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Abstract. The paper presents the application of our clustering technique
based on generalized self-organizing neural networks with evolving tree-
like structures to complex cluster-analysis problems including, in particu-
lar, the sample-based and gene-based clusterings of microarray Leukemia
gene data set. Our approach works in a fully unsupervised way, i.e., with-
out the necessity to predefine the number of clusters and using unlabelled
data. It is particularly important in the gene-based clustering of microar-
ray data for which the number of gene clusters is unknown in advance. In
the sample-based clustering of the Leukemia data set, our approach gives
better results than those reported in the literature and obtained using a
method that requires the cluster number to be defined in advance. In the
gene-based clustering of the considered data, our approach generates clus-
ters that are easily divisible into subclusters related to particular sample
classes. It corresponds, in a way, to subspace clustering that is highly de-
sirable in microarray data analysis.

Keywords: Microarray cancer gene data · Gene expression data cluster-
ing · Generalized self-organizing neural networks with evolving tree-like
structures · Cluster analysis · Unsupervised learning

1 Introduction

Microarray technologies have been playing an increasingly important role in
genomic research (see, e.g., [11]). They make possible to measure the level of
expression or activity of tens of thousands of genes simultaneously in different
experimental samples (in general, under different experimental conditions). The
resulting data are usually represented in the form of the so-called gene expression
data matrix. Its rows represent genes and its column - various specific samples.
Thus, each cell of the matrix represents a numeric level of the expression of
a given gene in a given sample. One of the essential steps in interpreting the
meaning of such immense amount of biological information is to discover clusters
of genes that manifest similar expression patterns (coexpressed and possibly
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coregulated genes). In general, however, it is meaningful to cluster both genes
and samples into homogeneous groups [8].

This paper presents both gene-based and sample-based clusterings of Leukemia
human cancer microarray data set by means of our original approach that em-
ploys generalized self-organizing neural networks (SONNs) with evolving tree-
like structure and with dynamically defined neighborhood (SONNs with DDN
for short) presented in [5]. It is worth stressing that our approach works in a fully
unsupervised way, i.e., using unlabelled data and without a predefined number
of clusters which is particularly important in the gene-based clustering of mi-
croarray data where the number of gene clusters is unknown in advance. First,
the clustering process using SONNs with DDN is outlined (its more detailed pre-
sentation can be found in [5]). Then, the operation of the proposed networks on
two- and three-dimensional benchmark data sets [12] that contain data groups of
various shapes and densities is shown. Finally, their application to the clustering
of the afore-mentioned human cancer microarray data set, i.e., Lukemia [4] is
presented and compared with an alternative solution.

2 Generalized SONNs with DDN for Data Clustering -
An Outline [5]

In the course of learning that controls the evolution of tree-like structures of
generalized SONNs with DDN, they are able to: a) automatically adjust the
number of neurons in the network by removing low-active neurons from the
network and adding new neurons in the areas of existing high-active neurons
in order to take over some of their activities, b) disconnect the tree-like struc-
tures into subnetworks, and c) reconnect some of the subnetworks preserving the
no-loop spanning-tree properties. These mechanisms enable them to detect data
clusters of various shapes and densities including both volumetric as well as thin,
shell, piece-wise linear, polygonal, etc. kinds of clusters. Each detected cluster
is represented by a single disconnected subnetwork. Therefore, the number of
automatically generated subnetworks is equal to the number of clusters. More-
over, our approach also generates a multi-point prototype for each cluster; that
prototype is represented by the collection of neurons belonging to a given sub-
network. Such prototypes can be directly used in clustering/classification tasks
by employing the well-known nearest multi-prototype approach [2], [1]. The ap-
plication of our approach to the clustering of several synthetic and real (coming
from the UCI repository [10]) benchmark data sets has been presented in [5]. Our
approach is a generalization of our earlier solutions to automatic determination
of the number of clusters and their prototypes in data sets [6], [7].

The point of departure for the idea of the generalized SONNs (see [5] for
details) is the conventional SONN with one-dimentional neighborhood (i.e.,
the neuron chain) with n inputs x1, x2, . . . , xn and m neurons with outputs
y1, y2, . . . , ym, respectively. yj =

∑n
i=1 wjixi, j = 1, 2, . . . ,m and wji are weights

connecting the i-th input of the network with the output of the j-th neu-
ron. Using vector notation (x = (x1, x2, . . . , xn)

T , w j = (wj1, wj2, . . . , wjn)
T ),
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yj = wT
j x . The learning data set contains L input vectors x l (l = 1, 2, . . . , L). In

the first stage of any Winner-Takes-Most (WTM) learning algorithm that can be
applied to the considered network, the neuron jx winning in the competition of
neurons when learning vector x l is presented to the network must be determined
in the following way (assuming the normalization of learning vectors):

d(x l,w jx ) = min
j=1,2,...,m

d(x l,w j), (1)

where d(x l,w j) is a distance measure between x l and w j ; throughout this pa-

per, the Euclidean distance measure dE(x l,w j) =
√∑n

i=1 (xli − wji)
2
will be

applied. The WTM learning rule is following:

w j(k + 1) = w j(k) + ηj(k)N(j, jx , k)[x (k)−w j(k)], (2)

where k is the iteration number, ηj(k) is the learning coefficient, and N(j, jx , k)
is the neighborhood function:

N(j, jx , k) = e
− d2

tpl
(j,jx )

2λ2(k) (3)

with λ(k) being the radius of the neighborhood and dtpl(j, jx ) representing the
topological distance between the neurons no. jx and no. j. The neighborhood
of a given neuron in the tree-like topology of our generalized SONNs is defined
along the arcs (being the pieces of the conventional SONN with one-dimensional
neighborhood) emanating from that neuron as shown in Fig. 1 (see [5] for de-
tails). Therefore, dtpl(j, jx ) = 1 for all j-th neurons being direct neighbors of
the jx -th one as illustrated in Fig. 1. In turn, dtpl(j, jx ) = 2 for all j-th neurons
being second along all paths starting at the jx -th one (see Fig. 1), etc.

j
x

d j, j( ) = 1
xtpl

d j, j( ) = 2
xtpl

d j, j( ) = 3
xtpl

Fig. 1. Examples of neighborhood of the jx -th neuron [5]

In order to implement three mechanisms, listed as a), b), and c) in the first
paragraph of this section, five operations are activated (under some conditions)
after each learning epoch.
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Operation 1 (first component of mechanism a)) - the removal of single, low
active neurons: The neuron no. jr is removed from the network (preserving the
network continuity - see [5] for details) if its activity - measured by the number of
its wins winjr - is below an assumed level winmin, i.e., winjr < winmin. winmin

is experimentally selected parameter (usually, winmin ∈ {2, 3, 4}).
Operation 2 (mechanism b)) - the disconnection of the network (subnetwork)

into two subnetworks: The disconnection of two neighboring neurons j1 and j2
takes place if the following condition is fulfilled: dE(w j1 ,w j2) > dcoefdE,avr

where dE,avr = 1
P

∑P
p=1 dE,p is the average distance between two neighboring

neurons for all pairs p, p = 1, 2, . . . , P , of such neurons, and dcoef is experi-
mentally selected parameter (a distance coefficient) governing the disconnection
operation (usually, dcoef ∈ [3, 4]).

Operation 3 (second component of mechanism a)) - the removal of small-size
subnetworks: A subnetwork of ms neurons is removed from the system if ms <
ms,min, where ms,min is experimentally selected parameter (usually, ms,min ∈
{3, 4}).

Operation 4 (third component of mechanism a)) - the insertion of additional
neurons into the neighborhood of high-active neurons in order to take over some
of their activities. Case 4a: A new neuron, labelled as (new), is inserted between
two neighboring and high-active neurons j1 and j2 (i.e., their numbers of wins
winj1 and winj2 are above an assumed level winmax: winj1 , winj2 > winmax).
winmax is experimentally selected parameter (usually winmax ∈ {2, 3, 4} and
winmax ≥ winmin, where winmin is defined in Operation 1). The weight vector

w (new) of the new neuron is calculated as follows: w (new) =
wj1+wj2

2 . Case 4b:
A new neuron (new) is inserted in the neighborhood of high-active neuron j1
surrounded by less-active neighbors (i.e., winj1 > winmax and winj < winmax

for j such that dtpl(j, j1) = 1). The weight vectorw (new) = [w(new)1, w(new)2, . . . ,
w(new)n]

T is calculated as follows: w(new)i = wj1i(1 + ξi), i = 1, 2, . . . , n, where
ξi is a random number from the interval [−0.01, 0.01] (see [5] for details).

Operation 5 (mechanism c)) - the reconnection of two selected subnetworks:
Two subnetworks S1 and S2 are reconnected by introducing topological con-
nection between neurons j1 and j2 (j1 ∈ S1, j2 ∈ S2) after fulfilling condition

dE(w j1 ,w j2) < dcoef
dE,avrS1

+dE,avrS2

2 . dE(w j1 ,w j2) and dcoef are the same as
in Operation 2. dE,avrS1

and dE,avrS2
are calculated for subnetworks S1 and

S2, respectively, in the same way as dE,avr is calculated in Operation 2 for the
considered network.

According to Kohonen’s comments [9], the selection of learning parameters
is mainly based on experimental results taking into account that the learning
coefficient η(k) and the neighborhood radius λ(k) should be some monotonically
decreasing functions of time (λ(k) can also be constant in time). Based on that,
in the experiments presented below, the learning parameters are defined as fol-
lows: ηj(k) = η(k) of (2) is linearly decreasing over the learning horizon (which
includes 10.000 epochs) from 7· 10−4 to 10−6, λ(k) = λ of (3) is equal to 2, the
initial number of neurons in the network is equal to 2, winmin = 2, winmax = 4,
ms,min = 2, and dcoef = 4.
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3 Clustering of Two- and Three-Dimensional Benchmark
Data Sets

The so-called Fundamental Clustering Problem Suite (FCPS) [12] is a collec-
tion of benchmark data sets that, for different reasons, pose difficult problems
to clustering algorithms. We selected two benchmark sets from FCPS, one two-
dimensional (Lsun data set) and one three-dimensional (Atom data set) to il-
lustrate the performance of our approach. According to [12], main clustering
problems in Lsun are different variances in clusters and in Atom - linearly non-
separable data of different densities and variances.

Figs. 2 and 3 present the performance of our clustering technique applied to
particular data sets. The figures are arranged in the same way, i.e., parts a) of
them represent the data, parts b), c), d), e), and f) show the evolution of the
tree-like structures of the generalized SONNs at different stages of the learning
process, and parts g) and h) - the plots of the number of neurons (g) and the
number of subnetworks (clusters) (h) vs. epoch number. It can be seen that
our approach, in an automatic way, increases the number of neurons in partic-
ular networks (starting from the initial numbers of two neurons) and detects
the correct numbers of data clusters in both sets by disconnecting the tree-like
structures of the generalized SONNs into appropriate number of subnetworks.

4 Clustering of Leukemia Cancer Microarray Data Set

The performance of our approach will now be validated in the clustering of a
data set coming from microarray experiments. The benchmark human cancer
microarray data set, i.e., Leukemia [4] is considered. It is typical for microarray
gene expression data sets that they contain thousands of original genes (in our
case, 7.129) and a small number of samples (in our case, 72 including two classes
called ALL with 47 samples and AML with 25 samples). Additionally, many of
the original genes are noisy and redundant. In order to filter out such genes,
various preprocessing methods are applied (see, e.g., [3] for details) yielding
reduced subset of genes (3.571 for Leukemia data set) that are used in experi-
ments. As already mentioned in the introduction (see also [8]), in gene expression
data analysis it is meaningful to consider both the sample-based and gene-based
clusterings. In the first case, the samples are the objects and the genes are the
features, whereas in the second case it is quite opposite. Due to a very small
number of data samples, the parameter winmax that (together with winmin)
controls the overall number of neurons in the network is reduced to winmin, i.e.,
winmax = winmin = 2. For the same reason, the distance coefficient is slightly
reduced (dcoef = 3). The remaining parameters are unchanged.

Figs. 4, 5, 6, and 7 present the performance of our clustering algorithm applied
to the considered data set. Figs. 4 and 5 show the plots of the number of neurons
and the number of subnetworks (clusters) vs. epoch number for the sample-based
and gene-based clusterings, respectively. As far as the sample-based clustering
is concerned, the number of clusters in data set and the cluster assignments
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Fig. 2. Lsun data set (a) and the evolution of the generalized SONN in it in learning
epochs: b) no. 5, c) no. 50, d) no. 100, e) no. 500, and f) no. 10 000 (end of learning),
as well as plots of the number of neurons (g) and the number of subnetworks (clusters)
(h) vs. epoch number

of particular data samples are known. Therefore, a direct verification of the
obtained results is possible. However, it should be stressed that our approach
does not use the knowledge on the cluster assignments and the cluster number
during its operation. That knowledge is used after the completion of the learning
to evaluate the obtained results. Fig. 4b shows that our approach detects the
correct (equal to 2) number of sample clusters in the considered data set. The
percentage of correct decisions, equal to 98.6%, regarding the cluster assignments
of particular data samples is higher than in the case of an alternative approach
presented in [3] (93.14%) which additionally requires the cluster number to be
defined in advance.
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Fig. 3. Atom data set (a) and the evolution of the generalized SONN in it in learning
epochs: b) no. 5, c) no. 50, d) no. 100, e) no. 500, and f) no. 10 000 (end of learning),
as well as plots of the number of neurons (g) and the number of subnetworks (clusters)
(h) vs. epoch number
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Fig. 4. Plots of the number of neurons (a) and the number of subnetworks (clusters)
(b) vs. epoch number for the sample-based clustering of the Leukemia data set
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Fig. 5. Plots of the number of neurons (a) and the number of subnetworks (clusters)
(b) vs. epoch number for the gene-based clustering of the Leukemia data set
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Fig. 6. Exemplary gene clusters in the Leukemia data set

As far as the gene-based clustering (or, to be more specific, the clustering of
gene expression levels) is concerned, our approach detects 79 gene clusters (see
Fig. 5b). Fig. 6 presents the pseudocolor image of some of them. Each of those
clusters can be easily divided into two subclusters related to ALL and AML
samples. Therefore, the results generated by our approach correspond, in a way,
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Fig. 7. Plots of the expression levels of all genes in each gene cluster of Fig. 6
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to the so-called subspace clustering which is highly desirable in microarray data
analysis (see discussion in [8]). The subspace clustering captures clusters cre-
ated by a subset of genes across a subset of data samples (in our case, ALL
and AML samples separately). Fig. 7 shows the plots of the expression levels of
all genes in the gene clusters of Fig. 6 confirming the compactness of particular
clusters (as well as ALL and AML related subclusters). The pseudocolor image
of particular clusters of Fig. 6 (supported by Fig. 7) can be used in a deeper
genetics-based discussion of the obtained results which is - due to the limited
space - not possible here. The interpretation of the obtained gene clusters is
possible on the basis of statistical analysis performed with the use of special-
ized and dedicated software. In our experiments, we use two publicly available
functional profiling tools, i.e., the DAVID (Database for Annotation, Visualiza-
tion and Integrated Discovery) software, available on the server of Laboratory of
Immunopathogenesis and Bioinformatics, National Cancer Institute at Freder-
ick, USA (http://david.abcc.ncifcrf.gov) and the ’g:Profiler’ software, available
on the server of Institute of Computer Science, University of Tartu, Estonia
(http://biit.cs.ut.ee/gprofiler). We can only mention here that, for instance, in
the case of ’LE-7’ gene cluster (see Fig. 6), both tools indicate that all the genes
collected in the cluster are responsible for one biological process named ’cell cy-
cle’. In turn, in the case of ’LE-28’ gene cluster, 7 out of 10 genes are responsible
for biological process named ’defense response’, etc.

5 Conclusions

The paper presents the application of our clustering technique based on the gen-
eralized SONNs with evolving tree-like structures to complex cluster-analysis
problems including, in particular, the sample-based and gene-based clusterings
of microarray Leukemia gene data set. Our approach works in a fully unsuper-
vised way, i.e., without the necessity to predefine the number of clusters and
using unlabelled data. It is particularly important in the gene-based clustering
of microarray data for which the number of gene clusters is unknown in ad-
vance. In a given data set, our approach, in automatic way, detects the number
of clusters (equal to the number of disconnected subnetworks) and generates
multi-prototypes for them (represented by neurons in particular subnetworks).
It is performed by the implementation of automatic adjustment of the number of
neurons in the network as well as the disconnection and reconnection mechanisms
of the tree-like structures of the network during the dynamic learning process. It
is worth stressing that the same set of experimentally selected parameters that
control the operation of our clustering technique (see the last paragraph of Sec-
tion 2 of the paper) gives very good clustering results for completely different
types of data sets such as FCPS benchmarks and microarray data. It shows,
in a way, the low sensitivity of our approach in regard to those parameters. It
is also worth emphasizing that in the sample-based clustering of the Leukemia
data set our approach gives much higher percentage of correct decisions than the
alternative technique of [3] which additionally requires the cluster number to be

http://david.abcc.ncifcrf.gov
http://biit.cs.ut.ee/gprofiler
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defined in advance. Moreover, our approach exhibits also interesting features as
far as the gene-based clustering of the Leukemia data set is concerned. Namely,
it generates clusters that are easily divisible into subclusters related to particular
sample classes; it, in a way, corresponds to subspace clustering which is highly
desirable in microarray data analysis [8].
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