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Abstract There has been much work in the area of superconvergent error analysis
for finite element and discontinuous Galerkin (DG) methods. The property of
superconvergence leads to the question of how to exploit this information in
a useful manner, mainly through superconvergence extraction. There are many
methods used for superconvergence extraction such as projection, interpolation,
patch recovery and B-spline convolution filters. This last method falls under the
class of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. It has the
advantage of improving both smoothness and accuracy of the approximation.
Specifically, for linear hyperbolic equations it can improve the order of accuracy
of a DG approximation from k C 1 to 2k C 1, where k is the highest degree
polynomial used in the approximation, and can increase the smoothness to k� 1. In
this article, we discuss the importance of overcoming the mathematical barriers in
making superconvergence extraction techniques useful for applications, specifically
focusing on SIAC filtering.

1 Introduction

Many numerical methods experience a phenomenon known as superconvergence.
Superconvergence is higher than theoretical predicted convergence:

j.u � uh/.�/j � ChrC� ;

where r is the expected convergence and � > 0 [22]. So-called “natural”
Superconvergence occurs when the function is evaluated at a point and compared
with the exact solution. We can create globally superconvergent solutions through
post-processing the approximation. In this article we focus on a specific post-
processing technique that uses B-spline convolution to obtain a superconvergent
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approximation. Specifically, we concentrate on SIAC filters, which have their roots
in work by Bramble and Schatz [2] and Cockburn, Luskin, Shu and Süli [6].

2 Motivation and Background

We frame our discussion in the context of a linear hyperbolic equation with smooth
initial data,

ut C
dX

iD1
Ai
@

@xi
uC A0u D 0; x 2 ˝ � Œ0;T�; (1)

u.x; 0/ D u0.x/; x 2 ˝: (2)

We also assume periodic boundary conditions for simplicity. For these types of
equations, the superconvergence property is straight-forward to prove in both the
pointwise setting and in terms of the negative-order norm.

2.1 Discontinuous Galerkin Methods

The important components that aid in creating a superconvergent approximation
from a discontinuous Galerkin solution are that

1. The approximation space consists of piecewise polynomials of degree � k W

Vk
h D fv 2 L2.˝/ W v 2 P

k.�e/; j D 1; : : : ;Ng (3)

where �e are the elements in the associated mesh and ˝ D [e�e:

2. The variational formulation of the discontinuous Galerkin scheme:

Z
�e

.uh/tvh.x/ dx �
dX

iD1

Z
�e

Aiuh.x; t/.vh/xi.x/ dxC
Z
�e

A0uh.x; t/vh dx

C
dX

iD1

Z
@�e

bAiuh Oni vh; ds D 0

3. The weak continuity at the element interfaces that are enforced through the
choice of the fluxes in the discontinuous Galerkin scheme.

The reader is advised to consult [5] for a more detailed discussion of the discontin-
uous Galerkin method.
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2.2 Error Estimates: Convergence and Superconvergence

Assuming the initial condition is regular enough, the errors in L2 for the DG
approximation are given by

ku � uhk0 � C hkC1ju0jHkC2 (4)

[5]. However, Adjerid et al. noted that the approximation has the property of
pointwise superconvergence [1]. That is, the local error at the“outflow” edge
converges at twice the usual convergence rate,

.u� uh/.x
�
jC1=2/ D ˛kC1

.�a/kC1kŠ
2kC 1 h2kC2 C O.h2kC3/ (5)

for linear equations such as u0 � au D 0: This occurs at the roots of the right Radau
polynomial.

3 Extracting Superconvergence

We would like to turn the local superconvergence property into a globally super-
convergent solution. There are many different options for this to be accomplished.
A few are to interpolate using superconvergent fluxes [4, 15], elementwise post-
processing [3], or convolution kernel post-processing [2, 6]. We focus on the latter,
specifically the Smoothness-Increasing Accuracy-Conserving filter [10, 18, 21].
This last technique allows for global superconvergence and smoothness.

3.1 Smoothness-Increasing Accuracy-Conserving (SIAC)
Filtering

The SIAC filter has its roots in an accuracy-enhancing post-processor. Motivated
by the work of Mock and Lax [14], Bramble and Schatz introduced a central B-
spline kernel to post-process finite element approximations to elliptic equations [2].
This was also explored from a Fourier perspective and for derivative filtering by
Thomeé [20]. Cockburn, Luskin, Shu and Süli then extended it to discontinuous
Galerkin approximations to linear hyperbolic equations [6]. It was further extended
to a broader class of problems in [7, 8, 11].

The basic idea of the original post-processor, u�.x/, is to convolve the numerical
approximation with a B-spline kernel,

u�.x/ D .K2.kC1/;kC1
H � uh.�;T//.x/: (6)
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This allows us to achieve u� uh 
 O.h2kC1/ in L2 as shown in [6]. A more general
form of the B-spline kernel, K2.kC1/;kC1

H .x/; will be discussed in Sect. 3.2.
The post-processor is useful for removing the highly oscillatory errors in the

discontinuous Galerkin approximation. The result is a solution that has increased
smoothness and accuracy.

3.2 The SIAC Kernel

The SIAC kernel is a more general form of the B-spline kernel above. It is a linear
combination of suitably scaled B-spline translates,

K.rC1;`/
H .x/ D 1

H

rX
�D0

c.rC1;`/�  .`/

 x

H
� x�

�
; (7)

where r C 1 is the number of B-splines in the kernel and ` is the order of the
B-splines. In (7), c� are weights of the B-splines,  .`/.x/; and are determined by
reproducing polynomials of degree less than or equal to r: For the original kernel
r D 2k; ` D k C 1 and x� D �k C � as given in (6). In the more general SIAC
filter, x� depends on the point being evaluated and we have more flexibility both in
the number of B-splines and order of the B-splines.

Central B-splines are defined as  .1/ D �Œ� 1
2 ;
1
2 �
;  .`/ D  .`�1/ � �Œ� 1

2 ;
1
2 �
; ` �

2: Here, � is equal to one on Œ� 1
2
; 1
2
� and otherwise is zero. The central B-splines

that form the post-processed solution are chosen because of their compact support
of suppf .`/g D Œ� `

2
; `
2
�: Further, they are easy to compute through a recurrence

relation. Lastly, there is a natural relation between their derivatives and divided
differences: D˛ .`/ D @˛H 

.`�˛/: In Fig. 1 a plot of the B-splines making up the
convolution kernel as well as the convolution kernel is shown for k D 2:

Fig. 1 Dashed lines: the B-splines,  .3/.xC k� �/; � D 0; : : : ; 4 used in the k D 2 kernel. Solid
line: the kernel, K5;3

H .x/ for k D 2
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The convolution coefficients that weigh the B-spline translates are found by using
the property of polynomial reproduction.

As an example, we give the original symmetric B-spline kernel for the second
order approximation, k D 1: The kernel coefficients are found by using K4;2

h �p D p
for p D 1; x; x2: This creates the kernel

K4;2.x/ D �1
12
 .2/.x � 1/C 7

6
 .2/.x/� 1

12
 .2/.xC 1/: (8)

To summarise, the convolution kernel is designed to extract higher order accuracy
through polynomial reproduction. It induces smoothness of C`�2 through the
convolution with the B-splines and uses a local stencil of size .r C `/H: The
kernel is a polynomial of degree ` � 1; making the post-processed solution
a polynomial of degree ` C k: It has theoretical and numerical convergence of
O.hs/; s D minfr C 1; 2k C 1g in both L2- and L1-norms for linear hyperbolic
equations over uniform meshes.

3.3 Implementing the Post-Processor

Assuming the one-dimensional discontinuous Galerkin approximation can be writ-
ten as

uh.x; t/ D
kX

nD0
u.n/e .t/�

.n/
e .x/; x 2 �e; (9)

where �.n/e .x/ are the basis functions for the DG approximation. Using this modal
form of the DG approximation, the post-processed solution can be written as

u�.x/ D
p0X

jD�p0

kX
nD0

C.j; n; k; x/ u.n/eCj (10)

where p0 D d rC`
2
e and

C.j; n; k; x/ D 1

h

rX
�D0

crC1;`
�

Z
IeCj

 .`/

y � x

h
� �

�
�
.n/
eCj.y/ dy

„ ƒ‚ …
2P`Ck

: (11)
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The multi-dimensional kernel is a tensor product of the one-dimensional kernel.
For example, in two-dimensions,

KH.x; y/ D 1

HxHy

rX
�xD0

rX
�yD0

crC1;`
�x

crC1;`
�y

 .`/
�

x

Hx
� x�x

	
 .`/

�
y

Hy
� y�y

	
:

(12)

It is expected that the kernel can be applied to Q
k-polynomial approximations, but

it is also effective for Pk-polynomial approximations.

3.4 Convergence of the SIAC Filtered Solution

Let u�h .x;T/ D KH � uh be the post-processed DG approximation at the final time.
Then the errors for the post-processed solution are given by

ku � u�h .x;T/k0;˝ � ku � u�k0;˝„ ƒ‚ …
Exact filtered

Ck.u � uh/
�k0;˝„ ƒ‚ …

DG errors

: (13)

The estimate for the first term comes about from the ability of the kernel to
reproduce polynomials of degree r: Then, using a Taylor expansion we obtain ku �
Kh � uk˝ � ChrC1 [6, 9]. The second term can be bounded by the negative-order
norm [2, 6]. If we can show the negative-order norm is of higher order, then we can
demonstrate superconvergence of the filtered solution.

In Fig. 2 a comparison of the convergence rates and errors between the discon-
tinuous Galerkin approximation and the SIAC filtered approximation is given. If

Fig. 2 A comparison of the
convergence rates and errors
between the discontinuous
Galerkin approximation and
the SIAC filtered DG
approximation

k=1 DG
k=1 SIAC DG
k=2 DG
k=2 SIAC DG
k=3 DG
k=3 SIAC DG

Number of Elements

Convergence in L2

10110–12

10–10

10–8

10–6

10–4

10–2

100

102 103
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we consider the k D 1 filtered approximation and compare it with the k D 2 DG
approximation, we can see that although they have the same convergence rate, the
errors for the k D 2 approximation are better.

3.5 Applications

Currently, the applications of SIAC filtering include extracting accuracy out of
existing code [18] and visualization filtering [19]. However, there is promising
relations to image processing [13, 23] as well as potential in LES filtering [7, 8].

3.6 Interesting Challenges

The challenge in making SIAC filtering applicable to broader areas of applications
include: A negative-order norm estimate that depends upon the PDE, the ability to
extract derivative information, filtering near a boundary, and most importantly mesh
geometry. In the following sections we discuss the challenges in extending SIAC
filtering to a range of applications.

4 The Error Estimate

Recall that in Eq. (13) the SIAC filtered error estimate is controlled by our ability to
prove superconvergence in the negative-order norm, where the negative-order norm
is given by

k@˛H.u � uh/k�.kC1/;˝ D sup
�2C1

0 .˝/

.@˛H.u � uh/; �/˝

k�kkC1;˝
� C h2kC1 ku0kkC1;D˝1

(14)
if H D h [6].

For the negative-order norm, we actually only need to consider the numerator
in Eq. (14). In general, the estimate depends on defining a suitable dual equation
and we are able to prove ku � u�hk � Ch2kCm. Details of the existing estimates for
various equations are provided in Table 1.
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Table 1 SIAC Filter error estimates for various types of equations

m s D 2kC m Equation

2 2kC 2 Elliptic (FEM) [2]

1 2kC 1 Linear Hyperbolic (DG) [6]

1 � m � 2 2kC 1 � s � 2kC 2 Convection-diffusion (DG) [7]

1 2kC 1 Variable-Coefficient Hyperbolic (DG) [11]

0; 1
2
; 2 2k � s � 2kC 2 Nonlinear hyperbolic (DG) [8]

5 Derivative SIAC Filtering

Another interesting aspect of SIAC filtering is that it allows us to create a super-
convergent approximation to derivatives. In general, the approximation obtained
via a DG method will give k@˛.u � uh/k � ChkC1�˛ for the derivatives. This
makes it impossible to obtain a good second order derivative approximation
for k D 1: However, using SIAC filtering makes it possible to obtain higher
order derivatives even for a piecewise linear approximation. In order to obtain a
superconvergent derivative approximation, there are two options: accept a reduction
in order of accuracy by taking the derivative of the filtered solution, or forming a
kernel that uses higher-order B-splines whose errors do not reduce in order with
differentiation. Each method has its advantages and disadvantages and both will
give a superconvergent derivative approximation.

In the first method, we compute the derivative of the SIAC filtered solution
directly. This gives

d˛

dx˛



KrC1;`

h � uh.�;T/
�
.x/ D d˛

dx˛

�
1

H

Z
R

K.rC1;`/
H


x � y

h

�
uh.y; t/ dy

	
: (15)

Recall that the post-processed approximation induces smoothness of C`�2 and is
up to 2k C 1th-order accurate. If we calculate the derivative of the post-processing
polynomial directly we would then have 
 O.hminf2kC2;rC2g�˛/; for ˛ � ` � 1,
which would give a reduced order of accuracy with each successive derivative.
Further, the oscillations in the error increase [18]. This method may be more
advantageous if only a first or second derivative is needed.

There is an alternative that allows us to obtain the same superconvergent
approximation to the derivatives. That is, we can obtain a 2k C 1 order accuracy
approximation to the ˛th-derivative using higher order splines in our kernel [16, 20].
This gives a derivative approximation whose order or convergence is independent
of ˛. The derivative kernel is defined as

KrC1;˛;`
H .x/ D 1

H

rX
�D0

drC1;˛;`
�  .`C˛/


 x

H
� x�

�
: (16)
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The difference to the kernel in Equation (7) is that it uses smoother B-splines. Note
that smoother B-splines give an increased support size. Further, computing the ˛th
derivative only requires computing the convolution of translations of the B-spline
 .`/ with uh: This allows us to obtain the error estimate:

Theorem 1 (Ryan and Cockburn [16]) Let uh be the approximate solution given
by the DG method for the model problem ut C .au/x D 0; .x; t/ 2 R � .0;T/.
Assume that the initial data uo is very smooth. Then

���� d˛

dx˛
u.x;T/� d˛

dx˛



KrC1;˛;`

h � uh.�;T/
�
.x/:

����
0;˝0

� C hs;

where s D minfrC 1; 2kC 1g and C depends upon the smoothness of the solution.

In Fig. 3 and Table 2, we can see how these two methods of obtaining a derivative
approximation compare by considering a variable coefficient equation taken from
[16]. If we take the derivative of the SIAC filtered approximation, we can still obtain
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Fig. 3 Pointwise errors in log scale for the second derivatives for the DG approximation together
with the SIAC filtered solutions. (a) @2.u� uh/. (b) @2.u� Kh � uh/. (c) @2.u� QKh � uh/

Table 2 L2-errors and orders the first and second derivatives for the DG approximation together
with the SIAC filtered solutions

P
2

N @˛x uh @˛x .K � uh/ QK � @˛h uh

L2 error Order L2 error Order L2 error Order

1st derivatives

40 8.7240E�04 – 5.5069E�08 – 2.4411E�06 –

60 3.8775E�04 2.00 6.9067E�08 5.12 3.2245E�06 4.99

80 2.1811E�04 2.00 1.6903E�09 5.03 7.6554E�08 4.99

100 1.3959E�04 2.00 5.8972E�09 4.72 2.5074E�09 5.00

2nd derivatives

40 3.3923E�02 – 3.2544E�07 – 1.4294E�07 –

60 2.2619E�02 1.00 6.1855E�08 4.10 1.7735E�08 5.15

80 1.6966E�02 1.00 1.9310E�08 4.05 4.2872E�09 4.94

100 1.3573E�02 1.00 7.8612E�09 4.03 1.4798E�09 4.77
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2kC1 order accuracy for the first derivative, but each successive derivative looses an
order. However, if we use smooth B-splines of higher order, we can maintain 2kC1
order accuracy for higher derivatives as well.

6 Filtering Near a Boundary

The next question that would be useful to answer is how to filter near a boundary or
discontinuity. This requires modifying the filter [17, 21]. To do so, we first use B-
splines that depend continuously on the evaluation point through the shift function
�.Nx/:

x� D � r

2
C � C �.x/; �.x/ D

8<
:

min
n
0;� rC`

2
C Nx�xL� �h2

h

o
; x 2 ŒxL;

xLCxR
2
�;

max
n
0; rC`

2
C Nx�xRC �h

2

h

o
; x 2 . xLCxR

2
; xR�;

(17)

where the one-dimensional domain is defined as ˝ D ŒxL; xR�:

The accuracy is improved by using extra B-splines near a boundary so that the
post-processed solution is

u�h .Nx/ D �.Nx/ u�h;2kC1.Nx/„ ƒ‚ …
filtering with 2kC 1 B-splines

C.1 � �.Nx// u�h;4kC1.Nx/:„ ƒ‚ …
filtering with 4kC 1 B-splines„ ƒ‚ …

smooth convex combination

(18)

In this example, � is chosen such that �.Nx/ D 1 in the interior (giving the symmetric
filter); �.Nx/ D 0 near the boundary (to obtain extra accuracy from extra B-splines);
� is smooth in the transition regions between symmetric and boundary filtering.

As an example, we consider the linear equation ut C ux D 0 with Dirichlet
boundary conditions. Plots of the errors are given in Fig. 4 and errors are given
in Table 3. We can see from these that we have an improved convergence rate as
well as reduction in errors. This occurs even near the boundary and for non-periodic
boundary conditions.

Adapting the kernel to handle filtering near boundaries allows us to obtain the
following L1-error estimate:

Theorem 2 (Ji et al. [9]) Let uh be a DG approximation to an exact solution u for a
linear hyperbolic equation. Construct u�h by applying the position-dependent SIAC
filter to uh, k � 1. Then,

ku � u�hk1;˝ � Cku0k2kC3CŒd=2�;˝hs;
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Fig. 4 Pointwise errors in log scale for before and after post-processing for a linear hyperbolic
equation with Dirichlet boundary conditions. A comparison of using 2kC1 (middle) versus 4kC1
(right) central B-splines when near a boundary. (a) DG errors. (b) SIAC DG (2k C 1). (c) SIAC
DG (4kC 1)

Table 3 L2-errors and order for before and after post-processing for a linear hyperbolic equation
with Dirichlet boundary conditions. A comparison of using 2kC1 (middle column) versus 4kC1
(right column) central B-splines when near a boundary

Before After (2kC 1) After (4kC 1)

Mesh L2-error Order L2-error Order L2-error Order

P
2

20 2.681e�04 – 4.003e�03 – 6.984e�06 –

40 3.352e�05 3.00 2.108e�04 4.25 1.850e�07 5.24

80 4.190e�06 3.00 5.464e�06 5.27 4.798e�09 5.27

160 5.238e�07 3.00 1.254e�07 5.45 1.498e�10 5.00

P
3

20 5.176e�06 – 1.304e�04 – 3.751e�07 –

40 3.236e�07 4.00 4.712e�06 4.79 6.396e�10 9.20

80 2.023e�08 4.00 3.406e�08 7.11 2.867e�12 7.80

160 1.264e�09 4.00 1.999e�10 7.41 3.079e�14 6.54

and

ku � u�hk0;˝ � Cku0k2kC2;˝h2kC1;

where s D minf2kC 1; 2kC 2� d
2
g and C is a constant, dependent on the L1-norm

of the kernel coefficients but independent of the mesh.

However, there are still limitations to overcome. For example, using extra B-
splines at the boundaries is good for lower-order approximations, but not for higher-
order approximations due to the excessive support size and increased condition
number of the matrices involved. Further, the added support does not aid in creating
a better approximation for non-uniform meshes.
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7 Mesh Geometry

Until now, the assumptions on the applicability of the SIAC filter have required a
uniform mesh. A logical question to then ask is whether it can work for nonuniform
meshes. The challenges that are incurred when attempting to extend the SIAC filter
to a nonuniform mesh is that it requires O.h2kC1/ convergence in the negative-
order norm for both the approximation as well as the divided difference of the
approximation. This requires defining a suitable dual equation and a DG scheme
for the divided differences. If the mesh is translation invariant, it is easy to show
appropriate convergence for the divided differences [10]. However, let us investigate
further the actual requirements of the scaling parameter.

Recall that our error estimate is ku � KH � uhk˝ � CH2kC1; where H is the
kernel scaling parameter. The translation invariance property requires that T`Hv.x/ D
v.xCH`/: Thus the mesh is translation invariant for a scaling of mH; m 2 Z as well.
This is illustrated in Fig. 5. In this figure, a kernel scaling of H D mh is used for
the convolution kernel in the SIAC filter for a discontinuous Galerkin approximation
over a uniform mesh designated by h:We can see that error reduction actually occurs
even when H < h: Superconvergent order starts to occur around H D h and errors
start to increase for H > h: The sweetspot of reduced errors and superconvergence
seems to occur around H D h:

Although the typical meshes tested involve some type of translation invariance,
the SIAC filter has also been tested over unstructured triangular meshes with
promising results [10, 12]. For example Fig. 6 shows the difference in the pointwise
errors for the DG approximation versus the SIAC filtered DG approximation. The
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3 polynomials for a uniform mesh
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Fig. 6 Typical pointwise error plots for SIAC filtering over a Delaunay Mesh with element
splitting. (a) DG errors. (b) SIAC filtered errors

Table 4 Typical errors for SIAC filtering over a Delaunay Mesh with element splitting

m D 0:5 mD 1 m D 2

Mesh L2-error Order L2-error Order L2-error Order

P
2

776 7.08E�05 – 1.25E�04 – x –

3104 7.84E�06 3.17 6.45E�06 4.27 x –

12,416 8.24E�07 3.25 5.02E�07 3.68 1.98E�06 –

49,664 1.09E�07 2.20 5.97E�08 3.07 8.11E�08 4.60

P
3

776 9.88E�07 – 8.52E�06 – x –

3104 2.71E�08 5.18 1.30E�07 6.03 x –

12,416 3.28E�09 6.02 1.99E�09 6.02 4.58E�08 –

49,664 2.34E�10 3.80 5.85E�11 5.08 6.20E�10 6.20

L2-errors are given in Table 4. Figure 7 displays the effect of different scalings,
when h is taken to be the longest element edge and the kernel is scaled by H D mh:
Clearly, one can achieve error reduction.

With SIAC filtering we can usually improve the DG convergence rate from order
kC1 to order 2kC1 but we have to be careful with kernel scaling [10]. Table 5 gives
a list of some of the meshes that SIAC filtering has been tested over and whether
reduced errors, improved order or increased smoothness occurs.
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Fig. 7 The effect of the kernel scaling for SIAC filtering over a Delaunay Mesh with element
splitting. (a) P2-polynomials. (b) P3-polynomials

Table 5 Some typical meshes over which SIAC filtering has been tested. Listed is the mesh type
along with whether SIAC filtering will aid in error reduction, improved convergence order or
increasing the smoothness of the solution

Mesh type Reduced errors Improved order Increased smoothness

Uniform quadrilateral X X X
Variable cross quadrilateral X X X
Uniform structured triangle X X X
Structured variable triangle X X X
Delaunay mesh X ? ?

8 Summary

We can make superconvergence useful through accuracy extraction techniques.
SIAC filtering is one technique that uses a B-spline convolution kernel that induces
smoothness on the DG field and enhances accuracy. In general, we can obtain order
improvement from O.hkC1/ to O.hs/ where s D minfr C 1; 2k C 1g: However, the
expected order improvement relies on higher-order estimates in the negative-order
norm for the approximation as well as the divided differences. Once we are able
to prove these estimates we can concentrate on other issues in SIAC filtering such
as modifying the filter for higher-order derivative information or boundary filtering.
For the scaling of the kernel, we must exploit information about the mesh geometry
in order to have a reduction in the errors.
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