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Abstract Using hyperglycemia as an example, we present how Bayesian networks
can be utilized for automatic early detection of a person’s possible medical risks
based on information provided by unobtrusive sensors in their living environments.
The network’s outcome can be used as a basis on which an automated AMI-system
decides whether to interact with the person, their caregiver, or any other appropriate
party. The networks’ design is established through expert elicitation and validated
using a half-automated validation process that allows the medical expert to specify
validation rules. To interpret the networks’ results we use an output dictionary
which is automatically generated for each individual network and translates the
output probability into the different risk classes (e.g., no risk, risk).

Keywords Ambient assisted living - Bayesian networks - Automated diagnosis

1 Introduction

A major part of the HELICOPTER (Healthy Life support through Comprehensive
Tracking of individual and Environmental Behaviors, http://www.helicopter-aal.eu)
is to develop information and communication technology (ICT) - based solutions
that assist self-sufficient elderly people in early detection of the possible develop-
ment of medical conditions, such as hyperglycemia or heart failure. The reason for
this is to prevent complications arising from the medical conditions if they are not
detected early enough. The main contribution of the HELICOPTER project is
therefore the part of the system that can detect the risk of certain medical conditions
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based on sensor readings and that we call the automatic triage. Its system archi-
tecture is closer described in [1]. The automatic triage should be as unobtrusive as
possible and should not bother the patient with unnecessary interventions. Health
surveillance for the automatic triage is achieved by deploying unobtrusive sensors
(e.g., infrared sensors, pressure sensors, power meters, body weight scales, and
food-inventory tools) and wearable sensors (e.g., fall detectors, individual identi-
fication tags). All data collected from these heterogeneous sensors are then inter-
preted within a data analysis engine in order to deduce the patient’s current risk of
developing an acute medical condition (e.g., hyperglycemia or hypotension).

In this project it is our objective to utilize well established existing methods, in
this case Bayesian networks, deploy them within a case study in order to develop
the specific network designs necessary for each medical condition, and validate the
resulting networks. The remainder of this paper is organized as follows: In Sect. 2
we explain how a Bayesian network for the use in the automatic triage can be
developed in cooperation with a medical expert. After that, in Sect. 3, we describe
how the results of Bayesian networks are validated. Last, but not least, we discuss
our work and give some suggestions for future work in Sect. 4.

2 Bayesian Networks for Automatic Triage Diagnosis

Generally, a diagnosis will be determined on available evidence E and is defined as
in e.g. [2]:

d" = argmaxgep Pr(d|E) (1)

where D is the set of possible diagnoses, and d” stands for the subset of diag-
noses that have been chosen. Bayesian networks [3] have been used in the area of
medical diagnostic reasoning, prognostic reasoning, treatment selection, and for the
discovery of functional interactions, since the beginning of 1990 [2, 4, 5]. Some
early examples can be found in [4, 6-8]. More recently, Bayesian networks are also
applied in home care applications e.g. [9].

A Bayesian network [3] or causal probability network [6] is a graphical repre-
sentation of a probability distribution over the set of random variables. Probabilistic
inference can be done with Bayes rule (see e.g. [10]), which in our domain, where
we want to infer the probability of a disease given that we observe one or several
symptoms that are often caused by the disease, can be defined as:

P(symptom|disease)P(disease)

P(disease|symptom) = (2)

P(symptom)

Due to their graphical representation, Bayesian networks are relatively easy to
understand and to create and can therefore be used, developed, and interpreted by
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domain experts [9]. They can often be seen as a model of cause-effect relationships
[4] whereby their structure and the underlying probability distribution can be learnt
from data or be created by hand. Thus qualitative and quantitative knowledge can
be mixed [6]. Furthermore, uncertain knowledge can be modeled within a Bayesian
network and missing data can be handled during the diagnosis process, which can
successively be updated when more evidence becomes available [7].

Before we started to develop the automatic triage system, we also considered
alternative evidential frameworks, such as evidence theory [11] and subjective logic
[12], but decided together with the medical expert to use Bayesian networks based
on four criteria: (1) the framework chosen needs to be able to express everything
that is relevant for the task, (2) the design and inner workings of the framework
should be easy to understand for the medical expert, (3) the framework should be
considerably mature and (4) tools for developing the networks should be available.

In our project, as there is no data set available from that the Bayesian network
could be automatically constructed and tested, it needs to be built by hand, whereby
knowledge about the domain of diagnosing medical conditions is provided by a
medical expert. [2] describes that the construction of a Bayesian network by hand
usually involves five stages, which can be iterated during the construction process:
(1) relevant variables need to be chosen; (2) relationships among the variables need
to be identified; (3) logical and probabilistic constraints need to be identified and
incorporated; (4) probability distributions need to be assessed; and (5) sensitivity
analysis and evaluation of the network have to be performed.

Expert elicitation is an essential task in order to build the network and goes
therefore hand in hand with the network construction. Following [13], expert
elicitation is a five step process consisting of: (1) a decision has to be made how
information will be used; (2) it has to be determined what information will be
elicited from the expert; (3) the elicitation process needs to be designed; (4) the
elicitation itself has to be performed; and (5) the elicited information needs to be
translated (encoded) into quantities.

A specific problem when working with Bayesian networks is to elicit the prior
and conditional probability values. [14] argue that even though probability theory is
optimal for the task of decision making, it is often found to be impractical for
people to use. On the other hand, qualitative approaches to deal with uncertainty,
which appear to be more naturally usable by people, often lack in precision.

In order to elicit the prior and conditional probabilities for our project we
developed a dictionary, which, as for example described in [14], can be specified to
allow the expert to express his or her belief for or against a statement or claim in a
so called argument. The argument is expressed in qualitative terms using qualifiers
[14] that then are translated into probabilities. Several dictionaries have been
described in the literature (e.g., [15]). However, for our task we needed to develop a
suitable dictionary together with the expert, since it was important to the expert to
know how the qualitative terms would translate into probabilities in order to fully
understand what the qualitative terms stand for. It was also important that the
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qualitative terms match, as much as possible, the way the expert intuitively thinks
about probabilities of symptoms for a developing medical condition. Sometimes we
had to reverse the reasoning, since the available information was in the form of
P(symptom|disease) rather than P(disease|symptom). The qualifiers and their
associated probabilities used are defined as:

x is known to be false — P(x) = 0

x is very unlikely — P(x) = 0.01

x is unlikely — P(x) = 0.1

x has a negative indication — P(x) = 0.25
X is random — P(x) = 0.5

x has a positive indication — P(x) = 0.75
x is likely - P(x) = 0.9

x is very likely — P(x) = 0.99

X is known to be true —» P(x) = 1

Note, that this dictionary is only applicable for specifying how probable a
medical condition is, given the observable symptoms. To interpret the networks’
outcome a different dictionary, which is specific for each individual network needs
to be generated. This output dictionary specifies an upper and a lower threshold for
the output probability for each risk class (e.g., the classes no risk and risk).

Further information needed from the expert was how the variables depend on
each other, what the prior probabilities of the medical conditions and the observ-
ables are, what the conditional dependencies between the symptoms and the
developing medical condition are, etc. A resulting network for hyperglycemia risk
detection for a diabetic person is presented in Fig. 1, developed using GeNle 2.0
[16]. This network has eight variables in total: food intake increase (FI), body
weight gain (BW), soft drink intake increase (SD), gender (G), prostatic hyper-
trophy (PH), prolapsed bladder (PB), diuresis frequency increase (DF) and risk of
hyperglycemia (RH). The latter one is the target variable which probability we
are interested in. (A previous and invalidated version of this network can be
found in [17].)

The target variable RH provides a probability value which in relation to the
aforementioned thresholds indicates if the patient currently is at risk of developing/
experiencing hyperglycemia. The lower threshold for risk of hyperglycemia for this
particular network is P(RH) = 0.9 (or true = 90 % for RH) which means that the
value of RH for true = 95 %, indicates a risk of hyperglycemia. This result is based
solely on the information that is available from the deployed input sources (FI, BW,
SD, G, HP, PB, and DF). The network in Fig. 1 shows the case for a diabetic male
patient (G male = 100 %) with no prostatic hypertrophy (PH false = 100 %) who
has been observed to be drinking a lot of soft drinks (SD true = 100 %). An
increased food intake or a body weight gain has not been observed and is therefore
set to true = 75 % which is the base rate for either of these that have been derived
from the practical experience of the medical expert.
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Fig. 1 Bayesian network for risk of hyperglycemia detection

The network in Fig. 1 is only one out of many possible Bayesian networks
representing evaluation of risk of hyperglycemia. What variables are part of the
network depend on (1) what information that can be provided by sensors and (2)
how the experts, involved in the design of the network, perform the diagnosis based
on the information from the available sensors. If more or different sensors are used,
then the network’s layout and the corresponding probability values must be refined.
Further, it is important to realize (as previously mentioned) that the network is not
performing a complete diagnosis. Instead, it only provides an indication of the risk
that the patient is suffering from the effects of hyperglycemia. If the network
indicates a risk, the patient will be asked by the AMI system to make sure that they
are risking to suffer (or are suffering) from the effects of hyperglycemia by mea-
suring the blood glucose level. The reason to avoid frequent direct measures of the
glucose level is to increase the person’s quality of life. People quickly tend to
become annoyed when they are asked to interact with the system when they can see
no obvious reason for it. As a consequence, they may react by generally ignoring
the system’s recommendations [18]. Therefore, reducing the frequency of and
number of interactions whenever possible is important to ensure that the system is
used appropriately.

3 Validating the Developed Model

Validity of Bayesian networks established trough expert elicitation is, according to
[19], usually tested by comparing the model’s predictions to available data or by
asking the expert to check whether the network’s outcomes appear to be accurate.
In our case, we need the expert to specify for each possible combination of evi-
dence, what his diagnosis would be. For the Bayesian network to come to the same
result means, that there exists a clear threshold for the probability that the patient
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currently is at risk of hyperglycemia, that separates all evidence combinations into
no risk and risk in the same way as the human expert. Given that each of the seven
non-target variables can take one out of three values: true, false, respectively male
or female for the gender node, or no evidence (n.e.), there are 37 = 2187 possible
evidence combinations.

We can generate all combinations of symptoms automatically from the Bayesian
network and at the same time calculate the resulting probability for RH (risk of
hyperglycemia) for each of them. Table 1 shows an excerpt thereof.

Table 1 Excerpt from the FI |[BW [SD |G PH |PB |DF |P Risk

evidence combination table (RH)

for n's.k of hyperglycemia n.e. |n.e. |ne |ne |ne |ne |[ne |085 False

detection True |n.e. |n.e. |n.e. |n.e. |n.e [ne |0.89 False
True |True |n.e. |n.e. |n.e. |n.e |[n.e |0.92 True
n.e. |n.e. |[True |n.e. |n.e. |n.e |n.e [095 True
n.e. [n.e. [n.e |ne |ne |ne |True [0.96 True
n.e. |n.e. [n. e |Male |True | No True |0.85 False
True |True |True |n.e. |n.e |n.e |[n.e |0.99 True

After that, it needs to be identified for which of these cases hyperglycemia
actually is suspected, which is represented in the table’s last column, denoted Risk.
Some of the evidence combinations can be disregarded, as they make no sense. It is,
for example, impossible for a patient to have both, prostatic hypertrophy and a
prolapsed bladder. For all remaining cases, it needs to be decided if they represent a
risk or no risk of hyperglycemia and thereby if the corresponding probability value
should be below or above the threshold.

To alleviate this process, validation rules can be specified that cover several
alternatives at once and for which the value for Risk then can be set automatically.
For example, whenever DF = true and PH = false then Risk = true. This rule covers
all cases where the patient suffers from an increase in diuresis frequency but does
not have prostatic hypertrophy. Yet another way of formulating rules is to say, e.g.
whenever two of the variables FI, BW, and SD are true then Risk = true. These
validation rules support the process of partitioning the networks outcome into risk
classes. They can be viewed as expressions of criteria for when a risk of the medical
condition ought to be detected. These criteria may, however, be incomplete.

The next step is to identify if there is a threshold for P(RH) that clearly partitions
all the possible cases into at least two classes one for Risk = true and one for
Risk = false. For that, we need to identify the corresponding probability values for
P(RH) in each of the partitions. For each partition, we calculate the interval from the
lowest value for P(RH) for Risk = false to the highest value for P(RH) for
Risk = false and respectively for P(RH) for Risk = true. If the resulting two
intervals are non-overlapping, which is the case for the network presented in Fig. 1;
we can identify a threshold between these intervals. Each value of P(RH) below this
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threshold results in no risk of hyperglycemia (Risk = false) and the system not
intervening with the person and every value above or equal to the threshold results
into risk of hyperglycemia (Risk = true) and the system intervening with the person.
If the intervals would overlap, the net is not fully valid to diagnose the risk of the
disease without doubt. In that case, the network’s design needs to be adjusted
accordingly.

Additionally, [19] emphasizes that model validity should not only be checked
regarding the model’s outcome, but as well regarding the mechanism through that
the outcome is obtained. They propose seven different types of validity that the net
should be tested for: Nomological validity, face validity, content validity, concur-
rent validity, convergent validity, discriminant validity, and predictive validity.

As mentioned previously, Bayesian networks have been successfully used
within medical diagnostic, which accounts for the nomological validity of our
approach. The model’s face validity is provided by the expert, who was involved in
designing the net, and in analyzing the predictive validity of the net. Content
validity is achieved by consulting the expert, rather than the literature. The expert
decided what variables and what states of the variables need to be modeled with
regard to building a net that models his or her own internal model for risk of
hyperglycemia identification. At this stage, the network does not contain any
reoccurring parts for that concurrent validity needs to be tested. Convergent and
discriminant validity are achieved up to a certain degree through the fact that, as
mentioned before, reasoning in medical diagnosis is usually done from symptoms
to causes. The world is usually modeled in the way that causes are parent nodes of
symptoms. How we achieve predictive validity has been already described above.

4 Discussion and Future Work

In this paper, we described the development of the Bayesian network for automatic
detection of a person being at risk of a medical condition on the example of
hyperglycemia in a diabetic patient. The purpose of the work presented here is to
develop a general method for designing and validating risk detection networks.
Deployment of more and different sensors might improve risk detection The net-
work is based on one expert’s opinion only and it would therefore be interesting to
investigate if a similar network that is based on the elicitation of several experts will
show improved results. However, the next step in our project will be to test the
network’s results against the real world. To identify more risk classes, e.g., no risk,
low risk, risk, high risk, very high risk, would be an additional improvement as the
system is meant to monitor the patients and to encourage them to a healthier life
style. When only a low risk of hyperglycemia is indicated, this could be used to
prompt the patient to generally try to change an unhealthy habit that appears to be
the reason for the risk being apparent. In order to do that, the system must know
what the most likely reason for the diagnosis is. Therefore, explanation methods for
Bayesian networks [20] could be applied.
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Commonly used methods for information fusion can be roughly grouped into
two groups (1) using precise probability e.g. based on Bayesian theory [21] that we
have utilized in this approach and (2) using imprecise probability [22] e.g. different
variants of evidence theory [11], or credal sets e.g. [23]. These two groups differ
from each other regarding how evidence is modeled within the underlying evi-
dential framework and how it is combined [24]. It would be interesting to compare
the performance of imprecise frameworks for the same task.
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