Constructive Discursive Logic:
Paraconsistency in Constructivism
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Abstract We propose a constructive discursive logic with strong negation CDLSN
based on Nelson’s constructive logic N~ as a constructive version of Jaskowski’s
discursive logic. In CDLSN, discursive negation is defined similar to intuitionistic
negation and discursive implication is defined as material implication using dis-
cursive negation. We give an axiomatic system and Kripke semantics with a
completeness proof. We also discuss some possible applications of CDLSN for
common-sense reasoning.
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1 Introduction

Jaskowski proposed discursive logic (or discussive logic) in 1948. It is the first
formal paraconsistent logic which is classified as a non-adjunctive system; see
Jaskowski [10]. The gist of discursive logic is to consider the nature of our ordinary
discourse. In a discourse, there are several participants who have some information,
beliefs, and such. In this regard, truth is formalized by means of the sum of opinions
supplied by participants. Even if each participant has consistent information, some
participant could be inconsistent with other participants.
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It is reasonable to suppose that A A ~ A (A and not(A)) does not hold while both
A and ~A hold to describe such situations. This means that the so-called
adjunction, i.e., from FA, B to FA A B, is invalid. Here, A reads “A is provable”.
Jaskowski modeled the idea founded on modal logic S5 and reached the discursive
logic in which adjunction and modus ponens cannot hold. In addition, Jaskowski
introduced discursive implication A —; B as {)A — B satisfying modus ponens,
where <) denotes the possibility operator.

Akama, Abe and Nakamatsu [5] proposed a constructive discursive logic based
on constructivism. It can be viewed as a constructive version of Jaskowski’s ori-
ginal system; also see Akama [4]. Its base is Nelson’s constructive logic [17],
although Jaskowski developed his discursive logic based on classical modal logic.
Our approach is seen as a new way of formalizing discursive logic.

The rest of this paper is as follows. Section 2 reviews Jaskowski’s discursive
logic. In Sect. 3, we introduce constructive discursive logic with strong negation
CDLSN with an axiomatic system. Section 4 outlines a Kripke semantics. We
establish the completeness theorem. In Sect. 5, we suggest possible applications of
CDLSN for common-sense reasoning. Section 6 concludes the paper with a dis-
cussion on future work. This paper is based on the materials in Akama, Abe and
Nakamatsu [5] and Akama, Nakamatsu and Abe [6].

2 Jaskowski’s Discursive Logic

Discursive logic, due to the Polish logician S.Jaskowski [10], is a formal system
J satisfying the conditions: (a) from two contradictory propositions, it should not be
possible to deduce any proposition; (b) most of the classical theses compatible with
(a) should be valid; (c) J should have an intuitive interpretation.

Such a calculus has, among others, the following intuitive properties remarked
by Jaskowski himself: suppose that one desires to systematize in only one deductive
system all theses defended in a discussion. In general, the participants do not confer
the same meaning to some of the symbols. One would have then as theses of a
deductive system that formalize such a discussion, an assertion and its negation, so
both are “true” since it has a variation in the sense given to the symbols. It is thus
possible to regard discursive logic as one of the so-called paraconsistent logics.

Jaskowski’s D, contains propositional formulas built from the logical symbols of
classical logic. In addition, possibility operator {» in S5 is added. QA reads “A is
possible”. Based on the possibility operator, three discursive logical symbols can be
defined as follows:

discursiveimplication : A —4 B =4 ¢A — B
discursive conjunction : A Ay B =45 CAAB
discursive equivalence : A 4 B =4 (A —4 B) Ag (B —4 A)
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Additionally, we can define discursive negation —4A as A — false. Ja§kowski’s
original formulation of D, in [10] used the logical symbols: —4, <4, V, A, -, and
he later defined A, in [11].

The axiomatization due to Kotas [12] has the following axioms and the rules of
inference. Here, [ is the necessity operator, and is definable by —{—. [JA reads
“A is necessary”.

Axioms

(A1) O — (A —B))
(A2) O((A—-B)—=(B—=C)— (A— ()
(A3) O
(A4 O(OA — A)
(A5) O(O@A — B) — (A — OB))
(A6) O(-0A — O-0A)

Rules of Inference

(R1) substitution rule
(R2) OA,0(A — B)/OB
(R3) OA/O0A

(R4) OA/A

(R5) —-0O-0A/A

Note that discursive implication —, satisfies modus ponens in S5, but — does
not. There are other axiomatizations of D,. For example, da Costa and Dubikajtis
gave an axiomatization based on the connectives —,4, Ay, —; see [8]. Semantics for
discursive logic can be obtained by a Kripke semantics for modal logic SS5.
Jaskowski’s three conditions for J mentioned above are solved by many workers in
different ways. For a comprehensive survey on discursive logic, see da Costa and
Doria [9].

3 Constructive Discursive Logic with Strong Negation

The gist of discursive logic is to use the modal logic S5 to define discursive logical
connectives which can formalize a non-adjunctive system. It follows that discursive
logic can be seen as a paraconsistent logic, which does not satisfy explosion of the
form: {A, ~A}EB for any A and B, where F is a consequence relation. We say that a
system is trivial iff all the formulas are provable. Therefore, paraconsistent logic is
useful to formalize inconsistent but non-trivial theories.

Most works on discursive logic utilize classical logic and S5 as a basis.
However, we do not think that these are essential. For instance, different modal
logics yield the corresponding discursive logics. We can use non-classical logics as
the base. An intuitionist hopes to have a discursive system in a constructive setting.
It is the starting point of Akama, Abe and Nakamatsu [5].
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To make the idea formal, it is worth considering Nelson’s constructive logic with
strong negation N~ of Almukdad and Nelson [7]. In N, ~ denotes strong
negation satisfying the following axioms:

(N1) ~~A < A

(N2) ~(AAB) — (~AV ~B)
(N3) ~(AVB) < (~ANA ~B)
(N4) ~(A — B) < (AA ~B)

and the axiomatization of the intuitionistic positive logic Int™ with modus ponens
(MP), i.e. A;A — B/B as the rule of inference.

Strong negation can express explicit negative information which cannot be
described by intuitionistic negation. In this sense, strong negation is constructive,
but intuitionistic negation is not. As the name shows, strong negation is stronger
than intuitionistic negation in that ~A — —A holds but the converse does not. Note
here that N~ is paraconsistent in the sense that ~ (A A ~A) and (AA ~A) — B
do not hold.

If we add (NO) to N—, we have N of Nelson [17].

(NO)(AAN ~A) — B
In N, intuitionistic negation — can be defined as follows:
—-A =def A— ~A

If we add the law of excluded middle: ANV ~A to N, the resulting system is
classical logic.

Indeed, N~ is itself a paraconsistent logic; see Akama [3]. But it can also be
accommodated as a version of discursive logic.

Now, we introduce the constructive discursive logic with strong negation
CDLSN. It diverges in two ways from D,: (1) it does not take classical logic as its
starting point; and (2) it does not use the possibility operator ¢ as a modality, but
use two negation operators.

CDLSN can be defined in two ways. One is to extend N~ with discursive
negation —,. The other is to weaken intuitionistic negation in N~. We adopt the first
approach.

Here, we fix the language of the logics which we use in this paper. The language
of Int™ is defined as the set of propositional variables and logical symbols:
A (conjunction), V (disjunction) and — (implication). The language of Int is the
extension of that of Int™ with — (intuitionistic negation). The language of N~ is the
extension of that of Int* with ~ (strong negation). The language of CDLSN is
the extension of N~ with —, (discursive negation). Additionally, we use the logical
constant false as the abbreviation of ~ (A — A).

We believe that CDLSN is (constructive) improvement of D,. First, CDLSN uses
Int* rather than classical logic as the base. Second, CDLSN simulates modality in
D, by negations, although D, needs the possibility operator.
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—4 1s similar to —, but these are not equivalent. The motivation of introducing —,
is to interpret discursive negation as the negation used by an intuitionist in the
discursive context. Unfortunately, intuitionistic negation is not a discursive nega-
tion. And we need to re-interpret it as —;. Based on —,;, we can define —, and A,.

Discursive implication —, and discursive conjunction A; can be respectively
introduced by definition as follows.

A —d B —def _|dA VB
A Na B =def ™ —\dA AB

Observe that A — (~A — B) isnot a theorem in CDLSN while A — (—4A — B)
is a theorem in CDLSN. The axiomatization of CDLSN is that of N~ with the
following three axioms.

(CDLSN1) —yA — (A — B)
(CDLSN2) (A — B) — ((A — —4B) — —,A)
(CDLSN3)A — ~—,A

Here, an explanation of these axioms may be in order. (CDLSNI1) and
(CDLSN2) describe basic properties of intuitionistic negation. By (CDLSN3), we
show the connection of ~ and —, The intuitive interpretation of ~ —; is like
possibility under our semantics developed below.

—4 1s weaker than —. Vorob’ev [20] proposed a constructive logic having both
strong and intuitionistic negation. It extends N with the following two axioms:

NA—)_|A’

where A is atomic

If we replace (CDLSN3) by the axiom of the form ~ —4A <= A and add the
axiom ~A — —yA, then —, agrees with —. Thus, it is not possible to identify — and
—4 In our axiomatization.

We use A to mean that A is a theorem in CDLSN. Here, the notion of a proof is
defined as usual. Let I' = {By,...,B,} be a set of formulas and A be a formula.
Then, I'+A iff - ' — A.

Notice that —; has some similarities with —, as the following lemma indicates.

Lemma 1 The following formulas are provable in CDLSN.

(1) "A — _‘d_‘dA

(2) HA — B) — (—4B — —4A)
3) FAAN—yA) — B

“4) |——\d(A A —\dA)

5 FA— —4A) - A
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Proof Ad(1): From (CDSLN1) and Int" i.e.-(A — (B — C)) — (B — (A — ())),
we have (i).

(i) FA— (—4A — A)
(i) is an instance of (CDLSN?2).
F(maA — A) = ((mdA — —4A) — —4=4A)
(iii) is a theorem of Int*, i.e., H(A — B) — ((B— C) — (A — ()))
I—(A — (—\dA — A)) — (((—\dA — A) — ((ﬂdA — —\dA)
— 2q7aA)) = (A = ((maA = —4A) = 7a—4A)))
From (i) and (iii) by (MP), we have (iv).
F(((maA = A) = ((mdA — —4A) — ~a—aA))
— (A — ((—\dA — —\dA) — —\dﬁdA)))
From (ii) and (iv) by (MP), we have (v).
(V) FA — ((maA — —4A) — =4—4A))
by HA — (B— C)) — (B— (A — C)) we can derive (vi)
(vi) F(ﬁdA — ﬁdA) — (A — ﬁdﬁdA)
since FA — A we have (vii)
(vii)) F—yA — —4AFrom (vi) and (vii) by (MP), we can finally obtain (viii).
(Vlll) FA — _‘d_‘dA
Ad(2): By (CDLSN2), we have (i).
(i) FA — B) = ((A — —yB) — —4A)
(ii) is a theorem of Intt.
F(=aB — (A — —uB)) — (((A — —4B) — —4A)
—>(ﬁdB — ﬁdA))
(iii) is an instance of A — (B — A) which is the axiom of Inr™
l__‘dB — (A — _‘dB)
From (ii) and (iii) by (MP), (iv) is obtained.
(iv) F((A — —4B) — —4A) — (maB — —4A)
(v) is a theorem of Int.
F((A— B) = ((A — —4B) — —4A)
— ((((A = ~4B) — —4A) — (muB — —4A))
— ((A = B) — (—aB — —4A)))
From (i) and (v) by (MP), (vi) can be proved.
F((A — —4B) — —4A) — (—aB — —4A))
— ((A = B) = (maB — —4A))
From (iv) and (vi) by (MP), we can reach (vii).
(vii) HA — B) — (—\dB — —\dA)
Ad(3): By (CDLSN1), we have (i).
i) F-4A— (A— B)
From H(A — (B — C)) — (B — (A — (C)), we can derive (ii).
(i) FA — (—4A — B)
since H(A — (B — C)) — ((AAB) — C), we have (iii).

(iv)

(vi)
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(i) HA — (-4A—B)) — ((AAN—4A) — B)
From (ii) and (iii) by (MP), we can obtain (iv).
(iv) FHAA-4A) — B
Ad(4): By (3), we have (i) and (ii).
i FAA-4A)— B
(i) H(AA—gA) — —yB
From (CDLSN?2), (iii) holds.
(i) (A A=) = B) — (A A ~4A) = —~B) — —a(A A ~4A))
From (i) and (iii) by (MP), we have (iv).
@iv) ((A A\ —|dA) — —|dB) — —|d(A N _‘A)
From (ii) and (iv) by (MP), we can derive (v).
v) Fﬁd(A VAN ﬁdA>
Ad(5): By (CDLSN2), we have (i).
(i) HA—=A) = (A= ~6A) = —4A)
(i1) is a theorem of Intt.
FA — A
From (i) and (ii) by (MP), we can obtain (iii).
(iii) (A — —4A) — —A O

It should be, however, pointed out that the following formulas are not provable in
CDLSN.
K~ (AN ~A)
FAV ~A
FA—B)— (~B— ~A)
Fog—qA — A
FAV —4A
F(-gA —A) — A
¥ ~—yA— A
FA —4 A

4 Kripke Semantics

It is possible to give a Kripke semantics for CDLSN which is a discursive modi-
fication of that for N. A Kripke semantics for N can be formalized as an extension
of that for intuitionistic logic. It first provided by Thomason [19]; also see Akama
[1, 2]. Akama [3]studied a Kripke semantics for N~.

Now, we define a Kripke model for CDLSN. Let PV be a set of propositional
variables and p be a propositional variable, and For be a set of formulas. A CDLSN-
model is a tuple (W, wq, R, V), where W # () is a set of worlds, wy € W satisfying
Yw(woRw), RCW x W is a reflexive and transitive relation, and V : PV x W —
{0, 1} is a partial valuation satisfying:
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V(p,w) = landwRv = V(p,v) =
V(p,w) =0andwRv = V(p,v) =

for any formula p € PV and w,v € W. Here, V(p,w) = 1 is read “p is true at w”
and V(p,w) =0 is read “p is false at w”, respectively. Both truth and falsity are
independently given by a constructive setting.

We can now extend V for any formula A, B in a tandem way as follows.

V(~Aw) = iff V(A,w) =

V(AAB w) 1 iff V(A W) = 1 and V(B,w) = 1
(AVB,w)=1 iffV(A,w)=1lorV(B,w) =1
(A—B,w)=1 iffVw(wRvandV(A,v)=1= V(B,v)=1)
(maA,w) = 1 iff Vv(wRv = V(A,v) = 0)

(~A, W) = V(A W) = 1

(ANB,w) = O iff V(A,w) =0orV(B,w) =0
(AVB,w)=0 iff V(A,w) = Oand V(B,w) = 0

(A— B,w)=0 iff V(A,w)=land V(B,w) =0
(mqA,w) =0 iff Iv(wRvand V(A,v) = 1)

SN=<=<=<<=<<=<<<=<x

Additionally, we need the following condition:

V(AN ~A,w) =1 for some A and some w.

This condition is used to invalidate (A A ~A) — B, and guarantees the para-
consistency of ~ in CDSLN.

Here, observe that truth and falsity conditions for ~ —;A are implicit in the
above clauses from the equivalences such that V(~-—4A,w)=1 iff
V(—4A,w) =0, and V(~—4A,w) = 0iff V(—4A,w) = 1. One can claim that ~ —,
behaves as a modality. In this regard, we do not need to introduce a possibility
operator into CDLSN as a primitive.

We say that A is valid, written FA, iff V(A,wy) = 1 in all CDLSN-models. Let
I' ={B,...,B,} be a set of formulas. Then, we say that I entails A, written 'FA,
iff ' — A is valid.

Lemma 2 states the monotonicity of valuation in a Kripke model.

Lemma 2 The following hold for any formula A which is not of the form ~ —yB,
and any worlds w,v € W.

V(A,w) = landwRv = V(A,v) =1,
V(A,w) =0andwRv = V(A,v) =0.

Proof By induction on A.

Ad(~): Suppose V(~A,w) = land wRv. Then, we have that V(A,w) = 0 and
wRv. By induction hypothesis (IH), we have that V(A,v) =0, i.e
V(~Av) =
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Suppose V(~ A, w) = 0and wRv. Then, we have that V(A,w) = 1 and
wRy. By (IH), we have that V(A,v) = 1, i.e. V(~A,v) =0.

Ad(A ): Suppose V(A AB,w) =1 and wRv. Then, we have V(A,w) =1 and
V(B,w)=1. By (@H), V(@,v)=1 and V(B,v)=1, ie.
V(AAB,v) = 1.

Suppose V(A AB,w) =0 and wRv. Then, we have V(A,w)=0 or
V(B,w) = 0. By (IH), V(A,v) = 0 or V(B,v) = 0, i.e. V(A AB,v) = 0.

Ad(V): Suppose V(A V B,w) = 1 and wRv) = 1. Then, we have V(A,w) = 1 or
V(B,w) = 1.By (IH), V(A,v) =l or V(B,v) = 1, ie. V(AVB,v) = .
Suppose V(AV B,w) =0 and wRv. Then, we have V(A,w) =0 and
V(B,w)=0. By (@H), V(A,v)=0 and V(B,v)=0, ie.
V(AV B,v) = 0.

Ad(—): Suppose V(A — B) = 1 and wRv. Then, we have Vv(wRv and V(A,v) =
1 = V(B,v)=1). By (IH) and the transitivity of R Vz(vRz and
V(A,z2) =1 = V(B,z) =1),ie V(A — B,v) = 1.

Suppose V(A — B,w) = 0 and wRv. Then, we have V(A,w) = 1 and
V(B,w)=0. By (IH), V(A,v)=1 and V(B,v) =0, ie. V(A —
B,v) =0. O

Lemma 2 does not hold for the formula of the form ~ —;A. We can easily
construct a counter model. We only treat the case of V( ~ —4A, w) = 1. The case of
V(~—4A,w) =0 is similar. Assume that V(~—4A,w) =1 and wRv. Then,
V(=4A,w) =0 iff Ju(wRu and V(A,u) = 1). Now, suppose that there exists a
world 7 distinct from u such that vRt and a valuation such that V(A,r) = 0. This
means that V(~-4A,v)=0. Thus, V(~-4A,w)=1 and wRv, but
V(~—44,v) =0.

We think that the fact is intuitive because ~ —;A behaves as possibility. There
are no reasons for possibility in discourse to satisfy the monotonicity.

Next, we present a soundness theorem.

Theorem 1 (soundness)FA = FA

Proof It suffices to check that (CDLSNT1), (CDLSN2) and (CDLSN3) are valid and
(MP) preserves validity. The proof of preservation of validity under (MP) is
well-known in constructive and intuitionistic logic. Thus, we here prove the validity
of three axioms.

Ad(CDLSN1): Suppose it is not valid. Then, V(—yA,wg)=1 and
V(A — B,wy) # 1. From the first conjunct,
Yv(woRv = V(A,v) # 1)holds. From the second conjunct,
Fv(woRvand V(A,v) = land V(B,v) # 1). However, V(A,v) =1
and V(A,v) # lare contradictory.

Ad(CDLSN2): Suppose it is not valid. Then, V(A — B,w) = land V(A —
—yB,wg) =1 and V(—4A,wp) # 1. From the first conjunct,
Yv(woRvand V(A,v) = 1 = V(B,v) = 1) holds. From the second
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conjunct, Vv(woRvand V(A,v) = 1 = V(—4B,v) = 1)iff
Vv(wRvand V(A,v) = 1 = Vz(vRz = V(A,z) #1) . From the
third conjunct, Jv(woRv and V(A,v) = lholds. However, V(A,v) =
1 and V(A,z) # 1 for any z such that vRz are contradictory.
Ad(CDLSN3): Suppose itis not valid. Then, V(A,wy) = 1 and V(~ —zA, wp) # 1.
From the second conjunct, we have V(—zA,wg) #0 iff
Yv(woRv = V(A,v) #1). However, V(A,wy)=1 and
V(A,v) # lor any v such that wyRv are contradictory. O

Theorem 3 Theorem 3 can be generalized as a strong form, i.e. I' FA = I'FA.

Now, we give a completeness proof. We say that a set of formulas I” is a
maximal non-trivial discursive theory (mntdt) iff (1) I “is a theory, 2) I” " is non-
trivial, i.e. T*¥B for some B, (3) I is maximal, i.e. Ac I'* or A¢T*, (4) I' is
discursive, i.e. ~yA & I'" iff ~—4A€ I'*. Here, discursiveness is needed to capture
the property of discursive negation.

Lemma 3 For any mntdt I" and any formula A, B the following hold:

(1) ANBETiffAc Tand Be I’
(2) AVBeTiffAcT orBeTl

(3) A— BeTiff VA(I'CAandA€A = BEA)
(@) —¢AET iff VA(ICA = A ¢ A)

(5) ~(AAB)El iff ~A€l or ~Bel

(6) ~(AVB)el iff ~A€el and ~Bel

(7) ~(A— B)el'iff A€ T and ~Berl

(8) ~ ~AcliffAeT

9) ~—gA€T iff IA(I'CAand A€A).

Proof We only prove (4) and (9). Other cases are similarly justified from the
literature on constructive logic (cf. Thomason [19] ).

Ad4): —4A€ Iiff (by axiom (CDLSN1)) iff (by axiom (CDLSN1)) A — B € T iff
(by Lemma 3 (3)) VA(I'C4andA € 4 = B € A). Since I is non-trivial,
B¢ for some B. Thus, B&€ A does not always hold,
i.eVA(I'CA and A € A = false)iff VA(I'CA = A ¢ A).

Ad(9): We prove it by contraposition from (4). Contraposition can derive
JA(I'CA and A € A) by negating the left and right sides of (4). Then, it is
shown to be equivalent to —4;A & I'. By (discursiveness), —4A & I iff
~ A€l

Based on the maximal non-trivial discursive theory, we can define a canonical
model (I, C, V) such that I' is a mntdt, C is the subset relation, and V is a valuation
satisfying the conditions that V(p, I') = 1iffp € I'and that V(p,I') = 0iff ~pel'.0]

The next lemma is a truth lemma.
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Lemma 4 (truth lemma) For any mntdt I' and any A, we have the following:
V(A,T') = Liff AeT’
V(A,T) =0iff ~Ael’

Proof 1Tt suffices to check the case A = —;B.
V(m¢B, ) =1 iffVA4eTI'*(I'C4= V(B,4)#1)
(IH) iffvAeTr*(I'cd=B¢A4)
(Lemma4 (4)) iff uBeTl

V(~B, ) =0 iff 34 € I*(ICAand V(B, 4) = 1)
(IH) iff 34 € I'*(FCAand B € 4)
(Lemma4 (9)) iff ~—4BeT

Then, we can state the (strong) completeness of CDLSN as follows:
Theorem 2 (completeness). [FA = ['FA

Proof Assume I'¥#A. Then, by the Lindenbaum lemma, there is a mntdt I" such
that A ¢ I'. By using a canonical model defined above, we have V(A,I') # 1 by
Lemma 4. Consequently, completeness follows. (]

Finally, we justify the formal properties of CDLSN as a discursive logic. It is
extremely important because we can understand the differences of CDLSN and
standard discursive logics like D,. As mentioned in Sect. 1, Jaskowski suggested
three conditions of discursive logics. We check them here.

CDLSN is discursive. First, ~ (A A ~A) does not hold. The explosion also fails,
i.e. A, ~AF B. But, these hold for —; (cf. Lemma 1), and are not a problem because
explosion should be valid for plausible discourses.

Note that the adjunction of the form FA, FB = FA Ay B does not hold in
CDLSN. But, it holds for A .

Second, in CDLSN, most of the theses of constructive logic are valid. Since
CDLSN has a constructive base, it is different from D, whose base is classical logic.

Third, we can give an intuitive interpretation for CDLSN by means of Kripke
models as discussed below.

CDLSN is constructive because the law of excluded middle, which is a
non-constructive principle, does not hold. As discussed above, N~ is a constructive
logic, and the fact is not surprising.

From our Kripke semantics given above, we can give an intuitive interpretation
of CDLSN. The interpretations of the logical symbols of N~ are obvious, and we
concentrate on discursive logical symbols.

Here, it may be helpful to explain the interpretation by a brief example. Consider
a discourse which consists of several persons who are interested in some subjects.
Each person has knowledge about subjects, and a discourse is plausibly expanded
by adding other persons.

In this setting, a world in our semantics could be identified with the discourse
just given. So, the logical symbols can be interpreted with reference to a discourse.
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Since the interpretations of —, are crucial, we begin with this, namely

—4A is true iff A is false in all plausible growing discourses,
—4A is false iff A is true in some plausible growing discourse.

Here, the second clause corresponds to the possibility used in discursive logic.
Note here that the plausible growth of discourse implies the increase of information
(or knowledge) in view of constructive setting.

Other discursive logical symbols can be read as follows:

A A4 B is true iff A is true in one discourse and B is true in another plausible
discourse.
A —4 B is true iff if A is true in certain plausible discourse then B is true in a
discourse.

The interpretations of V,; and <, can be obtained by definition. The important
point here is that the primitive discursive connective is —.

In our approach, two kinds of negations are used and it is necessary to compare
them. ~ 1is a constructive negation which can express constructive falsity of the
proposition, whereas —, is a discursive negation of the proposition with modal
flavor, which is similar to intuitionistic negation.

They can express the possibility operator needed in discursive logic as ~ —.
Here, ~ behaves as classical-like negation and —, as modal-like negation. We
know that in classical modal logic the following holds.

SA=-0O-A

Here, — is classical negation and = is classical equivalence. It is therefore
natural to consider two negations in classical-like and modal-like ways.

From the above discussion, CDLSN is shown to be a constructive discursive
logic which is compatible with Jaskowski’s original ideas. It means that a con-
structivist can formally perform discursive reasoning.

5 Applications

Constructive discursive logic seems to have many applications for several fields.
Although discursive logic was originally motivated in a philosophical tradition, it
has the potential to be used for other areas. Here, we take up the so-called common-
sense reasoning like paraconsistent and non-monotonic reasoning, which are of
special importance to knowledge representation in Artificial Intelligence (Al).

First, we discuss paraconsistent reasoning which can appear in many real situ-
ations. That is, it can extract some conclusions in the presence of contradiction. As
is well known, it is obliged to have any arbitrary conclusion from contradiction, if
we use the underlying logical basis as classical (or intuitionistic) logic.
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However, it is not compatible with our common-sense intuition. Human beings
can usually do reasoning in a natural manner, even if they are faced with contra-
diction. Because human beings have obviously limited memory and reasoning
capacity, their knowledge is not always consistent. And contradiction naturally
arises in common-sense reasoning.

Paraconsistent logics are useful in such contexts. It is also to be noticed that
paraconsistent logic can serve as a foundation for inconsistent (or paraconsistent)
mathematics. CDLSN can describe paraconsistent reasoning in a logical setting,
since it is a paraconsistent logic. Consider the following knowledge base KB;.

KB, = {A,-B,A — B,B — C}

Here, we assume that the base logic is classical logic. From KB;, we should
conclude C using modus ponens. But, it is impossible in classical logic, since KB,
produces inconsistency. In fact, both Fgp B and g, —B.

However, in classical logic C, B A ~Bt¢ D, where D denotes an arbitrary for-
mula. In other words, the knowledge base KB; is trivial and it is not of use as a
knowledge base in that no useful information is derivable. This fact reveals that
classical logic is not suited for reasoning under contradiction.

But, we can derive C in CDLSN, as required. The reason is that
B A ~BFcprsy D. This is a desired feature of common-sense reasoning. Normally,
a knowledge base is built from incomplete knowledge due to several reasons. Thus,
such a knowledge base may contain some contradictions which need to be tolerated.

Second, we show that CDLSN can model non-monotonic reasoning, in which
old conclusions can be invalidated by new knowledge. Non-monotonic reasoning is
regarded as fundamental in common-sense reasoning. But, standard logics like
classical logic are monotonic. Minsky addressed the inadequacy of classical logic as
the formalism for describing common-sense reasoning by pointing out that classical
logic cannot express non-monotonic reasoning; see Minsky [15].

Based on the observation, Minsky considered that a logic-based approach to Al
is not adequate and impossible. If we rely on classical logic as the logic, his
consideration may be true. But, we can overcome the difficulty by developing a
logic which is not monotonic.

In AI, there is a rich literature on non-monotonic logics, formalizing
non-monotonic reasoning in a logical setting. For instance, McDermott and Doyle
proposed a version of non-monotonic logic by extending classical logic with the
consistent operator M; see McDermott and Doyle [14].

Their non-monotonic logic is very similar to modal logic. A formula of the form
MA in their non-monotonic logic denotes that A is consistent. Unfortunately, their
logic lacks formal semantics as discussed below. Later, McDermott [13] worked
out non-monotonic logics based on modal logics, but his attempt was not suc-
cessful. For example, non-monotonic S5 is shown to be monotonic S5.

We also know other interesting non-monotonic logics like the default logic of
Reiter [18] and the autoepistemic logic of Moore [16]. Default logic is an extension
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of classical logic with default rules, describing default reasoning, i.e., reasoning by
default.

Autoepistemic logic extends classical logic with the belief operator, which
models beliefs of a rational agent. Since a rational agent can believe his beliefs and
lack of beliefs, reasoning based on his beliefs are non-monotonic according to the
increase of new beliefs.

Unfortunately, many non-monotonic logics in Al have been criticized due to the
lack of theoretical foundations. This is because most non-monotonic logics rely on
meta-rules whose interpretation is outside the scope of object-language. For
example, the consistency expressed by McDermott and Doyle’s non-monotonic
logic needs meta-level reasoning. Namely, M cannot be regarded as a modal
operator in modal logic in that it has a reasonable semantics in the standard sense.

Now, we see real examples. Consider the knowledge base KB;.

KB, = {A,A — B,C}

We can deduce B from KB,, written KB, ¢B, in the framework of classical logic.
However, a knowledge base grows with new knowledge. Suppose that new
knowledge base —B is obtained from KB, by adding the new knowledge denoted —B.

KB; = {A,A — B,C, B}

Here, the desired reasoning is that =B is provable, i.e., KB3 F—B. This implies
that KB3 ¥ B, where the old conclusion B is withdrawn in KBj. Classical logic
concludes that B A —B, i.e., contradiction is provable, however.

A typical example is as follows. Normally birds fly, which can be seen as
common-sense. Tweety is a bird. Since all birds can fly, we can conclude that
Tweety can fly at this stage. Later, we learn that Tweety is a penguin and all
penguins cannot fly. At the stage in which new information is supplied, we natu-
rally infer that Tweety cannot fly. The old conclusion that Tweety can fly is
invalidated by the new information concerning Tweety, namely, that he is a
penguin.

Non-monotonic reasoning can be formally expressed in CDLSN. “Normally if A
then B” is described as A A ~ —;B — B. Note here that ~ —; behaves like M in
non-monotonic logic. Although non-monotonic logic requires the interpretation of
M in the meta-level in that I FMA iff I' ¥ ~ A, where I denotes a set of formulas,
CDLSN dispenses with meta-level features in that ~ —; has the formal interpre-
tation in Kripke semantics.

Paraconsistent and non-monotonic reasoning are closely related. Usually, in
common-sense reasoning new knowledge seems to be of importance, yielding
non-monotonic reasoning. However, it is not always the case. There appear to be
situations in which we cannot give a priority of the old conclusion A to the new
conclusion —A.

For example, assume that both A and —A are added to a knowledge base at the
same time. The case has no reason to give a priority of A and ~A. We may resolve
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inconsistency for our purposes. But, we cannot decide whether A or —A is appro-
priate in the situation. There are several ways for decision.

One possible solution is to assume that both A and —A hold, which is not a
problem in paraconsistent logic. This is because we cannot deduce arbitrary B from
A A —A. This aspect is, however, neglected in non-monotonic reasoning based on
classical logic.

6 Concluding Remarks

We proposed a constructive discursive logic CDLSN with Hilbert-style axiomat-
ization and Kripke semantics. It can be viewed as a constructive version of
Jaskowski’s original system. We established some formal results of CDLSN
including completeness. We also discussed applications to common-sense reason-
ing. We believe that CDLSN can serve as a logical foundation for paraconsistent
intelligent systems.

Finally, we mention topics which remain to be worked out. First, we should
extend CDLSN with quantifiers for dealing with many interesting problems. There
seem to be no difficulties with axiomatization and Kripke semantics.

Second, for practical applications, we need efficient proof methods since a
Hilbert system is not suitable. Tableau and sequent calculi are desirable as a proof
method. Tableau calculi for N~ and N have been worked out in Akama [3], and
they can be modified for CDLSN.

Third, we should elaborate on the formalization of common-sense reasoning in
CDLSN. 1t is interesting to study the connections of CDLSN and several
non-monotonic logics. Non-monotonic formalisms are also related to logic pro-
gramming, and we should explore relationships in this context.
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