a domain 2 C R3 a form on £ is in L> A*(£2), if and only if its vector proxy
belongs to (LZ(.Q))(Z).

As a consequence of the Riesz representation theorem the exterior product allows
to express duality in spaces of differential forms:

Theorem 5 The exterior product A : C°AY(2) x COA™(2) — COA*T™(2) can
be extended to L*> A*(§2) x L> A™(82) by continuity. This extension provides a duality
pairing between L> A*(2) and L> A"~*(82) through the bilinear form

(w,n)HLwAn-
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2.4.2 Field Energies

Mathematically speaking, in electrodynamics an energy is a mapping from fields to
non-negative numbers. Therefore, for a bounded domain 2 C R3 we introduce

electric field energy: Sl LZAZ(.Q) — R>o,

magnetic field energy: Emag L*A%(22) = Rsy .
Then, the values &;1(d) and &yag(b) (unit J) provide the energy content of the fields
d and b.

Assumption 6 (Properties of Field Energies) Both &, and &, are Fréchet-
differentiable and strictly convex.

This ensures that the Fréchet derivatives
D&y, Dy :L* AX(R2) — (L A*(2)) = L*A'(£2) (by Thm.5)
are strictly monotone operators and, hence, isomorphisms, see [44, Sect. 10.3.2].

In many settings the field energies are localized in the sense that there are two
functions (“energy densities”)

Eei, Emag : £2 % AZ(R3) — R

such that
Sa(d) = /Q Ea(r.d@®)dr . Englb) = /Q Enag (e, b(x)) dx .

If E. and Ep,, are differentiable and x-uniformly strictly convex in their second
argument, Assumption 6 is satisfied. Moreover, the Fréchet derivatives with respect
to the second argument D, E¢;(x, d) and D;E ., (x, b) are isomorphisms AZ(R3) —
ANR?).

Finally, writing (-, -) for the duality pairings in L? A%(§2)/A%(R?), and appealing
to Theorem 5 we find that for all d’ € C® A?(2)

(D& (d). d) = /Q (DsEa(x. d(x)). d () dx

= / DzEel(x,d(x)) A d’(x)dx .
2
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A very special, but common case, is local quadratic field energies, where

Ea(x.d(x)) = 3Ba(x)(d(x).d(x)) (162)
x e

Emag(xab(x)) = %:Bmag(x)(b(x),b(x)) s , (16b)

with x-uniformly positive definite bilinear forms fBel, Bmag : 2 — L(A?(R?) x
A2(R?), R). In this case, switching to Euclidean vector proxies, we may write

Ea(x.d(x) = 1d @) e () d () . (17a)
_ N xes,
Enmag (6. b)) = b @) ™ x)b (x) (17b)

where € : 2 — R33 and p : 2 — R*? are position dependent symmetric positive
definite (spd) 3 x 3-matrices, the dielectric tensor and the magnetic permeability
tensor, respectively.

Remark 5 The concept of energy content of a field in the presence of matter
is inherently macroscopic (phenomenological), because it ignores very complex
interactions at the atomic level.

2.4.3 Material Laws

Material laws state a one-to-one correspondence between the electric field e and
the displacement current d, and between the magnetic induction b and the magnetic
field h. In concrete terms we stipulate

e =e(d) = D&(d) € LA (2) , (18a)

h = h(b) = D&pnye(b) € L*A'(2) . (18b)

The inverses of these material laws can be stated as

d(e) = DEL(e) . ble) = DL, (h) . (19)

mag

where & : L*A'(£2) — R and Simag - L>A'(22) — R are the strictly convex
Fenchel conjugates of &; and &y, called co-energies in physics [19, Def. 12.2].

Relying on the duality from Theorem 5, we can cast the material laws (18a),
(18b), and (19) into variational form.

/ e(d) Ad = (D&u(d), d) vd e ’A%(R2) , (20a)
2

/ h(b) Ab' = (Dé&pae(b). D) Vb’ e L*A*(2) , (20b)
2
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/ d(e) A€ = (D& (e). €) ve e 2AY(R), (20c)
2

/ b(h) AN = <D£;ag(h),h’> Vh € 2A1(R2), (20d)
2

Special Case: Local Quadratic Energies

For energies given by (16a) and (16b), which are still continuous on L> A%(2), the
general formulas (18a), (18b), and (19) become

e(x) = M (d(x)) & dx) =M;'(dE) , (212)
for almost allx € §2 ,
h(x) = Mmye(b(x)) & bx) = My, (h(x)) , (21b)

where both M and My, are bounded linear operators A*(R?) — A'(R?). They
are specimens of Hodge operators, which, in the general case, induce isomorphisms
AY(R") = A"™Y(R"). By pointwise application Hodge operators can be defined
for continuous differential forms, and then can be extended to L> A¢(£2). For these
Hodge operators we adopt the customary notation » and write for (21a), (21b)

e=x-1d & d=xe , h=x,-1b & b=x,h. (22)

Then the field energies can be expressed by

éael:%/ *s—ld/\d :%/*ge/\e )
@ 2
&mag:%/ *,~1b Ab :%/*Mh/\h.
2
2

Remark 6 The notation in (22) hints that the Hodge operators emerge from the
material tensors € and g introduced in (17a) and (17b). These tensors can be
viewed as coordinate representations of a Riemannian metric on £2. Indeed, the
usual definition of Hodge operators on A‘(R") relies on inner products in R" [18,
Sect. 4].

The vector proxy form of (22) is immediate from (17):

A = e €W 6 CW=er)'dw®, (23a)
a.e.in 2 .

— — — i
b (x) = pu(x) h (x) < h(x)=px)" bk, (23b)
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Thus, the variational material laws (20) can be expressed as
/ d()-€/(x)dx = / e()€®) - € (x)dx V€ €L (N))’.
Q 2
& / ) d'(x)dx = / el d@-d@de vVd e (2(R)°,
2 2
(24a)
[P Fwe= [ b Toe vi'ee@),
Q 2
s / B b (x)dx = / @b @) - DX de Vb e (12(R)°.
2 2
(24b)
Remark 7 There is another local material law that is often encountered in electro-
magnetic field models, known as Ohm’s law. It links the electric field e and the
current j according to
j= *se. (25)

Here, 0 = o(x) is another metric tensor called the conductivity. Expressed in terms
of vector proxies (25) reads

?(x) = a(x)?(x) a.e.in §2 , (26)

with ¢ : 2 — R33 uniformly spd.

2.4.4 Energy Balance (Poynting’s Theorem)

If the fields e, b, d, and h satisfy Maxwell’s equations, the total field energy & :=
b + Emag fulfills [19, Prop 12.1]

%@@lot(t) = %(éael(d(t)) + éamag(b(t)))
= (D&a(d(1)), 3,d(1)) 4 (Démag(b(1)), 3;:b(1))

_ / e(r) A 3,d(1) + h(r) A 9b(D) .
2

using Ampere’s law (AL) to eliminate d,d and Faraday’s law (FL) on d;b,

- /g e(t) A (A h(t) — ) + h() A (—d; €)
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= / (endih—hAdie)r) — (e Aj)r)
2

=/ (e Ah)(2) —/ (en@) .
92 2

In the last step we used integration by parts, that is, we combined Definition 3 and
the Leibniz rule (14). The first term is the Poynting vector 2-form, whose integral
supplies the flow of electromagnetic energy through a surface. The second term is
the power consumed by dissipation.

2.5 Maxwell’s Equations: Variational Approach

Next, we derive the weak form of well-posed boundary value problems for
Maxwell’s equations (FL) and (AL) equipped with general material laws in weak
form given in (20). Throughout we focus on a bounded domain £2 C R?. Analogous
considerations for time-harmonic fields can be found in [35, Sect. 2.3]. As a key tool
we recall the integration by parts formula for w € C' A% (), n € C' A¥(2):

/dga)An—i-(—l)z(a)Adkn) :/ WA . 27)
2 92

2.5.1 a-Based Variational Formulation

As in Sect. 2.3.3 we employ the electromagnetic potentials, but do so in a particular
way, using the gauge freedom (11) to drop the scalar electric potential v (“temporal
gauge”, v = 0), which leaves us with a vector potential a € .#!(£2) that is just a
temporal primitive of the electric field and satisfies

e(t) = —da(t) and b() =d,a(t) ins2. (28)

First, test (AL) with ' € C® A!(£2) (independent of time) and integrate by parts
according to (27), which yields

/Qh(t)/\dla’+/mh(t)/\a’ =3,/Qd(t)/\a’+/9j(t)/\a’.

Next, use (20b) and (20c) to rewrite the first terms on both sides,

(Dé&mag(b(1)). dy a") + /39 h(r) Aa’ =9, (D& (e(r), a') + /Qj(t) Aa
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and then plug in (28):
(Dé&mag(dy (1)), d; a') +/ h(r) A 2
2
3 (D&EF (—da(n),a’) + /j(t) na', (29)

which is supposed to hold for all a' € C*®A'(£2). Formally, this is a non-linear
second-order evolution problem for the unknown 1-form valued function a = a(z).
Initial conditions a(0) and d,a(0) have to be supplied.

For local linear material laws (22) we seek a = a(¢) such that

/ (x,—1dia()) Ad a + 8,2/ (xca()) Ad
2 2

:—/ h(t)Aa’+/j(t)Aa’ . (30)

a2 2

This is a linear 2nd-order evolution problem, posed on the “energy space”
HAYR) :={w e I*A"(2): dyw € PA*™TI(Q2)} forl=1. (31)

The spaces HA‘(£2) are Sobolev spaces of differential forms on £2 [5]. They are
Hilbert spaces with inner product (* is the Euclidean Hodge operator)

(@, Mpyace) = /Q (x0) A+ (xdew)Aden . w,ne HAYR) . (32)

The spaces C*® AY(£2) are dense in HA*(£2). For a domain 2 C R? and £ = 1 the
Hilbert space of vector proxies isomorphic to HA'!($2) is the well-known Sobolev
space H(curl, £2), for { = 2 we get H(div, £2), and for £ = 0 the function space
H'(£2), see [35, Sect.2.4].

Thus, in terms of vector proxies the electrodynamic evolution problem in the
a-based formulation reads: find ?(t) € H(curl, £2) with

/;L_lcurl_a)(t) -curla’ dx + 92 / ea(r)-a dx
2 o

—/(ﬁ(t)x_a)’)-ndS—i-/?(t)-_a)’dx (33)

a2 2

forall @’ € H(curl, ).
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2.5.2 h-Based Variational Formulation

Alternatively, we may test Faraday’s law (FL) with h’ € C*® A'(£2) (independent of
time), which, after integration by parts (27), yields

/ e(t) Adi I +/ e() AW = —3,/ b(t) AL . (34)
2 a2 2

We use the material laws (20a) and (20d) to replace the two integrals over £2:

(D&(d()). di W) + /a e AN =5, <D£;ag(h(t)),h/> .

Then replace d by means of Ampere’s law (integrated in time) and obtain the
variational problem: seek h = h(¢) such that

<Dé"el(d(0)+d1ﬁ(t)—/Orj(r)dt),dlh’>+/m e(t) AN

mag

— 9, (D@@* (a,ﬁ(z)),h/> , (35)

for all ' € C*° A'(£2). The unknown field h(r) is a temporal primitive of h: ﬁ(t) =
3 h(z) dr; in particular h(0) = 0.

Using the local linear material laws (22) we recover a special variant of (35):
Seek h(r) € HA'(£2) such that

/ (k-1 dih(D)) Adi R + 92 / (*,h()) AN dx
2 2

:_/me(t)Ah —/Q*rl(d(O)Jr/Oj(t)dr)Adlh 36)

for all h' € HA'(£2). Rewriting this for vector proxies gives us: Find B)(t) €
H(curl, £2) with
1 - —, 5 = —,
e curlh(?)-curlh’dx+ 97 | ph(r)- h'dx
Q2
t
= —/ (€ () x ﬁ’)-ndS +/e_1(_d>(0) + / ?(‘C) dr) .curlh’ dx
0

02 2
(37)

—
forall h’ € H(curl, £2).
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Remark 8 We frequently have the possibility to cast a single boundary value
problem or evolution problem into several variational forms. The standard example
is the standard (primal) and mixed (dual) variational formulation of scalar second-
order elliptic boundary value problems. For a more general discussion refer to [11,
Sect. 1.3].

2.5.3 Boundary Conditions

Both variational formulations (29) and (35) feature undetermined boundary terms
and have to be supplemented with boundary conditions. To that end, we partition
I := 3% into three parts I' = I,UI},UI; with disjoint interiors. Each part may
not be present and collapse to 9.

On these parts of I" different boundary conditions on the fields are imposed by
means of the trace operators tr from Sect. 2.2.3:

» Electric boundary conditionson I',:  tre(t) = g.(¢) € FNUT,) .
* Magnetic boundary conditions on I,;: tr,h(t) = g, () € FNUT,) .
» Impedance boundary conditions on I';: trh(t) = Z(tre(?)) ,

where Z : .Z'(I) — .Z(I}) is a local or non-local impedance map, which boils
down to a surface Hodge operator in the simplest case.
O For the a-based variational formulation (29)

i electric boundary conditions are essential and have to be enforced on the trial
1-forms and (in their homogeneous variant) on the test 1-forms,

1 magnetic boundary conditions are natural and taken into account on the right
hand side of the variational formulation,

= impedance boundary conditions give rise to another term on the left hand side
of (29).

Assuming benign nonlinearity of D&, and Dé&h,e, We arrive at the following

variational evolution problem: seek a(r) € HA!(£2) with (tr,a)(1) = — fot g.(r)dr
such that

(Dé&nag(dy a(r)), dy a') — 9, (D& (—d,a(r)). a') + / Z(—0tra(t)) Aa’

= —/ gn(t) na +/j(t)/\a’ , (38)
m 2

forall a’ € HA'(£2) satisfying tr,a’ = 0.
@ In the case of the h-based variational formulation (35)

i electric boundary conditions become natural boundary conditions and show
up on the right hand side of the variational formulation,

1 magnetic boundary conditions have to be imposed on trial and test 1-forms,
that is, they are essential,
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= impedance boundary conditions engender another contribution to the left hand
side of the variational formulation.

Hence, taking into account the various boun~dary conditions, the variational
formulation becomes: Seek a temporal primitive h(f) € HA'(£2) of the magnetic

B t
field with tp, h(f) = [ g, (7) dt, such that
0

<D<?e1(d(0) +dih() — / Tj(r) dr).d; h/> + 9 (Dé’nfag(afﬁ(t)), h/>
0
+ / Z7'(h()) AN =— / g. () AN | (39)

forall W' € HA'(£2) with tr, ' = 0.

Remark 9 When viewing electric boundary conditions as Dirichlet boundary condi-
tions, magnetic boundary conditions as Neumann boundary conditions, and relating
impedance boundary conditions to Robin boundary conditions, striking similarities
between Maxwell’s equations and scalar second-order elliptic evolution problems
become apparent. This is not a coincidence, because both Maxwell’s equations and
the scalar wave equation belong to a single family of evolution problems. Using
exterior calculus, they can even be stated in a unified way. Some details are give in
Sect. 4.1 and a comprehensive discussion can be found in [33, Sect. 2].

3 Co-chains and Whitney Forms

Now we are concerned with the discretization of electromagnetic fields. The key
insight from Sect. 2.1 was that, from a non-local point of view, fields are integral
£-forms, cf. Definition 1, assigning (real/complex) values to oriented £-dimensional
submanifolds of R3. Discretization means that we switch to a description of the
fields involving only finitely many degrees of freedom. To begin with, the choice of
these degrees of freedom will be guided by our understanding of integral forms.
Then, in the spirit of finite element exterior calculus (FEEC), we pursue the
construction of discrete differential forms that are valid integral forms, uniquely
determined by the degrees of freedom, and satisfy fundamental algebraic properties
with respect to the exterior derivative. We also study a key tool in FEEC: commuting
projectors.
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3.1 Meshes

We aim for discrete fields that are mappings from a finite number of oriented
{-dimensional submanifolds of R3 to R (or C). However, arbitrary sets of sub-
manifolds will usually not be eligible, because Maxwell’s equations in integral form
as stated in (FL) and (AL) rely on the concept of a boundary of a surface. Thus,
the set of submanifolds in the representation of discrete fields must be closed with
respect to the boundary operator d. Such special sets are given in the next definition,
cf- [12, Sect. 5.2.1], [19, Sect. 14]. In fact, it describes special instances of so-called
cell complexes [7, Sect. 3.1].

Definition 4 (Mesh/Triangulation [35, Def.3]) A mesh/triangulation J;, of a
bounded domain £2 C R? is a finite collection of oriented cells (— set .#3(.7;)
of 3-facets), faces (— set .%,(7},) of 2-facets), edges (— set #1(.9},) of 1-facets),
and vertices (— set .%((.7,) of 0-facets) such that

(1) every {-facet f € %#¢(7,) is the diffeomorphic image of an open non-
degenerate polytope in R,
(i) Fo(Th) U F(Th) U F2(Fh) U .F3(F) is a partition of £2,
(iii) for every F € %#i(;), 0 < £ < 3, there are fi, ... ,fin € Fr—1(T}) such that
F =f,U--Uf,,
(iv) foreachf € .%;(7,),0 < £ < 3, thereisa F € F;4+1(7,) such that f C oF.

The generic term for the elements of .%;(.7},) is {-facets.

A special type of meshes are tetrahedral meshes, whose faces are (flat) triangles,
whereas all cells are tetrahedra (Fig.4). Another special case are tensor product
meshes, for which the cells are axis aligned bricks and the faces are squares. Of
course, all the meshes can be subject to global homeomorphisms of R? and will
remain valid meshes under this transformation.
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Fig. 4 Oriented tetrahedron:
cell of a tetrahedral mesh.
The orientation of the edges
is given by their directions,
the orientation of the face by
“sense to turn on the
tangential plane”, the
orientation of the tetrahedron
by a corkscrew rule [19,

Fig. 14.2]

3.2 Co-chains
3.2.1 Definition

Sloppily speaking, co-chains are discrete versions of integral forms [35, Sect. 3.1].

Definition 5 (Co-chain [35, Def.4]) An {-co-chain @, £ € {0, 1,2, 3}, on a mesh
T, of §2 is a mapping @ : % (J)) — R.

The values an £-co-chain assigns to {-facets are sometimes called coefficients
or degrees of freedom (d.o.f.). Figure 5 illustrates the phrase “the d.o.f. of an £-co-
chain are located on the {-facets”. Obviously, the £-co-chains on a fixed mesh .7},
form a vector space ¢*(.%,) with dimension

dim € (T) = 1.7 %) . (40)

Thus, after ordering the {-facets of .7,, we can identify €*(.7;) = R#t(T0)

3.2.2 Co-chain Calculus

In Sects.2.2.3 and 2.3.2 we learned about fundamental concepts in the calculus of
(differential) forms, the trace and the exterior derivative. Those remain meaningful
for co-chains. For instance, the frace of a co-chain @ € %e(%), £ € {0,1,2}, onto
042 is just the restriction of & to {f € F(F}) : f C 02}.
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0-co-chain: 1-co-chain:

2-co-chain: 3-co-chain:

/
& &

Fig. 5 “Locations” of degrees of freedoms for different co-chains

To define the (discrete) exterior derivative of co-chains, we need the notion of
relative orientation of two facets F € #(.9},) andf € F;—1(F;),0 < £ < 3:

1 , if f C JF and orientations of f and dF match,
o.(f,F):= {—1 ,iff C 3F and orientations of f and dF do not match,  (41)
0 Liff ¢ oF.

Definition 6 (Discrete Exterior Derivative) The discrete exterior derivative of
co-chains is a mapping d; : €°(.%,) — €“'(Z), 0 < £ < 3, defined by

@ea)F):= Y of.F)d(f), FeFuri(F).
f€Fe(Th)

Figure 6 illustrates the action of the discrete exterior derivatives on the d.o.f.s
of co-chains. Obviously, d; : €°(.7;) — €‘“*'(.7,) is a linear operator. Thus,
assuming an ordering of the facets, d; can be represented by a matrix D, €
{—=1,0, Vet Ne Ny = dim €Y (F;) = #.%/(Jh). These matrices are the so-called
incidence matrices of the mesh [19, Sect. 14], see also Fig. 6.

A simple computation shows that the analogue of Theorem 2 holds for the
discrete exterior derivative:

Theorem 7 djyj0od; =0 < Dy D=0 {£€{0,1,2}.

There is also a counterpart of Theorem 4 for co-chains [35, Thm. 3.1]:
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Discrete gradient Discrete rotation Discrete divergence

' Q)
g
Dy: vertex-edge incidence D;: edge-face incidence matrix D,: face-cell incidence matrix

matrix
Fig. 6 Visualization of the action of the discrete exterior derivatives of co-chains on a 3D mesh

through local stencils [35, Fig. 3.1]

Theorem 8 (Co-chain Potentials) If §2 has trivial topology, then

Ker(d) := {&» € €(F) : dyd =0} =dy_ 7(F) < KerDy =ImD,_,.

3.3 Discrete Electrodynamic Laws

Since the co-chain calculus furnishes a counterpart of the exterior derivative, the
topological electrodynamic laws (FL) and (AL) can be lifted to the discrete setting.
To do so, we consider a mesh .7, of a bounded domain 2 C R? and introduce the
co-chain sampling operators (also called de Rham maps)

FHR) — C(T)
e " (Lw)feye(%)

These operators evaluate integral forms for the special submanifolds provided by
the mesh .7,. Owing to the compatibility of the exterior derivative d; (Definition 3)
and of its co-chain version d; (Definition 6), there holds

S;: , £e{0,1,2,3}. (42)

d;oS; =S/ 10d;, on FYR). (43)
This renders S; the perfect tool for “projecting” Maxwell’s equations (FL), (AL)
onto co-chains. To do this, let the (integral) forms e, b, h, d, j solve (FL) and (AL)

on §2. Then we may define their co-chain interpolants:

é:=Se, b:=Sb, h:=Sh, d:=S,d, j::SZj.
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From the integral forms (FL) and (AL) and (42) it is immediate that these co-chains
fulfill:

Dié=—-0b, (44a)
Dh=0dd+j. (44b)

Here, the co-chains are viewed as vectors of d.o.f.s and the discrete exterior deriva-
tives have been replaced with the corresponding incidence matrices. Equation (44)
may be regarded as circuit equations; for instance, (44a) is an electric network
formed by the edges of the mesh with faces defining the loops. Sometimes the fact
that the interpolants exactly satisfy the circuit equations is advertised as “perfect
consistency of the co-chain model”.

It goes without saying that Theorems 7 and 8 lead to co-chain versions of
the continuity equation (4) and discrete electromagnetic potentials in ¢ (.7,)
and €°(.7,), respectively, satisfying (10) on the co-chain side. Also for co-chain
potentials we have gauge freedom similar to (11).

3.4 Whitney Forms
3.4.1 Whitney Map

Co-chain calculus could capture the topological electrodynamic laws, but cannot
accommodate the material laws (18), which require square integrable differential
form arguments defined almost everywhere in £2. Thus we need an “interpolation”
device for reconstructing (integral) forms € L?>A‘(£2) from co-chains € €*(.7,).
This will be accomplished by linear “extension operators”

W, : €4(F) — L*AY(R) . (45)

called Whitney maps in [47]. We dub its range the space of Whitney {-forms and
write

WUTh) = W(E(T)) . (46)

Before we delve into concrete constructions, we state a few fundamental
algebraic properties of W, as guidelines [35, Sect. 3.2]

(W1) Extension property:
ScoW;=1Id on %Y%) . (47)

(If one interpolates an extended co-chain, the same co-chain is recovered.)
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(W2) Compatibility with exterior derivatives:
deoW; =Wypiod, on €7 . (48)

(Extending the discrete exterior derivative of a co-chain yields the same as the
exterior derivative of the extended co-chain.)
(W3) Locality: forall T € .7}, and & € €*(.7,)

o(f) =0Yfe F(F),.fCT = Wd|;=0. (49)

(If a co-chain is zero on all £-facets contained in the boundary of a mesh cell, its
extension must vanish on the whole cell.)
(W4) Polynomial:

Wa|, € C®AYT) and
Yo e €(%). T e -
x € T+ ((We@)(x))(v) affine linear Yv € R? .

(50)
(On each cell of the mesh the extended form is a valid smooth differential form
according to Definition 1 with affine linear vector proxies.)

A projection, called the nodal interpolation operator is obtain by combining
extension with sampling

le: FY2)—>#" | 1l;:=W;0S,. (51)

The projection property is straightforward from (47). From (48) and (43) we infer
that nodal interpolation meshes well with the exterior derivative.

Lemma 2 (Commuting Diagram Property for Nodal Interpolation)

d( Olg = |(+1 Od(| on yé(g) .

The locality property (W3) of the Whitney map implies strict locality of nodal
interpolation.

Lemma 3 (Locality of Nodal Interpolation)

Voe FY2), TeT: owl;=0 = (kw)|;=0.
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3.4.2 Local Construction of Simplicial Whitney Forms

We consider a simplicial mesh, whose cells are tetrahedra and single out a
tetrahedron T := convex{a;,a;,as,as}. On T we build concrete instances of
Whitney maps Wy, 0 < £ < 3, following an idea of Bossavit [19, Sect. 23].

O { = 0: We are given values &(a;), j = 1,2,3,4, for a 0-co-chain in the
vertices of T and seek to extend them linearly. Of course, this will boil down to
standard linear interpolation, but we are going to view it from a different angle.

A pointx € T can be written as a “weighted combination of the vertices”:

4
x=) L. (52)
=1

where the functions A; : T — [0, 1] are the barycentric coordinates of T: A;(ax) =
8k, 6 the Kronecker symbol [5, Sect. 4.1]. Inspired by this formula, we express Wy
as a corresponding linear combination of vertex values:

4
(Wod)(x) := Y Xi(x)dd(a)) , (53)

j=1

which results in plain old linear interpolation.

O { = 1: Now we are given edge values o ([a;, a;]), where [a;, a;] stands for the
edge connecting a; and a;. Adapting the idea from £ = 0, in analogy to (52), we
write an arbitrary line segment [x,y] C T as a “weighted sum of edges of 77, see
Fig.7:

yl={tx+(1—-ny;:0=<t=<1}

D (i) + (1= DA ai: 0 <t <1

Y@+ =0 @) |as0<i=<1
J j

1

DY M@A) (i + (1—Day) 1 0<1<1
i

(54)



Maxwell’s Equations: Continuous and Discrete 31

Fig. 7 A line segment [x,y]
inside the tetrahedron 7. The
set equation (54) writes it as a
weighted sum of edges of T

Taking the cue from (53) this suggests the definition

[ Wi =3 3 it oiana)
i

x.y] 55
=Y (L) — L1A4X) (e a)) -

i<j

® ( = 2: The 2-co-chain & is determined on T by the values &(|a;, a;, a;]) it
assigns to the faces of 7, here designated by a triple of vertices. Similar to (54)
we may write an oriented triangle [x,y,z] as a combination of faces of T weighted
with products barycentric coordinate functions. The formula, which we skip here,
suggests the definition

4

4
[ W= 33 Y AWM )

eyl i=1 j=1 k=1

=Y (M@LMAE) + @) Ai0)@)
i<j<k
+A;@)A ) Ai ) O ([ai, a;. ar]) (56)
The forms obtained through (55) and (56) are clearly smooth and by Formula (1)

we can recover the associated differential forms according to Definition 1. For
instance, from (55) we obtain for x € T and all v € R3

1
Wi0)(x)(v) = liné? / W0
f—>
e x+1v]
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_ }1_1}3 Z(Ai(x) Aj(x + tvt) —Ai(x)
i<j

iy T, )

= ) (hix) do () (8) — A;(x) do 1i(x) (v)) & ([ai, @y]) -

i<j

The 1-forms ,Bil.j = A;doA; — A;do A; play the role of “local shape functions”
or “local basis forms”. They arise from extending a “unit 1-co-chain” and their
Euclidean vector proxies read, see (5) and (15),

V.P.(,B}J) = A;gradA; — A;grad A; . 7

The same manipulation succeeds for (56) and yields for x € T and any two
vectors v, w € R3

(Wza))(x)(v,w)znm32 / Woi
t—0 t

[ex+r1v x+1w]

=237 (M) (o 4i() A do Ax(x)) (0, w)

i<j<k
= Aj(x)(do A:(x¥) A do Ak (x)) (v, w)
+ 246) (Ao Ai6x) A do 20)) (v, ) ) & (i) -
We can read off the local basis 2-forms
T = Ai(do A; A do ) — A;(do Ai A do Ak) + Ak(do Ai Adg Ay)
whose vector proxies are

V.P.(B};,) = Aigrad ; x grad A; + A; grad A
x grad A; + A, grad A; x grad A, . (58)

From the vector proxies of the local basis forms we get alternative vector analytic
representations of the spaces spanned by them, see Table 3. We point out that all
the local spaces contain the constant functions and all the vector proxies are linear
functions, as we demanded in property (W4).

Table 3 also gives the linear functionals underlying the sampling operators Sy,
the so-called “local degrees of freedom”. Their form in vector proxy notation can
be deduced from (2).
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Table 3 Vector analytic (vector proxy) formulas for the local spaces on a tetrahedron spanned by
the local basis forms

Degree Local spaces Local d.o.f.

L=0 #OUT) ={x—>a-x+B,a R B R} W W (a)

(=1 #IUT)={x—>axx+b, abecRk? W iy U s
=2 WUT) ={x—>ax+b, a €R bR} U fuaa U -1dS
L=3 W3 T) ={x o, o€k} W [, W dx

Remark 10 This procedure can even be generalized to f-co-chains in arbitrary
dimension # and an n-simplex T C R", n € N:

14
W) ) =5 Z(—nf(xl, dodig Ao ATAT A .. Ado Ay ) )

I j=0

B}

where I = (ig, ..., i), 0 <[ < n,runs through all £+ 1-subsets of {0, ..., n} and the
ordering is induced by the orientation of the corresponding {-facet [a;,, . .., a;,]. The
symbol &([a;]) stands for value assigned by the £-co-chain coefficient associated
with that facet. Of course, the ,Bf can be regarded as local basis forms.

3.4.3 Local Commuting Diagram Property

Let us examine the commuting property (48) for the extensions defined by (53), (55),
and (56). We do this locally on a tetrahedron 7. First, for £ = 0, given a 0-co-chain
® € €°(7;) and x,y € T, we find, thanks to Z A =1,

[ Wi - 33 A 0) (e ) (o)

] =

4
Z X)) (@) — d(@;))

A ()6 (@) — Z i) ()

i=1

= (Wo(@))(y) — (Wo(@))(x) = / Wois = / do Wods |

fx.y] [xy]

by definition of the exterior derivative. This amounts to (48) for £ = 0, because x
and y have been arbitrary.
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In the case £ = 1 we proceed along similar lines and pick x,y,z € T, write
A := [x,y.z] and get on T for & € €2(.%,)

/ Wa(di @) = ) 1)) (@) (di (&) ([, @), ar])
A

ik

= lei(x)kj(y)xk(z) (o([ai.a)) + o((aj.ar]) + @ ((ar.a]))

ik

= Y L@LMo(ana)) + Y 40O (a), )

i ik

+ ) @Ai@)d(ax. ai])

k,i
:/WIJJ—i-/WlaV)—}—/WlaV): /W1a3:/d1W1a3

[x.y] 2] [z.x] dfx.y.z] [xy.z]

Since this holds for any triangle inside T we conclude (48) for £ = 1. Of course,
when adopting the above construction of W, in any dimension, (48) will always
hold.

3.4.4 Global Whitney Forms

Thus far, the construction of W, has been utterly local. We aim for a integral form
on the entire domain £2, however. According to Lemma 1 we have to verify that the
traces of the local co-chain extensions agree on both sides of all faces of the mesh.
This is ensured, once we can demonstrate that the trace of Wy, 0 < £ < 3, onto a
face f € .%#,(.7,) depends only on the (unique) co-chain coefficients associated with
that face.

To discuss this for £ = 1 we pick a tetrahedron T = [a,, @, a3, a4] and, without
loss of generality, the face f = [a;, a;,a3]. For any x,y € f the construction gives

4 4
Y Wi@) = D) L)) daia))
[x.y] i=1 j=1

=3 S M@h0) d(lana)) |

i:a,-efj:ajEf

because barycentric coordinate functions not belonging to vertices of f vanish on
that face. Hence t;W,® depends only on @ |; and will be independent of the adjacent
tetrahedron on which we have built the Whitney map (Fig. 8).
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Fig. 8 The compatibility of local extensions of 1-co-chains in 2D by means of the Whitney map.
The underlying co-chain had coefficient 1 for the vertical edge, O on all other edges. The tangential
continuity of the vector proxies hints at the agreement of traces of the local extensions

Summing up, the local constructions introduced in the previous section define
integral forms on £ and, thus, spaces #(.7,) C L*A%(2) of Whitney {-forms
on the tetrahedral mesh .7,. By construction, the elements of #*(.7,) are valid
integral forms, because their integrals make sense for any £-dimensional oriented

sub-manifold of £2.

3.4.5 Affine Equivalence

There is a unique affine map @ between any two non-degenerate tetrahedra T
and T such that T = ¢(7A”) To begin with, since the pullback operator & * from
Definition 2 commutes with both the exterior derivative and the wedge product, we
readily infer from the formulas for the local basis forms given in Sect.3.4.2 that
those are mapped onto each other under pullback

Br=2f;. r=00).

Here ,3jf is the basis form on 7 associated with the ¢-dimensional facet f of T,

and ,Bff a basis form on T belonging to the £-facet f of T. This is a key property,
known as “affine equivalence” in the theory of finite elements [24, Sect.2.3]. As a
consequence the pullback also transforms local spaces of Whitney forms into each

other.

Remark 11 Invariance under pullback paves the way for defining parametric Whit-
ney forms, cf. [24, Sect.4.3]. If the cells of a mesh are obtained as diffeomorphic
images of a single simplex, inverse pullbacks of Whitney forms on that simplex
supply the building blocks for piecewise smooth integral forms with facet integrals

as degrees of freedom.
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3.4.6 General Discrete Differential Forms

The Whitney forms introduced above are just the simplest (lowest order) represen-
tatives of families of discrete differential forms on meshes that comprise members
of any local polynomial degree, the higher order discrete differential forms.

There is a unified way to obtain generalizations of Whitney forms on simplicial
meshes in any dimension and of arbitrarily high polynomial degree. This was
pioneered in [32] and fully elaborated in [5, Sect. 4], using a device from co-
homology theory, the Koszul lifting. Possible degrees of freedom for these discrete
differential forms are weighted traces on suitable facets of the mesh (“moments”),
but there might be more “geometric” choices, see [19, Sect. 25] and [43]. Yet, the
principal concern when choosing local basis functions for higher order discrete
differential are computational aspects like ease of evaluation [2], conditioning of the
resulting linear systems [1], or separation of functions in the kernel of d; [34, 48].

Counterparts of Whitney forms have been found for tensor product meshes,
see [6] for their construction, and even on hybrid meshes comprising tetrahedra,
hexahedra, and prisms [9, 10, 41]. Suitable higher order extensions are also
described in these articles.

3.5 Commuting Projections
3.5.1 Nodal Interpolation

The nodal interpolation operators I, from (51) for Whitney forms satisfy the very
special properties of perfect locality (Lemma 3) and that they commute with the
exterior derivative (Lemma 2). These extraordinary features are somewhat marred
by the fact that, in 3D,

except for £ = 3, the nodal interpolation operators |, are not
bounded on the energy space HA*(£2), as defined in (31).

This is well known for £ = 0: the point sampling operator Sy is not bounded on
the standard Sobolev space H'(£2), because there is no continuous embedding of
H'(2) into C°(R2), as H'(£2) contains unbounded functions. In 3D counterexam-
ples can easily be constructed for £ = 1,2, too. Even worse, for £ = 1 the operator
I, fails to be bounded even on the space of vectorfields with components in H'(£2),
though the norm of this space is clearly stronger than that of H(curl, £2).

A

This flaw thwarts interpolation error estimates of the form HTI) — |1ﬁ) ) <
L*(£2)

ChHTl)HHl(Q) with a constant independent of o (h is the mesh width of .7},). We
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have to settle for estimates like [35, Thm. 3.14]

— —
Hll—hll

< Ch (H?H + chrlﬁ H ) v sufficiently smooth ,
12(2) HY(2) H(2)
(59

where C > 0 depends only on the shape regularity of the mesh. (The notion of shape
regularity of a mesh is presented, e.g., in [35, Sect. 3.6] following [24, Sect. 3.1].)
Yet, for many purposes in numerical analysis (59) is not sufficient.

Fortunately, there is a very special interpolation error estimate for £ = 1 that
often comes handy [35, Lemma 4.6]:

Lemma 4 The interpolation operator|; : C®(A'(22)) — #'' can be extendedto a
bounded operator on {uw € (H'(2))? : curlw € #2(9},)} (a space of vectorfields
with components in H'(£2), whose curls are piecewise constant) and satisfies

— —
Hll—hll

<h_)‘ VU € (H'(Q)), curl® € #2
Lz(g)_c‘um(m ¥ e (H'(2)), curl® € 74T,

with a constant C > 0 depending only on the shape regularity of the mesh 9},

Proof Pick one tetrahedron T € .7}, and, without loss of generality, assume 0 € T.
Then define the lifting operator, cf. the “Koszul lifting” [5, Sect. 3.2],

WKW, KWE):=1iW@)xx, xeT. (60)

Elementary calculations reveal that for any constant vectorfield W = const.

curlKw = W , (61)

2 m— , (62)
LX(T) L2(T)

Kw e #(T) . (63)

Here h7 is the size of T. The continuity (62) permits us to extend K to (L*(7))>.
Given W € (H'(T))? with curl v = const?, by (63) we know that Keurl W is a
linear function. Thus, an inverse inequality yields

(62)

‘KcurlTl)‘ 1 )5 Ch;IH Kearlt < CHClll'lTl) (64)

H\(T

H 12(T) 1)

with C > 0 depending only on shape regularity of 7. Next, by (61) and the existence
of a scalar potential, see (8),

curld —Keurlt) =0 = 35 eH'(T): W —Keurld = gradp .
(65)
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From (64) we conclude that 7 € H?(T) and |?‘ ) S C‘T{)HI(T)' Moreover,
thanks to the commuting diagram property we have
U — |4 = Keurlw — || Keurl W +grad(7 — 1, %) . (66)

=0 by (63)

Next, recall that |y agrees with standard linear interpolation on a tetrahedron.
That is bounded on H*(T) and its interpolation error satisfies \7 - Ioﬁ)\ H =

ChT|7|H2(T). Thus, we arrive at

HE> - IlTl) = |7 - IO?‘HI(T) = ChT|7iH2(T) = ChT‘i)‘

>

H(T)

Summation over all tetrahedra of the mesh finishes the proof.

3.5.2 Decomposition Based Projections

If boundedness on HA*(£2) (defined in (31)) and the commuting diagram property
matter most and one can dispense with locality (Lemma 3), there is a simple
replacement for nodal interpolation. We review its construction for a bounded
domain £2 C R? with trivial topology, cf. Theorem 4, equipped with a tetrahedral
mesh 7},. As tools we use

1. the L2 A*(£2)-orthogonal Helmholtz decomposition [40, Sect. 3.7]:

LAYR2) =di HAY () 274(R) . (67)
N—

=Ker(d))N#*(F)

For £ = 0, the first space should be replaced by the set of constant functions. On
the complement of Ker(dy) there holds, cf. [35, Cor.4.4],

loll2ate) = Clldeol a1y Yo € 249) . (63)

with constants C > 0 depending only on 2.
2. the L2 AY(£2)-orthogonal discrete Helmholtz decomposition

VUG = dy W (T @ 24T (69)

where the first space coincides with the kernel of d; in % for £ > 0, and, again,
is the constant functions for £ = 0.
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The estimate (68) remains true for Whitney forms. As a tool the proof uses
Lemma 4 and so-called regular decompositions that will be introduced later in
Sect. 4.4, p. 45.

Lemma 5 (Discrete Friedrichs Inequality [35, Thm.4.7]) With a constant
depending only on 2 and the shape regularity of the mesh .,

||0)h||L2A€(_Q) < C||d¢ wh”LZAHl(.Q) Vo, € %Z(%) .
Next, we introduce a lifting operator Ly : HAY(2) — 2°71(.%,) by
(de—1 Lew — 0, de—y nh)LZA‘f(Q) =0 Vn € 3{{_1(%) . (70)

Since the kernel of d;_; has been removed from .2 ¢~ (.7},), this is a valid definition.
It is the key ingredient in

P[ = d[—l OL[ —+ L[+1 o d[ . (71)

Lemma 6 (“Helmholtz Projection”) The linear operator Py according to (71)is a
bounded projector HA“(2) — W *(.7,) and commutes with the exterior derivative.

Proof To see that P,2 = Py note that di—1(Lewy) = w, for all w, € Ker(dy) N
Wé(%) and Lg+1 d[ wy, = wy, for all w, € %l(%)

Clearly, [|di—i Lew |2 400y < @240 for every @ € L?AY(£2). Then, by
virtue of Lemma 5, L, : HAY(2) — HA"1(£2) is bounded. The boundedness of
P¢ : HAY(R) — HAY(£2) is an immediate consequence.

The commuting diagram property follows from d; o d;—; = O:

d¢oP¢ = dgolyti ody = (deobyy1 + Leyr 0dey1) ode = Pryyody .

Evidently, both Helmholtz decompositions have a distinctly non-local character,
because they both rely on the L> A*(§2) inner product on £2. Thus, P, cannot be local
in the sense that Pyw|; for T € .7, depends only on w restricted to a neighborhood
of T.

3.5.3 Local Quasi-Interpolation

The first to achieve a breakthrough was Schoberl in [46], a manuscript that was
published only as a technical report. He was inspired by the well-known so-called
quasi-interpolation operator, see [42, Sect.2.1.1]

L2AYR) - 7T ,

Qo : o Y [w®oE) d-p, (72)
peFo(T) F
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where T, € .#3(.7,) is a cell abutting the vertex p, and w, € L*(£2) is a function
supported on 7}, that satisfies

1 ,ifp=gq,
[ by ax = P=4- e FT). )
Q 0 , otherwise,
These properties ensure that Qo is a bounded projector: Q3 = Q. Moreover,

functions that are constant in a local neighborhood of T are preserved on 7.
Schiberl’s feat was to generalize Qg to a family of bounded operators Qg :
L*AY(R2) — #(F,) defined as

Qo= ¥ | [ [wemonif orared| s, 4

[xyleF1(Th) Iy Ty 5]

Qo= ¥ | [ [ [memomern [ oreaer| g,

[x.yz]€F2(Th) Ty Ty T, [x/y/,z/]
(75)

All these operators satisfy dyoQ; = Q4 o d£ and enjoy the approximation
property

lo —Quollzpe0) < Chlolgigze) » Yo € H'AY(R), (76)

with C > 0 depending only on shape regularity. Here H' A*(£2) designates the space
of {-forms with vector proxy components in H'(£2). However, except for Qo the
other quasi-interpolation operators are no projections. The same flaw also marred a
mollifier based construction presented in [23].

The ultimate solution, an explicit formula providing bounded, local, commuting,
projectors that map HA*(2) — #'*(.},) for any simplicial mesh in any dimension
nand 0 < £ < n, was only recently discovered by Falk and Winther in [29,
Eq.(4.2)]. As Schéber!’s invention, it is a quasi-interpolation based on weighted
local integrals. Unfortunately, the scheme is too complicated to be covered here in
detail and we merely summarize the result, which is an immensely powerful tool in
the numerical analysis of discrete differential forms.

Theorem 9 (Falk-Winther Local Commuting Projections [29, Thms. 4.5, 4.7,
5.2]) For any simplicial mesh J;, of 2 C R" there is a family of linear bounded
projection operators Qq : HA“(2) — #(Z,), £ € {0, ..., n}, such that

(i) they commute with the exterior derivative

Quiiody =dioQ, on HAYR), (77)
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(ii) they are quasi-local: for all T € 9}, the restriction Q| depends only on w
restricted to a mesh-neighborhood 27 of T,
(iii) they satisfy the approximation property

lo — Quoll2p¢r) = Chr lo|giatiayy » Yo € H'AY(2r) (78)

where C > 0 depends only on the shape regularity of 7, and L.

Indeed, the construction in [29] even covers higher-order generalizations of
Whitney forms. A simplified presentation for Whitney forms in 2D is given in [30].

4 Whitney Form Galerkin Discretization of the Maxwell
Cavity Problem

In this section we perform an a priori convergence analysis for the Galerkin
discretization of a particular Maxwell boundary value problem in frequency domain.
Trial and test spaces are supplied by Whitney 1-forms, aka lowest order edge
elements. This will allow us to discuss a few fundamental considerations and
techniques. Of course, only a tiny fraction of the numerical analysis developed for
computational electromagnetism can be covered.

Throughout this section 2 C R3 is a Lipschitz polyhedron, equipped with a
simplicial mesh 7.

Bibliographical Notes

The main references for this section are [35, Sect.5] and [40, Chap. 7]. Refined
duality estimates are given in [50], whereas for the analysis of edge element
discretizations of the time-dependent linear Maxwell equations like (33) we refer
to [25, 49].

4.1 Maxwell Cavity Problem

We consider Maxwell’s equations on §2 with local linear material laws (22) that
can be expressed by means of Hodge operators. Their vector proxy representation is
given in (23). Moreover, we rely on a frequency domain model, that is, the evolution
equations are subject to a continuous Fourier transform in time, which amounts to
replacing every temporal derivative d, with a multiplication with 1@, @ the angular
frequency and ¢ the imaginary unit. The unknowns will be complex valued forms
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on §2 (“phasors”), for which we retain the same symbols as in Sect. 2.3:

die=—1wx, h ) (79a)
thch =10 %, €+ j ' (79b)

We impose impedance boundary conditions as a simple version of so-called
absorbing (transparent) boundary conditions:

tygoh = x,tyoe onads2 , (80)

with an impedance A, which is a Riemannian metric on 052.

For the remainder of this section we switch to the vector proxy perspective intro-
duced in Sect.2.2.2. Then the a-based variational formulation (33) (in frequency
domain) reads: seek a € V such that

ay(@., 3 = /;L_l(x)curlﬁ)'curl_a)/ —w’e(x)a - a’dx

2

—zw/x(x)?,.—a’;dszzw/??’dx va'eV, (@8
a2 2

posed on the Hilbert space (subscript # tags a tangential component trace, cf. Table 2)

V = Hyo(curl, 2) := {W € H(curl, 2) : W, € (L*>(3R))°}, (82)
with norm
2 2 2 2
HWH = HW + cherv) H + HVV)r . (83)
Hjg (curl,2) L2(2) L2(2) L2(382)

This is the maximal Hilbert space on which the bilinear form ay; of (81) is still
continuous. We remind that u, &, and A are bounded and uniformly positive definite
tensor coefficients.

Deliberately, the degree of the form e (and, indirectly, h) was retained as
parameter £ in (79a). When we set £ = 0, that is, e is read as a O-form, h as a
2-form, and j as a 3-form, then we arrive at the equations of the acoustic cavity
problem in frequency domain. Its “a-based” variational formulations reads in vector
proxies: seek @ € H'(2)

ag(w, ') = /u_l(x)grad_u) cgrad i’ — w’e(x)W U’ dx
2
+1w / AT W dS = / fi'de Vi e H(R). (84)
a2 2
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Evidently, there are sweeping structural similarities between (81) and (84), of
course. Yet, in one respect the acoustic boundary value problem will be substantially
simpler than its electromagnetic counterpart. Hence, it makes didactic sense, to
discuss (84) before addressing the more difficult (81).

For the sake of simplicity, in the sequel we restrict ourselves to the case p =
& = A = 1 of constant coefficients scaled to unity. This does not affect the gist of
any argument.

4.2 Splittings of H(curl, )

In this section we provide decompositions of vectorfields in H(curl, §2) into curl-
free components and some complement spaces. They have turned out to be pivotal
tools in the mathematical and numerical analysis of Maxwell’s equations. For the
sake of simplicity, we assume trivial topology of £2 throughout, ¢f. Theorem 4.

4.3 Helmholtz Decomposition

The Helmholtz decomposition of (67) can be restricted to HA‘(£2) and then
provides an H A‘(£2)-orthogonal splitting of HA*(£2). The important observation
is that the .2 “-component will enjoy some smoothness. Let us look at Helmholtz
decompositions from the angle of vector proxies in 3D: For £ = 1 we get

H(curl, ) = gradH' (2) ® (H(curl, 2) N Hy(div 0, 2)) , (85)
=:X7(£2)
where
Hy(div0,2) :={wW e (L}(2))> : divw =0, W-n =00n 3R}, (86)

and for £ = 2 the Helmholtz decomposition becomes
H(div, £2) = curlH((curl, £2) & (H(div, £2) N Hy(curl 0, £2)) , (87)
with
Ho(curl 0, 2) := {W € (L*(2))* : curlw =0, W, =0 on 82} . (88)

The enhanced smoothness of the complement spaces like X7(£2) is asserted in the
following result, see [3, Sect.2]:
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Theorem 10 (Regularity of Complements in Helmholtz Decomposition) If §2
has C"“!'-smooth boundary or £2 is convex, then X7(2) := H(curl, 2) N
H,(div 0, £2) (equipped with the norm of H(curl, §2)) is continuously embedded
into (H'(2))3.

Proof (outline) For £2 with smooth boundary, integration by parts and manipula-
tions of surface differential operators lead to the identity

2 2

2
‘Vv)‘ +/ %(Wxn,?xn)dS: cherH
FY?)

n HdivVv)
H'(£2)

12(2) 12(2)
where % is the curvature tensor on d§2. The second ingredient for the proof is
the density of (H'(£2))? in X7(£2). This holds true, provided that the Neumann
problem for —A is 2-regular on §2, which is guaranteed under the assumptions of
the theorem, see [3, Lemma 2.10].

A simple counterexample demonstrates that the assumptions of the theorem are
necessary:

In the geometric setting depicted in Fig.9, consider the function, given in
cylindrical coordinates,

U (r, ¢, 7) = r/® cos(%@ L 0<¢p<¢* r>0.

We find that in a neighborhood of the edge W= gradys satisfies

« curlw = 0anddivw =0,
e W-n=0o0nds,
« but'w ¢ (H'(£2))% because “ /[, |gradw | dx = c0”.

Fig. 9 A domain §2

generated by forming the

tensor product of a 2D z
polygon with a re-entrant

corner (angle ¢* > m) with O

an interval (in z-direction).

The shaded planes

correspond to 052

(P*
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As a consequence, functions in X7(£2) may fail to belong to (H'(£2))? in case of
non-smooth §2 with reentrant (“non-convex”) edges.

4.4 Regular Decomposition

To remedy the potential loss of H'(£2)-regularity of functions in X7(£2), we can
sacrifice the strict L?(§2)-orthogonality of the Helmholtz decomposition (85) and
settle for decompositions that are “merely” stable. Those will be dubbed “regular
decompositions” in the sequel [35, Lemma 2.4].

Theorem 11 (Regular Decomposition) There are continuous linear mappings R :
H(curl, 2) - (H'(£2))? and N : H(curl, ) — H(curl0, 2) := H(curl, 2) N
Ker(curl) such that

Id=R+N and H RW’H < chuer’

HY(2) 12(2)

This theorem can be remembered as
“ H(curl, 2) = (H'(2))> + curl-free .

Existence of regular decompositions can be established easily using a powerful
lifting operator that has been discovered recently [27]:
Theorem 12 (Regularized Poincaré Lifting) There is a continuous operator Y :
(L2(2))? — (H'(£2))? that satisfies

curlY(W) =W VW e H(div0, 2) .

Proof (of Theorem 11) We simply define R := Y o curl and N := |d — R. The
mapping properties of R are immediate from those of Y.

To demonstrate an application of regular decompositions, we use them to prove
the discrete Friedrichs inequality from Lemma 5 for £ = 1.

Proof (of Lemma 5 for £ = 1) Pick X, € 2°1(.7,) and rewrite

%],

- (?h — |1R7h,—x’h)L2(m n ((ll — |d)R7h,—x’h)

+ (R}’h,_x),,)

12(2) L2(2)

(89)
2@

Since, by the commuting diagram property for nodal interpolation from Lemma 2,

curl(_x)h - IlRYh) = curth — Iz(curlRYh) = curlX, — Iz(curth) =0,
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the first term in (89) vanishes, because X, is orthogonal to Ker(curl) N %1 (.%,). To
estimate the second term Lemma 4 and the continuity of R come handy and yield

[0—10R%,| < CulR¥| < Chfeur¥,

(90)

HY(R2) 129)

Again citing the continuity of R to bound the third term, we finally arrive at

H?h

All constants may depend only on the shape regularity of the mesh and the
domain £2.

2

<Ch+ l)chrth H

H?h .
L[2(2) L2(£2) L2(82)

Remark 12 Since tangential traces of vectorfields in (H'(£2))? are contained in
(L2(0£2))3, we find that R(H(curl, 2)) C Hjq(curl, ) for the operator R from
Theorem 11. This enables us to restrict regular decompositions to Hjg (curl, §2)
using the restrictions of the operators of Theorem 11 to H(curl, £2). Below we
will tacitly use these “Hjg, (curl, §2)-restricted” regular decomposition operators
when needed.

4.5 Helmholtz Cavity Problem: Well-Posedness

We first tackle the well-posedness of the simpler Helmholtz cavity variational prob-
lem (84). The key tool will be a Fredholm alternative argument [28, Theorem D.5],
[40, Sect.2.2.4].

Theorem 13 (Fredholm Alternative) Let X,Y be Banach spaces, T : X — Y a
bijective bounded linear operator, and K : X — Y a compact linear operator. Then
for T + K it is equivalent

T + Kinjective < T+ Kbijective < T+ Ksurjective .
In order to apply this theorem we split the bilinear form ag into
ty(0, 7)) = /gradTZ grad W’ + W W' dx
Q
W, W e H(R).
ky(@, W) = —/ (@*+ D)% W' dx + m/—u’—u”ds,
Q 2

Obviously, ay = ty + Ky and the operator Ty : H'(2) — (H'(£2))’ associated
with ty clearly is an isomorphism. To see the compactness of the operator Ky :
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H'(£2) — (H'(£2)) induced by ky we appeal to (generalized) Rellich compactness
theorems [28, Sect. 5.7]:

Theorem 14 ((Generalized) Rellich Compactness Theorem) The following
embeddings are compact: H'(2) C L*(2) and H: (02) C L*(082).

Since the two parts of ky are continuous on L?(£2) and L*(92), respectively, and
the point trace H'(2) — H 2 (0£2) is continuous, from Theorem 14 we conclude

the compactness of Kg. Thus, the assumptions of the Fredholm alternative from
Theorem 13 are satisfied for Ty + Ky : H'(2) — (H'(2))'.

Lemma 7 (Injectivity of a;) The operator Ay : H'(2) — (H'(82)) induced by
the bilinear form ay of the Helmholtz cavity problem is injective.

Proof We have to show that Ayu = 0 implies u = 0, or, equivalently
ag(@,W)=0 Vi'eH Q) = U=0.
If, for all @’ € H'(£2),

/grad_ﬁ-grad_u)/ — 0?0 W dx + la)/_u)_u)/dS =0,
2 02

then we can infer

() ¥ e Hé (£2), when choosing @’ = 7 and considering the imaginary part,
(i) —AW — 0*% = 0 in the sense of distributions, by testing with U e
G (£2),
(iii) grad @ -n = 0 on 352 from (ii) and testing with 77" € C®(£2).

Thus, since both % = 0and gradT] -n = 0 on 352, extension by zero to R? gives a

solution @ € H'(R?) of —AW — w?7 = 0. It is known that such a function must
vanish everywhere, see [26, Sect. 3.2] for a discussion of the uniqueness of solutions
of acoustic scattering problems.

Summing up, Ay : H'(£2) — (H'(£2))’ is an isomorphism, which implies the
continuous dependence of the solution u € H'(£2) of (84) on the data f € L*(£2)
(evenf € (H'(2))).

Remark 13 What we have established for ay is often stated as a so-called Garding
inequality:

Corollary 2 (Garding Inequality) There is a compact operator Ky : H'(2) —
(H'(£2))' such that

3C>0: Refan(@. ) + (K@, 7)) = C[ 7|y VT € H'(S).
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4.6 Maxwell Cavity Problem: Well-Posedness

Contrasting the bilinear form a,, from (81) for the Maxwell cavity problem with its
Helmbholtz counterpart ay from (84), we find a striking difference. When separating
the three parts of ay

— — — — = =
ac(w, w) = /curlw ceurlw' + W - W' dx

2

a;(W, W) = —/(a)2 +1)W-Wdx,
2

(W, W) = 10 / W, ds

a2

with ay = ac + az + ay, and writing C,Z, B : Hye(curl, 2) — Hjyo(curl, 2)
(Hjq (curl, £2) defined in (82)) for the associated operators, we discover that neither
Z nor B are compact! The reason is that Ker(curl) has infinite dimension so that
H(curl, £2) cannot be compactly embedded in (L*(£2))>.

4.6.1 Generalized Garding Inequality

The first insight is that Ker(curl) requires a special treatment in the analysis of
ay, because on Ker(curl) the “zero-order” az-part of the bilinear form will have
to be taken into account in the bijective operator T when applying the Fredholm
alternative of Theorem 13. The most elementary criterion for invertibility in a
variational framework (in Banach spaces) is uniform positivity of (the real part)
of a bilinear form. Awkwardly, the reversed sign of az compared to the “second-
order” ac-part initially foils this simple argument. Sloppily speaking, on Ker(curl)
the sign of az has to be “corrected” first. This can be accomplished by the
regular decomposition from Theorem 11, because it can serve as a tool to separate
Ker(curl) C H(curl, £2) of a complement space, on which a bilinear form that is
continuous on (L?(£2))3 gives rise to a compact operator.

The details are as follows: recall that Theorem 11 together with Remark 12 pro-
vides bounded operators R : Hjgo (curl, 2) — (H'(£2))? and N : Hyg (curl, 2) —
Hjg(curl, 2) N Ker(curl) such that R + N = Id. Based on these operators, we
define the sign-flip isomorphism

F:=R—-N=2R-1Id: Hyp(curl, 2) — Hyp(curl, £2) . (29
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For the sake of brevity, we choose the following tags for the components of a regular
decomposition of WeH (curl, £2):

0 0
Vv)*:zRW, Wo=NWwW = W=w +Ww . (92)
In this notation we have—mind the —-sign!—
0 0
FW=FW +W)=W —-W . 93)

Now, let us scrutinize the parts of @), under the lens of a regular decomposition after
the sign-flip isomorphism has been applied to the test function:

(C) From curlR(Vv)) = curlw and cuerv)0 = 0 it is immediate that

ac(Vv), FT])) = (cuerv)*, curle*)Lz(m . (94)
(Z) By (93) and bilinearity
az(VW, F(@) = wz(_(w*’ﬁ)*)ﬁ(m + (W*’E)O)LZ(Q)
N (VV)O’T])*)LZ(.Q) + (VV)O’T])O)LZ(Q)) ’ ©3)

The key conclusion from the continuity of R : Hjg(curl, 2) — (H'(£2))?
and the Rellich compactness theorem (Theorem 14) is that the bilinear form on
Hjg (curl, £2), given by

— — —* —* —0 —0 —*
(W, q) _<W 4 )LZ(.Q) + (w 4 )LZ(.Q) - (W 4 )LZ(.Q) 99

spawns a compact operator, because at least one of the arguments in the L*(£2)
inner products belongs to (H'(£2))>.
(B) Similarly, for the boundary part we obtain

— = < o g
aa(ws F(q)) - lw((wr ’ qt)LZ(aQ) N (W, ’ qr

—0 —* —0 —0
+ (wt’ qt)LZ(BQ)_ (th q,

)LZ(ag)

). ) 97)
12(09)

Observe that Vv)r* and T])r* are tangential traces of vector fields in (H'(£2))>.
They belong to a space of tangential vector fields on 92 that is compactly
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embedded in (L?(9£2))>. Consequently, invoking Theorem 14 again, the oper-
ator Hyp(curl, 2) — (Hjye(curl, £2))’ induced by the bilinear form on
Hjg(curl, £2)

— — —* % —* =0 —0 —

(W, q) —~ (W” q’)LZ(ag) B (w,, q’)LZ(a.Q) (w, t)LZ(B.Q) ©8)
will be compact.
Reassembling the parts, we find
— =\ —>* —>* 2(—=0 =0
ay(w,F(q)) = (curlw ,curl )LZ(Q) +w (w q )LZ(Q)
—0 =0 —> —

m)(Wr, qr)Lz(m)—f—kM(w, q), (99)

where K, collects the “compact remainders” from (96) and (98). This means

_ 0 _
au(W.F(W) = [eurts”| | +0?|W — 10| W + k(W W)
12(2) 12(2) 12(382)
and, since from H Rw H <C H curlw H we can conclude that
12(2) 12(2)
—>* —0 —
w7 e 2 I e
12(2) 12(2) H(curl,2)

we have a more general version of Garding’s inequality:

Theorem 15 (Generalized Garding Inequality for Maxwell Cavity Problem)
There is a compact operator Ky : Hyg (curl, 2) — (Hyg (curl, 2)) such that

3C>0: |aw(W,F(W)) + <KMW’§>) > CHW‘ ’

Hjg(curl,2)

for all W € Hjg (curl, £2), where F is the sign-flip isomorphism defined in (91) and
C > 0 depends on §2 only.

4.6.2 Existence and Uniqueness of Solutions

Together with the Lax-Milgram theorem about the invertibility of operators rising
from elliptic bilinear forms [40, Lemma 2.21], Theorem 15 tells us that F' o Ay, +
Ky : Hyo(curl, 2) — Hyp(curl, 2) is bijective. Here, Ay is the operator
associated with ay; and F' : Hyg (curl, 2) — Hjyq(curl, ) is the adjoint of F.
Hence, Ay + (F))~! o Ky, is bijective as well and, thus, Ay, has been identified
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as a compact perturbation of an invertible operator; the Fredholm alternative of
Theorem 13 applies!
Parallel to Sect. 4.5 we have to establish injectivity of a,.

Lemma 8 (Injectivity of a,, [40, Thm. 4.12]) The operator Ay, : Hyg (curl, 2) —
Hjo(curl, 2) associated with the bilinear form ay; of the Maxwell cavity problem
is injective.

Proof Along the lines of proof of Lemma 7 we conclude from

+ ta)(Vv),,Vv);) =0

—> =/ 2{= =7
(curlw,curlw ) —w (w, w =
12(2) L2(382)

)LZ(Q)

for all W/ € Hyg (curl, £2) that

(i) W, = 0 on 3£ (through testing with W’ = W),
(i) curleurlW — w?W = 0 (through testing with W € (C3°(£2))%),
(iii) curlW x n = 0 (through testing with W € (C®(£2))?).

Then extending w by zero outside §2 gives an entire solution of Maxwell’s

. 3 . . . —_— .
equations on R~ vanishing at co. Then necessarily w = 0 thanks to uniqueness
results for electromagnetic scattering problems [26, Thm. 6.10].

Eventually, Lemma 8 together with a Fredholm alternative argument shows

that (81) has a unique solution, which depends continuously on the data T €
Hjo(curl, ).

4.7 Quasi-Optimality of Whitney Form Galerkin Discretization

The Whitney form Galerkin discretization of the variational Maxwell cavity prob-
lem (81) seeks an edge element vectorfield @, € #'(%;,), 7, a simplicial mesh of
£ c R3, such that

ay(@,.a)) = la)/ T B A B, e (). (100)
2

As we saw in Sect.3.4.4 this is a conforming Galerkin method in the sense that
#'(F) C Hyg(curl, 2).

Our a priori convergence results will be asymptotic and be valid only on “suf-
ficiently fine” meshes. This forces us to examine the behavior of the discretization
error for some infinite family of meshes {7},}, <y, where H is a sequence of mesh
widths tending to 0. A key assumption is the h-uniform shape regularity of { T} em.
which makes it possible for us to demand that below none of the constants may
depend on /i € H.
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4.7.1 Discrete inf-sup Conditions

In Sect. 4.6.2 we learned that the continuous variational problem (81) is well posed.
As explained in [45, Sect. 2.1.6], this is equivalent to a continuous inf-sup condition,
namely the existence of a constant y > 0 such that, for all W € Hjo (curl, £2)

— —
lay (W, W)

sup —
W/€Hjyq (curl.Q) H w/’

> y|w (101)

Hjg(curl,2) ’

Hjg (curl,2)

On the other hand, existence, uniqueness, and quasi-optimality of Galerkin solutions
of (100) can be concluded from a discrete inf-sup condition that asserts the existence
of y, > 0 depending only on the shape regularity of the mesh .7, such that for all
w 1

Wi €W (Th)

|ay (W, W)
sup = ——

(102)
= 1 w/
Wiew () H W),

-]

Hyo(curl,2) |

H;o (curl,.Q)

More precisely we have the result [45, Thm.4.2.1]

Theorem 16 (Generalized Cea Lemma) If (102) holds, a unique solution _a)h €
W' (F) of (100) exists and is quasi-optimal:

- =

\ =c_inf [F-W
Hjg (curl,2) WiV (Th)

Hjg(curl,2) ’

where @ € H(curl, §2) is the solution of (81) and C > 0 depends only on the norm
of ayr and yp,.

The customary attack on (102) picks an arbitrary Whe! (Z,) and looks for a
“candidate function” Vv);l = W)Z(Vv)h) € #1(.7,) such that, with constants enjoying
the usual (in)dependencies,

2
(i) |y (Wa. W)l = CHW‘ , (103)
Hjg (curl,2)
(i) HVv’; < CHVv’ . (104)
H)o (curl,!?) Hjo (curl,!?)

The search for this discrete candidate function can be guided by finding an analo-
gous continuous candidate function for (101). It will be a gift of the Generalized
Gérding inequality from Theorem 15, because, given W € Hjp (curl, £2) we may
choose the complex conjugate of

W oi=Fw + (Al) " (Kyw) , (105)
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where A}, : Hyp(curl, £2) — Hjgo(curl, ) is the (invertible) formal adjoint of

Ay. Since HW’ < CHW‘
-/

we conclude (101) from Theorem 15

Hag(curl,.Q) - Hgg(curl,!?)

by simply evaluating a (W, w ):

Refay (W, W )} = Re{an(W, Fw + (A%~ (Kuw))}

— Refay(W,FW) + (KW’,%}} > cHVv’ ’

Hjg (curl,2) ’

Now, the challenge is that

W'(W,) will usually not belong to #' (%), even for W, € #' (7).

4.7.2 Discrete Helmholtz Cavity Problem

Let us first elucidate the strategy for the Helmholtz cavity problem (84), for which
we can rely on the Gérding inequality from Corollary 2. Here, for a fixed U e
H'(£2), the continuous candidate function is

W)= + A Kyl . (106)

Please note the difference between (105) and (106); a counterpart of the sign-
flipping isomorphism F is conspicuously absent in (106). This makes it possible
to obtain a suitable discrete candidate function by plain projection.

For the Helmholtz cavity problem we have to employ discrete O-forms for
Galerkin discretization, that is, the space #°(.7,) of piecewise linear Lagrangian
finite element functions. Let G stand for the H'(§2)-orthogonal projection G :
H'(£2) — #°(J,). Asymptotic density of #°(.%,) in H'(£2) for h — 0 implies
that G — Id pointwise in H'(§2) for h — 0. This is an important observation
thanks to the following result [36, Lemma 7.1].

Lemma9 Let {Tf}jeN be a sequence of bounded operators X — Y, X, Y Banach
spaces, with limj_>o§ Tix = 0 for all x € X (pointwise convergence). If, for another
Banach space Z, K : Z — X is compact, then

lim ||Tj o KHZ_”, =0.

Jj—>o0o

This tells us that “compactness promotes pointwise convergence to uniform
convergence”. We apply this lemma with X = ¥ = Z = H!(2),K = (A}) "' oKy,
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which inherits compactness from Ky, and T; <> |d — GhH . Thus, we infer that

ot i,

lim sup 0. (107)
=03 eni(2) H_v) H
H'(2)
This makes it possible to pick as a discrete candidate function
W) =+ G (A T Ky ) € 70T | (108)

because

an (W, 1) = an(in (Af) ™ (Kl p) + (G = 1) (A~ Ku@n) . (109)
and limit (107) ensures that for any ¢ > 0 there is a sufficiently small #, > 0 with

|(d = GIDAD T Ka @) 1) <l Fnllye, YEn € #(T), Yh <he.
(110)

Thus by picking /# smaller than some threshold, we can make the constant ¢ in

2

@ (111)

Ref{ay (). 1)} > C| 7 —clAg TRl 37 ]

2
h ” HY(R2)

smaller than %C / (||A§l || IKe ), C > 0 from Corollary 2. This yields an asymptotic
discrete inf-sup condition in the sense that it will hold on sufficiently fine meshes
only.

4.7.3 Discrete Maxwell Cavity Problem

As pointed out above, in contrast to (106), neither summand in (105) lies in the
finite element space #!(.7,). Hence, both terms have to be projected onto #'!(.7,)
in order to obtain an admissible discrete candidate function. Reusing notations from
Sect.4.7.1, let us opt for

W, (Wa) = L(F(W) + G (A~ (Kuwa)) (112)

where G : Hyg (curl, 2) — #1(.,) is the Hyg (curl, £2)-orthogonal projection
/

—
Wi
Hjg (curl,2)

onto #''(7,). As all operators involved in (112) are continuous,

can be bounded by HVV)h HH , thus satisfying (104).

202 (curl,2)
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In order to establish (103), we try to recover the continuous candidate function
W/(W),) from (105) by “adding zero” in a clever way.

ay(Wi, Wi(Wy) = aM(VV)hv L (F(Wh) + Gf((AL)_I(KMVV)h)))
= any(Wi, W' (W5) + au (Wi, (I — Id)F(W5)
+ (G — 1) (A5 " (K W))) -

Since (A}) ! o Ky : Hyg(curl, 2) — Hjgo(curl, £2) is compact and G —1d — 0
pointwise in Hyp (curl, £2) for & — 0, we can copy the approach of Sect. 4.7.2 for
the last term and appeal to Lemma 9. This confirms the existence of ¢ : Rt — R*
with limj,—o c¢(h) = 0 such that

H (G} - ld)((AL)_l(KMVv’h))‘ (113)

< (| W
Hag (curl,!?) H

s (curl,2)
To deal with the other terms we use F = 2R — Id and the projector property of |;:
(I = Id)FW,) = () = Id)2R(W ) — W) = 2(I; — Id)RW, .

Since curlRW, = curlw, € #2(.7,) and R maps into (H'(£2))?, the assumptions
of Lemma 4 are fulfilled and we can use its interpolation error estimate:

[0 10F )

< ChH RVV)h H < Ch cherV)h

(114)

12(R) H(2) @)

Moreover, by the commuting diagram property of |; and the projector property of |,
curl(l; — Id)F(W,) = 2(l, — Id)(curlR(W,)) = 0 . (115)

The estimate for the boundary contribution to the Hjg (curl, §2)-norm is more
subtle. Here we merely cite a consequence of [20, Lemma 16], which can be proved
by interpolation in Sobolev scales.

Lemma 10 If'W € {4 € (H'(2))? : curluw € #2(7,)} then

< Cchr|w

— —
H W — |1
L2(0R2)

‘H‘(Q) ’

with C > 0 depending only on §2 and the shape regularity of the mesh.

Applying this estimate and the same reasoning that led to (114), we end up with

H (b~ IFWn) HLZ(&Q) =ant

curl W), H . (116)
2(2)
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Eventually, combining (114), (115), and (116), we conclude

H (I — I)F(W») H < ch? |curlw,, 117)

Hjg (curl,2)

@)’

This, together with (113) shows that existence of a function ¢’ : Rt — RT such
that

2
@ (W1, W3 (W) = W' (W) | = /()| W ,
Hjg (curl,2)

and
P
;g%c(h)_o.

This, via (103), permits us to infer the discrete inf-sup condition (102) from
the continuous inf-sup condition (101) for sufficiently small 4. Thus we have
verified the assumptions of Theorem 16, whose concrete assertion for the Galerkin
discretization of the Maxwell cavity boundary value problem is given as a final
result.

Theorem 17 (Asymptotic Quasi-Optimality of Whitney Form Galerkin Dis-
cretization of the Maxwell Cavity Problem) For any shape-regular family of
meshes { T }hem there is a threshold h* > 0 and a constant C > 0 depending
only on the (material) coefficients in ay, w, 2, and shape-regularity, such that

H—a’——a’h) <C inf

Hjyg(curl,2) — Wen\(F)

‘_a)—Vv)H Vh<h*,

where @ € Hyg(curl, 2) and &, € #'' () solve (81) and (100), respectively.
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