
Formalizing Agents’ Beliefs
for Cyber-Security Defense Strategy
Planning

Karsten Martiny, Alexander Motzek and Ralf Möller

Abstract Critical information infrastructures have been exposed to an increasing

number of cyber attacks in recent years. Current protection approaches consider the

reaction to a threat from an operational perspective, but leave out human aspects of

an attacker. The problem is, no matter how good a defense planning from an opera-

tional perspective is, it must be considered that any action taken might influence an

attacker’s belief in reaching a goal. For solving this problem this paper introduces a

formal model of belief states for defender and intruder agents in a cyber-security set-

ting. We do not only consider an attacker as a deterministic threat, but consider her

as a human being and provide a formal method for reasoning about her beliefs given

our reactions to her actions, providing more powerful means to assess the merits of

countermeasures when planning cyber-security defense strategies.

Keywords Adaptive defense of network infrastructure ⋅ Semantic information

representation ⋅ Situational awareness ⋅ Epistemic logic

1 Introduction

Critical information infrastructures have been exposed to an increasing number of

cyber attacks in recent years. Cyber-physical systems in areas such as power plants

or medical applications require special attention to defend them against any poten-

tial cyber attacks. It is important to note that, due to external constraints, established

security measures—such as patching known vulnerabilities—are only applicable to

a limited extent. Legal requirements might allow only the use of certified software

K. Martiny (✉)

Hamburg University of Technology, Hamburg, Germany

e-mail: karsten.martiny@tuhh.de

A. Motzek ⋅ R. Möller

University of Lübeck, Lübeck, Germany

e-mail: motzek@ifis.uni-luebeck.de

R. Möller

e-mail: moeller@ifis.uni-luebeck.de

© Springer International Publishing Switzerland 2015

Á. Herrero et al. (eds.), International Joint Conference, Advances in Intelligent

Systems and Computing 369, DOI 10.1007/978-3-319-19713-5_2

15

16 K. Martiny et al.

versions, or new patches cannot be applied at a certain point in time because compat-

ibility tests are still pending. A common effect is that external constraints leave crit-

ical information infrastructures exposed to known vulnerabilities, at least for some

time.

An established approach to analyze threats from identified vulnerabilities is the

use of attack graphs. Standard reactions to such an analysis include the proactive

removal of identified vulnerabilities. However, for the intended application area of

our work, these measures are usually not feasible without impairing the mission of

the organization responsible for the critical infrastructure. Therefore, it is of utmost

importance to carefully analyze potential consequences of applicable countermea-

sures or sequences of countermeasures (as part of defense strategies). Maintaining

a model of an intruder’s belief state provides the defender with improved means to

assess the merits of potential defense strategies and novelly allows to analyze effects

of taken actions on a human level.

To formalize the analysis of beliefs, we use Probabilistic Doxastic Temporal
(PDT) Logic to represent the belief states of both the intruder and the defender. We

assume that analysis starts at the last point in an attack graph where immediate conse-

quences are pending, as described in [5, 10]. It is reasonable to react as late as pos-

sible in such scenarios, as intruders (or attackers) already spent significant efforts

reaching into the network. As any action—including false alarms—might impact

the network in the same way as a real attack, reactive measures have to be used very

carefully. The approach presented in this paper aids the defender in selecting the best

countermeasure by providing means to reason about the belief states of an attacker.

The remainder of this paper is structured as follows. An overview of related work

is given in Sect. 2. After a summary of PDT Logic in Sect. 3, we show how the

attacker’s and defender’s beliefs can be formalized in Sect. 4 and discuss a small

example to show how beliefs evolve differently, depending on the respective obser-

vations. Finally, the paper concludes with Sect. 5.

2 Related Work

Automatic attack graph generation has been an active topic of research. Starting in

about 1998 with [11], newer contributions such as MulVal [9] and, e.g., studies such

as [4] pave the way for better cyber security. Formal methods of analyzing attack

graphs are introduced in [5], which will serve as a base for our example.

Attack graphs provide an excellent base for creating corresponding defense strate-

gies, which range from analysis of efficient placement of intrusion detection sys-

tems [8] over employing an integer optimization problem in selecting the current

best countermeasure [13, 14] up to addressing situational awareness in quantitative

scores such as [15] and validation of overall network defense as in [6]. However, indi-

rect consequences—such as accidentally revealing information to an opponent—are

not considered. We provide a formal method for analysis of indirect consequences

and an automated consideration in defense planning.

Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy Planning 17

Forms of intruder-defender-interactions have been studied on a personal level for

instance in [12] and [16], but do only address the issue from a “psychological” point

of view and do not provide means to formalize such behaviors. Studying intruders

on a personal level comes along with developing attacker profiles and the distinction

of different priorities and behaviors of attackers. Such profiles have notably been

studied by Chiesa in [2, 3], but do not provide an assessment of consequences, or

even formalisms of such profiles, on an (automated) process of defense planning.

Ref. [1] proposes an automated approach considering behavioral models in cyber

security, but focuses mostly on intruder detection, while a suitable countermeasure

selection is not achieved.

While all those fundamental pieces for an assessment of agent beliefs in defense

planning exist in the literature, their interaction is not covered. This paper proposes

theoretic fundamentals for a formalized assessment of agent beliefs in cyber-security

defense planning.

3 PDT Logic

In order to formally represent the belief states of both the intruder and defender, we

use PDT Logic [7], a formalism to represent and reason about probabilistic beliefs

and their temporal evolution in multi-agent systems. This section provides a sum-

mary of the key concepts of PDT Logic that are used utilized in this work.

Syntax We assume the existence of a first order logic language with finite sets of

constant symbols cons and predicate symbols pred, and an infinite set of variable

symbols var. Every predicate symbol p ∈ pred has an arity. Any member of the

set cons ∪pred is called a term. A term is called a ground term if it is a member of

cons. If t1,⋯ , tk are (ground) terms, and p is a predicate symbol in pred with arity

n, then p(t1,⋯ , tk) with k ∈ {0,⋯ , n} is a (ground) atom. If a is a (ground) atom,

then a and ¬a are (ground) literals. The former is called a positive literal, the latter

is called a negative literal. The set of all ground literals is denoted by lit. Formulas
are built using ∧,∨,¬ as usual.  denotes the Herbrand Base of , i.e., the set of

all ground atoms that can be formed through from pred and cons. Time is modeled

in discrete steps. Generally, the set of agents  may be arbitrarily large, but for this

work, we assume that the set of agents consists of a intruder I and a defender D.

Observation atoms To express that some group of agents  ⊆  observes some

fact F ∈ lit, we use the notion Obs(F). Note that F may be a negative literal and

therefore we can explicitly specify observations of certain facts being false (such as

“it is not raining”). We assume that the agents in  not only observe that l holds, but

that each agent in  is also aware that all other agents in make the same observation.

The set of all observation atoms is denoted by obs.
Possible Worlds The concept of possible worlds describes what combinations of

events can actually occur in the modeled scenario. I.e., a world consists of a set of

ground atoms and a set of observation atoms, describing what events actually hold

and what is observed in this world, respectively. The set of all possible worlds is

18 K. Martiny et al.

denoted by W ⊂ 2 × 2obs . If an agent is not able to differentiate between different

possible worlds, we say that these worlds are indistinguishable to this agent. Namely,

an agent i cannot distinguish two possible worlds w1 and w2, if both worlds contain

exactly the same set of observations for agent i. We use i(w) to denote the set

of worlds that agent i cannot distinguish from world w. Naturally, if i considers w
as actually being possible (because it complies with all of i’s observations), it also

considers all worlds i(w) possible.

Threads To describe the temporal evolution of the modeled scenario, we use the

concept of threads: A thread is a mapping Th ∶ 𝜏 → W. Thus, a thread is a sequence

of worlds and Th(t) identifies the actual world at time t according to thread Th. The

set of all possible threads is denoted by  .

Subjective posterior probabilistic temporal interpretations Every possible thread

in the modeled scenario can be associated with a probability value that describes

how likely it is that the model evolves exactly according to the respective thread.

Such a probability distribution across all possible threads is called a probabilistic
interpretation. Initially, a probability distribution over the set of threads is given

by the prior probability assessment , which is the same for all agents. With the

occurrence of certain observations, agents will update their respective probability

assessments over the set of threads. For instance, if some agent observes a specific

fact, it will only consider threads possible, which actually contain this observation,

i.e., the agent’s probability assessments for all other threads will be updated to 0,

while another agent, who did not make this observation, might still consider these

threads possible. Thus, with the evolution of time, every agent maintains subjec-
tive interpretations.Since these interpretations depend on the occurrence of events

in a specific thread, at a single time point different interpretations could be possible,

depending on the actual thread. The subjective posterior probabilistic interpretation

that an agent i associates to a thread Th at time t, given that the point-of-view thread

is Th′ is denoted by 
Th′
it (Th).

Subjective posterior probabilistic temporal interpretation In the beginning the

probability distribution for the threads is given by the prior probability assessment
. It is the same for all agents. With the observation of an event by one or a group

of agents, the interpretation for every agent needs to be updated. With agent i, time

point t, and point of view thread Th the update rule is


Th′
it (Th) =

⎧
⎪
⎨
⎪
⎩

1
𝛼

Th′
it

⋅ Th′
it−1(Th) if Th(t) ∈ i(Th′(t))

0 if Th(t) ∉ i(Th′(t))
(1)

with

𝛼

Th′
it =

∑

Th′
it−1(Th) ∶ Th(t) ∈ i(Th′(t)).

The threads that were possible at time t − 1 are examined, if they are still possible

at time t. 𝛼Th′it is the sum of the probabilities at time t − 1 of all possible threads at

Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy Planning 19

time t. These probabilities are divided by 𝛼

Th′
it and this leads to the new probability

distribution, the subjective posterior probabilistic temporal interpretation 
Th′
it (Th)

at time t of agent i. We assume a synchronous system, so the agents can distinguish

between the worlds Th(t) and Th(t − 1) even if they made no observation.

Belief in ground formulae Blu
it′ (Ft) is a belief formula indicating that an agent i

believes with a probability in a range of [l, u] that a formula F, which was satisfiable

at time t, still holds at time t′


Th′
it′ ⊧ Blu

it′ (Ft) iff l ≤
∑

Th∈ ,Th(t)⊧F

Th′
it′ (Th) ≤ u. (2)

Nested beliefs A nested belief is the belief of an agent in another agent’s belief.

Agent i believes at time t′ with a probability in the range [l, u] that agent j believes

at time t in a belief formula B with a probability in the range of [lj, uj]


Th′
it′ ⊧ Blu

it′ (B
ljuj
jt (F)) iff l ≤

∑

Th∈


Th
jt ⊧B

ljuj
jt (F)


Th′
it′ (Th) ≤ u. (3)

4 Formalizing Agents’ Beliefs

4.1 Considerations on the Target Domain

As discussed in Sect. 1, we are concerned with situations where preventive security

measures are not always an option. Thus, the network might be exposed to known

vulnerabilities and the defender is left with choosing the best reactive countermea-

sure in case of an attack. Since we start our analysis at the last point in an attack

graph, we have to assume that any attacker breaching this point is highly skilled

(e.g., as described in [2]) and has already obtained extensive information about our

network.

Any attack to the network consists of (at least) two actions: First, the attacker

has to gain access to a target system with appropriate privileges. Then, custom code

can be executed on this system to reach the attacker’s actual goal. We do model the

details of these steps, but abstractly represent the first step as an attack on a system

resulting in a gained shell (e.g., through exploitation of known vulnerabilities), and

the second step as some code execution on the target system. After having success-

fully obtained a shell on the target system, the attacker basically has two options:

either she can proceed with the second stage of her attack (i.e., code execution) or

she can try to gain access to further systems. Both options come with advantages

and drawbacks for the intruder: continuing to attack further systems might result in

additional compromised systems, but at the same time decreases the chance of per-

forming an attack undetected. The choice of action depends on the attacker’s actual

20 K. Martiny et al.

goal; she might even attack another system without actually executing code there,

but only to create distractions from her actual goal.

A network based intrusion detection system (IDS) can be used to detect attack

actions on specific systems. However, in practice no IDS is perfect, i.e., both false

alarms and missed attacks have to be considered when employing an IDS. This is an

important point when planning defense strategies: if every detected attack is coun-

tered with a corresponding defense action, the lack of such a defense lets the attacker

know that her attack went undetected and she might proceed with executing mali-

cious code without having to fear any actions from the defender. Furthermore, delib-

erately letting the attacker execute code on a non-critical target host can provide valu-

able insights: an analysis of the executed code will reveal the actual goal of the attack

and might further reveal the identity of the attacker. Another reason for refraining

from a defense operation is that this action (e.g., unplugging a control server) might

impact the mission success just as much as an attack. Consequently, deliberately let-

ting an observed attack pass undefended might provide higher expected utility for

the defender. By analyzing the potential evolution of the attacker’s belief states, the

choice of not defending can even be used to drive the attacker to false conclusions

regarding her success.

Continuing these considerations, it might prove useful for the defender to main-

tain some kind of “honeypot” within the network. In its classical form, a honeypot is

a system that has no productive meaning but is used instead to attract attackers and

thereby provides means to analyze their goals and identities. However, since in our

scenario we are dealing with highly skilled attackers, we have to assume that they

would be able to identify such a honeypot immediately. Still, we can adapt the con-

cept of honeypots to our model by maintaining backup devices of critical systems.

These backup devices are disconnected from the physical world but otherwise indis-

tinguishable from the actual productive system. This way, an intruder does not know

which one the critical system is, but if she executes malicious code on the honeypot,

she is not able to impact the mission success, but instead unknowingly provides the

defender with the possibility to analyze the code and identify the attacker.

4.2 An Exemplary Domain Model

In the following, we introduce a small example to show how we can formally model

potential attacks in a computer network and apply PDT Logic to analyze the evolu-

tion of the agents’ belief states.

As explained in Sect. 3, our scenario contains two agents, the defender D and the

intruder I. Following the considerations from the previous section, we assume that

two systems are present in this network: some honeypotA and the corresponding crit-

ical system B. Possible actions on a system X are denoted by attack(X) and defend(X)
with the obvious meanings. Furthermore, execution of malicious code on a system X
is denoted by exec(X). Finally, we have observation atoms such as ObsD(attack(A)),
indicating that the defender observed an attack on system A.

Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy Planning 21

Building on these events, we can construct a set of threads representing all pos-

sible event sequences in this example. The resulting set is depicted in Fig. 1.

This model represents our considerations from the previous section: analysis

starts at some time when no attack has occurred yet (t = 0). Possible subsequent

events are then attacks on system A or system B) (represented through nodes 53

and 78 in the graph) or no attacks (node 1). If an attack has occurred on, say, sys-

tem A, the IDS can detect this attack (i.e., an ObsD(attack(A)) occurs, represented

through the solid outgoing edges from node 53), or the attack is not detected (repre-

sented through the dashed line). For an undetected attack, the defender obviously has

no options to defend against this. For an observed attack, the defender can choose

between defending against this attack (node 55) or deliberately refrain from a defense

(node 56). A defense forces the intruder to abort his attack (with potential downsides

to the defender’s mission). Lack of a defense action gives the intruder two options

again: she can execute her malicious code on the attacked system (nodes 66 and

77), or she can proceed to attack the other system (nodes 57 and 68). After a sec-

ond attack, possible subsequent events match the ones discussed for the first attack.

Finally, if the first attack has not been defended, there are various options for the

intruder to execute malicious code: if the second attack is defended, the attacker can

execute the code only on the previously attacked system (nodes 63 and and 74), oth-

erwise she can choose between executing code only on the previously attack system

(e.g., node 61) or on both systems (e.g., node 62). If an attack has been detected by

the IDS, the defender is able to observe these code executions (denoted in black),

t

0

1

2

3

4

5

6

7

¬d()
0

1.00000000

¬a()
1

0.90000000

¬d()
2

0.90000000

a(A)

3

0.04500000

¬d(A)
4

0.00900000

d(A)

5

0.02520000

¬d(A)
6

0.01080000

a(B)

7

0.00360000

¬d(B)
8

0.00072000

d(B)

9

0.00201600

¬d(B)
10

0.00086400

e(A)

11

Th0

0.00025200

e(A)
e(B)

12

Th1

0.00046800

e(A)

13

Th2

0.00201600

e(A)

14

Th3

0.00030240

e(A)
e(B)

15

Th4

0.00056160

e(A)

16

Th5

0.00540000

abort()

17

Th6

0.02520000

a(B)

18

0.00432000

¬d(B)
19

0.00086400

d(B)

20

0.00241920

¬d(B)
21

0.00103680

e(A)

22

Th7

0.00030240

e(A)
e(B)

23

Th8

0.00056160

e(A)

24

Th9

0.00241920

e(A)

25

Th10

0.00036288

e(A)
e(B)

26

Th11

0.00067392

e(A)

27

Th12

0.00648000

a(B)

28

0.04500000

¬d(B)
29

0.00900000

d(B)

30

0.02520000

¬d(B)
31

0.01080000

a(A)

32

0.00360000

¬d(A)
33

0.00072000

d(A)

34

0.00201600

¬d(A)
35

0.00086400

e(B)

36

Th13

0.00025200

e(B)
e(A)

37

Th14

0.00046800

e(B)

38

Th15

0.00201600

e(B)

39

Th16

0.00030240

e(B)
e(A)

40

Th17

0.00056160

e(B)

41

Th18

0.00540000

abort()

42

Th19

0.02520000

a(A)

43

0.00432000

¬d(A)
44

0.00086400

d(A)

45

0.00241920

¬d(A)
46

0.00103680

e(B)

47

Th20

0.00030240

e(B)
e(A)

48

Th21

0.00056160

e(B)

49

Th22

0.00241920

e(B)

50

Th23

0.00036288

e(B)
e(A)

51

Th24

0.00067392

e(B)

52

Th25

0.00648000

a(A)

53

0.05000000

¬d(A)
54

0.01000000

d(A)

55

0.02800000

¬d(A)
56

0.01200000

a(B)

57

0.00400000

¬d(B)
58

0.00080000

d(B)

59

0.00224000

¬d(B)
60

0.00096000

e(A)

61

Th26

0.00028000

e(A)
e(B)

62

Th27

0.00052000

e(A)

63

Th28

0.00224000

e(A)

64

Th29

0.00033600

e(A)
e(B)

65

Th30

0.00062400

e(A)

66

Th31

0.00600000

abort()

67

Th32

0.02800000

a(B)

68

0.00480000

¬d(B)
69

0.00096000

d(B)

70

0.00268800

¬d(B)
71

0.00115200

e(A)

72

Th33

0.00033600

e(A)
e(B)

73

Th34

0.00062400

e(A)

74

Th35

0.00268800

e(A)

75

Th36

0.00040320

e(A)
e(B)

76

Th37

0.00074880

e(A)

77

Th38

0.00720000

a(B)

78

0.05000000

¬d(B)
79

0.01000000

d(B)

80

0.02800000

¬d(B)
81

0.01200000

a(A)

82

0.00400000

¬d(A)
83

0.00080000

d(A)

84

0.00224000

¬d(A)
85

0.00096000

e(B)

86

Th39

0.00028000

e(B)
e(A)

87

Th40

0.00052000

e(B)

88

Th41

0.00224000

e(B)

89

Th42

0.00033600

e(B)
e(A)

90

Th43

0.00062400

e(B)

91

Th44

0.00600000

abort()

92

Th45

0.02800000

a(A)

93

0.00480000

¬d(A)
94

0.00096000

d(A)

95

0.00268800

¬d(A)
96

0.00115200

e(B)

97

Th46

0.00033600

e(B)
e(A)

98

Th47

0.00062400

e(B)

99

Th48

0.00268800

e(B)

100

Th49

0.00040320

e(B)
e(A)

101

Th50

0.00074880

e(B)

102

Th51

0.00720000

¬a()
103

0.81000000

104

0.81000000
Th52

Fig. 1 Possible threads for the example domain. a(X), d(X), and e(X) denote attack, defend and

code execution actions on node X, respectively. A defender’s observation of an attack a(X) is marked

through a solid edge (blue), a lack of an observation with a dashed edge. Unobserved code execu-

tions are marked in bold-red e(X), otherwise they are marked roman-black e(X). Terminal nodes of

threads are marked in gray

22 K. Martiny et al.

for undetected attacks, subsequent code executions will remain undetected as well

(marked in bold red in the graph). If no attacks occur at all, the system continues in

its normal state as indicated through node 104—allowing for equivalent branchings

of the graph if attacks occur at later points in time.

Note that in most states of this model, none of the agents has complete knowledge

of the world. For instance, if the defender does not observe an attack at time t = 2, he

cannot distinguish between undetected attacks on either system or the actual absence

of an attack (i.e., he considers nodes 54, 2, and 79 as actually being possible). If the

intruder actually attacked a system and does not observe a defense action, she does

not know whether her attack was actually undetected or whether it was observed and

intentionally not defend (i.e., she is unable to distinguish between nodes 54 and 56,

or 79 and 81, respectively) (Table 1).

To assign probabilities to every thread in this scenario, we start with assigning

probabilities to single events. Then, we can determine the probability of a thread

as a joint probabilities of the respective events contained in this thread. Reasonable

values of single events corresponding to the considerations in Sect. 4.1 are given in

the following table. The resulting probabilities of individual nodes are depicted in

Fig. 1.

Table 1 Single event probabilities for the example

Event Probability
Attack on a specific system at a specific time

point

0.05

Attack detected by the IDS 0.80

Defend action after an observed attack 0.70

Second attack after a successful first attack 0.40

Code execution on both nodes after two attacks 0.65

4.3 Evolution of Beliefs

To illustrate how we can use this example to analyze the evolution of both agents’

beliefs, let us assume that the intruder has attacked system A at time t = 3 (i.e., the

actual world at t = 3 is represented through node 3). If the defender has observed

this attack, he has to decide whether to defend the system against this attack or not.

However, even if the defender observed this attack, he is not able to identify the actual

node in the attack graph, because he is unable to distinguish between the situation

where attack(A) is the first action (node 3) and the situation where this was preceded

by an undetected attack onB (node 82). To analyze the defender’s expectations for the

worst case (an unobserved code execution on the productive system B, i.e., exec(B)∧
¬ObsD(exec(B)), one can analyze the threads containing nodes 5 or 84, and 6 or

Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy Planning 23

85 in Fig. 1, respectively. By summing over the normalized probabilities of these

respective threads, where the terminal node contains exec(B)∧¬ObsD(exec(B)), one

can verify that the following holds:

¬defend(A) at t = 4 ⊧ B0, 0.05
D,4 (exec(B) ∧ ¬ObsD(exec(B))), and

defend(A) at t = 4 ̸⊧ B0, 0.05
D,4 (exec(B) ∧ ¬ObsD(exec(B))).

I.e., the defender has lower expectations in the worst case actually happening if he

choses to defend this attack. Consequently, we assume that the defender decides

against a defend action, and we consider node 6 as the actual node for the follow-

ing discussions. Next to protecting the system against the worst case, the defender

is also interested in getting opportunities to analyze the intruder’s malicious code.

We can express his beliefs in observing a code execution (i.e., ObsD(exec(A)) ∨
ObsD(exec(B)) as

¬defend(A) at t = 4 ⊧ B0.9, 1
D,4 (ObsD(exec(A)) ∨ ObsD(exec(B))).

If the defender chooses not to take any defensive action, the intruder in turn is

unable to distinguish between the situations where the defender deliberately took

no action and where the defender simply missed the attack, i.e., the defender con-

siders all threads possible that contain node 6 or node 4. Thus, the intruder has the

following belief in actually being able to execute malicious code on a target system

undetectedly:

¬ObsI(defend(A)) at t = 4 ⊧ B0, 0.2
I,4 (𝜙),

with 𝜙 = ¬ObsD(exec(A)) ∧ ¬ObsD(exec(B)) ∧ (exec(A) ∨ exec(B))

Since both the intruder and defender know the possible attack sequences, it is also

possible to analyze belief states of the respective opponent: In the considered situ-

ation, the defender knows that the attacker has not observed any defense action and

can therefore not distinguish between nodes 4 and 6. However, since the defender

was not able to rule out a previous attack on B, from his point of view the intruder

could still also consider nodes as 83, 85, 94, and 96 as possible (these are the nodes

where B was attacked before and no defend action was taken). Still, the defender has

a rather high belief in the intruder’s actual belief state, as expressed in the following

nested belief:

B0.8, 1
D,4 (B0.0, 0.2

I,4 (𝜙))

24 K. Martiny et al.

5 Conclusion

In this paper we proposed a well-defined theory to formalize multi-agent beliefs in a

security context. This formal representation enables the analysis of the adversary’s

belief evolution depending on specific actions. At a minimalistic example we demon-

strated how a formal belief state analysis can be carried out. Next to formal represen-

tations of both the intruder’s and defender’s beliefs, this is especially useful to gain

an opportunity to reason about nested beliefs. This provides novel means of assess-

ing the expected utility of any action when planning a defense strategy: Along with

analyzing the direct effect of any action on the network, we can also analyze how any

action will influence the belief state of the opponent. With the use of more sophisti-

cated attack models, this enables the defender to drive the intruder into desired safe

states, where the intruder expects to achieve her goal, but is actually unable to cause

real harm.

We only chose a minimalistic example because a manual analysis in complex

attack graphs becomes infeasible by hand due to an excess amount of possible worlds.

Still, PDT logic performs well in those and does not limit our approach. Future work

includes a description of an—currently in implementation—autonomous system for

analysis of complex attack graphs and an experimental evaluation of the demon-

strated profound theoretic approach in complex settings.

References

1. Brdiczka, O., Liu, J., Price, B., Shen, J., Patil, A., Chow, R., Bart, E., Ducheneaut, N.: Proactive

insider threat detection through graph learning and psychological context. In: Security and

Privacy Workshops (SPW), pp. 142–149. IEEE (2012)

2. Chiesa, R.: Peering in the soul of hackers: HPP (the hacker’s profiling project) v2.0 reloaded.

In: 8.8 Security Conference, Santiago, Chile. 8dot8 (2012)

3. Chiesa, R., Ducci, S., Ciappi, S.: Profiling Hackers: the science of criminal profiling as applied

to the world of hacking. CRC Press (2008)

4. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network

defense. In: Computer Security Applications Conference, pp. 121–130. IEEE (2006)

5. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Computer Security

Foundations Workshop, pp. 49–63. IEEE (2002)

6. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M., Cunningham,

R.: Validating and restoring defense in depth using attack graphs. In: Military Communications

Conference (MILCOM), pp. 1–10. IEEE (2006)

7. Martiny, K., Möller, R.: A probabilistic doxastic temporal logic for reasoning about beliefs

in multi-agent systems. In: 7th International Conference on Agents and Artificial Intelligence

(ICAART) (2015)

8. Noel, S., Jajodia, S.: Optimal IDS sensor placement and alert prioritization using attack graphs.

J. Netw. Syst. Manag. 16(3), 259–275 (2008)

9. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security analyzer. In:

USENIX Security (2005)

10. Ou, X., Singhal, A.: Attack graph techniques. In: Quantitative Security Risk Assessment of

Enterprise Networks, pp. 5–8. Springer (2011)

Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy Planning 25

11. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis. In: Workshop

on New Security Paradigms, pp. 71–79. ACM (1998)

12. Rogers, M.K.: A social learning theory and moral disengagement analysis of criminal computer

behavior: An exploratory study. Ph.D. thesis, University of Manitoba (2001)

13. Roy, A., Kim, D.S., Trivedi, K.: Cyber security analysis using attack countermeasure trees. In:

6th Annual Workshop on Cyber Security and Information Intelligence Research, p. 28. ACM

(2010)

14. Roy, A., Kim, D.S., Trivedi, K.: Scalable optimal countermeasure selection using implicit enu-

meration on attack countermeasure trees. In: Dependable Systems and Networks, pp. 1–12.

IEEE (2012)

15. Sommestad, T., Ekstedt, M., Johnson, P.: Cyber security risks assessment with bayesian

defense graphs and architectural models. In: 42nd Hawaii International Conference on Sys-

tem Sciences, pp. 1–10. IEEE (2009)

16. Theoharidou, M., Kokolakis, S., Karyda, M., Kiountouzis, E.: The insider threat to information

systems and the effectiveness of ISO17799. Comput. Secur. 24(6), 472–484 (2005)

http://www.springer.com/978-3-319-19712-8

	Formalizing Agents' Beliefs for Cyber-Security Defense Strategy Planning
	1 Introduction
	2 Related Work
	3 PDT Logic
	4 Formalizing Agents' Beliefs
	4.1 Considerations on the Target Domain
	4.2 An Exemplary Domain Model
	4.3 Evolution of Beliefs

	5 Conclusion
	References

