Chapter 2
Development of Theory for Bulk Polymer
Blend Systems

I follow the development of theory for solutions and blends of polymers. I take
a minimal historical approach by focussing on the primary literature in which the
theory was developed, and show how the work culminated ultimately in the Flory-
Huggins-de Gennes free energy of mixing, which is the base theory for the study of
spinodal decomposition in polymer blends.

2.1 Introduction

The aim of this chapter is to provide an overview of the development of theory for
bulk polymer' systems, which came from a drive to understand the behaviour of
solutions® and blends> of polymers, which differed significantly from the behaviour
of non-polymer systems. I take a minimal historical approach to this, using what I
regard to be the most important literature in which the theory was developed, to give
a narrative to the development of the theory. This chapter can be summarised in the
following. The behaviour of polymers in solution prompted the development of an
entropy of mixing valid for long chain molecules. To fit the theory to data required
an empirical term to account for the heat of mixing, the form of which was quickly
grounded theoretically. The entropy of mixing and heat of mixing can be combined,
along with a term accounting for energy contributions from compositional gradients,
to give the Flory-Huggins-de Gennes free energy of mixing, which can be used to
understand and study spinodal decomposition of polymer blends.

It is useful at this point to introduce the Gibbs free energy, which is appropri-
ate when considering incompressible systems (although the assumption of constant

TPolymer: a molecule consisting of repeated units, like a string of beads or a chain. These repeat
units are called monomers. A chain segment usually refers to a single monomer.

2Solution: a liquid mixture of solvent (e.g. water, toluene) and solute (e.g. sugar, polymer), in which
the solute is dispersed in the solvent.

3Blend: a liquid mixture of two components (e.g. a blend of two polymers).
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volume is of course not general). Since the subject matter of this chapter is mainly
changes upon mixing, we can consider the Gibbs free energy change, given by

AG = AH — TAS, 2.1)

where AH is the Heat (Enthalpy) of Mixing, AS is the Entropy of Mixing, and
T is the Temperature. I will refrain from elaboration of standard thermodynamics
terminology throughout.

Terminology

I will briefly introduce terms as they appear, but more detailed definitions of Termi-
nology are given on page 167. There are several terms that are used in passing while
discussing literature in this section, and those that are not specifically important to
this thesis will not be explicitly defined; definitions can be found elsewhere and in
the corresponding citations.

2.2 Entropy of Mixing

By 1940 there was a substantial body of evidence showing that polymer solutions
deviated significantly from Raoult’s law [Eq. (2.8)], which describes how the vapour
pressure of an ideal solution (zero heat of mixing AH = 0) depends on the vapour
pressure of the pure components of the solution and the molar fraction of those
components in the solution. These deviations were initially, and almost exclusively,
put down to enthalpic effects: it was assumed that a non-zero heat of mixing was
causing the deviations from Raoult’s Law. However, careful experiments showed that
deviations from Raoult’s Law were significant even when the heat of mixing really
was zero. The first successful efforts to explain these deviations were undertaken by
Huggins [1, 2] and Flory [3], who derived a form for the entropy of mixing suitable
for polymers.

2.2.1 Entropy of Ideal Solutions

Consider a mixture AB of fluids A and B, consisting of equal sized simple mole-
cules.* An ideal solution has zero heat of mixing, which means that there is no
difference in the enthalpic interactions U between molecules of the pure compo-
nents (A-A and B-B interactions) and between molecules of different components
(A-B interactions) i.e. 2Usp = Uaa + Upp. This means that the molecules will

4Simple Molecules: molecules that can be treated as spheres, because they consist of a few atoms
at most and their internal structure need not be explicitly considered.
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randomly mix to maximise entropy, since there are no particularly favourable or
unfavourable interactions that would prevent an entirely random mixing.
The entropy of the mixture is given by the Boltzmann equation

S=kgnQ, 2.2)

where €2 is the number of distinguishable configurations of the mixture. To calculate
2, we can place each molecule on a quasi-solid lattice. If the molecules of fluids A
and B are the same size, then the number of configurations available ton = n4 +np
molecules is n!, but the number of distinguishable configurations is

Q= (nas+np)!/nalng!. (2.3)

A schematic of a set of available configurations is shown in Fig.2.1.

Using Eq. (2.2), we can find the change of entropy upon mixing as the difference
in entropy between the mixture and the pure components, AS,,;x = Sap — Sa — Ss,
giving the entropy of mixing per molecule as

ASpix = —kp[xalnxg + xplnxp], 2.4)

where x4 = na/n and xp = np/n are molar fractions of A and B respectively.
The entropy change A S,y is a configurational entropy, because it only accounts for
entropy changes due to the change of available configurations upon mixing. Strictly
speaking this expression only applies to mixtures in which the molecules of both
species are interchangeable, i.e., equal sizes and interaction energies; this means a
molecule of A can be swapped with a molecule of B with no penalty.

A regular solution is one in which the entropy of mixing is given by Eq. (2.4),
as for an ideal solution, but with AH # 0. That polymer solutions do not obey
Raoult’s Law even when there was zero heat of mixing meant that polymer solutions
are non-regular solutions.
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2.2.2 Entropy of Polymer Solutions

The derivation of an entropy of mixing appropriate for polymer solutions was under-
taken separately by Huggins [2] and Flory [3], and although both derivations were
published in 1942, it was Huggins who published a brief letter of his results the
previous year [1], in which it was stated that “in solutions of long, flexible chain
molecules, deviation in the entropy of mixing from that given by [Eq.(2.4)] may
be even more important (than the enthalpy of mixing effects)”. Meyer is credited
by Flory with the suggestion that the entropy of mixing for polymer containing sys-
tems must be responsible for these discrepancies, due to the intrinsic connectivity of
polymer chains [3].
Flory explicitly laid down the assumptions required for the derivation [3]:

(1) assume a quasi-solid lattice in the liquid and interchangeability of polymer
segments with solvent molecules [same assumptions used to derive equation
(2.4)]. A segment is defined as being equal in volume and shape to a solvent
molecule;

(ii) all polymer molecules are the same size (although in 1944 Flory showed that
“heterogeneity can be disregarded”, since using a number average of chain
lengths in a distribution will include the effects of heterogeneity [4]);

(iii) “the average concentration of polymer segments in cells adjacent to cells unoc-
cupied by the polymeric solute is taken to be equal to the over-all average
concentration”, which is a mean-field assumption (this can let the theory down
severely under certain conditions e.g. in very dilute solutions in which solute
can clump together);

(iv) we don’t consider that the chain might curve around and cross itself once again,
which Flory noted would “(obviously) lead to computation of too many config-
urations”.

Here I will give a simplified explanation in the spirit of the aforementioned ref-
erences. Figure 2.2 is a schematic to assist in following the explanation. We assume
a polymer chain to consist of x segments (x = 6). Given n; solvent molecules

Fig. 2.2 A schematic of a
quasi-solid lattice, on )
which 3 polymer chains C )
(6 segments longs) have been — |
placed, and the remaining ’
lattice cells filled with
solvent molecules. The
polymer chains require
connectivity
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(ns = 27) and n), polymer molecules (n, = 3), we require n; + xn, lattice cells
(ns + xnp = 27 + (3 x 6) = 45). We then place, at random, the end segment of a
single polymer chain on a lattice cell, hence there are ny + xn, possible configura-
tions for this move. The next segment from the same chain has much less freedom,
of course, because it is connected to the first segment. Given this restriction, this
segment has z sites to choose from, where z is the coordination number. This gives
the second segment z sites to choose from (in this case, perhaps z = 5, since there are
five neighbouring sites to choose from; this drops out of the resulting expression).
However, this second segment doesn’t really have this much choice, since if the poly-
mer chain were part of a filled lattice, there might already be segments from another
chain next to the first segment of the chain we are considering. Using assumptions
(iii) and (iv), we assume that we may put the number of configurations for the second
segment to be z(1 — f},) where f), is the probability that a cell is already occupied
(fp also drops out of the final expression). Once all polymer chains have been placed
on the lattice, the remaining sites are filled with solvent molecules. Counting up all
the configurations available, and subtracting the entropy of the pure states of both
polymer and solvent, we arrive at

ng Xnp
ASpix = —kp |nyln ——— +npln —————
ng +xnp ng + xnp

= —kg [nsIn(¢) + npIn (1 — ¢)], (2.5

where ¢ is the volume fraction of solvent, therefore 1 — ¢ is the volume fraction of
polymer.

Although in (i), we defined a segment as being equal in size to a solvent molecule,
it may be necessary that a segment in the polymer chain is necessarily the size of
several solvent molecules, since a segment must be at least so big as to allow the
chain complete flexibility around these segments. In this case, we should define the
lattice cell to be the size of the segment, and have several solvent molecules to one
cell. Flory addressed this [3], arguing that this can be accounted for by the rescaling
ng — ng/B3,x — x/ where 3 is the number of solvent molecules that will fill a cell
the volume of a single polymer segment. This simply re-enforces the requirement
to correctly measure the polymer chains in terms of segment lengths/lattice spacing
(so a polymer chain may consist of 15 repeat units/monomers, but a segment may
consist of 3 monomers, hence the chain is 5 segments long).

It is more natural to express this equation per ‘molecule’, where the number of
molecules equals the number of lattice cells ny + xn,. We arrive at

I-9)

X

ASpix = —kp [(15 In (¢) + In(1— ¢)] ; (2.6)

where A S,,,i« has been redefined as the entropy of mixing per molecule. This equation
can be generalised to polymer-polymer mixtures. If the solvent is replaced by polymer
species A with y number of segments, then the factor of ¢ can be replaced by ¢/y



12 2 Development of Theory for Bulk Polymer Blend Systems

in the first term. It is more natural to replace y with N4 and x with Npg, where N;
represents the number of segments in species i (the segment size of both species
being chosen to be equal in the definitions of N;). This gives

¢ (I-9)
N

ASpix = —kp [N—Aln (¢) + - In(l — ¢)i| . 2.7)

Equation (2.7) is known as the Flory-Huggins Entropy of Mixing. Notice that unlike
Eq.(2.4), the logarithm terms contain volume fractions. If N4 = Np = 1 then
Eq.(2.7) reduces to Eq. (2.4) for ideal solutions.

Although any lattice parameters do not strictly appear in (2.7), it is worth noting
again that the ‘length’ of a polymer species should be counted in units of lattice
size. So if species A and B have the same number of monomer units and are both
flexible around these units, then if the size of A-monomers are twice the size of
B-monomers, we have Ny = 2Np (assuming the lattice cells are the size of the
A-monomers, which is required to allow the A-chains to be flexible). Working in
volume fractions ¢ accounts for the other mathematical difference due to B-chains
having half the volume of A-chains.

2.3 Heat of Mixing

Although deviations from Raoult’s law could be shown to derive from the entropy
of mixing given by Eq.(2.5), fits to the activities data still require a term that took
the heat of mixing into account [5]. Of course, generally a heat of mixing term for
polymers will be required, because the heat of mixing is rarely zero.

2.3.1 Activities Data

Raoult’s law relates the vapour pressure of an ideal solution to the vapour pressure
of each solution-component and the mole fraction of that component. Huggins used
an expression essentially equivalent to Raoult’s Law, writing the chemical potential
w; of species i in a solution as [5]

ji = 1 + RT Ina;, (2.8)

where the reference state with chemical potential .{ may refer to the pure component,
for simplicity. The ‘activity’ is defined asa; = p;/p,, where p; and p, are the vapour
pressures of component i in the solution and as pure component, respectively. An
expression for the difference in chemical potential can be found from the entropy of
mixing:
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Ny __TAS) 00
Hp = an;‘) ’ )

where n; is now the number of moles of polymer, and A, = p) — u‘;. The entropy
of mixing (2.5) in terms of the number of moles of solvent and polymer is then

ASpie = —R|n*ln—"5 4t | (2.10)
oni+axnt, P a4 an,

Using Eq. (2.9) and converting back into volume fractions, we arrive at

App

o =Inay =g, + (1 - 00, 2.11)

From the way the number of segments x in the polymer molecules is defined, x
can be written in terms of a ratio of volumes of the polymer and solvent molecules
x = \7p / V. Generalising to polymer-polymer systems (since we can always choose
N = 1 for either polymer for it to be a simple solvent), there are two expressions for
a binary mixture

1%
Inasy =Ingy + (1 - _—A) b5,
Vg

1%
1na3=1n¢3+(1—_—3) ba, (2.12)
Va

where either A or B could be a polymeric solute or a solvent.
The osmotic pressure of the solvent can be related to the activity by

I RT
R (2.13)

where c; is the concentration of polymer solute or equivalently (given different units)
the partial molar volume. In order to account for how, in polymer solutions, IT/c
increases with ¢; Huggins needed to include an empirical term in Eq. (2.12) which
“takes care of the heat of mixing, deviations from complete randomness of mixing,
and other factors™ [5]:

Va
Inay =Ingy + (1 - ‘—/—) OB + p1ady,
B

1%
Inag =ln¢3+(l—‘7—3) ba+ updi. (2.14)
A

Using Eqgs. (2.13) and (2.14) Huggins showed that the expression for the entropy,
Eq. (2.7), fit data on polymer solutions, providing the empirical constants 114 and pp
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are chosen suitably for a particular solution (with the condition that pi4 Va4 = g Vg,
which is natural since the heat of mixing is a mutual interaction between opposing
species and must be balanced). In hindsight, the need for the empirical constants to
be included in Eq.(2.14) can be seen to arise from the definition of the chemical
potential (2.9), since the full expression should be Ap, = 9(AG)/ 6n;. However,
the form of A H was not yet known.

2.3.2 A van Laar Form for the Heat of Mixing

Flory provided a simple derivation for an appropriate form for the heat of mixing
[4]. The result is the van Laar expression for the heat of mixing of simple molecules,
which has a simple lattice-based explanation [6], which follows. If a fluid A and fluid
B, both consisting of simple molecules, occupy molar volumes v and V respectively,
then for a solution of n moles of A and N moles of B, the internal energy per mole
of solution can be written as

ean(wn)? +2e45(wnVN) + egp(VN)?
wm+ VN '

Usp = (2.15)

Subtracting the energy of (the same quantity of) the pure fluids Uy = eqavn, Up =
eppV N, and gathering terms, gives

vVnN

AU = ANe————, (2.16)
nv+ NV

A€ =2€4AB — €AA — €BB. 2.17)

For polymer systems, the argument can be made that the form of interactions
between polymer segments and solvent molecules should be the same as those
between simple molecules. Assuming no volume change upon mixing, AH = AU,
so the partial molal heat of A, given by AHs = OAH /On, is then

AHp = Aed, (2.18)

which is exactly the same form as the heat of mixing term in Eq.(2.14). However,
Flory was quick to point out that the use of this term provides satisfactory agreement
with experiment, but that it clearly must contain “contributions from other factors the
origins of which are not yet clear” [4]. This could include, of course, entropy effects
due to the heat of mixing and configurational entropy modifications to Eq. (2.7) from
the fact that, given a finite heat of mixing, systems of polymers and solvents will not
be entirely uniform.
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2.3.3 The Flory-Huggins Interaction Parameter

A heat of mixing consistent with Eq.(2.16) can be derived from a general lattice
model with coordination number z, as in Flory’s textbook [7]. However, I found
the latter derivation slightly difficult to follow, so I have opted to derive the heat of
mixing in line with a more modern approach [8].

A mean-field > assumption can be applied to a binary polymer mixture AB on a
quasi solid lattice. Assume that the probability that a lattice cell picked at random
will contain a segment of A or B is given by the volume fraction of A or B, denoted
by ¢4 or ¢ p respectively. Also, given this chosen site, the probability that any neigh-
bouring site contains a segment of A or B is also given by ¢4 or ¢ p respectively. If
the interaction energy between two A segments is €4 4, then given the probability of
choosing an A-segment when choosing the first site is ¢4, and given that the prob-
ability of a neighbouring site containing an A-segment is ¢ 4, then the contribution
to the average site energy from A-A interactions will be €44 (bi. The average energy
of a site can then be given by the general formula

Usite =2 D D €jdid), (2.19)

i=A,B j=A,B

whereas the total energy of the pure states of A and B is given by

Upire =2 D, €iihi- (2.20)

i=A,B

Performing Uyi;e — Upure gives the change in internal energy upon mixing per site.
Assuming no volume change, this is the same as the enthalpy of mixing.

AHyiy = kBTXd)Ad)Ba
X = zAe/kpT, (2.21)
A€ = 2€4AB — €AA — €BB.-

Equation (2.21) is almost exclusively used to represent the heat of mixing. The
dimensionless parameter Y is called the Flory-Huggins interaction parameter. It can
be measured in experiments, and is usually considered to be an experimental para-
meter to describe the heat of mixing without reference to any microscopic effects
or lattice theory model. However, in this particular lattice theory model from which
x has been explained,  is purely enthalpic in origin. An entropic contribution is
generally necessary.

SMean-field: average interactions are used in place of counting up individual interactions, such that
the local behaviour can be written in terms of macroscopic average properties.
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Non-combinatorial Entropy

The entropy of mixing (2.7) represents the combinatorial entropy of mixing, result-
ing only from the change in available configurations for non-interacting chains (in
other words, it arises from the increased volume in which the polymer molecules
can distribute themselves, which allows them access to more configurations [9]).
In general, we should expect x to have an entropic part too, usually referred to as
a non-combinatorial entropy, and may arise from the non-uniformity of a solution
caused by preferential attraction between like components, or from a change in the
accessibility of energy levels or restriction of certain rotational configurations due to
interactions.
The entropy of mixing can be obtained from Eq. (2.1) as

OAG
AS = ————, 2.22
a7 (2.22)
and the enthalpy/heat of mixing as
AH = AG+TAS. (2.23)

Substituting in the entropy of mixing (2.7) and the heat of mixing (2.21), and assum-
ing that it is possible that y depends on temperature, gives

0
s=—k3[il (¢)+ @1 n(l— @)+ ol — ¢) (T )]. (2.24)
From this follows that
AH = AG + TAS = kT dadp (x _ 8(5<TT)) . (2.25)

Comparing this with the heat of mixing (2.21) we see that, in general, the Flory-
Huggins interaction parameter x has both an enthalpic and entropic part [7, 10],
such that x = xg + x5, where

_ OT) _ 0x

XH =X~ "5r Tor (2.26)
_OxT)

Xs = —gr— (2.27)

Thus in order for the interaction parameter to be purely enthalpic, it must have
temperature dependence xy o« 1/T.

Anomalous contributions to the entropy of mixing were often put down to changes
in volume which the lattice model used to derive Eq.(2.7) cannot include. Whilst
changes in volume will of course alter the entropy, numerous experiments under fixed
volume still show that there is a contribution to the entropy upon mixing that cannot



2.3 Heat of Mixing 17

be accounted for by Eq. (2.7) and thus a non-combinatorial entropy contribution must
exist [9]. This idea is now a standard part of the literature [11].

Dependence of Heat of Mixing on Volume Fraction

In Flory’s first paper on the subject [3] it was suggested that the agreement between
theory and experiment would be better if the enthalpy term equivalent to Ae in
Eq.(2.18), which acts as an analogue of x, was given an appropriate dependence on
concentration. For the rubber-toluene solution measurements in question, the theory
was rather accurate for high concentrations of rubber solute, but matched the data
at low rubber concentrations only with an empirical fit for the heat of mixing. In
[4], Flory returned to this matter, mentioning that the fit that Huggins had made
to a benzene-rubber solution (which required no concentration dependence for the
empirical terms containing p;) was correct, but that the matter was actually more
complicated. Other measurements that separately measured the heat of mixing and
entropy of mixing in this system confirmed that both departed significantly from the
theory, but “when these two somewhat erroneous equations are combined, however, a
satisfactory free energy function is obtained, as Huggins has shown”. Flory suggested
that a finite heat of mixing might be responsible, since this would necessarily lead
to non-uniform mixing (clusters of solute in pure solvent).

This idea was explicitly addressed by Flory in a paper soon after [12], in which
Flory investigated the case of highly diluted polymer solutions. Experiments showed
that the heat of dilution was dependent on the concentration of polymer solute, and
there was a marked difference between dilute and concentrated solutions. The heat
of mixing as given by the van Laar form in Eq.(2.14) could be reconciled with the
data provided that y is reformulated as

w=p0+a/RT, (2.28)

in which both v and 3 depend on the concentration. Flory states that the benzene-
rubber system analysed by Huggins is essentially a special case in which the free
energy function does not require y to depend on concentration, even though the
entropy and heat of dilution equations when considered separately do not match the
data. Flory points out that the value of x needed for the fit is actually much lower
than theory would predict, which indicates that y is really just an empirical constant,
and that “in spite of the approximate constancy of u for rubber in benzene at all
concentrations, it is unlikely that this condition applies to high polymer solutions
in general”. Flory showed that a different x was required for solutions of high con-
centration than low concentration, and the constant & must change and, generally,
it is “likewise necessary to throw the burden of x4 on [ in dilute solutions” [12].
Equation (2.28) is essentially equivalent to the modern common expression for the
Flory-Huggins parameter:

B
x=A+ (2.29)
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2.4 Flory-Huggins Free Energy of Mixing

Substituting the Entropy of Mixing (2.7) and the Heat of Mixing (2.21) for polymer
systems into the expression for the Gibbs free energy (2.1), we obtain the Flory-
Huggins Free Energy of Mixing fryg = AFuix = AHpyix — T ASpix. In units of
kpT, we can write

1—
fru (@) = Niln (@) + (N—QS) In(1 - ¢) + xo(1 — 9). (2.30)
A B

The expression frg(¢) is the ‘bulk’ free energy for a polymer blend, giving the free
energy per lattice site in the Flory-Huggins lattice with spacing a.

Phase Diagram from the Flory-Huggins Free Energy

Equation (2.30) can be used to compute a phase diagram® for the blend which
separates the one-phase region (the components of the polymer blend remains mixed
together, entropy overcoming enthalpy) from the two-phase region (the polymer
blend de-mixes into two phases, each rich in one component of the polymer blend)
in the plane of composition and temperature. Figure 2.3 is a phase diagram for the
polymer blend N = N4 = Np, containing a coexistence curve and spinodal line,
explained below.

The limits of stability of a polymer blend can be calculated by consideration of
the first and second derivatives of the free energy (2.30) with respect to composition,
dF/d¢ and d? F /d $* respectively. To demonstrate, I will consider a blend in which
the two polymers A and B have the same chain lengths (degree of polymerisation)
N4 = Np = N, since this is the simplest example. The first derivative is

OF L (1g—b¢)+X(l_2¢)' (2.31)

— =—1n
op N
dF/d¢ = 0 corresponds to minima in the free energy, and we can rearrange the

resulting expression so that we can plot a locus of points for which dF/d¢ = 0,
giving us the ‘coexistence curve’

—1 ! 1 ¢ 2.32
XCOCX_NZ(b—l n(m) (2.32)

(If the blend is not symmetric, then calculating the coexistence curve is more com-
plicated, requiring equating the chemical potentials of both species). The second
derivative is

%Phase Diagram: a diagram, drawn in a space of variables such as composition and temperature,
that separates regions corresponding to different stable phases with lines, which correspond to the
limits of stability of these phases. e.g. for water, a phase diagram in the temperature-pressure plane
separates regions of vapour, liquid and solid.
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Fig. 2.3 Phase diagram in the ¢-y plane (essentially equivalent to composition-temperature) for
a polymer blend N = N4 = Np. Below the coexistence curve, it is favourable for the polymer
blend to remain mixed, hence 1-phase is stable. Above the coexistence curve, it is favourable for the
polymer blend to de-mix, hence 2-phases are stable. Between the coexistence curve and the spinodal
line, 1-phase has more energy than 2-phases, but 1-phase is metastable, and so 1-phase may still
exist in this region. So the spinodal line represents the limit of stability for the blend remaining in
the 1-phase state i.e. above the spinodal, 1-phase is unstable. The critical point (¢c, x¢), located
at critical volume fraction ¢¢ and critical temperature yc, corresponds to where the coexistence
curve and spinodal line coincide. It is the first point at which the blend becomes unstable upon
increasing x (assuming Y = A + BT ™!, then the critical point marks the highest temperature for
which a blend in the 1-phase region is unstable)

F 1 1

L ~ 2y, 233
957 ~No—g X (239

d?>F /d¢* = 0 corresponds to minima in the free energy for which the curvature of
the free energy is also zero, and this expression can be rearranged to obtain the locus
of points called the ‘spinodal line’

1 1

= — 2.34
IN 61— 0) (@39

XS

Quenching a polymer blend, such that the temperature changes and the blend passes
from the 1-phase region to the 2-phase region, results in ‘spinodal decomposition’
i.e. phase separation induced by crossing the spinodal line. This will be discussed
more in Sect. 2.6.
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2.5 Flory-Huggins-de Gennes Free Energy

In order to study how a polymer blend undergoes phase separation,in which a 1-phase
mixture de-mixes into a 2-phase mixture, we need to take into account energy costs
from different phases being in contact with each other e.g. a phase rich in polymer
A being in contact with a phase rich in polymer B. The interface between these
phases will have a finite width, so this interface is essentially a composition gradient
across which the composition goes from A-rich to B-rich. We need to account for
free energy contributions from composition gradients.

2.5.1 Free Energy of Non-uniform Systems

Cahn and Hilliard [13—16] are probably owed the most credit to development of the-
ory to describe non-uniform systems. Cahn was primarily interested in binary alloys
and mechanisms of phase separation and the interfaces in the resulting structures.
Although the original treatment by Cahn and Hilliard was in the context of a binary
mixture of simple fluids or quasi-solids, the theory is very general, requiring only a
small change to describe polymer systems.

In the first of a series of three papers, all published under the leading title “Free
energy of a non-uniform system” [13—15], Cahn and Hilliard presented “a general
equation for the free energy of a system having a spatial variation in one of its intensive
scalar properties” [13], which for simplicity was chosen to be a binary solution. Cahn
and Hilliard’s original treatment of the problem was based on expressing the local
free energy f* “as the sum of two contributions which are functions of the local
composition and the local composition derivatives” [13, 15]. For an isotropic system
which has no directionality, it was then supposed that the local free energy f* could
be expressed as

(e, Ve, Ve, ..) = f(c) + riVie+ ka(Ve) + - (2.35)

where f is the energy of a uniform system, the derivatives terms represent local
composition gradients and «; are coefficients that may possibly depend on the local
composition. It is noted no assumptions are made about the nature of x;, which of
course could depend on local concentration [15]. The form of Eq. (2.35) is intuitive
for an isotropic system, because only even powers of the gradient term may appear
if direction is not important.

The energy f™* refers to the local energy of a volume dV, hence the total free
energy in a system of volume V is given by

F= / Frav. (2.36)
\%4
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This result, which describes an inhomogeneous system, has two contributions to the
free energy: a local contribution f(c) from the system being held at composition c;
and the energy contribution from a local composition gradient in the system. After a
little re-arranging, we can express this as

F=/ f*(c, Ve, Ve, .. )dV,
\4

= / [ +r(Ve) + - ]av, (2.37)
14
k= —dr1/dc + k). (2.38)

So in general we see that x may indeed depend on the concentration. Equation (2.37)
is limited to a regime in which the composition gradients are not too steep, or to
be more exact where “the ratio of the maximum in this free energy function to the
gradient energy coefficient x must be small relative to the square of the intermolecular
distance” [13]. If this is not the case, then higher even powers of the derivatives of
local concentration need to be included in Eq. (2.35).

Cahn and Hilliard used Eq. (2.37) to investigate the properties of the interface
between two coexisting phases, and applied it to regular solutions of simple molecules
[13]. The surface and interfacial energies predicted by manipulations of Eq.(2.37)
agreed extremely well with experimental data and were in agreement with two empir-
ical expressions for the latter known to generally apply. Furthermore, the theory
produced extremely good agreement with data on the interfacial energy close to the
critical temperature T¢ (xc; see Fig.2.3), which is significant as it validated the
dependence of the surface energy on the distance from the critical temperature that
the theory predicted [13]. As explicitly explained by Cahn, the advantage of this
representation of a non-uniform system is “the splitting of the thermodynamic quan-
tities into their corresponding values in the absence of a gradient and an added term
due to the gradient” [14].

2.5.2 Random Phase Approximation for Polymer Chains

The Random Phase Approximation is a self-consistent field calculation for (dense)
polymer systems, attributed to de Gennes [17-20]. Using the RPA it is possible to
find the form of x(¢), the coefficient of the gradient term in Eq.(2.37), suitable for
describing polymer systems. I will briefly follow the outline of the derivation for
k(¢), leaving the full derivation for the citations below.

Self-consistent Field Calculations

The idea behind a self-consistent field calculation (a type of mean-field treatment)
for polymer systems is as follows [17]. We choose a form of interaction between
polymer segments, and then derive a potential based on this interaction and the local
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concentration of segments. We then take an ideal/non-interacting chain and place itin
this potential, and derive the resulting concentration profile. We ask if our profile for
the concentration is consistent with this potential, given the interactions producing
the potential, i.e., we’ve placed our ideal chains, now if we make them non-ideal
(interacting), will the interactions between segments produce the potential? Almost
certainly not, so we update the concentration profile so that it’s appropriate for our
potential. However, since the potential is also dependent on the concentration, we
then update the potential, and then update the concentration again etc. This is an
iterative procedure, and following de Gennes we can describe it as

U(r) = Tvo(r), (2.39)

where T is temperature and v is the excluded volume occupied by a segment. Given
an ideal polymer chain in a potential U (r) we can calculate a new concentration
profile ¢/ (r), and then calculate a new potential U’ (r) etc. We hope that the potential
and concentration profile converge on a stable fixed solution upon enough iterations.

De Gennes points out that the first application of a self-consistent field treatment
to polymers was by Edwards [21], and I found the explanation given in Edward’s
work to be extremely enlightening. Edwards explains that the probability of finding
a segment at distance L along the chain and distance r from the origin is not simply
a random walk, due to the excluded volume principle—a segment cannot occupy
a certain volume that is excluded by the presence of another segment. Thus the
probability distribution is broadened and Edwards shows that “it will turn out that p
(the probability distribution) will play the role of a potential”. Note that the potential
arises from the excluded volume principle, so we need only know that there is an
interaction which achieves an excluded volume effect.

The Random Phase Approximation

The motivation behind the Random Phase Approximation (RPA) is: we want to
compute aresponse function that tells us how a weak perturbation at point r will effect
the concentration at a point ’. We will allow our chains to sit in an overall potential
that is the sum of this weak perturbing potential and a self-consistent potential that
is due to all of the surrounding chains. We wish to find this self-consistent potential,
and this is quite a difficult problem. I will briefly describe the principles behind
the random phase approximation, avoiding the dense mathematics but following the
description in de Gennes book [17].

The change in local concentration at point 7 due to a weakly perturbing potential
W (r') at point r’ is

5, (r) = —% DD Sum @)W (), (2.40)

where the index m represents segment m such that W), is the perturbing potential
acting on segment m, and Sy, is a response function that relates how the perturbation
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on segment m at r’ affects segment n at . Thus we see that all perturbations on all
segments have been included. Since we are considering an isotropic system, the

response function may only depend on the separation r — r’, so we switch to Fourier
space to simplify the treatment

1
0Cn(@) = == D Sum (@ Wn(9)- (241)

After some difficult maths, the central result of RPA emerges as

S9(q) SO
S @) = S @) = S
Sp (@S5 (@)
= Sm@ = =y @ 242
m (@) Nap(D 2.42)

where S,?m (q) is the non-interacting response function (which is known, hence allow-
ing the substitution of the Debye scattering gp function for the sum over these
response functions) and S,?(q) =>n S,?m (q).

What exactly does Eq. (2.42) mean? The derivation of this result does not involve
introducing specific interactions as such, other than the implied repulsive interaction
that is responsible for excluded volume, so the result really represents the distribution
of polymer segments caused by there being other polymer segments around. For a
detailed derivation, the reader should consult de Gennes book [17]. The main point
here is that we can calculate the response function S,,, from quantities that we
already know. We can measure S, using neutron scattering experiments, using
chains partially labelled with deuterium [19, 20]. The results of these experiments
will tell us the distribution of labelled segments and therefore of the polymer chains,
assuming that the labelling of segments doesn’t introduce additional interactions.

2.5.3 The Flory-Huggins-de Gennes Free Energy

We still need to calculate a coefficient « of the gradient term in Eq. (2.37) suitable
for polymer systems. A derivation can be found in modern textbooks [8, 10]. We ask
how the local composition changes with respect to a change in the local chemical
potential. When the volume we consider is very large compared to the chain size, such
that this volume as a whole will not contain fluctuations of concentration, we obtain
from Eq.(2.30) with xy = O (such that the polymer mixture is ideal) the chemical
potential of species i as p; = OAF /0¢;:

kT
o= In ¢; + const, (2.43)

1



24 2 Development of Theory for Bulk Polymer Blend Systems

providing we write ¢ = ¢; and 1 — ¢ = ¢ ;. We can then easily derive the response
function that we desire 06 N
i i
— =i . 2.44
e i T (2.44)

Using the notation §(Ap) = duga — dpp and noting that for a binary mixture we
must have ¢4 + ¢p = 1, then we obtain with ¢ = ¢4

¢ _L(l . )_1 (2.45)
O(Ap) kT \¢No ~ (1 —@)Ng) ‘

This won’t be correct for small volumes where fluctuations are significant. Working
in Fourier space, we can adapt the latter equation to

99(@) _i( Lo )”
obu@) kT \4Sa@ ~ (I=D)Ss@)

1

where Sj,; is the response function for non-interacting chains.
To account for a potential, so as to consider interacting chains, we can then write

1

S@  Su(q)

Vig), (2.47)

and we note that for ¢ = 0 this potential must equal 2, since by definition this is our
interaction in the FH regime based solely upon the enthalpy between two monomers.
For small ¢g it must be true that

152
V(q) =2x (1 — Eq ro) , (2.48)
because this term arises from a first order expansion of a Gaussian distribution
describing a bare response function for a non-interacting chain [17, 20] and ry,
which is of the order of the segment size a (which is therefore equal to the lattice
spacing in the Flory-Huggins lattice), measures the range of inter-segment forces
[8]. Inserting the approximate potential V and the response functions S4 and S into
Eq.(2.47) we obtain an expression for the scattering response function S(q) that is
consistent with a free energy (in units of kg T) of the form [§]

F= / [fFH(¢)+H(¢)(V¢)2] dr, (2.49)
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2 2 2
X7, a a
k() = 20

6 36619  360(—9)

(2.50)

for which it is common practice to neglect the small first term in «(¢). The result is
the Flory-Huggins-de Gennes free energy for a binary polymer system:

2

Fiovol= [ | o+ 35—

(V¢)2]dr, 2.51)

which is the starting point for studying the kinetics of, and morphology resulting
from, phase separation of polymer blends.

2.6 Spinodal Decomposition

A mixture of two components may exist either as one phase (the entropy of mixing
overcomes the heat of mixing) or as two phases (the heat of mixing overcomes the
entropy of mixing). A phase diagram like Fig.2.3 separates regions of stability of
blends existing as one-phase and two-phases. Phase separation from one phase into
two phases, caused by the thermodynamic instability of the mixture as it is brought
across the spinodal line from the one-phase to the two phase region, is called Spinodal
Decomposition. I will first discuss an early example involving a crystaline solid, not
only because it is an important example in the development of theory, but because it
is a good introduction to several concepts.

2.6.1 A Crystal with a 1D Inhomogeneity

Hillert considered a crystalline solid consisting of two components A and B, in which
a variation in composition x (the volume fractionof A,0 < x < 1) was allowed in one
direction along the crystal [22]. This system was modelled by consecutive parallel
2D planes i — 1,i,i + 1..., every plane having some characteristic composition
Xi—1, Xi, Xj+1.... Figure 2.4 shows a schematic representation.

Hillert calculated the free energy of this system. For the interaction energy
(heat/enthalpy), it was assumed that an atom in a particular plane i could
interact with Z nearest neighbours in total, with z of these nearest neighbours being
located in the next plane i 4+ 1. The system as a whole has average composition x,,
interaction strength v, and the total number of atoms within a single atomic plane
is m. The energy of interaction for plane i interacting with next plane i + 1 is then
AU = vm {Z(xi —x)? —z(x; — x,-+1)2}. The change in entropy arising from a
single plane i being at a composition different from the average composition is given

1—x

by regular solution theory AS = m {xp log );—Z + (1 —xp)log 5

_x” } Hence, after

summing across all planes in the system, the energy difference between the inhomo-
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Fig. 2.4 Parallel 2D planes
of a crystal, in which the
composition of each plane

0 < x; < 1isrepresented, in
this schematic, by the degree
of transparency of the planes.
The arrow represents the
direction of inhomogeneity
in the crystal

geneous state and the homogeneous (note the direction of consideration of energy
difference, which gives a minus sign) is

AF =—uvm Z {Z(xp — xa)2 —z2(xp — xp+1)2}
p

X 1—x
+kBTmZ[xplogx—P+(l—xp)log 1 _x”]. (2.52)
p a a

Nature of Stable Solutions

Hillert considered stable (mathematical) solutions to the problem, which requires
calculation of the change in free energy “when atoms are exchanged between two
neighbouring planes p — 1 and p” i.e. what is the functional derivative of the free
energy with respect to composition x, of plane p. For equilibrium (stable solutions)
we require 6AF /6x, = 0. For small amplitude fluctuations around the average
composition x,, stable solutions were found to obey the relation

Xp+l = Xp—2 — Xp—1 +x,, — 2M(Xp—l - -xp)a (2~53)

where M is a constant given by a combination of parameters (including average
composition x,, the number of nearest neighbours Z and z, the temperature 7', and
the interaction energy v).

It turns out that M = 1 corresponds to the spinodal curve for a 1D system:
(one-phase region) |M| > 1 corresponds to states outside the spinodal for which
the only physically relevant solution (in which 0 < x, < 1) was x, = const = x,
i.e. a homogeneous state; (two-phase region) |M| < 1 corresponds to inside the
spinodal, for which relevant solution for small amplitude fluctuations are of the form
Xp = xq + Csin pg where C is a constant. For shallow depths beyond the spinodal,
the wavelength (of the composition variation) extends over many atomic planes, but
as distance into the spinodal increases (|M| — 0) the wavelength becomes of order
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unity (on the order of a few atomic planes). Consideration of large compositional
variations required numerics to be performed on a computer, but the results showed
that again the equilibrium states within the spinodal were sinusoidal in nature.

Wavelengths

Hillert supposed that a kinetic treatment of the problem would give insight into what
composition variation wavelengths might dominate by showing which wavelengths
would grow the fastest. It was also noted that in order for the system to increase the
wavelength of fluctuations (in order to lower energy) a re-arrangement of the sys-
tem is necessary that should also be studied from a kinetic perspective. By deriving
a diffusion equation for the system and applying random fluctuations (fluctuations
with a spectrum of amplitudes and wavelengths), Hillert found that a spectrum of
wavelengths first developed, followed by small wavelength fluctuations decreasing
in amplitude, causing the average wavelength of the system grow with time. Con-
sideration of the fastest growing wavelength is important in spinodal decomposition
studies [22].

2.6.2 Stability of a Solution

Cahn considered the stability of a solid-solution with respect to compositional fluc-
tuations [23], where ‘solution’ is meant in the sense of a binary mixture which may
support composition gradients, and ‘solid’ is meant in the sense that there is an elastic
energy contribution to the free energy (arising from strain in the material when an
initially homogeneous region becomes inhomogeneous). I will leave out the elastic
energy contribution in my discussion here.

Cahn considered the free energy of a two-component solution using Eq. (2.37)
To consider fluctuations requires knowledge of how the free energy changes when
a small amount of one-component is replaced with another, but “in the presence
of a gradient, if we make a local change in composition we also change the local
gradient”, so we must consider the functional derivative of the free energy with
respect to composition. If a functional F is given by

F= / g(r,c(r), Ve(r))dV, (2.54)

then the functional derivative of F' with respect to ¢(r) is given by

<5F_6g_V dg

Sc  Oc " O(Ve)' 2.55)

as long as the integrand vanishes at the boundaries of integration. Applied to Eq.
(2.37) [such that g is the integrand f™* of Eq. (2.37)] we obtain
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OF _0f

=50t (v Y2 — 2KV, (2.56)

The functional derivative can be used to formulate a diffusion equation which may
be used to study the morphology resulting from spinodal decomposition.

2.6.3 Diffusion Equation

The chemical potential . can be related to the functional derivative via i = d F /dc.
Cahn considered the matter current J = —MVypu, where M is a positive mobility
coefficient, and the continuity equation Oc/0t = —V - J. Disregarding all terms non-
linear in ¢, so as to consider infinitesimal compositional fluctuations corresponding
to the initial stages of spinodal decomposition, we have

Jc 0? f

— = M—5V%c - 2MrVc, 2.57

ot 92" (37
confirming Cahn’s assertion that “the diffusion equation must contain a higher order
term reflecting the thermodynamic contributions of the gradient energy term”. The
first term of Eq. (2.57) allows us to interpret M f” as an interdiffusion coefficient.
The second term accounts for gradients and interfaces.

Wavelengths

For small variations in ¢ about the average ¢y, the solution to Eq. (2.57) is ¢ — ¢y =
A(k, t)cosk - r, where k is the wavevector of a compositional variation and A(k, t)
is an amplification factor depending on the wavelength, which yields

T T
=-M 2k A, 2.
o — [82 + } (2.58)

and therefore solutions are of the form

Ak, t) = A(k, 0) exp [R(k)t], (2.59)
2 aZf 2
R(k) = =MK? | =5 + 2% (2.60)

Cahn referred to R (k) as a kinetic amplification factor, which if negative means that
the solution is stable to fluctuations of wavevector k, and which if positive means
the the solution is unstable to fluctuations of wavevector k. The critical wavelength
by definition separates these two regimes, and corresponds to the smallest possible
wavelength for which the mixture is unstable, R(k.) = 0. Cahn noted that “surface
tension prevents decomposition of the solution on too fine a scale.” This important
point is why equations like (2.37) and (2.51) are required to study phase separation,
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because without a gradient energy term, the mixture could decompose on an infinitely
fine scale. However, since this would yield an enormous amount of gradient energy,
this is not actually energetically favourable, and so does not happen.

Cahn found that the fastest growing wavelength was related to the critical wave-
length

kmax = \/Ekc, (2.61)

Fluctuations of wavelength kp,x “will grow the fastest and will dominate. This princi-
ple of selective amplification depends on the initial presence of these wavelengths but
does not critically depends on their exact amplitude relative to other wavelengths”.
This is a very important idea in spinodal decomposition.

2.6.4 Morphology from Spinodal Decomposition

To investigate the structures that may result from spinodal decomposition, Cahn used
the solution to Eq. (2.57) given by ¢ — ¢cg = A(k, t) cosk - r [16]. Since all sums of
all solutions are also possible solutions, due to superposition theory, the most general
solution is

c—co= Zexp {R(k)t} [A(k)cos(k -r)+ B(k)sin(k -r)]. (2.62)
all k

The problem of studying the temporal evolution is much simpler if only the wave-
length with the fastest growing amplitude is considered i.e. kmax

¢ —co ~ exp {R(kmax)?} Z [A(k)cos(k -r) 4+ B(k)sin(k - r)]. (2.63)

kmax

Hence “The predicted structure may be described in terms of a superpositioning of
sinusoidal composition modulations of a fixed wavelength, but random in amplitude,
orientation, and phase” and “at some time after phase separation starts, a description
of the composition in the solution will be a superposition of sine waves of fixed
wavelength, but random in orientation, phase, and amplitude”. The sum in Eq. (2.63)
remains, even though only k = kp,ax is considered in the sum, because Cahn gener-
ated a predicted morphology by summing over waves with different directions and
amplitudes.

The resulting morphology was a highly interconnected bi-continuous structure,
which resembled that of phase separable glasses believed to have undergone spinodal
decomposition. Cahn stated that “theory of spinodal decomposition has been shown
to predict a two-phase structure”, although strictly speaking this result only applied to
the initial stages of phase separation. Kinetic restrictions would of course mean that
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Fig. 2.5 Shown here only for visualisation purposes are simulation snapshots I produced of a
phase separating symmetric polymer blend (N4 = Np = N, average volume fraction ¢ = 1/2),
created by solving the Cahn-Hilliard-Cook equation (2.65) for a polymer blend. The initially nearly-
homogeneous blend phase separates and coarsens into a highly interconnected bicontinuous mor-
phology, the latter of which is similar to that obtained by Cahn

this structure would indicate the qualitative features that would be expected from the
late stages, since rearrangement of material at late stages is restricted by the structures
formed at early stages. Figure2.5 shows simulation snapshots of a phase separating
polymer-blend, produced by solving the diffusion equation (2.65) for a polymer-
blend (Eq.(2.65) is essentially Eq.(2.57), but with random thermal noise included
and without limiting to small variations around cp) shown for visualisation purposes:
the final morphology, a bicontinuous structure, is very similar to that obtained by
Cahn.

2.6.5 Random Noise and Spinodal Decomposition

Cahn'’s theory of the early stages of spinodal decomposition [16] is known to break
down at later stages, mainly as a result of neglecting higher order terms in the gra-
dient energy that bring in other harmonics [24]. However, Cook noted that it was
not understood why the theory could also break down for the initial stages of spin-
odal decomposition for which it was designed to study. Cook suggested that “the
breakdown at the very early stages of the transformation which is caused by ther-
mal fluctuations is not so widely appreciated” [24]. A strong example of the lack
of understanding was the complete lack of spinodal decomposition in some glass
mixtures, which were practically identical to other glass mixtures which did have
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the features of spinodal decomposition. This could not be accounted for by a theory
that suggested that only the initial amount of decomposition in the glass mixture (the
spectra of composition fluctuations in the initial mixture) would result in different
late-time features.

Supposing that “fluctuations in composition caused by thermal effects which were
notincluded in the original theory” may have been responsible, Cook modified Cahn’s
diffusion equation given in Eq. (2.57) to include thermal noise, which should give rise
to Brownian motion of the fluid. This was justified by Cook because it is understood
that “the equilibrium state is dynamic and that, for the case of a stable, single phase,
binary solid solution, an appreciable flux of solute occurs at equilibrium.” To include
this random thermal contribution, Cook modified the matter current equation J =
—MV i to include a “quasi-random thermal contribution to the total flux”, denoted
by j, resulting in a material current

F
= — MV— + . (2.64)

Cook’s important contribution to the rate equation for spinodal decomposition lead
to the name “Cahn-Hilliard-Cook” theory for equations of the form

Oc oF .
=V. |:MV5—F:| +n(r, 1). (2.66)
oc

The randomly fluctuating field 7(r, ¢) has certain properties, such that its average
value is zero. Using averaging to treat the random term (the average properties are
well defined), the rate of change equation given by Cahn in Eq.(2.58) gains an
extra term, giving d1(k, 1)/dt = M(){[f" + 2kk*] I (k, 1) — kpT/Qco(1 — co)},
where 2 is the volume per atom. So the rate of change of intensity has two separate
contributions: (a) a thermodynamic driving force “which is proportional to the free
energy associated with the Fourier coefficient of wavevector k’; and (b) a thermal
driving force “which is proportional to the temperature and independent of the wave
vector”.

The inclusion of thermal noise has several non-trivial implications for spinodal
decomposition [24], especially in the early stages of spinodal decomposition when the
free energy of the fluctuations is ~kp T “and thus the influence of random fluctuations
will be pronounced’’: (i) the critical wavevector k¢ is now determined by the condition
that the thermal driving force (from the thermal noise) is equal to the thermodynamic
driving force (arising from the free energy of the system); (ii) the rate of intensity will
be greater given the thermal driving force, since “every movement in the fluctuation
field... which increase the magnitude of a Fourier coefficient is amplified”; and (iii) the
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“thermal driving force indicates early stages of decomposition outside the spinodal...
in this ‘operational’ sense the spinodal, itself, becomes a diffuse boundary”.

2.6.6 Spinodal Decomposition of a Polymer Blend

I will briefly discuss, for completeness, the relaxation of a polymer melt, which is
an important idea of spinodal decomposition, although the concept will not be dis-
cussed in the rest of this thesis. Relaxation concerns, to give a broad definition, how
an unstable mixture ‘relaxes’ into a stable mixture in spinodal decomposition. Relax-
ation can be described by a relaxation time for different wavelengths (lengthscales)
of the decomposition.

De Gennes extended the study of the dynamics of spinodal decomposition to
polymer blends [18]. For polymer blends, there are a variety of length scales that
are important, and so it may be important to have a dependence of the mobility on
the wavelength of fluctuations in a polymer blend. This can be done by introducing
a wavelength dependent Onsager coefficient A(g) into the usual expression for the
matter current / = —M V. This effectively allows a dependence of the constant
M on the wavelength of each Fourier component. The result is a current for each

Fourier component

Alg)

We can allow use of the following expression for the relaxation time for a mode of

wavelength ¢:
1 1 0(d¢y)

7, 0b, O

(2.68)

where d¢ is a small fluctuation away from the homogeneous state ¢, such that we
can express the composition using ¢ = ¢g + d¢. If wavelengths of fluctuations
produce negative values for 7 !, then compositional fluctuations of this wavelength
grow with time.

De Gennes derived a relaxation formula for a symmetric binary polymer blend,
assuming the form A (g) o g2 for polymer blends (based on a scaling ansatz) [18].
The result for the relaxation time “differs from the standard Cahn-Hilliard equation
for spinodal decomposition” for simple molecules, this difference arising from “the
presence of long chains”. It was noted that “the characteristic length I is much smaller
than the coil size... (thus) spinodal decomposition is an excellent probe for fluctua-
tions of short wavelength.” The assumption A(g) o g was later found to be false
[25].

Pincus continued the work of de Gennes by taking into account new knowledge
of the nature of the Onsager coefficient [25]. The nature of the relaxation of modes in
a polymer melt leads to a significantly altered dependence of the Onsagar coefficient
on the wave vector ¢, namely that A (¢) o ¢ 2. This gives a very different result for
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the relaxation time [still of the form Eq. (2.68)]. Unlike the results of the earlier work
by de Gennes which showed that spinodal decomposition should probe very short
wavelengths “much smaller than the coil size” [18], it now appeared that “the unstable
mode has a wavelength comparable to the ideal chain radius and therefore should
vary as N'/2 with only a weak concentration dependence”. Also, “the corresponding
growth rate is proportional to the reptation diffusion coefficient in a melt and thus
scales as N2 and has a concentration dependence that reflects the shape of the
spinodal line”. Concerning the latter point, this means that upon going from the one-
phase to the two-phase region, the rate of spinodal decomposition depends on the
concentration.

Mean-Field Treatments of Polymer Systems

Binder later did a similar calculation, but using the chemical potential as calculated
via functional derivatives [26]. Binder notes that mean-field treatments of spinodal
decomposition in fluids of simple molecules can fail due to fluctuation effects that
are not included in mean-field treatments. However, “a simplifying feature due to the
large size of the polymer chains is the mean-field character of the unmixing transition,
fluctuation corrections to the mean-field description can be safely neglected.” On the
linearisation approximation ¢(r, t) = ¢g + d¢p(r, t) used to calculate the relaxation
time, Binder noted that “whilst it is well known that the linearisation approximation
is not valid in the critical region of non-mean-field liquid... its validity in the present
case should be much better justified.” The main result is that “the wavevector g, of
maximal growth in spinodal decomposition is typically of the order of ¢,, ~ R!”
where R is the polymer coil radius.

2.7 Summary

In this chapter, I discussed the development of theory to describe bulk polymer blend
systems, beginning with the development of an entropy of mixing valid for long chain
molecules, followed by a heat of mixing, and an expression for the free energy cost
of compositional gradients. Together, these expressions give the Flory-Huggins-de
Gennes free energy of mixing. I discussed the coexistence curve and spinodal line
for a binary blend system, as well as spinodal decomposition whereby a blend phase
separates into phases rich in either component upon being quenched from the one-
phase to the two-phase region. This chapter has covered the bulk theory required
in this thesis, and the next chapter extends this theory to include surfaces, allowing
films to be studied theoretically.
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