
A View Based Approach for Enhancing
Web Services Availability

Hela Limam and Jalel Akaichi

Abstract With the advance of Web services technologies and the emergence of
Web services into the information space, tremendous opportunities for empowering
users and organizations appear in various application domains including electronic
commerce, travel, intelligence information gathering and analysis, health care,
digital government. Hence, Web services appear to be a solution for integrating
distributed, autonomous and heterogeneous information sources. However, as Web
services evolve in a dynamic environment which is the Internet many changes can
occur, affect them and make them become unavailable. This presents us with the
problem of substituting them, while maintaining the whole Web service function-
ality. In this paper, we propose an approach for solving this problem. We present
several algorithms for solving several variants of this problem. Our work is illus-
trated with a healthcare case study.

Keywords Web services ⋅ Substitution ⋅ Schema changes ⋅ Healthcare

1 Introduction

Synchronization within highly dynamic environments such as Internet is far away
from being trivial. In fact it is the trickiest environment one could image due to its
unpredictable behavior. Unfortunately, there is no satisfactory solution which
guaran-tees Web service availability in such a situation. It makes sense to work on a
solution for the usual scenario, which, anyway, has to deal with the unavailable
Web services situation due to unemployment of individual Web services caused by
changes which can alter their contents. Motivation for substitution includes Web

H. Limam (✉) ⋅ J. Akaichi
BestMod Laboratory, Institut Supérieur de Gestion, Tunis, Tunisia
e-mail: Hela1.limam@laposte.net

J. Akaichi
e-mail: Jalel.akaichi@isg.rnu.tn

© Springer International Publishing Switzerland 2015
Á. Herrero et al. (eds.), 10th International Conference on Soft Computing Models
in Industrial and Environmental Applications, Advances in Intelligent Systems
and Computing 368, DOI 10.1007/978-3-319-19719-7_2

15

services non-responsiveness to client requests and better arrangement with another,
competitor Web service. To perform Web services substitution with less impact on
the ongoing, and sometimes critical, business processes, we propose in this paper an
approach based on different components and algorithms.

The solution is a mediator able to integrate information sources into Web ser-
vices while addressing the substitution issue for affected Web services based on
EVE framework [1].

Since EVE system proposes a prototype solution to automate view definitions
re-writing [2, 3]. We proposed new algorithms for solving the problem of changes
within the Web services leading to unavailability of systems and resources. Problem
can be emphasized together with the growing dynamics of online services and
changes of schema. Solution is based on three components including meta
knowledge base, view knowledge base and web services synchronization algorithm.
Approach uses service equivalents and evaluation of substitute service.

This paper is organized as follows: Sect. 2 describes the related works. Section 3
introduces the Web service model for gathering information sources. In Sect. 4, we
present the Web services synchronization solution by presenting the middleware
main components and our illustration by the healthcare application. In Sect. 5, we
intro-duce our Web services synchronization algorithms AS2 W. Section 6 gives
details of the implementation and Sect. 7 concludes our work and presents some
insights for future works.

2 Related Works

In the information space, data providers are autonomous. However, they usually
have control over the schemas of their information sources which raises the
question of the influence of schema changes, that can render affected view defi-
nition undefined [4–6]. Different approaches for addressing this problem have been
presented in the literature. Service synchronization or substitution based on the
functional properties of components has been addressed by many authors [7–11].

What sets us apart from the proposed approaches is that we aim at addressing the
service synchronization problem taking into account the detection of changes which
can occur on information sources from which Web services are constructed. In this
context, EVE project [12, 13], offers a generic framework within which a view
adaptation is solved when underlying information sources change their capabilities.
It neither relies on a globally fixed domain nor on ontology of permitted classes of
data, both strong assumptions that are often not realistic. Instead, views are built in
the traditional way over a number of base schemas and those views are adapted to
base schema changes by rewriting them using information space redundancy and
relaxable view queries [14]. The benefit of this approach is that no pre-defined
domain is necessary, and a view can adapt to changes in the underlying data by
automatically rewriting user queries, thanks to synchronization algorithms. This
framework has opened up a new direction of research by identifying view

16 H. Limam and J. Akaichi

synchronization as unexplored problem of current view technology in the WWW.
Our approach distinguishes itself from EVE [12] by the fact that we rely on specific
advanced applications on the WWW which are Web services. Another novelty of
our approach is to apply our work is the health care domain.

3 Web Services Model

In today’s collaborative environment, Web services appear to be a privileged mean
to interconnect applications across organizations. Web services are software sys-
tems designed to support interoperable machine-to-machine interaction over a
network [15]. They are modular applications with interface descriptions that can be
published, located, and invoked across the Web [16].

Different formalisms are proposed in the literature for modelling Web services.
In [17–19], state machine formalism is used for the description of Web services.
This choice is justified by the fact that the state machine is simple especially to
describe Web services conversation. The states represent phases through it passes
the service while interacting. In [20, 21], Web services are modelled using state
chart diagram which is a graphic representation of a state machine. The service
chart diagram is based on the UML state chart diagram to specify Web services
components. None of the studied formalisms can be suitable for modelling the
changes that can occur on Web services.

In this section we introduce a novel approach for modelling and specifying Web
services. This approach sheds the light on two types of behaviours: presentation and
dynamic parts where:

• The dynamic Web service includes information sources access using views
• The static Web service part contains the presentation components

Web service presentation and dynamic parts are executed iteratively as given in
Algorithm 1.

Web services are constructed from views which are built from distributed,
heterogeneous and autonomous information sources. Each information source has
its own schema composed of relations and attributes. In several cases, Web service
is undefined so it should be substituted by another Web service as modelled in
Fig. 1.

A View Based Approach for Enhancing … 17

The relations between the different components are formalized in Table 1
In several cases, Web services are unavailable so we need to substitute them. In

our case Web services are undefined due to schema changes which may render
views (dynamic part) undefined. So Web service substitution reach on substituting
Web Service dynamic part by rewriting affected views.

Let WS be a Web service and Vi the set of views defined accessed by Web
service dynamic part. We suppose that the view V is undefined after schema
changes. The Web service WS is synchronized to the Web service WS’ with V
rewritten on V’∈ Vi according to Algorithm 2.

Fig. 1 Web service
components relation

Table 1 Relations between
web services components

Let WS be a Web service, WS = {V1,…,Vn}
With Vi: views called by Web service WS,

|Vi| ≥ 1,
n : total number of views called by WS

Let V be a view, V = {IS1,…, ISn}
With ISi : information sources from which the view V is
constructed.

|ISi| ≥ 1,
n : total number of information sources from which the view
V is constructed

Let SI be an information source, IS = {R1,…,Rn}
With Ri : relations which belong to the information source IS,

|Ri| ≥ 1,
n : total number of relations which belong to the information
source IS

Let R be a relation, R = {A1,…,An}
With Ai : the attributes which belong to the relation R,

|Ai| ≥ 1,
n : total number of attributes which belong to the relation R

Let WS be a Web service, WS = {WS1,…,WSn}
with WSi the Web service replacement list

18 H. Limam and J. Akaichi

The substitute Web service can be equivalent (≡), superset (⊇), subset (⊆) or
indifferent (≈) to the initial Web service.

• The substitute Web service is equivalent (≡) to the initial Web service, if all
dynamic part views of the substitute Web service are equivalent to all dynamic
part views of the initial Web service.

• The substitute Web service is a superset (⊇) of the initial Web service, if at least
one of the dynamic part views of the substitute Web service is a superset of one
of the dynamic part views of the initial Web service.

• The substitute Web service is a subset (⊆) of the initial Web service, if at least
one of the dynamic part views of the substitute Web service is a subset of one of
the dynamic part views of the initial Web service.

• The substitute Web service is indifferent (≈) of the initial Web service, if all
dynamic part views of the substitute Web service are indifferent to all dynamic
part views of the initial Web service.

4 Web Services Synchronization Framework

Web services are built from distributed, heterogeneous, autonomous information
sources which change continuously not only contents but also their schema which
may render Web services undefined. We propose therefore a synchronization
process which consists of detecting schema changes and substituting affected Web
services. Only the two operations attribute deletion and relation deletion affect Web
services. The Web service synchronization algorithm searches possible substitution
of the affected component (attribute or relation) using WSMKB constraints and
WSVKB constraints. Our solution takes the form of a middleware connecting Web
services to information sources as shown in Fig. 2.

A View Based Approach for Enhancing … 19

4.1 Web Services Meta Knowledge Base (WSMKB)

Information sources joining the system must provide its structures and its contents
to be stored in the WSMKB (Fig. 3). Relationships between information sources
have to be added to WSMKB as substitution rules as given in Figs. 4, 5 and 6.
The WSMKB constraints are represented respecting a model called MISD [3].
WSMKB can be organized as follow:

• WS (WSid, WSISidList): Web services with information sources from which
they are built as given in Fig. 7.

• IS (ISid, ISRidList): information sources and their included relations. Relations
(Rid, AttList): relations and their included attributes.

• The relationships between information sources or substitution constraints such
as type integrity constraints, join constraints and partial/complete constraints.

• Replacement (WSid, WSreplacementList): Web services and their substitution
Web services list as given in Fig. 8.

In the following, we give an example of healthcare application. Each information
sources have their own schemas and contents.

Fig. 2 The system architecture

20 H. Limam and J. Akaichi

A type integrity constraint of a relation R(A1,…,An) states that an attribute Ai is
of domain type Typei. It allows verifying substitution possibility of an attribute by
another while synchronizing Web services. A type integrity constraint is defined as
follow: TCR(A1,…,An) = R(A1,…,An) ⊆ A1(Type1) × … × An(Typen)

The type integrity constraints are expressed in the following

Join constraint between two relations R1 and R2 states that attributes in R1 and
R2 can be joined. It allows verifying substitution possibility of a relation by another
while synchronizing Web services. Join constraint between two relations R1 and R2
is defined as follow: JCR1,R2 = (C1 AND …AND Cn)

In the following we state the list of the join constraints related to our example

TC Type integrity constraints

TC1
TCS1.Patient(IdP, Name, Age, Tel, IdH) = Patient (IdP, Name, Age, Tel, IdH)⊆
IdP(Number) Name(String) Age(Number) Tel(Number) IdH(Number)

TC2
TCS1.Doctor(IdD, Name, Speciality) = Doctor (IdD, Name, Speciality)⊆ IdD(Number)

Name(String) Speciality(String)

Fig. 4 Type integrity constraints

S1

Patient (IdP, Name, Age, Tel, IdH)

Doctor (IdD, Name, Speciality)

Hospital (IdH, Name, Localization)

Doctor_Hospital (IdD, IdH)

Diagnostic (IdP, IdD, DateT, Result)

Operation (IdP, IdD, DateO, Result)

S2

Patient (IdP, Name, Age, Tel, IdH, Med_Resp)

Doctor (IdD, Name, Speciality, IdS)

Hospital (IdH, Name, Localization)

Doctor_Hospital (IdD, IdH)

Diagnostic (IdP, IdD, DateT, Result)

Operation (IdP, IdD, DateO, Result)

Service (IdS, Speciality)

Fig. 3 Information sources schemas

JC Join constraints
JC1 S1.Patient.Name = S2.Patient.Name

JC2 S1.Patient.Name = S3.Patient.Name

Fig. 5 Join constraints

A View Based Approach for Enhancing … 21

Partial/complete constraint between two relations R1 and R2 states that the
relation R1 (or a fragment of the relation R1) is a subset, a superset or equivalent to
the relation R2 (or a fragment of the relation R2). Partial/complete constraint is
defined as follow: PCR1,R2 = (πAi1,…,Aik(σC(Aj1,…,Ajp)R1) θ πAn1,…,Ank(σC(Am1,…,

Aml)R2))

4.2 Web Services View Knowledge Base WSVKB

Views definition using E-SQL and relations between Web services and its accessed
views are given in Fig. 11. E-SQL [3] language allows user preferences inclusion in
views definition to indicate how views can evolve after schema changes.

In an E-SQL query, each attribute, relation or condition has two evolution
parameters. The dispensable parameter indicates if view components can be con-
served (XD=False) or dropped (XD=True) from the substitute view. The
replaceable parameter indicates if view components can be substituted (XR=True)
or not (XR=False). Here X can be an attribute, a relation or a condition and the
default value is False.

View extension parameters VE proposed by E-SQL states that the substitute
view can be equivalent (≡), superset (⊇), subset (⊆) or indifferent (≈) to the initial
view.

PC Partial/ complete constraints

PC1 PCS1.Patient,S2.Patient = (IdP, Name, Age, Tel(S1.Patient) IdP, Name, Age, Tel(S2.Patient))

PC2 PCS1.Doctor,S2.Doctor = (IdD, Name, Speciality(S1.Doctor) IdD, Name, Speciality (S2.Doctor))

PC3 PCS1.Hospital,S2.Hospital=(IdH, Name, Localization(S1.Hospital) IdH, Name, Localization (S2.Hospital))

Fig. 6 Partial/complete constraints

(WS1, {S1, S2}): The Web service WS1 is construct from information sources S1 and S2

(WS2, {S1, S2}): The Web service WS2 is construct from information sources S1 and S2

(WS3, {S3}) : The Web service WS3 is construct from information sources S3

Fig. 7 Relation between Web services and information sources

(WS1, {WS2, WS3}): The Web service WS1 can be replaced by the Web service WS2 or WS3

(WS2, {WS3}): The Web service WS2 can be replaced by the Web service WS3

Fig. 8 Web services substitution constraints

22 H. Limam and J. Akaichi

WSVKB contents can be organized as follow:

• VIEW (VDid, VDText): View definition using E-SQL.
• WS (WSid, VDidList): Web services and their views definition list.

The synchronization process consists on detecting schema changes (relations or
attributes deletion), detecting affected Web services and applying synchronization
algorithm to determine possible substitution of the affected Web services.

Suppose that Name attribute from the relation S1.Doctor is deleted, then it is
substituted by Name attribute from the relation S2.Doctor since [TCS1.Doctor(IdD,
Name, Speciality)=Doctor(IdD, Name, Speciality) ⊆ IdD(Number) × Name
(String) × Speciality(String)] and [TCS2.Doctor(IdD, Name, Speciality, IdS)
= Doctor(IdD, Name, Speciality, IdS) ⊆ IdD(Number) × Name(String) × Speciality
(String) × IdS(Number)] and [PCS1.Doctor,S2.Doctor=(πIdD, Name, Speciality
(S1.Doctor) ⊆ πIdD, Name, Speciality(S2.Doctor))] and [S1.Doctor.Name = S2.
Doctor.Name]. The view definition of V1 becomes:

5 Web Services Synchronization Algorithms

Web services are composed by presentation and dynamic parts including infor-
mation sources access using views call. As previously said dynamic part includes
services gathered from information sources, the latter change continuously which
may render views undefined then may render Web services undefined and inac-
cessible. So these Web services must be substituted by other ones.

Web services synchronization consists on substituting affected Web services
referring to constraints embodied into the WSMKB and into the WSVKB. So
synchronization process consists of detecting change and according to this change
Delete_Attribute procedure or Delete_Relation procedure will be executed as given
in substitution Algorithm. Only the two operators delete attribute and delete relation
are treated by our algorithm.

A View Based Approach for Enhancing … 23

6 Performance Evaluation

A prototype of the proposed system has been implemented. We used AXIS 1.1
which is Java platform for creating and deploying web services applications for
creating Web services. The simulation of the case study serves the purpose of
determining a good trade-off between the need of speed change detection and a
need of a quick replacement of affected Web services. To achieve this, we tested the
substitution system with different monitoring intervals (2 s–6 s) in order to compare
the curves of average response time for both detection of changes and replacement
of affected Web services. The response time was almost solely impacted by the
monitoring interval and therefore was growing proportionally with it (Fig. 9).

0
2
4
6
8

10
12
14
16

2
sec

2,5
sec

3
sec

3,5
sec

4
sec

4,5
sec

5
sec

5,5
sec

6
sec

Detec�on of
changes

Deployment of
the subs�tuted
Web service

Fig. 9 Average response time

24 H. Limam and J. Akaichi

7 Conclusion

In this paper we proposed a solution to the problem of Web services synchroni-
zation caused by changes which can occur to information sources from which Web
services are built and which may render Web services partially or totally inacces-
sible.We have presented as solution a middleware connecting Web services to
information sources. The middleware is composed by a Web service Meta
Knowledge Base WSMKB, a Web Service View Knowledge WSVKB and Web
services synchronization algorithms. Our model proved the feasibility of marrying
Web services concepts, and the EVE approach [12] which offers a solid foundation
for addressing the general problem of how to maintain views in dynamic envi-
ronments. Future work focus on a total synchronization of Web Services and will
not be limited to the two operations attribute deletion and relation deletion which
affect Web service. We also intend to develop algorithms for view maintenance of
the view extent under both schema and data changes of the information sources.

References

1. Lee AJ, Nica A, Rundensteiner A (2002) The EVE approach: view synchronization in
dynamic distributed environments. IEEE Trans Knowl Data Eng 14(5):931–954

2. Zhang X, Rundensteiner EA, Ding L (2001) PVM: Parallel view maintenance under
concurrent data updates of distributed sources. In: Proceedings in Data Warehousing and
Knowledge Discovery, pp 230–239

3. Lee AJ, Nica A, Rundensteiner EA (1997) The EVE framework: view evolution in an
evolving environment, technical report WPI-CS-TR-97-4. Department of Computer Science,
Worcester Polytechnic Institute

4. Blakeley JA, Larson P-E, Tompa FW (1986) Efficiently updating materialized views. In:
Proceedings of SIGMOD, pp 61–71

5. Zhuge Y, Garcìa-Molina H, Wiener JL (1996) The strobe algorithms for
Multi-SourceWarehouse consistency. In: International Conference on Parallel and
Distributed Information Systems, pp 146–157

6. Agrawal D, El Abbadi A, Singh A, Yurek T (1997) Efficient view maintenance at data
warehouses In: Proceedings of SIGMOD, pp 417–427

7. Benatallah B, Casati F, Toumani F (2006) Representing, analysing and managing web service
protocols. Data Knowl Eng 58:327–357

8. Bordeaux L, Salaun G, Berardi D, Mecella M (2005) When are two web services compatible.
Lect Notes Comput Sci 3324:15–28

9. Liu F, Zhang L, Shi Y, Lin L, Shi B (2005) Formal analysis of compatibility of web services
via ccs. In: Proceedings of the International Conference on Next Generation Web Services
Practices, IEEE Computer Society, pp 143

10. Martens A, Moser S, Gerhardt A, Funk K (2006) Analyzing compatibility of bpel processes.
In: International Conference on Internet and Web Applications and Services, p 147

11. Pathak J, Basu S, Honavar V (2007) On context-specific substitutability of web services. In
Proceedings of the International Conference on Web Services, IEEE Computer Society,
pp 192–199

12. Rundensteiner EA, Lee AJ, Nica A (1997) On preservingviews in evolving environments. In:
Proceedings of 4th International, Athens, Greece, pp 13.1–13.11

A View Based Approach for Enhancing … 25

13. Koeller A, Rundensteiner EA (2000) History-Driven View Synchronization. Springer,
Greenwich, pp 168–177

14. Nica A (1999) View evolution support for information integration systems over dynamic
distributed information spaces. Ph.D. thesis, University of Michigan, Ann Arbor (in progress)

15. W3C (2004). Web services architecture. http://www.w3.org/TR/ws-arch/
16. Dollimore J, Kindberg T, Coulouris G (2005) Distributed systems concepts and design, 4th

edn. Addison Wesley, Pearson Education
17. Benatallah B, Casati F, Toumani F (2004) Web service conversation modeling. IEEE

Computer Society
18. Benatallah B, Casati F, Toumani F, Hamadi R (2003) Conceptual Modeling of Web Service

Conversations. In: CAiSE. Springer
19. Ponge J (2005) Modeling and Analyzing Web Services Protocols
20. Benslimane D, Maamar Z, Ghedira C (2005) A view-based Approach for tracking composite

web services. In: Proceedings of the Third European Conference on Web Services (ECOWS
2005)

21. Maamar Z, Benatallah B, Mansoor W (2003) Service chart diagrams - description and
application. In Proceedings of The Alternate Tracks of The 12th International World Wide
Web Conference (WWW’2003)

26 H. Limam and J. Akaichi

http://www.w3.org/TR/ws-arch/

http://www.springer.com/978-3-319-19718-0

	2 A View Based Approach for Enhancing Web Services Availability
	Abstract
	1 Introduction
	2 Related Works
	3 Web Services Model
	4 Web Services Synchronization Framework
	4.1 Web Services Meta Knowledge Base (WSMKB)
	4.2 Web Services View Knowledge Base WSVKB

	5 Web Services Synchronization Algorithms
	6 Performance Evaluation
	7 Conclusion
	References

