
Chapter 2
Homogeneous Transformation Matrix

Abstract The transformation of frames is a fundamental concept in the modeling
and programming of a robot. In this Chapter, we present a notation that allows us to
describe the relationship between different frames and objects of a robotic cell. This
notation, called homogeneous transformation, has been widely used in computer
graphics to compute the projections and perspective transformations of an object on
a screen. Currently, this is also being used extensively in robotics. We will show how
the points, vectors and transformations between frames can be represented using this
approach. We also make an overview of different set of parameters that are used for
characterizing the orientation of a body.

2.1 Homogeneous Coordinates and Homogeneous
Transformation Matrix

Let ( j xP , j yP , j zP ) be the Cartesian coordinates of an arbitrary point P with
respect to the frame F j , which is described by the origin O j and the axes x j ,
y j , z j (Fig. 2.1). The homogeneous coordinates of P with respect to frame F j are
defined by (w j xP , w j yP , w j zP , w), where w is a scaling factor (Newman and
Sproull 1979; Roberts 1965). In robotics, w is taken to be equal to 1 (Paul 1981;
Pieper 1968). Thus, we represent the homogeneous coordinates of P by the (4 × 1)
column vector:

j p̃ =

⎡
⎢⎢⎣

j xP
j yP
j zP

1

⎤
⎥⎥⎦ . (2.1)

A direction (free vector) is also represented by four components, but the fourth
component is zero, indicating a vector at infinity. If the Cartesian coordinates of a unit
vector u with respect to frameF j are ( j ux ,

j uy,
j uz), its homogeneous coordinates

will be:
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Fig. 2.1 Transformation of
a vector

j ũ =

⎡
⎢⎢⎣

j ux
j uy
j uz

0

⎤
⎥⎥⎦ . (2.2)

The coordinates of the point P can be defined in another frame Fi by i p̃ =[
i xP

i yP
i zP 1

]T
and they can be obtained as a function of j p̃ by (Fig. 2.1):

i p̃ = j xP
i s̃ j + j yP

i ñ j + j zP
i ã j + i r̃ j = i T j

j p̃ (2.3)

where i s j , i n j and i a j are unit vectors directed along the x j , y j and z j axes with cor-
responding homogeneous coordinates i s̃ j , i ñ j , i ã j , respectively, and are expressed
in frame Fi ; i r̃ j is the homogeneous vector representing the coordinates (parame-
terized by the 3D vector i r j = i rOi O j ) of the origin O j of frame F j expressed in
frameFi .

In Eq. (2.3), the matrix i T j allows us to calculate the coordinates of a vector
j p̃ with respect to frame Fi in terms of its coordinates in frame F j . This (4 × 4)
matrix is called the transformation matrix. It permits us to define the transforma-
tion, translation and/or rotation, of the frame Fi (Oi , xi , yi , zi ) towards the frame
F j (O j , x j , y j , z j ) (Fig. 2.1) and it is represented by:

i T j = [
i s̃ j

i ñ j
i ã j

i r̃ j
] =

[
i R j

i r j

0 0 0 1

]
(2.4)

where i R j is the rotation matrix expressing the orientation of the frame F j with
respect to frame Fi (see Sects. 2.2.2 and 2.4).

In summary:

• The matrix i T j represents the transformation from frame Fi to frameF j ;
• The matrix i T j can be interpreted as representing the frameF j (three orthogonal
axes and an origin) with respect to frameFi .
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2.2 Elementary Transformation Matrices

2.2.1 Transformation Matrix of a Pure Translation

A general pure translation matrix from frame Fi to frame F j is denoted by
Trans(a, b, c), where a, b and c denote the translation along the x, y and z axes
respectively, where (Fig. 2.2):

i T j = Trans(a, b, c) =

⎡
⎢⎢⎣
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ = Trans(x, a) Trans(y, b) Trans(z, c)

(2.5)
taking any order of the multiplication.

2.2.2 Transformation Matrices of a Rotation About
the Principle Axes x, y and z

Let us consider a rotation of angle θ around the axis x and let us denote this trans-
formation as Rot(x, θ). From Fig. 2.3, we deduce that:

i T j = Rot(x, θ) =

⎡
⎢⎢⎣
1 0 0 0
0 cθ −sθ 0
0 sθ cθ 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(x, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ (2.6)

where cθ and sθ represent cos θ and sin θ respectively, and rot(x, θ) denotes the
(3 × 3) orientation matrix.

Fig. 2.2 Transformation of pure translation
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Fig. 2.3 Transformation of a pure rotation about the x–axis

Similarly, the rotation of angle θ around the axis y axis is given by:

Rot(y, θ) =

⎡
⎢⎢⎣

cθ 0 sθ 0
0 1 0 0

−sθ 0 cθ 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(y, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ (2.7)

and the rotation of angle θ around the axis z axis is given by:

Rot(z, θ) =

⎡
⎢⎢⎣
cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(z, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ . (2.8)

2.3 Properties of Homogeneous Transformation Matrices

Before going further, we need to define the following properties of the homogeneous
transformation matrices.

Property 1 From (2.4), a transformation matrix can be written as:

T =

⎡
⎢⎢⎣

sx nx ax rx

sy ny ay ry

sz nz az rz

0 0 0 1

⎤
⎥⎥⎦ =

[
s n a r
0 0 0 1

]
=

[
R r

0 0 0 1

]
. (2.9)
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The matrix R = [
s n a

]
represents the rotation whereas the vector r represents

the translation. For a transformation of pure translation, R = 13 (13 represents the
identity matrix of order 3), whereas r = 0 for a transformation of pure rotation.

Property 2 The matrix R is orthogonal and its determinant is equal to 1. Conse-
quently, its inverse is equal to its transpose:

R−1 = RT (2.10)

where the superscript “T ” indicates the transpose of the matrix.

Property 3 The inverse of a matrix i T j is the matrix j Ti . Thus, to express the
components of a vector i p̃1 into frame F j , we write:

j p̃1 = j Ti
i p̃1 (2.11)

with:

j Ti = i T−1
j . (2.12)

Property 4 We can easily verify that:

Rot−1(u, θ) = Rot(u, −θ) = Rot(−u, θ) (2.13)

Trans−1(u, d) = Trans(u, −d) = Trans(−u, d). (2.14)

Property 5 The inverse of a transformation matrix represented by Eq. (2.9) can be
obtained as:

T−1 =

⎡
⎢⎢⎣

−sT r
RT −nT r

−aT r
0 0 0 1

⎤
⎥⎥⎦ =

[
RT −RT r

0 0 0 1

]
. (2.15)

Property 6 Composition of two matrices: The multiplication of two transformation
matrices gives a transformation matrix:

T1T2 =
[

R1 r1
0 0 0 1

] [
R2 r2

0 0 0 1

]

=
[

R1R2 R1r2 + r1
0 0 0 1

]
. (2.16)

In general, T1T2 �= T2T1.

Property 7 If a frame F0 is subjected to k consecutive transformations (Fig.2.4)
and if each transformation i (i = 1, . . . , k) is defined with respect to the current
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Fig. 2.4 Composition of transformations: multiplication on the right

frame Fi−1, then the transformation 0Tk can be deduced by multiplying all the
transformations on the right as

0Tk =
k∏

i=1

i−1Ti = 0T1 · 1T2 · 2T3 · · · k−1Tk . (2.17)

Property 8 Consecutive transformations about the same axis: We note the following
properties:

Rot(u, θ1)Rot(u, θ2) = Rot(u, θ1 + θ2), (2.18)

Rot(u, θ)Trans(u, d) = Trans(u, d)Rot(u, θ). (2.19)

2.4 Parameterization of the General Matrices of Rotation

The orientation of a body with respect to any frame can be obtained through the use
of the rotation matrix R. It can be calculated by using a different set of parameters.
The most used representations in parallel robotics are described below.

2.4.1 Rotation About One General Axis u

The pure rotation of angle θ around any axis u parameterized by the unit vector
u = [ux uy uz]T can be represented by (Khalil and Dombre 2002):



2.4 Parameterization of the General Matrices of Rotation 25

R = rot(u, θ)

=
⎡
⎣

u2
x (1 − cθ ) + cθ ux uy(1 − cθ ) − uzsθ ux uz(1 − cθ ) + uysθ

ux uy(1 − cθ ) + uzsθ u2
y(1 − cθ ) + cθ uyuz(1 − cθ ) − ux sθ

ux uz(1 − cθ ) − uysθ uyuz(1 − cθ ) + ux sθ u2
z (1 − cθ ) + cθ

⎤
⎦ .

(2.20)

Inverse problem. Let R be any arbitrary rotational transformation matrix such that:

R =
⎡
⎣

sx nx ax

sy ny ay

sz nz az

⎤
⎦ . (2.21)

We solve the following expression for u and θ :

R = rot(u, θ), with 0 ≤ θ ≤ π. (2.22)

Adding the diagonal terms of Eqs. (2.20) and (2.21), we obtain:

cθ = 1

2
(sx + ny + az − 1). (2.23)

From the off-diagonal terms, we obtain:

2ux sθ = nz − ay

2uysθ = ax − sz

2uzsθ = sy − nx (2.24)

yielding:

sθ = 1

2

√
(nz − ay)2 + (ax − sz)2 + (sy − nx )2. (2.25)

From Eqs. (2.23) and (2.25), we deduce that:

θ = atan2(sθ , cθ ), with 0 ≤ θ ≤ π (2.26)

where “atan2” is the four-quadrant inverse tangent function.
ux , uy and uz are calculated using Eq. (2.24) if sθ �= 0. When sθ is small, the

elements ux , uy and uz cannot be determined with good accuracy by this equation.
However, in the case where cθ < 0, we obtain ux , uy and uz more accurately using
the diagonal terms of rot(u, θ) as follows:
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ux = sign(nz − ay)

√
sx − cθ

1 − cθ

uy = sign(ax − sz)

√
ny − cθ

1 − cθ

uz = sign(sy − nx )

√
az − cθ

1 − cθ

(2.27)

where “sign(.)” indicates the sign function of the expression between brackets, thus
sign(e) = +1 if e > 0, sign(e) = −1 if e < 0 and sign(e) = 0 if e = 0.

2.4.2 Quaternions

The quaternions are also called Euler parameters or Olinde-Rodrigues parameters.
This is another way of parameterizing the rotation of an angle θ (0 ≤ θ ≤ π ) about
an axis u. In this representation, the orientation is expressed by four parameters. We
define the quaternions as:

Q1 = cθ/2

Q2 = ux sθ/2

Q3 = uysθ/2

Q4 = uzsθ/2. (2.28)

From these relations, we obtain:

Q2
1 + Q2

2 + Q2
3 + Q2

4 = 1. (2.29)

The transformation matrix T is deduced from Eq. (2.20), defining rot(u, θ)

(Sect. 2.4.1), after rewriting its elements as a function of Q j . Thus, the orientation
matrix is given as:

R =
⎡
⎣

2(Q2
1 + Q2

2) − 1 2(Q2Q3 − Q1Q4) 2(Q2Q4 + Q1Q3)

2(Q2Q3 + Q1Q4) 2(Q2
1 + Q2

3) − 1 2(Q3Q4 − Q1Q2)

2(Q2Q4 − Q1Q3) 2(Q3Q4 + Q1Q2) 2(Q2
1 + Q2

4) − 1

⎤
⎦ . (2.30)

Inverse problem. Let us find the expression of the quaternions as functions of the
direction cosines of the general matrix R of (2.21). Equating the elements of the
diagonals of the right sides of Eqs. (2.21) and (2.30) leads to:

Q1 = 1

2

√
sx + ny + az + 1 (2.31)
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which is always positive. If we then subtract the second and third diagonal elements
from the first diagonal element, we can write after simplifying:

4Q2
2 = sx − ny − az + 1. (2.32)

This expression gives the magnitude of Q2. For determining the sign, we consider
the difference of the (3,2) and (2,3) matrix elements, which leads to:

4Q1Q2 = nz − ay . (2.33)

The parameter Q1 being always positive, the sign of Q2 is that of (nz −ay), which
allows us to write:

Q2 = 1

2
sign(nz − ay)

√
sx − ny − az + 1. (2.34)

Similar reasoning for Q3 and Q4 gives:

Q3 = 1

2
sign(ax − sz)

√−sx + ny − az + 1 (2.35)

Q4 = 1

2
sign(sy − nx )

√−sx − ny + az + 1. (2.36)

Contrary to Euler angles, roll-pitch-yaw angles and T&T angles (see next sec-
tions), quaternion representation is free of singularity. For more information on the
algebra of quaternions, the reader can refer to (de Casteljau 1987).

2.4.3 Euler Angles

The orientation of frameFk expressed in frameFi can be determined by specifying
three angles, φ, θ and ψ corresponding to a sequence of three rotations (Fig. 2.5).

Let us consider two intermediate frames F j and F j ′ defined by F j (Oi , x j ,

y j , z j ) and F j ′ (O j ′, x j ′ , y j ′, z j ′) and characterized by:

• z j ≡ zi and y j is the intersection between the two planes (Oi , xi , yi ) and
(Oi , xk, yk),

• y j ′ ≡ y j and z j ′ ≡ zk .

Taking into account these considerations, the Euler angles are defined as:

• φ: precession angle between yi and y j about zi ≡ z j , with 0 ≤ φ < 2π ; that
angle characterizes the pure rotation of angle φ around zi (see Sect. 2.2.2) that
transforms the frame Fi into the frame F j ;
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(a) (b)

Fig. 2.5 The successive rotations that define the ZY Z Euler angles: a precession and nutation,
b spin

• θ : nutation angle between zi and z j ′ about y j ≡ y j ′ , with 0 ≤ θ < π ; that angle
characterizes the pure rotation of angle θ around y j (see Sect. 2.2.2) that transforms
the frame F j into the frameF j ′ ;

• ψ : spin angle between y j ′ ≡ y j and yk about z j ′ ≡ zk , with 0 ≤ ψ < 2π ; that
angle characterizes the pure rotation of angle ψ around z j ′ (see Sect. 2.2.2) that
transforms the frame F j ′ into the frameFk .

The transformation matrix is given by:

R = rot(z, φ)rot(y, θ)rot(z, ψ)

=
⎡
⎣
cφcθcψ − sφsψ −cφcθ sψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθ sψ + cφcψ sφsθ

−sθcψ sθ sψ cθ

⎤
⎦ . (2.37)

Inverse problem. Let us find the expression of the Euler angles as functions of the
direction cosines of the general matrix R of (2.21). Premultiplying Eq. (2.37) by
rot(z, φ), we obtain:

rot(z, φ)R = rot(y, θ)rot(z, ψ) (2.38)

which results in
⎡
⎣

cφsx + sφsy cφnx + sφny cφax + sφay

−sφsx + cφsy −sφnx + cφny −sφax + cφay

sz nz az

⎤
⎦ =

⎡
⎣

cθcψ −cθ sψ sθ
sψ cψ 0

−sθcψ sθ sψ cθ

⎤
⎦ . (2.39)

From the elements on the second raw, third column of (2.45), we obtain:

− sφax + cφay = 0 (2.40)
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thus:

φ = atan2(ay, ax )

φ′ = atan2(−ay,−ax ) = φ + π. (2.41)

There is a singularity if ax and ay are zero. In that case, θ = kπ (k = 0, 1).
In the same way, from the elements on the first and third rows, and third column

of (2.39), and then from those of the second row, first and second columns, we deduce
that:

θ = atan2(cφax + sφay, az)

ψ = atan2(−sφsx + cφsy,−sφnx + cφny). (2.42)

The described Euler angles convention is denoted as the ZY Z convention, where
ZY Z denotes that we have a first rotation around zi , then a second rotation around
y j and finally a last rotation around z j ′ . There exists in total 12 different sequences
of the three rotations, and, hence, there can be 12 Euler conventions: XY Z , X ZY ,
Y X Z , Y Z X , Z XY , ZY X , XY X , X Z X , Y XY , Y ZY , Z X Z , and ZY Z , where the
convention P Q R denotes that we have a first rotation around pi–axis, then a second
rotation around q j–axis and finally a last rotation around r j ′–axis.

2.4.4 Roll-Pitch-Yaw Angles

Following the convention shown in Fig. 2.6, the angles φ, θ andψ indicate roll, pitch
and yaw respectively. If we suppose that the direction of motion (by analogy to the

(a) (b)

Fig. 2.6 Roll-Pitch-Yaw angles
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direction along which a ship is sailing) is along the zi axis, the transformation matrix
can be written as:

R = rot(z, φ)rot(y, θ)rot(x, ψ)

=
⎡
⎣
cφcθ cφsθ sψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθ sψ + cφcψ sφsθcψ − cφsψ
−sθ cθ sψ cθcψ

⎤
⎦ . (2.43)

This description is analogous to the ZY X Euler angle convention.

Inverse problem. Let usfind the expressionof theRoll-Pitch-Yawangles as functions
of the direction cosines of the general matrix R. We use the same method discussed
in the previous section. Premultiplying Eq. (2.43) by rot(z, φ), we obtain:

rot(z, φ)R = rot(y, θ)rot(x, ψ) (2.44)

which results in:
⎡
⎣

cφsx + sφsy cφnx + sφny cφax + sφay

−sφsx + cφsy −sφnx + cφny −sφax + cφay

sz nz az

⎤
⎦ =

⎡
⎣

cθ sθ sψ sθcψ

0 cψ −sψ
−sθ cθ sψ cθcψ

⎤
⎦ . (2.45)

From the elements on the second raw, first column of (2.45), we obtain:

− sφsx + cφsy = 0 (2.46)

thus:

φ = atan2(sy, sx )

φ′ = atan2(−sy,−sx ) = φ + π. (2.47)

There is a singularity if sx and sy are zero. In that case, θ = ±π/2.
In the same way, from the elements on the first and third rows, and first column

of (2.45), and then from those of the second row, second and third columns, we
deduce that:

θ = atan2(−sz, cφsx + sφsy)

ψ = atan2(sφax − cφay,−sφnx + cφny). (2.48)



2.4 Parameterization of the General Matrices of Rotation 31

2.4.5 Tilt-and-Torsion Angles

A novel three-angle orientation representation, later called the Tilt-and-Torsion
(T&T ) angles, was proposed in (Bonev and Ryu 1999). These angles were also
independently introduced in (Huang et al. 1999), (Crawford et al. 1999) and (Wang
1999). They had been also proposed in (Korein 1984) under the name halfplane-
deviation-twist angles. In (Bonev et al. 2002a), the advantages of the T&T angles in
the study of spatial parallel mechanisms were further demonstrated. It was shown
that there is a class of 3–DOF mechanisms that have always a zero torsion, that
we now call zero-torsion parallel mechanisms. Furthermore, it was demonstrated
in (Bonev and Gosselin 2005a) and (Bonev and Gosselin 2006) that the workspace
and singularities of symmetric spherical parallel mechanisms are best analyzed using
the T&T angles.

The T&T angles are defined in two stages: a tilt and a torsion. This does not,
however, mean that only two angles define the T&T angles but simply that the axis
of tilt is defined by another angle. In the first stage, illustrated in Fig. 2.7a, the body
frame is tilted about a horizontal axis, u, at an angle θ , referred to as the tilt. The axis
u is defined by an angle φ, called the azimuth, which is the angle between the axes
u and yi , u being at the intersection of the planes (Oi , xi , yi ) and (Oi , xk, yk). In
the second stage, illustrated in Fig. 2.7, the body frame is rotated about the body zk

axis at an angle σ , called the torsion.
For space limitations, we will omit the otherwise quite interesting details of the

derivation process [see (Bovev et al. 2002a)], and write directly the resulting trans-
formation matrix of the T&T angles, which is

(a) (b)

Fig. 2.7 The successive rotations of the T&T angles: a tilt, b torsion
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R = rot(u, θ)rot(z, σ )

=
⎡
⎣
cφcθcσ−φ − sφsσ−φ −cφcθ sσ−φ − sφcσ−φ cφsθ
sφcθcσ−φ + cφsσ−φ −sφcθ sσ−φ + cφcσ−φ sφsθ

−sθcσ−φ sθ sσ−φ cθ

⎤
⎦ (2.49)

where rot(u, θ) = rot(z, φ)rot(y, θ)rot(z, −φ).
From the above, we see that the T&T angles (φ, θ, σ ) are equivalent to the ZY Z

Euler angles (φ, θ, σ − φ), i.e., the spin angle ψ has been replaced with σ − φ.

Inverse problem. From the previous consideration, the inverse problem of the T&T
angles can be solved as shown in Sect. 2.4.3, from which we find that:

φ = atan2(ay, ax ) or φ = atan2(−ay,−ax )

θ = atan2(cφax + sφay, az)

σ = atan2(−sφsx + cφsy,−sφnx + cφny) + φ. (2.50)

There is a singularity if θ = 0 + kπ (k = 0, 1).
One of the properties of three-angle orientation representation is that a given

orientation can be represented by at least two triplets of angles. In our case, the triplets
{φ, θ, σ } and {φ ± π,−θ, σ } are equivalent. To avoid this and the representational
singularity at θ = π (which is hardly achieved by any parallel mechanism), we set
the ranges of the azimuth, tilt, and torsion as, respectively, φ ∈ (−π, π ], θ ∈ [0, π),
and σ ∈ (−π, π ]. Then, probably the most valuable property of the T&T angles
is that for the ranges just defined, the angles (θ , φ, σ ) can be represented in a
cylindrical coordinate system (r ,φ, h) through a one-to-onemapping. In other words,
any orientation (except θ = π ) corresponds to a unique point within a cylinder
in the cylindrical coordinate system, and vice versa. The reason is that the T&T
representational singularity at θ = 0 is of the same nature as the singularity of the
cylindrical coordinate system occurring at zero-radius (r = 0).
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