
Chapter 2
Zero-Dimensional Spaces

This chapter is devoted to 0-dimensional topological spaces. It follows from the defi-
nition of topological dimension given in Chap.1 that a zero-dimensional topological
space admits arbitrarily fine open partitions. As every element of an open partition
is a clopen subset, i.e., a subset that is both closed and open, this suggests that any
zero-dimensional space must contain many clopen subsets and hence be very dis-
connected since the abundance of clopen subsets reflects the discontinuous nature
of a topological space. We shall study the relationship between the class of zero-
dimensional topological spaces and other classes of highly-disconnected topological
spaces such as the class of scattered spaces, the class of totally disconnected spaces,
and the class of totally separated spaces.

2.1 The Cantor Set

In this section, we first describe the construction of the Cantor set, which is a funda-
mental example of a compact metrizable space with zero topological dimension.

Let a and b be real numbers such that a < b. The open interval

(
a + b − a

3
, b − b − a

3

)
=

(
2a + b

3
,

a + 2b

3

)

is called the middle third of the segment [a, b]. We denote by T ([a, b]) the set
obtained by deleting from the segment [a, b] its middle third. Thus, we have

T ([a, b]) :=
[

a, a + b − a

3

]
∪

[
b − b − a

3
, b

]
=

[
a,

2a + b

3

]
∪

[
a + 2b

3
, b

]
.
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28 2 Zero-Dimensional Spaces

More generally, for every subset A ⊂ R which is the union of a finite family
([ai , bi ])1≤i≤k of pairwise disjoint segments, we set

T (A) :=
k⋃

i=1

T ([ai , bi ]).

Let us inductively define a decreasing sequence (Kn)n∈N of closed subsets of [0, 1]
by setting

K0 := [0, 1],
Kn+1 := T (Kn) for all n ∈ N.

We therefore have

K1 =
[
0,

1

3

]
∪

[
2

3
, 1

]
,

K2 =
[
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]
∪
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]
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]
∪
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]
,

K3 =
[
0,

1

27

]
∪

[
2

27
,
1

9

]
∪

[
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,
7

27

]
∪

[
8
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,
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3

]

∪
[
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3
,
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]
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[
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,
7
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]
∪
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9
,
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27

]
∪

[
26

27
, 1

]
, etc.

Observe that the set Kn is the union of 2n pairwise disjoint segments of length 1/3n .
These segments are the connected components of Kn (see Fig. 2.1).

The set
K :=

⋂
n∈N

Kn

is called the Cantor ternary set or simply the Cantor set. A topological space that is
homeomorphic to the Cantor ternary set K is called a Cantor space.

Proposition 2.1.1 The Cantor set K is a compact subset of R with empty interior.

Proof As the sets Kn are closed in [0, 1], the Cantor set is closed in [0, 1] and hence
compact.

Fig. 2.1 Construction of the Cantor set
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Let I be an interval of R such that I ⊂ K . The fact that I is connected implies
that, for each n ∈ N, the set I is contained in one of the 2n connected compo-
nents of Kn . We deduce that the length of I is smaller than or equal to 1/3n for all
n ∈ N. As 1/3n tends to 0 as n goes to infinity, it follows that I has zero length,
i.e., is either empty or reduced to a single point. This shows that K has empty
interior. �

Proposition 2.1.2 The Cantor set K has topological dimension dim(K ) = 0.

Proof The set Kn is the disjoint union of 2n segments �n(i), 1 ≤ i ≤ 2n , which are
clopen in Kn . Let us set Un(i) := K ∩ �n(i). The family αn := (

Un(i)
)
1≤i≤2n is a

finite open partition of K . Therefore, we have ord(αn) = 0. As mesh(αn) = 1/3n

tends to 0 as n goes to infinity, we deduce that dim(K ) = 0 by applying Proposition
1.4.4 (observe that the set K is not empty since we clearly have 0 ∈ K ). �

Recall that every real number x ∈ [0, 1] admits a ternary expansion, that is, a
sequence (uk)k∈N ∈ {0, 1, 2}N such that

x =
∞∑

k=0

uk

3k+1 .

We will also write this equality under the form

x = 0, u0u1u2 · · · uk · · ·.

When x is not a triadic rational number of the form n/3m with n and m integers
satisfying 1 ≤ n ≤ 3m −1, such an expansion is unique. In the case when x = n/3m

with n and m integers such that 1 ≤ n ≤ 3m − 1, the number x admits two ternary
expansions: a first one, called the proper ternary expansion of x , whose terms are
eventually equal to 0 and another one, called the unproper ternary expansion of x ,
whose terms are eventually equal to 2. For example, we have

1

4
= 0, 02020202 . . .

and
7

9
= 0, 210000 . . . = 0, 202222 . . ..

The set Kn consists of all numbers x ∈ [0, 1] that admit a ternary expansion
(uk)k∈N such that uk ∈ {0, 2} for all k ≤ n − 1. We deduce that the Cantor set K
is the set consisting of the numbers x ∈ [0, 1] that admit a ternary expansion whose
terms all belong to the set {0, 2}. Thus, the ternary expansions given above show that
both 1/4 and 7/9 belong to K .

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 2.1.3 The map ϕ : {0, 1}N → K defined by

ϕ(u) :=
∞∑

k=0

2uk

3k+1

for all u = (uk) ∈ {0, 1}N is a homeomorphism from the product space {0, 1}N onto
the Cantor set K .

Proof The fact that the map ϕ is well defined and bijective follows from the previous
observations. Let us fix a sequence u ∈ {0, 1}N. For each integer n ≥ 0, the set
Vn(u) ⊂ {0, 1}N consisting of all sequences v such that vk = uk for all k ≤ n is an
open neighborhood of u. For all v ∈ Vn(u), we have that

|ϕ(u) − ϕ(v)| ≤
∞∑

k=n+1

2

3k+1 = 1

3n+1 .

Since 1/3n+1 tends to 0 as n goes to infinity, we deduce that ϕ is continuous. The
space {0, 1}N is compact as it is a product of compact spaces. Consequently, ϕ is a
homeomorphism. �

Corollary 2.1.4 The Cantor set is uncountable. �

Let X be a topological space. A point x ∈ X is called isolated if the singleton
set {x} is open in X . A topological space is called perfect if it contains no isolated
points.

Corollary 2.1.5 The Cantor set is perfect.

Proof Let u ∈ {0, 1}N. Consider the open subsets

Vn(u) := {v ∈ {0, 1}N | vk = uk for all k ≤ n} ⊂ {0, 1}N.

Bydefinition of the product topology, every neighborhood of u in {0, 1}N contains the
sets Vn(u) for n large enough. As the set Vn(u) is infinite for every n, we deduce that
u is not isolated. This shows that the space {0, 1}N is perfect. As K is homeomorphic
to {0, 1}N, it is also perfect. �

2.2 Scattered Spaces

In this section, we introduce the class of scattered spaces.We prove that an accessible
topological space X is scattered if and only if there exists a set E such that X is
homeomorphic to a subspace of the product space {0, 1}E .



2.2 Scattered Spaces 31

Let X be a topological space. A base of the topological space X is a set B of open
subsets of X such that every open subset of X can be written as a union of elements
of B.

A set N of neighborhoods of a point x ∈ X is called a neighborhood base of x if,
for every neighborhood V of x , there exists N ∈ N such that N ⊂ V . Observe that
a set B of open subsets of X is a base of X if and only if, for every x ∈ X , the set

Bx := {B ∈ B | x ∈ B}

is a neighborhood base of the point x .
If B is a base of a topological space X , then B satisfies the following two condi-

tions:

(B1) the elements of B cover X ;
(B2) if B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists B3 ∈ B such that x ∈ B3 ⊂

B1 ∩ B2.

Conversely, if X is a set and B is a set of subsets of X satisfying conditions (B1) and
(B2) above, then there exists a unique topology on X admitting B as a base.

Example 2.2.1 Let X be a metric space. Then the set consisting of all open balls
B(x, 1/n), where x ∈ X and n ≥ 1 is an integer, is a base of X .

Recall that a subset of a topological space X is said to be clopen if it is both open
and closed in X . Note that the clopen subsets of a topological space are precisely the
subsets with empty boundary.

Definition 2.2.2 We say that a topological space X is scattered if it admits a base
consisting of clopen subsets of X .

A topological space X is scattered if and only if every point of X admits a neigh-
borhood base consisting of clopen subsets.

Example 2.2.3 Every set endowed with the discrete topology is scattered.

Remark 2.2.4 A connected space X is scattered if and only if the topology on X is
the trivial one.

Note that a scattered space may fail to be accessible. For example, every set X
equipped with the trivial topology is scattered. However, such a space X is not
accessible as soon as X contains more than one point.

Proposition 2.2.5 Every scattered accessible space is Hausdorff.

Proof Let X be a scattered accessible space. Let x and y be distinct points in X .
Since X is accessible, the set X\{y} is an open neighborhood of x . As X is scattered,
there exists a clopen neighborhood V of x that is contained in X\{y}. The sets V
and X\V are disjoint open subsets of X containing x and y respectively. This shows
that X is Hausdorff. �
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Proposition 2.2.6 Every subspace of a scattered space is itself scattered.

Proof Let X be a scattered space and Y ⊂ X . IfB is a base of X consisting of clopen
subsets, then the sets Y ∩ B, where B ∈ B, are clopen in Y and form a base of Y .
Consequently, Y is scattered. �

Proposition 2.2.7 Every product of scattered spaces is itself scattered.

Proof Let (Xi )i∈I be a family of scattered spaces and consider their direct product
X := ∏

i∈I Xi . Let Bi be a base of Xi consisting of clopen subsets. We can assume
Xi ∈ Bi . Then the set

∏
i∈I Ui , where Ui ∈ Bi for all i ∈ I and Ui = Xi for all

but finitely many i ∈ I , are clopen in X and form a base for the product topology.
Therefore X is scattered. �

Every open ball of the Euclidean space R
n is connected. Consequently, every

scattered subset of R
n (n ≥ 1) has empty interior. For the subsets of R, the converse

is also true:

Proposition 2.2.8 Let X be a subset of the real line R. Then X is scattered if and
only if it has empty interior.

Proof We already observed that the condition is necessary. Let us show that it is also
sufficient. Suppose that X has empty interior. Let x ∈ X and ε > 0. As X has empty
interior, we can find real numbers a and b not in X such that x − ε < a < x < b <

x + ε. Then the set V := (a, b) ∩ X = [a, b] ∩ X is a clopen neighborhood of x in
X satisfying V ⊂ (x − ε, x + ε). This shows that X is scattered. �

By applying the preceding proposition, we see that the set of rational numbers Q,
the set of irrational numbers R\Q, and the Cantor set K are all scattered.

Proposition 2.2.9 Let X be an accessible space. Then the following conditions are
equivalent:

(a) the space X is scattered;
(b) there exists a set E such that X is homeomorphic to a subset of the product space

{0, 1}E .

Proof Given a set E , the space {0, 1}E is a product of discrete spaces and hence
scattered by Proposition 2.2.7. As every subset of a scattered space is itself scattered
by Proposition 2.2.6, this shows that (b) implies (a).

Conversely, suppose that X is a scattered space. Let E be a base of X consisting of
clopen subsets. Consider the map ϕ : X → {0, 1}E defined by ϕ(x) = (χB(x))B∈E ,
where χB : X → {0, 1} is the characteristic map of B. As B is clopen in X , the
map χB is continuous for each B ∈ E . It follows that ϕ is continuous. On the other
hand, if x and y are distinct points in X , then X\{x} is an open neighborhood of y
since X is accessible. Therefore, there exists a neighborhood B0 ∈ E of y such that
B0 ⊂ X\{x}. This implies χB0(x) 
= χB0(y) and hence ϕ(x) 
= ϕ(y). We deduce
thatϕ is injective.We have thatϕ(B) = ϕ(X)∩π−1

B (1), whereπB : {0, 1}E → {0, 1}
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is the projection map onto the B-factor of {0, 1}E . This shows that ϕ(B) is open in
ϕ(X) for all B ∈ E . As E is a base of X , we deduce that the image by ϕ of every
open subset of X is open in ϕ(X). Consequently, ϕ induces a homeomorphism from
X onto ϕ(X). Therefore, the space X satisfies (b). �

2.3 Scatteredness of Zero-Dimensional Spaces

In this section, we give a characterization of 0-dimensional topological spaces. This
characterization shows that every 0-dimensional accessible space is scattered.

Theorem 2.3.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) dim(X) = 0;
(b) for every pair of disjoint closed subsets A and B of X, there exist disjoint open

subsets U and V of X such that X = U ∪ V , A ⊂ U and B ⊂ V ;
(c) for every closed subset A of X and every open subset U of X such that A ⊂ U,

there exists a clopen subset V of X such that A ⊂ V ⊂ U.

Proof Suppose first that dim(X) = 0. Let A and B be disjoint closed subsets of X .
Consider the open cover α = {X\A, X\B}. As dim(X) = 0, there exists a finite
open partition β of X such that β � α. Note that no element of β can meet both A
and B. Denote byU the union of all the elements of β that meet A and let V := X\U .
The sets U and V form an open partition of X . Moreover, we have that A ⊂ U and
B ⊂ V . This shows that (a) implies (b).

Let us show now that (b) implies (c). Suppose that X satisfies (b). Let A be a
closed subset of X and U an open subset of X such that A ⊂ U . Then B := X\U is
a closed subset that does not meet A. By (b), it follows that there exists a partition
of X into two open subsets V and W such that A ⊂ V and B ⊂ W . Then the set V
is a clopen subset of X and we have A ⊂ V ⊂ U . This shows that X satisfies (c).

Finally, let us prove that (c) implies (a). Suppose that X satisfies (c). Let α =
(Ui )i∈I be a finite open cover of X . As X satisfies (c), it follows from Proposition
1.5.2 that X is normal. By applying Corollary 1.6.4, we deduce that there exists a
closed cover (Fi )i∈I of X such that Fi ⊂ Ui for all i ∈ I . Since X satisfies (c), we
can find, for each i ∈ I , a clopen subset Vi of X such that Fi ⊂ Vi ⊂ Ui .Without loss
of generality, we may assume that I = {1, . . . , n}. Consider the family β = (Wi )i∈I

of subsets of X defined by W1 := V1 and

Wi := Vi\(V1 ∪ · · · ∪ Vi−1)

for all i ∈ {2, . . . , n}. Clearly β := (Wi )i∈I is an open partition of X . Moreover, we
have that β � α since Wi ⊂ Vi ⊂ Ui for all i ∈ I . This shows that dim(X) = 0. �

Corollary 2.3.2 Every topological space X satisfying dim(X) = 0 is normal.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proof A topological space X such that dim(X) = 0 satisfies condition (b) in the
preceding theorem and is therefore normal. �

Corollary 2.3.3 Every accessible topological space X satisfying dim(X) = 0 is
scattered.

Proof Let X be an accessible space such that dim(X) = 0. Let V be a neighborhood
of a point x ∈ X . The singleton {x} is closed in X since X is accessible. As dim(X) =
0, the space X satisfies condition (c) of the preceding theorem. Therefore, there exists
a clopen subset U of X such that x ∈ U ⊂ V . Consequently, every point of X
admits a neighborhood base consisting of clopen subsets of X . This shows that X is
scattered. �

Corollary 2.3.4 If X is an accessible topological space such that dim(X) = 0, then
X is Hausdorff.

Proof Every scattered accessible space is Hausdorff by Proposition 2.2.5. �

Remark 2.3.5 Corollary 2.3.4 can also be deduced from Corollary 2.3.2 since, as
already observed in Sect. 1.5, every normal accessible space is clearly Hausdorff.

In Sect. 5.4, we shall give an example of a locally compact Hausdorff space that
is scattered but not normal. Such a space has positive topological dimension by
Corollary 2.3.2.

2.4 Lindelöf Spaces

In this section, we introduce the class of Lindelöf spaces and we prove that every
non-empty scattered Lindelöf space X has topological dimension dim(X) = 0.

Definition 2.4.1 A topological space X is called a Lindelöf space if every open
cover of X admits a countable subcover.

Example 2.4.2 Every countable topological space is Lindelöf. Indeed, suppose that
X is a countable topological space. Let α = (Ui )i∈I be an open cover of X . Choose,
for each x ∈ X , an index i(x) ∈ I such that x ∈ Ui(x). Let J := {i(x) | x ∈ X}.
Then β := (Ui )i∈J is a countable subcover of α.

Example 2.4.3 Every compact space is Lindelöf. Indeed, by definition, a topological
space X is compact if and only if every open cover of X admits a finite subcover.

Example 2.4.4 Every topological space that is a union of a countable family of
subsets that are Lindelöf (for the induced topology) is Lindelöf. In particular, every
σ -compact space is Lindelöf (recall that a topological space is called σ -compact if
it is the union of a countable family of compact subsets). Thus, the Euclidean space
R

n is Lindelöf for any integer n ≥ 1 since it is σ -compact.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Example 2.4.5 If an uncountable set X is endowed with its discrete topology, then X
is not Lindelöf. Indeed, the open coverα := ({x})x∈X admits no countable subcovers.
Note that X ismetrizable (ametric inducing the topologyon X is givenbyd(x, y) = 0
if x = y and d(x, y) = 1 otherwise) and locally compact.

A subset of a Lindelöf space is not necessarily Lindelöf (see the example in
Sect. 5.4). However, we have the following result.

Proposition 2.4.6 Every closed subset of a Lindelöf space is itself Lindelöf.

Proof Let X be a Lindelöf space and F a closed subset of X . Let α = (Ui )i∈I be
an open cover of F . Then we can find, for each i ∈ I , an open subset Vi of X such
that Ui = Vi ∩ F . As the family (Vi )i∈I ∪ {X\F} is an open cover of X and X is
Lindelöf, there exists a countable subset J ⊂ I such that the family (Vj ) j∈J ∪{X\F}
covers X . Then the family (U j ) j∈J is a countable subcover of α. This shows that F
is Lindelöf. �

Remark 2.4.7 The product of two Lindelöf spaces may fail to be Lindelöf (see
Sect. 5.5).

Definition 2.4.8 A topological space is said to be second-countable if it admits a
countable base.

For example, the Euclidean space R
n is second-countable since the open balls

B(x, 1/m), where x ∈ Q
n and m ≥ 1 is an integer, form a countable base of R

n .
A topological space X is called first-countable if every point of X admits a count-

able neighborhood base. Clearly every second-countable topological space is also
first-countable. On the other hand, a first-countable space is not necessarily second-
countable. For example, an uncountable set equipped with its discrete topology is
first-countable but not second-countable.

Proposition 2.4.9 Every subset of a second-countable topological space is itself
second-countable.

Proof If X is a topological space admitting a countable base B and Y ⊂ X , then the
set consisting of all the subsets of the form Y ∩ B, where B runs over B, is clearly a
countable base for Y . �

Proposition 2.4.10 Every countable product of second-countable spaces is itself
second-countable.

Proof Let (Xi )i∈I be a countable family of second-countable spaces and consider
their direct product X := ∏

i∈I Xi . Let Bi be a countable base of Xi . We can assume
Xi ∈ Bi . Then the sets

∏
i∈I Ui , where Ui ∈ Bi for all i ∈ I and Ui = Xi for all but

finitely many i ∈ I , form a countable base for the product topology. Therefore X is
second-countable. �

Proposition 2.4.11 (Lindelöf) Every second-countable topological space is Lin-
delöf.

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Proof Let X be a topological space admitting a countable base B. Let α = (Ui )i∈I

be an open cover of X . Denote by B′ the set consisting of all B ∈ B such that
there exists i ∈ I satisfying B ⊂ Ui . Define a map ϕ : B′ → I by choosing,
for each B ∈ B′, an index ϕ(B) ∈ I such that B ⊂ Uϕ(B). Then the image set
J = ϕ(B′) ⊂ I is countable. Let x ∈ X . As α covers X , we can find an index
i(x) ∈ I such that x ∈ Ui(x). Since B is a base of X , there exists an open subset
B(x) ∈ B such that x ∈ B(x) ⊂ Ui(x). We have that B(x) ∈ B′, by definition of B′,
and x ∈ B(x) ⊂ Uϕ(B(x)). It follows that (Ui )i∈J is a countable cover of X . This
shows that X is Lindelöf. �

Definition 2.4.12 A topological space is said to be separable if it admits a countable
dense subset.

Proposition 2.4.13 Every second-countable topological space is separable.

Proof Let X be a topological space andB a base of X . Let us choose, for each B ∈ B
with B 
= ∅, a point xB ∈ B and denote by Y the set consisting of all such points
xB . Since B is a base for X , every non-empty open subset of X contains a point of
Y . Consequently, Y is dense in X . If B is countable, then Y is also countable and
hence X is separable. �

From Propositions 2.4.9, 2.4.11 and 2.4.13, we immediately deduce the following
result.

Corollary 2.4.14 Every subset of a second-countable space is separable and Lin-
delöf. In particular, every subset of the Euclidean space R

n is separable and Lindelöf.
�

The following example shows that a separable compact Hausdorff space may fail
to be first-countable.

Example 2.4.15 Let X denote the set consisting of all maps from R into the unit
segment [0, 1]. We equip X with the topology of pointwise convergence. Thus, the
space X may be identified with the product space [0, 1]R and is a compact Hausdorff
space by Tychonoff’s theorem. Let f ∈ X . By definition of the topology of pointwise
convergence, for every ε > 0 and every finite subset A ⊂ R, the set

V ( f, ε, A) := {g ∈ X | | f (x) − g(x)| < ε for all x ∈ A}

is an open neighborhood of f . Moreover, the sets V ( f, ε, A), where ε > 0 and
A ⊂ R is a finite subset, form a neighborhood base of f . Let D denote the subset
of X consisting of all finite linear combinations with rational coefficients of char-
acteristic maps of segments of R with rational endpoints. Clearly D is dense in X .
As D is countable, this shows that X is separable. However, X is not first-countable.
Otherwise, every f ∈ X would admit a countable neighborhood base Wn , n ∈ N.
Then, for every n ∈ N, there would exist εn > 0 and a finite subset An ⊂ R such
that V ( f, εn, An) ⊂ Wn . The set E := ⋃

n∈N An would be countable and hence we
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would have R\E 
= ∅. Taking a point x0 ∈ R\E , any map g : R → [0, 1] such that
g(x0) 
= f (x0) and g(x) = f (x) for all x ∈ E would satisfy g ∈ Wn for all n ∈ N.
As X is Hausdorff, this would imply g = f , which contradicts g(x0) 
= f (x0).
Consequently, X is not first-countable and hence not second-countable either.

Remark 2.4.16 The topological space in the preceding example is not metrizable.
Indeed, every metrizable space is first-countable since, in a metric space X , every
point x ∈ X admits a countable neighborhood base, e.g., the one formed by the open
balls B(x, 1/n), n ≥ 1.

Remark 2.4.17 The space X in Example 2.4.15 is Lindelöf since it is compact. In
Sect. 5.5, we will describe a first-countable separable Lindelöf Hausdorff space S
which is not second-countable (see Proposition 5.5.1 and Corollary 5.5.7).

For metrizable spaces, we have the following equivalent conditions.

Proposition 2.4.18 Let X be a metrizable space. Then the following conditions are
equivalent:

(a) X is second-countable;
(b) X is Lindelöf;
(c) X is separable;
(d) X is homeomorphic to a subset of the Hilbert cube [0, 1]N.

Proof The fact that (a) implies (b) follows from Proposition 2.4.11.
Let us fix a metric d on X compatible with its topology.
Suppose (b). Given an integer n ≥ 1, consider the cover of X formed by the open

balls B(x, 1/n), x ∈ X . As X is Lindelöf, there exists a countable subset Yn ⊂ X
such that the balls B(y, 1/n), y ∈ Yn , cover X . The set Y := ⋃

n≥1 Yn is countable
and dense in X . Consequently, X is separable. This shows that (b) implies (c).

The unit segment [0, 1] ⊂ R is second-countable. Thus, condition (d) implies
(a) since any countable product of second-countable topological spaces is second-
countable by Proposition 2.4.10 and any subset of a second-countable space is
second-countable by Proposition 2.4.9.

To complete the proof, it suffices to show that (c) implies (d). Suppose (c). Let
A = {an | n ∈ N} be a countable dense subset of X . After possibly replacing d(x, y)

by the metric min(d(x, y), 1), which is also compatible with the topology on X , we
can assume that diam(X) ≤ 1. Consider the map F : X → [0, 1]N defined by

F(x) = (d(x, an))n∈N .

The map F is continuous since all maps x 
→ d(x, an) are continuous. As every
point of X is the limit of some sequence of points in A, it follows that F is injective
(uniqueness of the limit in Hausdorff spaces). Let now x0 ∈ X and ε > 0. As A is
dense in X , there exists an integer n0 ≥ 0 such that d(x0, an0) < ε/2. Then the subset
U ⊂ [0, 1]N consisting of all sequences (un)n∈N ∈ [0, 1]N such that un0 < ε/2 is

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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an open neighborhood of F(x0). If x ∈ X is such that F(x) ∈ U , then x satisfies
d(x, an0) < ε/2 and hence

d(x, x0) ≤ d(x, an0) + d(x0, an0) < ε,

by applying the triangle inequality. Consequently, we have that

F−1(U ) ⊂ B(x0, ε).

We deduce that F induces a homeomorphism from X onto F(X). This shows that
X satisfies (d). �

As every compact space is Lindelöf, we immediately get the following:

Corollary 2.4.19 Every compact metrizable space is second-countable and hence
separable.

It follows from Corollary 2.3.3 that every accessible topological space X with
dim(X) = 0 is scattered. The following theorem states that the converse holds in
the class of Lindelöf spaces. This is very useful for showing that certain spaces are
zero-dimensional.

Theorem 2.4.20 Let X be a non-empty scattered Lindelöf space. Then one has
dim(X) = 0.

Proof As X is scattered, it admits a base B consisting of clopen subsets. Consider
a finite open cover α = (Ui )i∈I of X . For every x ∈ X , we can find an index
i(x) ∈ I such that x ∈ Ui(x). As B is a base of X , there exists B(x) ∈ B such that
x ∈ B(x) ⊂ Ui(x). The subsets B(x), x ∈ X , form an open cover of X . Since X is
Lindelöf, this open cover admits a countable subcover. Therefore there exists a cover
β = (Bn)n∈N of X such that β � α and Bn ∈ B for all n.

Consider the sequence γ = (Cn)n∈N of subsets of X defined by C0 := B0 and

Cn := Bn\ (B0 ∪ B1 ∪ · · · ∪ Bn−1) ,

for every integer n ≥ 1. As the subsets Bn are clopen and cover X , it is clear that
γ is an open partition of X . On the other hand, we have that γ � β � α. By
applying Proposition 1.1.6, we deduce that D(α) = 0. Thus, we have dim(X) =
supα D(α) = 0. �
Remark 2.4.21 As mentioned earlier, we shall give in Sect. 5.4 an example of a
scattered locally compact Hausdorff space with positive topological dimension.

By Corollary 2.3.3, every accessible space X with dim(X) = 0 is scattered.
Combining this result with the previous theorem, we get the following.

Corollary 2.4.22 Let X be an accessible Lindelöf space (e.g., a separable metrizable
space or a compact Hausdorff space) with X 
= ∅. Then the following conditions
are equivalent:

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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(a) dim(X) = 0;
(b) X is scattered. �
Example 2.4.23 We deduce from Corollary 2.4.22 and Proposition 2.2.8 that a non-
empty subset X ⊂ R satisfies dim(X) = 0 if and only if X has empty interior
in R. This shows in particular that the set R\Q of irrational numbers satisfies
dim(R\Q)=0.

As an immediate consequence ofCorollary 2.4.22,we obtain the following results.

Corollary 2.4.24 Let (Xi )i∈I be a family of compact Hausdorff spaces with
dim(Xi ) = 0 for all i ∈ I . Then the product space X := ∏

i∈I Xi satisfies
dim(X) = 0.

Proof By Proposition 2.2.7, the space X is scattered since it is a product of scattered
spaces. On the other hand, X is a product of compact Hausdorff spaces and hence
also compact and Hausdorff. �
Corollary 2.4.25 Let (Xi )i∈I be a family of non-empty finite discrete spaces. Then
the product space X := ∏

i∈I Xi satisfies dim(X) = 0.

Proof This immediately follows from Corollary 2.4.24 since each Xi is a compact
Hausdorff space with dim(Xi ) = 0. �
By taking Xi = {0, 1} for all i ∈ I in Corollary 2.4.25, we get the following.

Corollary 2.4.26 One has dim({0, 1}E ) = 0 for any set E. �
Example 2.4.27 We have dim({0, 1}N) = 0. As {0, 1}N is homeomorphic to the
Cantor set K by Proposition 2.1.3, we recover the fact that dim(K ) = 0 (cf. Propo-
sition 2.1.2).

Corollary 2.4.28 Let (Xi )i∈I be a countable family of separable metrizable spaces
such that dim(Xi ) = 0 for all i ∈ I . Then the product space X := ∏

i∈I Xi satisfies
dim(X) = 0.

Proof By Proposition 2.2.7, the space X is scattered since it is a product of scattered
spaces. On the other hand, X is a product of countably many separable metrizable
spaces and hence also separable and metrizable. �

The following example shows that the product of two zero-dimensional topolog-
ical spaces may fail to be zero-dimensional.

Example 2.4.29 Let X = {x0, x1} be a set with cardinality 2. Equip X with the
topology for which the open sets are ∅, {x0} and X . We have that dim(X) = 0 since
the open cover of X reduced to X is finer than any open cover of X . In fact, X is the
space described in Example 1.1.11 for n = 0. Consider now the set X × X equipped
with the product topology. The open subsets of X × X are ∅ and all the subsets of
X × X that contain (x0, x0). Thus, we have that dim(X × X) = 2 by applying the
result in Example 1.1.11 for n = 2.

Remark 2.4.30 The topological space X in the previous example is not Hausdorff,
not even accessible since {x0} is not closed in X . In Sect. 5.5, we shall give an example
of a normal Hausdorff space X such that dim(X) = 0 and dim(X × X) 
= 0.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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2.5 Totally Disconnected Spaces

Let X be a topological space. Recall that the connected component of a point x ∈ X is
the union of all the connected subsets of X containing x . The connected components
of the points of X form a partition of X . Moreover, every connected component is
connected and closed in X .

Definition 2.5.1 We say that a topological space X is totally disconnected if the
connected component of every point x ∈ X is the singleton set reduced to the point
x .

In other words, a topological space X is totally disconnected if and only if the
only non-empty connected subsets of X are the subsets that are reduced to a single
point.

Example 2.5.2 Every discrete space is totally disconnected.

Example 2.5.3 The only connected subsets of R are the intervals. It follows that a
subset X ⊂ R is totally disconnected if and only if X has empty interior.

Proposition 2.5.4 Every subset of a totally disconnected space is itself totally dis-
connected.

Proof This immediately follows from the observation that if Y is a subset of a
topological space X and y ∈ Y then the connected component of y in Y is contained
in the connected component of y in X . �

Proposition 2.5.5 Every product of totally disconnected spaces is itself totally dis-
connected.

Proof Let (Xi )i∈I be a family of totally disconnected spaces and consider their
direct product X := ∏

i∈I Xi . Let C be a non-empty connected subset of X . As the
continuous image of a connected space is itself connected, the projection ofC on each
Xi is connected and hence reduced to a single point since Xi is totally disconnected.
This implies that C itself is reduced to a single point. �

Proposition 2.5.6 Every totally disconnected space is accessible.

Proof In a topological space, every connected component is closed. Consequently,
if the topological space X is totally disconnected then {x} is closed in X for all
x ∈ X . �

The following example shows that a totally disconnected space may fail to be
Hausdorff.

Example 2.5.7 Let X be an infinite set. Let us fix two distinct points a, b ∈ X and
let Y := X\{a, b}. Let T denote the set consisting of all U ⊂ X satisfying one of
the following two conditions:
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(1) U ⊂ Y ;
(2) U = U1 ∪ U2, where U1 is a non-empty subset of {a, b} and U2 ⊂ Y is such

that Y\U2 is a finite set.

It is straightforward to verify that T is the set of open sets for a topology on X . Let
us equip X with this topology. Suppose that A ⊂ X has more than one point. If we
can find a point y0 ∈ A ∩Y , then the singleton set {y0} is clopen in A. Otherwise, we
have that A = {a, b} and then {a} is clopen in A. It follows that A is not connected.
Thus, the space X is totally disconnected. However, X is not Hausdorff since every
open neighborhood of a meets every open neighborhood of b.

2.6 Totally Separated Spaces

In this section, we introduce the class of totally separated spaces.We prove that every
totally separated space is totally disconnected and that every scattered accessible
space is totally separated.

Let X be a topological space. The quasi-component of a point x ∈ X is the
intersection of all clopen neighborhoods of x . Note that the quasi-component of
every point x ∈ X is a closed subset of X containing x .

Definition 2.6.1 We say that a topological space X is totally separated if the quasi-
component of every point x ∈ X is the singleton set reduced to the point x .

Remark 2.6.2 A topological space X is totally separated if and only if it satisfies
the following condition: for every pair of distinct points x and y in X , there exists a
partition of X into two open subsets U and V such that x ∈ U and y ∈ V .

Proposition 2.6.3 Every totally separated space is Hausdorff.

Proof This immediately follows from the preceding remark. �

Proposition 2.6.4 Let X be a topological space and x a point in X. Then the con-
nected component of x is contained in the quasi-component of x.

Proof Denote by Cx the connected component of x and by Qx its quasi-component.
Consider a clopen neighborhood V of x in X . Then Cx ∩ V is a clopen subset of
Cx that is not empty since it contains x . By connectedness of Cx , we deduce that
Cx ∩ V = Cx , that is, Cx ⊂ V . It follows that Cx ⊂ Qx . �

Corollary 2.6.5 Every totally separated space is totally disconnected. �

A totally disconnected space is not necessarily totally separated. Indeed, we have
described in Example 2.5.7 a totally disconnected space that is not Hausdorff. Such
a space is not totally separated since, by Proposition 2.6.3, every totally separated
space is Hausdorff. In Sect. 5.2, we shall give an example of a totally disconnected
separable metrizable space that is not totally separated.

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Proposition 2.6.6 Every scattered accessible space is totally separated and hence
totally disconnected.

Proof Let X be a scattered accessible space. Let B be a base of X consisting of
clopen subsets of X . Consider a point x in X . As B is a base of X , the set Bx consist-
ing of all elements of B containing x is a neighborhood base of x . The intersection
of all the neighborhoods of x is reduced to the point x since X is accessible. This
implies that the intersection of the elements ofBx is also reduced to x . Consequently,
the quasi-component of x is the singleton set {x}. This shows that X is totally
separated. �

The accessibility hypothesis in Proposition 2.6.6 cannot be removed. Indeed, a
set having more than one point equipped with its trivial topology is scattered but not
totally separated (not even totally disconnected).

Let us note also that the converse of Proposition 2.6.6 is false. Indeed, wewill give
in Sect. 5.1 an example of a separable metrizable space that is totally separated but
not scattered. However, as we shall see, the converse of Proposition 2.6.6 becomes
true if we restrict ourselves to locally compact Hausdorff spaces. Let us first establish
the following result.

Lemma 2.6.7 Let X be a compact Hausdorff space. Let x be a point in X. Then the
connected component of x coincides with its quasi-component.

Proof Denote by Cx the connected component of x and by Qx its quasi-component.
We have that Cx ⊂ Qx by Proposition 2.6.4. Thus, it suffices to prove that Qx is
connected. Let A and B be disjoint closed subsets of Qx such that A ∪ B = Qx . We
can assume that x ∈ A. As Qx is closed in X , the sets A and B are closed in X . On
the other hand, since X is a compact Hausdorff space, it is normal by Proposition
1.5.4. Consequently, there exist disjoint open subsets V and W of X such that A ⊂ V
and B ⊂ W . Denote by E the set consisting of all clopen neighborhoods of x in X .
We have that ⋂

U∈E
U = Qx ⊂ V ∪ W.

Therefore, the open subsets X\U , U ∈ E , cover X\(V ∪ W ). As X\(V ∪ W ) is
compact, there exists a finite sequence U1, . . . , Un of elements of E such that

X\(V ∪ W ) ⊂ (X\U1) ∪ · · · ∪ (X\Un).

By setting � := U1 ∩ · · · ∩ Un , this amounts to saying that � ⊂ V ∪ W . As V and
W are disjoint, we deduce that � ∩ V = �\W . Consequently, the set � ∩ V is a
clopen neighborhood of x in X . It follows that Qx ⊂ �∩ V . Therefore we have that
Qx = A. This shows that Qx is connected. �

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 2.6.8 Let X be a locally compact Hausdorff space. Then the following
conditions are equivalent:

(a) X is scattered;
(b) X is totally separated;
(c) X is totally disconnected.

Proof The fact that (a) implies (b) follows from Proposition 2.6.6. On the other hand,
Corollary 2.6.5 shows that (b) implies (c).

Suppose that X is totally disconnected. Let x be a point in X and let V be a
neighborhood of x . As X is locally compact, there exists a compact neighborhood
W of x such that W ⊂ V . Denote by U the interior of W in X and by E the set
consisting of all clopen neighborhoods of x in W . As W is totally disconnected by
Proposition 2.5.4, it follows from Lemma 2.6.7 that {x} = ⋂

F∈E F . This implies
that the family

α := {U } ∪ {W\F | F ∈ E}

is an open cover of W . Since W is compact, α admits a finite subcover. This means
that there exists a finite sequence F1, . . . , Fn ∈ E such that the set A := F1∩· · ·∩ Fn

satisfies A ⊂ U . Each Fi , 1 ≤ i ≤ n, is closed in W and hence in X since W is
closed in X . On the other hand, A is open in U and hence open in X . It follows that
A is clopen in X . As x ∈ A ⊂ V , we deduce that the neighborhoods of x that are
clopen in X form a neighborhood base of x . This shows that X is scattered. Thus,
(c) implies (a). �

2.7 Zero-Dimensional Compact Hausdorff Spaces

By combining results obtained in the previous sections, we get the following char-
acterizations of zero-dimensional compact Hausdorff spaces.

Theorem 2.7.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a compact Hausdorff space with dim(X) = 0;
(b) X is a scattered compact Hausdorff space;
(c) X is a totally separated compact Hausdorff space;
(d) X is a totally disconnected compact Hausdorff space;
(e) there exists a set E such that X is homeomorphic to a closed subset of the product

space {0, 1}E .

Proof Conditions (a) and (b) are equivalent by virtue of Corollary 2.4.22. On the
other hand, conditions (b), (c) and (d) are equivalent by Proposition 2.6.8. Finally,
the equivalence of (b) and (e) is an immediate consequence of Proposition 2.2.9 since
the product space {0, 1}E is a compact Hausdorff space for any set E by Tychonoff’s
theorem. �
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2.8 Zero-Dimensional Separable Metrizable Spaces

Wealso get the following characterizations of zero-dimensional separablemetrizable
spaces.

Theorem 2.8.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a separable metrizable space with dim(X) = 0;
(b) X is a scattered separable metrizable space;
(c) X is a separable metrizable space that admits a countable base consisting of

clopen subsets;
(d) X is homeomorphic to a subset of {0, 1}N;
(e) X is homeomorphic to a subset of the Cantor set.

Proof Conditions (a) and (b) are equivalent by Corollary 2.4.22.
Suppose that X is a scattered separable metric space. Let B be a base of X

consisting of clopen subsets. As X is separable, we can find a countable dense subset
Y ⊂ X . Let us choose, for each y ∈ Y and each integer n ≥ 1, a neighborhood
By,n ∈ B of y contained in the open ball of radius 1/n centered at y. Then the
subsets By,n form a countable base of X . This shows that (b) implies (c).

Let us now show that (c) implies (d) (cf. the proof of Proposition 2.2.9). Suppose
that X is a separablemetric space and that (Bn)n∈N is a base of X consisting of clopen
subsets. Let χn : X → {0, 1} denote the characteristic map of Bn . Consider the map
ϕ : X → {0, 1}N defined by ϕ(x) = (χn(x))n∈N for all x ∈ X . As Bn is clopen, the
map χn is continuous for every n ∈ N. This implies that ϕ is continuous. As X is
Hausdorff, the injectivity of ϕ follows from the fact that the subsets Bn , n ∈ N, form
a base of X . We have that ϕ(Bn) = ϕ(X) ∩ π−1

n (1), where πn : {0, 1}N → {0, 1} is
the projection onto the n-factor of {0, 1}N. This shows that ϕ(Bn) is open in ϕ(X).
As the subsets Bn form a base of X , we deduce that the image by ϕ of any open
subset of X is open in ϕ(X). Consequently, ϕ induces a homeomorphism from X
onto ϕ(X). This shows that X satisfies (d).

To complete the proof, it suffices to observe that (d) implies (b) by
Proposition 2.2.9 and that (d) and (e) are equivalent since the space {0, 1}N is home-
omorphic to the Cantor set by Proposition 2.1.3. �

Remark 2.8.2 As already mentioned above, we will give in Sect. 5.1 an example of a
separable metrizable space that is totally separated (and hence totally disconnected)
but not scattered.

2.9 Zero-Dimensional Compact Metrizable Spaces

Every compact metrizable space is both Hausdorff and separable. By combining
Theorems 2.7.1 and 2.8.1, we obtain the following statement (Table2.1).

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Table 2.1 Summary Table (X non-empty)

SETON

dim(X) = 0 ⇒ scattered ⇒ totally sepa-
rated

⇒ totally dis-
connected

Hausdorff spaces

dim(X) = 0 ⇔ scattered ⇒ totally sepa-
rated

⇒ totally dis-
connected

separable metrizable spaces

dim(X) = 0 ⇒ scattered ⇔ totally sepa-
rated

⇔ totally dis-
connected

locally compact Hausdorff spaces

dim(X) = 0 ⇔ scattered ⇔ totally sepa-
rated

⇔ totally dis-
connected

compact Hausdorff spaces

Theorem 2.9.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a compact metrizable space with dim(X) = 0;
(b) X is a scattered compact metrizable space;
(c) X is a totally separated compact metrizable space;
(d) X is a totally disconnected compact metrizable space;
(e) X is a compact metrizable space that admits a countable base consisting of

clopen subsets;
(f) X is homeomorphic to a closed subset of {0, 1}N;
(g) X is homeomorphic to a closed subset of the Cantor set. �

Notes

The terminology used in this chapter follows that of Bourbaki [18]. However, the
terms “scattered”, “totally disconnected”, and “totally separated” have sometimes
different meanings in the literature. For example, spaces that are called “scattered”
in the present book are called “zero-dimensional” in [102], while a “scattered” space
in [102] is a topological space in which every non-empty subset admits an isolated
point.
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The Cantor ternary set was described by Cantor in [21, note 11 p. 46]. It can be
shown that every totally disconnected compact metrizable space that is perfect is
homeomorphic to the Cantor set (see for example [48, Corollary 2–98]).

A non-empty topological space X is scattered if and only if ind(X) = 0 (see the
Notes on Chap.1, p.19, for the definition of the small inductive dimension ind(X)).
The question of the existence of scatteredmetrizable spaces with positive topological
dimension remained open for many years (cf. [18, note 1 p. IX.119]). An affirmative
answer to this question was finally given by Roy [96, 98] who constructed a scattered
metrizable space X with dim(X) = 1.

The notion of a totally disconnected space and that of a totally separated space
were respectively introduced by Hausdorff [47] and by Sierpinski [99]. In [99],
Sierpinski described a totally disconnected subset of R

2 that is not totally separated
and a totally separated subset of R

2 with positive topological dimension.

Exercises

2.1 Does the real number 1/π belong to the Cantor set?
2.2 Show that the Cantor set has Lebesgue measure 0.
2.3 Show that every countable product of Cantor spaces is a Cantor space.
2.4 Let H denote the Hilbert space of square-summable real sequences (un)n≥1.

Show that the subset X ⊂ H consisting of all sequences (un)n≥1 such that
|un| ≤ 1/n for all n ≥ 1 is homeomorphic to the Hilbert cube [0, 1]N.

2.5 Let G be a group. Let B denote the set of all left cosets of subgroups of finite
index of G, i.e., the subsets of the form gH , where g ∈ G and H ⊂ G is a
subgroup with [G : H ] < ∞.

(a) Show that there is a unique topology on G admitting B as a base. This
topology is called the profinite topology on G.

(b) Show that the profinite topology on G is scattered.
(c) Show that the profinite topology on G is discrete if and only if G is finite.
(d) Show that the profinite topology on the additive groupQ of rational numbers

is the trivial topology.
(e) Show that the profinite topology on G is Hausdorff if and only if G is

residually finite. (Recall that the group G is called residually finite if the
intersection of all its subgroups of finite index is reduced to the identity
element.)

2.6 (Furstenberg’s topological proof of the infinitude of primes [38]). Let Z denote
the group of integers equipped with its profinite topology (see Exercise 2.5).

(a) Show that nZ is a closed subset of Z for every n ∈ Z.
(b) Show that every non-empty open subset of Z is infinite.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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(c) Let P := {2, 3, 5, 7, 11, . . . } denote the set of prime numbers. Use the
results obtained in (a) and (b) to recover Euclid’s theorem thatP is infinite.
Hint: observe that

⋃
p∈P pZ = Z\{−1, 1} is not closed in Z.

2.7 Let f : X → Y be a continuous map from a Lindelöf space X into a topological
space Y . Show that f (X) is a Lindelöf space.

2.8 Show that every locally compact Lindelöf space is σ -compact.
2.9 Let X be an uncountable set equipped with its cofinite topology. Show that X

is not first-countable.
2.10 Show that every open subset of a separable space is separable.
2.11 Show that every subspace of a separable metrizable space is separable.
2.12 Show that the set consisting of all isolated points of a separable space is count-

able.
2.13 Show that every countable product of separable spaces is separable.
2.14 Let (X, d) be a separable metric space. Consider the Banach space �∞(R)

consisting of all bounded sequences of real numbers u = (un)n∈N with the
supremum norm ‖u‖ = supn∈N |un|. Fix a point x0 ∈ X and a sequence
(an)n∈N of points of X such that the set {an | n ∈ N} is dense in X . Show that
the sequence (d(x, an) − d(x0, an))n∈N is in �∞(R) for every x ∈ X and that
the map ϕ : X → �∞(R) defined by ϕ(x) = (d(x, an) − d(x0, an))n∈N is an
isometric embedding.

2.15 Show that the Banach space �∞(R) is not separable.
2.16 Show that every second-countable scattered accessible space is homeomorphic

to a subset of the Cantor set.
2.17 A metric space (X, d) is called an ultrametric space if one has

d(x, y) ≤ max(d(x, z), d(y, z))

for all x, y, z ∈ X . Let (X, d) be a non-empty ultrametric space.

(a) Let A be a closed subset of X and ρ > 0. Show that the set consisting of
all x ∈ X such that dist(x, A) = ρ is a clopen subset of X .

(b) Let A and B be disjoint closed subsets of X . Show that the set consisting
of all x ∈ X such that dist(x, A) ≤ dist(x, B) is a clopen subset of X .

(c) Show that dim(X) = 0.
(d) Show that the metric completion (X ′, d ′) of (X, d) is also an ultrametric

space.

2.18 Let p be a prime integer. Every non-zero rational number q ∈ Q\{0} can be

written in the form q = pn a

b
, where n ∈ Z and a, b ∈ Z\pZ are integers

not divisible by p. The integer vp(q) := n ∈ Z is well defined and called the
p-valuation of q. Define the map d : Q × Q → R by

d(x, y) :=
{

p−vp(x−y) if x 
= y

0 if x = y
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for all x, y ∈ Q.

(a) Show that (Q, d) is an ultrametric space.
(b) Show that the metric completionQp of (Q, d) satisfies dim(Qp) = 0. (The

set Qp is the set of p-adic numbers.)

2.19 Show that every totally disconnected topological space that is locally connected
is discrete. (Recall that a topological space X is called locally connected if every
point x ∈ X admits a neighborhood base consisting of connected subsets.)

2.20 Let X be a non-empty subset of R. Show that one has dim(X) = 0 if and only
if X is totally disconnected.

2.21 Let X be the topological space described in Example 2.5.7.

(a) Show that X is compact.
(b) Show that X is not normal.
(c) Show that dim(X) = 1.

2.22 A topological space X is called extremally disconnected if the closure of any
open subset of X is open in X .

(a) Show that if a set X is equipped with its trivial (resp. discrete) topology
then X is extremally disconnected.

(b) Show that every extremally disconnected Hausdorff space is totally sepa-
rated.

(c) Show that every extremally disconnected metrizable space is discrete.



http://www.springer.com/978-3-319-19793-7


	2 Zero-Dimensional Spaces
	2.1 The Cantor Set
	2.2 Scattered Spaces
	2.3 Scatteredness of Zero-Dimensional Spaces
	2.4 Lindelöf Spaces
	2.5 Totally Disconnected Spaces
	2.6 Totally Separated Spaces
	2.7 Zero-Dimensional Compact Hausdorff Spaces
	2.8 Zero-Dimensional Separable Metrizable Spaces
	2.9 Zero-Dimensional Compact Metrizable Spaces


