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Abstract Vibration energy harvesting is the focus of extensive research as an alter-
native power source for low-power electronic devices. First generation of vibration
energy harvesters were based on linear oscillators designed to harvest vibrations in
a narrow band in the vicinity of their natural frequency. However, in environments
where vibrations are random or distributed over a wide spectrum, those harvesters
prove ineffective. In this chapter, we present a new architecter for nonlinear vibra-
tion energy harvesters, namely the ‘Springless’ vibration energy harvesting, that can
effectively harvest vibrations over a wide bandwidth and at low levels of vibra-
tion. It employs impact oscillators as the harvesting element. We study, characterize,
and qualify the performance of those harvesters experimentally, analytically, and
numerically.

1 Introduction

Advances in silicon electronics and MEMS technology reduced significantly the
power consumption of devices, Table 1, such as wireless sensors, portable, and wear-
able electronics. A large number of the locations, where those devices are used, are
either remote or inaccessible. Most of these low-power devices rely heavily on elec-
trochemical batteries as a source of power. However, batteries have a limited life span
and number of recharging cycles. They are also constantly in need for recharging
or replacement. For applications such as wireless sensing and remote monitoring,
battery replacement or recharging can be expensive, challenging or impossible in
some cases. Examples include human implants, sensing devices intended for long
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Table 1 Selected

Device type Power consumption
battery-operated systems

Smartphone 1w

MP3 player 50mW

Hearing aid 1 mW

Wireless sensor 100 W

Cardiac pacemaker S50puW s

Quartz watch SUW

duration, and systems that are physically placed in remote areas [1]. Another serious
problem with batteries is the fact that they contain hazardous chemical materials that
are harmful to the environment if not recycled. In Canada, for example, over 600
million primary consumer batteries were sold in 2007 and about 95 % of them end up
in landfills [2]. With the world’s growing reliance on wireless and low-power elec-
tronics and the push for a green environment, there is a great need for self-powering
and self-sustaining low-power electronic devices.

The low power design trends combined with self-sustainability needs presented
an opportunity for researchers to find alternative ways to power such devices and
eliminate or reduce dependency on batteries. One promising avenue to achieve this
goal is to exploit ambient vibration energy sources. Vibration energy harvesting
technology has been making significant strides over the last few years as it aims to
provide a continuous and uninterrupted source of power for low-power electronic
devices and wireless sensors. While the idea of converting environmental vibration
energy into electrical energy has been used before, advances in micro-electronics
and low power consumption of silicon-based electronics and wireless sensors have
given it an added significance.

In the research literature, the first description of an inertial micro-power-generator
was an electromagnetic vibration energy harvester (VEH) presented by Williams
and Yates in 1995 [3]. Since then a great deal of research has been conducted in the
area of vibration energy harvesting. Earlier works by Beeby, Glynne-Jones, Roundy
[4-6] and others focused on the implementation of linear oscillators to maximize
the harvested energy at resonance. In this type of harvesters, the seismic mass of the
VEH moves under the influence of base excitation supported by a linear spring. The
oscillator attains maximum velocity, and thus input kinetic energy, in a frequency

band around its natural frequency,
k
w=,—, (1)
m

where k is the spring stiffness and m is the effective mass of the mechanical oscillator.

While systems in this arrangement are capable of generating electrical energy with
output power on the order of few milli-Watts [6, 7], their natural frequency must be
tuned to match the frequency of ambient vibrations. In fact these harvesters are
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Table 2 Electromagnetic micro-power generators

Generator f (Hz) Accel (m/s?) m (g) Power (WW)
Beeby et al. [6] 52 0.589 0.66 45
Glynne-Jones [4] 99 6.85 2.96 4990
Ching et al. [27] 110 95.5 - 830

designed to harvest at a single frequency. A high Q-factor to minimize energy losses
means a very limited bandwidths over which energy can be harvested [8]. However,
in environments where ambient vibrations are distributed over a wide spectrum of
frequencies, with significant predominance of low frequency components, linear
harvesters prove to be ineffective because of their high center frequencies and narrow
bandwidth [9-11]. It is therefore impractical to use linear VEHs with relatively high
center frequency (>20Hz) and narrow bandwidth to harvest ambient wideband and
low frequency environmental vibrations. Examples of some linear harvesters that
have been proposed over the years are listed in Table 2, a more comprehensive
lists of electromagnetic energy harvesters can be found in [12]. We note that linear
harvesters have high operating frequencies and low power densities. For example,
the electromagnetic VIBES harvester (first line in Table 2) has a center frequency of
52 Hz and a maximum power of 45 p'W.

Due to these limitations, attention in recent years has focused on the imple-
mentation of self-tuning and nonlinear systems in order to increase the vibration
energy harvester’s frequency bandwidth. A number of approaches have been tried
for this purpose including nonlinear stiffness, resonant frequency tuning, mechanical
stoppers and exploitation of nonlinear structures that display bandwidth widening
behavior. These approaches lead to three main types of nonlinear vibration energy
harvesters; Duffing, array, and impact harvesters.

The Duffing type harvester gets its name from the Duffing oscillator since its
governing equation reduces to a Duffing equation. In this case, the nonlinearity is
added to the harvester either by using nonlinear springs or by introducing magnetic
forces to alter the overall system stiffness and make it appear as a nonlinear quantity
in the system’s model. The Duffing harvester can be classified in three categories:
hardening, bistable, and softening [13]. Mann and Sims [10] presented a Duffing
type harvester that uses magnetic restoring forces to levitate an oscillating center
magnet. The governing equation for the harvester’s mass displacement reduces to a
Duffing equation, and the introduction of nonlinearities through magnetic levitation
resulted in large motion over a wide band of frequencies. Using a similar approach,
Mann and Owens [9] presented a nonlinear vibration energy harvester with a bistable
well. Theoretical and experimental results reveal that the nonlinear generator with a
bistable potential well can be used to broaden the frequency response of the harvester.
The output power of the proposed harvester varied from 5 to 200mW for input
accelerations ranging from 5 to 10 m/s?, and from the presented results the frequency
bandwidth was 1, 2, and 3 Hz for input accelerations between 5 and 6.5 m/s2, and
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2Hz for 10m/s? respectively. Further examples of Duffing-type and other nonlinear
vibration energy harvesters can be found in reviews of recently published work
[8, 14, 15].

Array harvesters employ a series of mechanical resonators, usually a series of
cantilever beams with varying length and center frequencies. The cantilevers are
tuned in a way that all resonance frequencies are close to each other. The resonance
frequencies are adjusted by tuning the geometry of each energy scavenger or by
applying a proof mass. As long as the source vibration has dominant frequency
within the band of the array, at least one of the beams operates at its resonance
frequency. Hence, as more beams are added to the array, as much bigger is the
possible bandwidth [16]. Sari et al. [17] proposed a harvester that used an array
of piezoelectric oscillators made of cantilever beams on which planar gold coils
were fabricated. The reported generator covers a wide band of external vibration
frequencies by implementing a number of serially connected cantilevers of different
lengths resulting in an array of cantilevers with varying natural frequencies. The
device generates 0.4 W of continuous power in a frequency range covering a band
of 800Hz. Similar approaches were used by Lien and Shu [18] and Rezaeisary et
al.[19]. In [20], Yan et al. proposed a multi-frequency energy harvester consisting
of three permanent magnets and three sets of two-layer coils supported by a beam.
The idea here is that energy is harvested under the first, second, and third resonant
modes.

It has been shown that impact harvesters increase the frequency bandwidth and
output power of vibration energy harvesters [21-24]. Impact harvesters are realized
using mechanical stoppers that limit the motion of the seismic mass. When the seismic
mass impacts the stoppers, the overall stiffness of the system is reduced to a piecewise
linear or nonlinear function, that results in a nonsmooth system [23]. Soliman et al.
[25] proposed a wideband micropower generator that utilized a mechanical stopper
placed within the stroke and the cantilever beam. When the cantilever oscillates, it
engages the stopper during motion, and therefore changes its stiffness from k; to kp
with (k; < k»). Le Cuong et al. [26] presented a double-impact electrostatic energy
harvester that used a reference device with end-stops and an impact device with
movable end-stops functioning as slave transducers. The impact harvester resulted
in bandwidth increase by up to a factor of 20 compared to conventional approaches.

In this chapter, we analyze a new architecture of nonlinear VEHs that uses a
double-impact oscillator, namely the “Springless” VEH, as its harvesting element.
Specifically, we study the response of the horizontally aligned configuration of the
VEH experimentally, numerically, and analytically.

2 Springless Vibration Energy Harvester

The schematic of the “Springless” VEH, shown in Fig. 1, consists of an electromag-
netic transducer and a double-impact oscillator. The oscillator is composed of an
inertial mass comprising four permanent magnets residing inside a steel cage, and
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Fig. 1 Schematic of the
horizontally-aligned VEH

Sori
Bearings e

Steel cage

l:l Magnets
B coil

Fig. 2 Prototype of
springless vibration energy
harvester

two end limiters made of two identical springs attached to two resin walls at each end
of the housing unit. The carriage carrying the magnetic seismic mass moves freely
along the linear guide with respect to a stationary concentric coil in response to base
excitations. A prototype of the VEH is shown in Fig. 2.

The motion of the magnetic carriage induces an electromotive force (emf) across
the coil terminals according to Faraday’s law of induction;

dp
= — 2
o (2)
where ¢ is the total magnetic flux given by;
¢ — BA 3)

where A is the area vector and B is the magnetic field vector. For a coil that consists
of N loops, the total induced voltage would be N times as large, and (2) becomes;

d
V=N E(BA cos ) “4)
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Differentiating (4) with respect to time we obtain:

V=N a8 A 0+ B da 0) + BA a6 5

= (dt cos 6 + r cos(6) + dt) 5)
From (5), the harvested power depends on the magnetic field density B provided
by the permanent magnets, the coil’s cross-section area A of the coil, and the angle
between the magnetic field B and the normal to the coil cross section area A. It is
desired to maximize the output voltage by operating with an angle 6 of zero and
maximize the constant field density B. In this case, the first and last terms of (5) will
be suppressed and the equation reduces to:

v=ng“ (6)
- dr

The coil’s shape is rectangular with length [ and width x, during operation the length
I remains constant and the width x varies with respect to the moving mass. This
reduces (6) to the following:

dx

V = NBI —,
dt

(7

where % is the velocity of the moving mass.

2.1 Magnetic Field Model

One of the most important elements of the electromagnetic VEH is the magnetic flux
density. It is therefore important to accurately design the magnetic circuit with the
objective to maximize and stabilize the flux density around the coil. The magnetic
circuit of the VEH is shown in Fig. 3, it consists of four magnets arranged as shown
in the figure, a steel cage, and an air gap separating the two sets of magnets. The
material for the steel cage is mild steel and the magnets are Sintered Neodymium.

The finite element modeling software ANSYS was used to determine the mag-
netic flux density. The FEM simulations results are compared with measured results
for validation purposes. The FEM simulation results of the magnetic field strength
obtained from ANSYS are shown in Figs. 4 and 5, while the measured results are
shown in Fig. 6.

The measured and simulated results of the magnetic circuit show that the magnetic
flux density is constant (0.74T) but has opposite signs on each side of the magnetic
circuit. This is due to the fact that the polarities of the two sets of magnets are reversed
(S-N and N-S). This setup allows the induced voltage across the coil to add up and
hence maximize the harvested power. From Fig. 6, we recognize that the flux density
is maximum over a 6—7 mm range, where it is desired that the magnets oscillate with
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Steel cage width
Magnet width

Cage thickness

S N Magnet thickness
' Air gap

Fig. 3 Magnetic circuit

Fig. 4 Calculated magnetic flux density

Fig. 5 Calculated magnetic field distribution
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Fig. 6 Measured magnetic 0.8 —
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respect to the stationary coil in order to reduce any magnetic softening effects in the
harvester.

2.2 Damping

Damping in the vibration energy harvester comes from two sources, mechanical and
electrical energy losses. The mechanical damping is usually approximated as viscous
linear damping, but in the case of the impact VEH cubic nonlinear damping is added
to account for energy losses when the seismic mass impacts the end limiters. The
cubic damping is defined as:

F, = bn-"‘:)62 ®)

where by, is the nonlinear damping coefficient, and found by fitting experimental data
of the frequency-response curve of the model.

2.2.1 Electrical Damping

In electromagnetic vibration energy harvesters, when the current passes through the
coil it creates a magnetic field that opposes the field produced by the magnets. The
interaction between the two fields produces a force which opposes the motion of
the inertial mass. Consequently, the interaction force that acts as electromagnetic
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damping produces the harvested power delivered to the load, and it can be expressed
as [28]
dx
F, em = be Z (9)

The electrical power is extracted from the mechanical oscillator and is given by [6]

dx

Pey = emE

(10)
A small part of this power is dissipated in the coil resistance R., and the rest is
delivered to the load resistance Ry. Equating the power dissipated to that generated
by the electromagnetic force gives

P = b, (& T Ve (11)
=7 \dr)] T RL+Rc+joL

where L is the coil inductance. Substituting for the voltage using (2), we can write
the electromagnetic damping as

1 do\?
bp=——7—— 9 (12)
RL+Rc+joL \dx

Assuming that the coil inductance is negligible and the magnetic field intensity B is
constant, the electromagnetic damping coefficient can be expressed as:

(Bl)?

= 13
Rr +Rc (13

e

where [ is the effective length of the coil. The electrical damping can, therefore, be
calculated using (13) and the parameter values given in Table 3.

2.2.2 Mechanical Damping

The viscous mechanical damping is estimated from the measured open-load
frequency-response curve of the harvester, which determines the quality factor Q
of the VEH, while the nonlinear damping coefficient is found by matching the exper-
imental frequency-response curve to the numerical results of the model.

Table 3 Electromagnetic
transducer parameters

Parameter Value
Magnetic field B (T) 0.74
Effective coil length 1 (m) 1.75
Coil resistance R¢ (£2) 3.4
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Table 4 Mechanical

. Parameter Value
damping parameters
Mass, m (kg) 0.12
Stiffness, k; (N/m) 950
Center frequency, fo (Hz) 21
Low cut-off frequency, f1 (Hz) 20.2
High cut-off frequency, f> (Hz) 22.5

The quality factor of the VEH is defined as:

_
=
where fj is the center frequency and Af = f> —f1, with f] and f> are the two half-power

frequencies. The quality factor relates to the mechanical damping of the harvester as
follows;

Onm (14)

maw

= — 15
Om b 15)
where b, is the mechanical damping coefficient of the open-load harvester. The
mechanical damping is found using (14) and (15) and the values of the VEH’s
parameters given in Table 4, b,, = 1.16 kg/s. The center frequency and half-power

bandwidth were found from a frequency-sweep curve of the base acceleration of the
VEH at an amplitude of Ag = 0.05g.

2.3 Gravity

The response of the VEH undergoes significant qualitative changes when the orien-
tation of the gravitational field with respect to the linear guide changes. When the
linear guide is aligned horizontal with respect to the surface of earth, such that gravity
is perpendicular to the track, the harvester motions are symmetric with respect to
the track mid-point. As soon as a component of the gravitational field acts along the
track, it breaks the symmetry of the harvester motions.

First, in Sect. 3, the response of the symmetric HEV is analyzed when it is aligned
horizontally. Then, in Sect. 4, we will model and analyze the response of the limiting
case for asymmetric VEHs, a VEH aligned vertically.
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3 Horizontal VEH

3.1 Model

The harvester is modeled as a single degree of freedom oscillator with piecewise-
linear stiffness, Fig.7, subject to harmonic base excitations applied directly to the
housing unit.

We set the origin of the coordinate system used to describe the motion of seismic
mass at the half point between the springs. The seismic mass m is assumed to be
a point mass, as shown in Fig. 8. The free distance along the rail (not occupied by
the cage) between the upper and lower uncompressed springs is denoted L. The
uncompressed length of each spring is denoted x; and the fully compressed length
is denoted x.. In this configuration, the governing equation of motion of the moving

mass IS gi\/en by:
| bm

Ky
i i |
1 ]

by

Fig. 7 Horizontal VEH schematic

LLLLLLLLLLL LS

r Tl 77 777777 7777777777

> x(t) y(t)

Fig. 8 Horizontal VEH

Xs Xs
simplified schematic |(—)| |<—>|
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M3 4 by % + by x> %+ Fo 4+ F(x) = —my (16)

where x and y are the displacements of the seismic mass m and the housing unit,
respectively, and F(x) is a nonsmooth function representing the system’s stiffness
given by (19), and F, is the induced emf given by (9),

Fe=b,x a7
Substituting (17) in (16) we obtain the equation of motion of the “Springless” VEH;
mx 4 (by +be) X + bpx* %+ F(x) = —m ¥ (18)

The restoring force F(x) is defined such that:

e The springs stiffness is set to the linear stiffness of the spring k1 when it is not
fully compressed (no impact)

e The springs stiffness is set to a higher stiffness k» when it is fully compressed
(impact) with k> > ki

The force-displacement relationship shown in Fig. 9, F'(x) can be written as follows:

0 Xy X =< Xg
ki(x — xy) Xy < X < X

Fx)=1{ ka(x —xc) + k(e —x) xe <x < 5 (19)
ki(x + x5) —Xe < X < —Xg

ko (x + x¢) + ki (xs — x¢) _% <x =< —Xc

x(m)

ki

Fig. 9 Force-displacement relationship
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The VEH scavenges vibration energy transmitted to it from an environmental
vibration source represented by the base acceleration,

y=ua(t) =Ap coswt (20)

where Ag and w are the amplitude and frequency of the external excitation. The
equation of motion (18) is nondimensionalized using the nondimensional variables,

w / / o Xs _EC_ by,
n = wp = 1— —La Z—men

(21)
b, + by, wp, 2 w
A = 2 é‘l - ) )/ — — N .Q = —.
Lma)n 2mwy Wy Wp
and is written as,
¥ =A cos(2t) — 2% (£ + & x%) — F(x) (22)
where the nondimensional restoring force is given by:
0 —a1 <x<a
X — o o] <X =0
Fx)=1—-a1+a+yx—mm) o <x<l1 (23)
o] +x —ay <X < —U]
o —ay + y(ar +x) -1 <x < —was.

3.2 Experimental Results

The “Springless” VEH was tested using a feedback-controlled vibration shaker that
provides base excitations with constant acceleration and different frequencies. The
testing setup is shown in Fig. 10. Different experiments were performed to examine
the harvesters time response and frequency response. Different time response wave-
forms of the VEH, shown in Fig. 11, were obtained by applying different input base
excitations with constant amplitude at different frequencies, the figures show wave-
forms for an input amplitude Ag = 0.5g at frequencies in the region of the natural
frequency of the oscillator ( f=15,17,18,20Hz).

The frequency response curves shown in Fig. 12 represent the up and down fre-
quency sweep for input accelerations Ag = 0.3 — 0.6g and a 40 turns concentric coil.
We note from Fig. 12 a number of characteristics associated with nonlinear systems:
(1) The existence of a hysteresis band between the up and down frequency sweep,
(2) existence of the jump phenomena, (3) the frequency response curve peak shifts
to the right as the amplitude of input excitation is increased, and (4) the frequency
bandwidth increases with increase in the base excitation amplitude. We also confirm
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Fig. 10 Experimental setup of the horizontal “Springless” VEH

Fig. 11 Experimental time

059 @20 Hz
response waveforms of the ; 059 @ 18 Hz
“Qppe » B 059 @ 17 Hz

Springless” VEH for input OB g it H:

Ap = 0.5g and frequencies
2 =15,17,18 and 20 Hz

-0.4 T T T

0 0.04 0.08 0.12 0.16
Time (s)

from the results shown in Fig. 13 that as the coil’s number of turns is increased the
output voltage increases as well as the frequency bandwidth. The increase in the
frequency bandwidth is due to the increase of the parasitic resistance which in turns
reduces the electrical damping of the system.

Tests were carried out on the VEH to determine its optimal power and optimal load.
A resistive load was connected across the coil’s terminals and the base excitation input
frequency was varied over the frequency range f = 5-20 Hz. The test was repeated
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Fig. 12 VEH Experimental
frequency response curves
for input accelerations
Ap =0.3—-0.6g
S
4]
2 BW =6 Hz
. -
S BW=5Hz
BW =4 Hz
T T T T T T 1
8 12 16 20 24
Frequency (Hz)
Fig. 13 Experimental 1.2 4
frequency response curves 60 tums coil
for coils with number of 40 s col
25 tums coil

turns N = 25, 40, and 60

Voltage (Vrms)

6 9 12 15 18 21
Frequency (Hz)

using different values of the resistive load. Results shown in Fig. 14 represent the
frequency-response curves of the VEH for different loads. From the figures, we
conclude that the optimal power is 8.5 and 12mW while the optimal voltage is 0.8
and 1.2 mV for a 40 and 60 turns coil respectively.
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Fig. 14 Harvester’s output
voltage for input acceleration
Ap = 0.5g and a coil with 60
turns for loads R = 1-7 §2

Voltage (V)

Frequency (Hz)

3.3 Numerical Results

Nonlinear dynamical systems are usually solved using numerical long-time integra-
tion. However, the long-time integration method might not yield periodic solutions
easily and provides no information about the system’s stability. Therefore, other
numerical methods for finding periodic solutions and analyzing their stability must
be used. The shooting method is a well known numerical method that uses numer-
ical integration in conjunction with Floquet theory to obtain periodic solution and
assesses their stability [29]. For validation purposes, the averaging method is used
to find approximate closed-loop form solutions.

3.3.1 Shooting Method

The shooting method described in [29] is applied to the VEH equation of motion
given by (18), which is written as a system of first order differential equation:

X1 =x2
. 24
Gy = —betbug by 2 Fat) (24)

Equation (24) can be written as;

x =F(x,1), (25)
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where X is the state variables vector (x1, x2), and F is a vector function. The shooting
method is used to find a periodic solution, x(t) = x(¢ + T), that satisfies (25) by
solving the boundary-value problem:

x =F(x, 1)

(26)
x(0)=n, x(T) =1
where n is a vector of initial guesses and T is the period, both of which are in
general unknown a priori. Applying the shooting technique, the two-point boundary-
value problem is converted into a initial-value problem, and the resulting system of
equations is

% = F(x)
x(0) = no, x(T) =no
i(a_X) N 27)
dt\ on on
8—X(O) =1
an h

where [ is the two dimensional identity matrix. Applying the shooting method to our
system we obtain the following system of differential equations;

1) = x2(0)

by

b.+b F.
Y () LS 1) R (3}
m m

() = —x2(1)
d 8)(1 N a)CQ
dt\on ) om

d (0x _8x2
dt\om) o

d (axz) _ be+bwdxy by 0(x7) 1 0Fy 0x %)
dt \ 9n m 0N m 0N m dx1 9N
g(@)_ be+bm 3x2 _ bw002x]) 1 8Fy dxy

dr\ ona m dnp om0 m dxy 9n2

x(0) = no

My =1, Xoy=0, 220y =0, 220 =1

an1 an an an

The shooting algorithm requires an initial guess, this is done by solving (24)
by long time integration for a given base acceleration amplitude and frequency,
then a point on the obtained orbit is used as an initial guess to solve the system
of (27). A periodic solution is found once the change in the initial guess between
two iterations falls within a predefined error criteria. The amplitude or frequency
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Fig. 15 Harvester’s N

Model
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of base acceleration is then updated and the process is repeated to obtain an orbit
corresponding to the new forcing parameters. Figure 15 shows the waveforms of the
VEH obtained numerically and experimentally. From the figure we note a very close
match between numeric and experimental results. Figure 16 shows the numeric and
experimental frequency response curves of the VEH. The numerical results match
those experimentally indicating the model captures and reproduces the behavior of
the VEH.

3.4 Analytical Results

The averaging method is used to obtain an approximate closed-form solution of the
harvester’s equation of motion given by (18). We assume a solution of the form:

x(t) = asin(2t+ B) 29)
where a and § are slowly varying amplitude and phase. We also assume that:
x(t) = af2 cos($2t+ B) (30)

subject to the constraint: )
asing +apBcos¢p = 0. (3D
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Fig. 16 VEH’s experimental 0.6 —
and numerical frequency f;;‘;‘:li"""‘“'
response curves for input 1
acceleration Ag = 0.5g and a A
coil with 60 turns
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where we set ¢ = §2 r+ . Using (29) and (30) in the normalized equation of motion
(18), we obtain the second constraint:

acosp +2accosd (14 a*) sin(t + B)?) + F(x) a2

=a(f+1)sinp + A cos(2 1).

Solving (31) and (32) for & and g yields:
a=—[2at cos¢ (1 +a*sin® ) — a sin(¢p) — Acos(21) + F(¢)]cos¢p  (33)

aB =[2a¢ cos(¢) (1 +a* sin® ¢) — asin(¢) — A cos(£2 1) + F(¢)] sin(¢)

(34)
Next, we use (29) to write the restoring force in terms of the phase angle ¢ as
0 O<¢p=<¢
asing — o P11 =P =¢
aysing tox(l—y)—argpp<¢p <m—¢
0 T—pr=¢p=¢1+m
F = .
@) asin¢ + o h+r<¢=<¢rt+m (33)
aysing +ax(y — ) +ay ¢pp+m <¢p <27 — ¢
asing + o 2t —pp < ¢ <27 — ¢
| 0 2m —¢1 < ¢ <2m
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i (%), e (%)

are the phase angles corresponding the seismic mass contacting the linear spring at
x = x; and the fully compressed spring x = x., respectively.

We define a detuning parameter describing the difference between the forcing
frequency §2 and w,, as

where

o= -1

and average (33) and (34) over the interval of one period (0, 27) to obtain the
modulation equations

) 1 A
a:—a—§(4+a )+—cos(at—,3)

o2
B = [ 2az(y—1>\/1———2a1,/ —;
(36)
2 1 1
( 2(y — 1)sin™ (—) —2sin~ (—) —l—ny)] - =
a a 2

A .
~ % sin(at — B)

Defining the phase angle v = ot — B, we write the modulation equations in
autonomous form as

. 1 2 A
a= —a—§(4+a)+—0051//

/ / o2
1,'0—0—— 2052()/—1) 1——+2a1 —é
(37
+a( 2(y — )sin™ (—)—2sm (—)—i—ny)]—l
a a 2

A .

7 sin
The steady-state periodic solutions correspond to the fixed points (ag, o) of the
modulation equations. These equations are solved numerically for the fixed points as
a function of the detuning parameter o. Substituting the fixed point at & = 0, which
corresponds to the resonance frequency, in the assumed solution form, (29), we
obtain the seismic mass response shown in Figs. 17 and 18. Figure 17 shows the time
response of the seismic mass displacement when the frequency of base excitation
matches the natural frequency of the oscillator. Figure 18 shows the corresponding
orbits of the seismic mass obtained numerically and analytically.
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4 Vertical Configuration

A vertical implementation of the VEH, is suitable for environments where motions
are predominantly in the vertical direction. The linear guide, aligned vertically as
shown in Fig. 19, allows the carriage to move freely along the rail. When the assembly
vibrates due to a base excitation y(¢), the seismic mass m moves with respect to the
housing producing a relative displacement x(z). In this section the mathematical
model of the vertically aligned VEH is derived and the numerical method used to
obtain the periodic orbits of the system. Experimental results are then used to validate
the model.

Fig. 17 Displacement of 0.6 — .
VEH’s mass m: numerical Hisnerical
. - Averaging
(red) and analytical (blue)
for base acceleration 0.4 —
amplitude of Ag = 0.6g
0.2 —
c o
=
% 0
o
o =
02 —
A -
T T 717 T 1 1
180 184 188 192 196 200
Time
Fig. 18 VEH orbits: B1x'[t]

numerical (blue) and

averaging (green) for base
acceleration amplitude of
Ag = 0.6g

/

“ha 02
-02
/_0;

02 \0}4 xit]
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Fig. 19 Schematic of the y(t)
vertically-aligned springless
VEH
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4.1 Model

The equation of motion of the vertically-aligned harvester can be written as:
m3 = — (be + by) X — Fy(x) — my —mg, (38)

where F(x) is the restoring force. The VEH harvests kinetic energy transmitted to
it from the host vibrations represented by the base acceleration

V= Agcos(£21), (39)

where Ap and §2 are the amplitude and frequency of the external excitation.

The origin of the coordinate system is placed at the point where mass m rests on
the lower spring. The seismic mass m is assumed to be a point mass, as shown in
Fig.20. The free distance along the rail, not occupied by the cage, between the upper
and lower uncompressed springs is denoted x;. The uncompressed length of each
spring is denoted x; and the fully compressed length is denoted x.. The restoring
force F; (x) varies with the position of the inertial mass m according to the equation:
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Fig. 20 Simplified
schematic of the VEH IX
c

T 7777777
0 0<x<ux
kix Xe—Xxs<x<0
ki (xe — x5)+
Fo(x) = { ka(—=xc + X+ %) =X S x < xe — X (40)
ki(x — x;) Xp <X < —Xe + Xg + X
ki (xg — xo)+ —XeF X+ X <X <Xy + X
| ko (e — x5 — x +x)

where x; is the position where the mass touches the uncompressed spring, x. is
the position where the spring is fully compressed, k1 is the linear spring stiffness,
and k> the linear stiffness of the fully compressed spring. The force-displacement
relationship is shown in Fig. 21.

5 Results

A prototype of the VEH is mounted on an electromagnetic shaker as shown in Fig. 22
and a base acceleration is applied as input excitation with amplitude A¢ and frequency
£2. The voltage across the coil terminals is measured using an oscilloscope.
Experimental results show that the vertically-aligned harvester possesses three
different regions of operation. For amplitudes (A9 < 0.05g), the VEH response
is linear, since the seismic mass remains attached to the lower spring throughout
motion, this region will be known as the linear regime. For acceleration amplitudes
in the range (0.1g < Ap < 0.5g), the mass detaches from the lower spring during
motion without impacting the upper one. In this region, the response is that of a
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single-impact oscillator and will be therefore called the single impact regime. For
acceleration amplitudes (A9 > 0.5g), the mass impacts both springs and the response
is that of a double-impact oscillator, this will be called the double impact regime.
The experimental and numerical results for the three different regimes are presented
next.
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Fig. 23 The numerical (red 0.02 —

line) and experimental (blue SR o i
+) open circuit voltage T
(RMS) for an excitation of p— {\
amplitude Ag = 0.03g
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5.1 Linear Regime

In this case, the mass remains in contact with the lower spring. Test results show that
the response of the VEH is linear. Figure23 shows the measured and numerically
obtained frequency-response curves of the voltage (RMS) across the open circuit
terminals of the coil. Base acceleration amplitude is held constant at Ag = 0.03g,
while the frequency is swept up and down in the range 12-30 Hz.

Since the response of the VEH system is linear, the piecewise restoring force
reduces to a linear relationship between stiffness and displacement, and the equation
of motion is reduced to a simple spring-mass-damper model given by:

b k
i=—li-—x—j—g, @1)
m m

The steady-state response x of linear model under a base acceleration
y=02%Yycos21=Ag cos 21 (42)

is given by:
x()=acos(2t+ ®) (43)

where a and @ are the amplitude and phase of the system response and their expres-
sions can be found in books that deal with linear one DOF oscillators. The open
circuit voltage is given by:

Vi, = Bix (44)
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Fig. 24 Frequency-response
curves of the VEH under
base acceleration amplitudes
in the range of

Ap = 0.2-0.5g

Voltage (V)

Frequency (Hz)

The harvester’s response is obtained by substituting the parameter values listed in
Table4 into (41) and numerically integrating. The results, shown in Fig.23, agree
reasonably well with the experimental results. The maximum output voltage is 18 mV
obtained at the center frequency f. = 21 Hz and the harvesting bandwidth is 3 Hz.

5.2 Single Impact

The experimental frequency-response curves of the voltage across the open circuit
terminals of the coil for base acceleration amplitudes in the range 0.2-0.5 g are shown
in Fig. 24. The figure shows the up- and down-sweeps in the frequency range 5-35 Hz.
We note the existence of hysteresis between the up and down frequency sweeps
and jumps between an upper and a lower branches of response in the frequency-
response curves. We note in Fig. 24 that the jump to the lower branch occurs as the
frequency is swept down indicating the existence of a softening nonlinearity in the
VEH [29]. The hysteresis range increases with base acceleration amplitude from
1Hz atAp = 0.2g—3 Hzat Ap = 0.5g.

The harvester response for a base acceleration amplitude Ag = 0.4g was obtained
numerically and the results compare reasonably well with the experimental results
as shown in Fig.25. The stiffness and damping were reduced for this regime to
k1 = 880 N/m and b,, = 0.6 N m/s, respectively. This is expected since in this
regime the mass looses contact with the spring and spends significant time in air and
thus reducing the effective stiffness and damping of the VEH.
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Fig. 25 The open circuit 0.12 =
voltage between the coil
terminals for a base -
acceleration amplitude

Ap = 0.4g 0.10
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We note that the reduction in effective stiffness shifts the center frequency from
fe = 21 Hz to the range 12—16.5 Hz, which indicates that nonlinearities in the system
facilitate low frequency harvesting. Further, as the base acceleration amplitude was
increased, the peak frequency dropped, from f, = 16.5 Hz at Ag = 0.2g—f, =
145HzatAg = 0.3gandf. = 12 Hz at Ay = 0.4g, as the carriage spent more time
in air away from the lower spring.

Meanwhile, the maximum output voltage continued to increase with base accel-
eration amplitude as expected. For base acceleration amplitude A9 = 0.4g, the max-
imum output voltage was 110 mV (RMS) obtained at a frequency of f, = 12 Hz.

5.3 Double Impact

For large excitations, the base acceleration amplitude was set to the range of Ag =
0.6 — 1g. Figure26 shows the frequency-response curves obtained for the open-
circuit output voltage of the VEH. As in the case of moderate excitations, note the
up and down jumps between branches of response and hysteresis between up and
down-sweeps in the frequency range of 5-35 Hz.

We also observe a new branch of responses in the harvester frequency response.
Two additional jumps appear to the right (at higher frequency) of the two original
jumps in the frequency-response curves leading up to the new branch during fre-
quency down-sweeps and down from it during up-sweeps. The harvester response is
linear along this new branch. For instance, for base acceleration amplitude Ag = 0.8g
the new jumps occur at f = 13 and f, = 15 Hz.
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Fig. 26 Frequency-response 0.25 —
curves of the VEH for base
acceleration amplitude in the
range of Ap = 0.6—1g

o

P

o
|

Voltage (V)

0.1+

20
Frequency (Hz)

This new phenomenon is attributed to large seismic mass motions covering the
entire track between the two springs. Along this branch of response, the mass motions
reach the maximum allowable displacement

D =~ x; + x3 — x,

which remains almost constant as the excitation frequency varies since it is limited
by the two hard springs k». As a result, the velocity along this branch is

X ~ wD sin(wt + ¢)
Using (44), we obtain the output voltage (RMS) as

BID
V=""2 45
ﬁw (45)

We note that the measured output voltage varies linearly with the frequency, Fig. 26,
in accordance with (45). Further, since base acceleration amplitude does not appear
in (45), the voltage output falls on the same line for all acceleration amplitude values
reported here.
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6 Conclusion

In this paper we investigated the response of a wideband impact VEH numerically
and experimentally when aligned horizontally and vertically. Results show that using
a double-impact oscillator and a concentric coil enhanced the harvester’s output
power and its bandwidth. A maximum output power of 12mW over a frequency
bandwidth BW = 6 Hz was achieved using a 60 turns coil with an effective length
I =1.75 m and a 3.652, from an input acceleration Ag = 0.6g. We also note that the
impact produced a hardening/softening type nonlinearity in the horizontal/vertical
configuration of VEH. The VEH’s bandwidth increased with increase of the input
acceleration and an increase in the number of turns in the concentric coil. Numerical
analysis of the VEH show the existence of nonlinear phenomena that are reminiscent
of impact oscillator, in particular, the jump phenomena in the frequency response of
the VEH and the existence of hysteresis.
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