
Chapter 2
Automatic Synthesis of Analog Integrated
Circuits Including Efficient Yield
Optimization

Lucas C. Severo, Fabio N. Kepler and Alessandro G. Girardi

Abstract In this chapter, the authors show the main aspects and implications of
automatic sizing, including yield. Different strategies for accelerating performance
estimation and design space search are addressed. The analog sizing problem is
converted into a nonlinear optimization problem, and the design space is explored
using metaheuristics based on genetic algorithms. Circuit performance is estimated
by electrical simulations, and the generated optimal solution includes yield pre-
diction as a design constraint. The method was applied for the automatic design of a
12-free-variables two-stage amplifier. The resulting sized circuit presented 100 %
yield within a 99 % confidence interval, while achieving all the performance
specifications in a reasonable processing time. The authors implemented an efficient
yield-oriented sizing tool which generates robust solutions, thus increasing the
number of first-time-right analog integrated circuit designs.

2.1 Introduction

Analog integrated circuit (IC) design presents different characteristics from its
digital counterparts in terms of number of devices, design methodologies, and
design automation.

As digital electronic systems are modeled using hardware description languages
(HDLs), digital design processes are largely removed from technology consider-
ations and from actual physics of the devices. Digital IC design typically focuses on
logical correctness, maximization of circuit density, placement, and routing of
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circuits. The highly automated process produces variable, fab-independent netlists
and easily generated layouts that are usually “right the first time.”

Analog/mixed-signal designs, on the contrary, are notorious for requiring more
than just one prototypation cycle. They typically include a wide variety of primitive
devices, such as digital MOS and mid- and high-voltage MOS and bipolar junction
transistors (BJT), as well as a host of passive elements that include capacitors,
resistors, inductors, varactors, and diodes. These devices are often required to
operate under unfriendly environments, where they have to cope with
high-temperature differences, high voltages, switching noise, and interference from
neighboring elements. Analog circuits are also much more sensitive to noise than
digital circuits, which can severely affect their performance.

Unlike digital designs, in which only a few device parameters, such as threshold
voltage, leakage, and saturation currents, need to be considered, analog/mixed-signal
design must cope with much more complex specifications. It is more concerned with
the physics of devices. Parameters such as voltage gain, matching, power dissipa-
tion, and output resistance, for example, depend on voltage levels, device dimen-
sions, and process parameters. Each device in the analog world must, therefore, be
carefully characterized and modeled across a very large parameter space to allow for
a reliable circuit design. This process usually leads to fab-specific designs that
typically require more than one iteration to get the mask set right [14].

The success for first-time-right analog design in a traditional design flow can be
summarized in three parts. The first is the experience of the design team. It can be
acquired with a library of tried and tested design topologies and well-characterized
devices, allowing a correct estimation of process variations. The second is the
availability of good design kits and device models, providing an accurate charac-
terization of transistor behavior in different operation points. Furthermore, a wide
range of statistical models must be made available, including worst-case models,
statistical corner models, and Monte Carlo mismatch models, making it possible for
circuit design sizing and design centering techniques to achieve high-yielding and
robust designs. The third is a good planning for optimizing the time necessary for a
full design cycle, from initial specification to a functional prototype. A tight
time-to-market, in general, plays a crucial role in the definition of the design
schedule. In this context, a mandatory strategy for first-time-right silicon in analog
design is the automation of critical design stages such as transistor sizing.

Automatic synthesis of analog integrated circuits is a very hard task due to the
complex relationship between technology process parameters, device dimensions,
and design specifications. The design of analog building blocks requires circuit
parameters to be sized such that design specifications are met or even optimized. An
efficient search in the design space is mandatory when hard specifications must be
accomplished, mainly for low-voltage and low-power design. The exploration of all
transistor operation regions is also fundamental for the search for an optimized
circuit [18].

As devices shrink with the fabrication technology evolution, the impact of
process variations on analog design becomes significant and can lead to circuit
performance degradation and yield falling below specification [1, 20, 35]. Gate
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oxide thickness, for example, approaches a few angstroms in state-of-the art
technologies. Although VDD scales to sub 1 V supply voltage headroom, threshold
voltage does not scale in the same proportion due to leakage. Less headroom means
more sensitivity to threshold voltage variation. This issue has led to the inclusion of
yield prediction as a fundamental step in the analog design process. However, this
prediction—estimated by Monte Carlo analysis—might demand high computa-
tional effort if included at each iteration of an optimization procedure [36].

With Monte Carlo simulation, one can find out how the distribution in circuit
response relates to the specification. The aspects of yield considered here are the
percentage of devices, which meet the specification and the design centering with
respect to the specification.

Another important aspect is avoiding over-design, when the circuit character-
istics are within specification but with a wide margin, which could be at the expense
of area or power and ultimately, cost. Although not recommended, this strategy is
still in use by most of the analog design teams because of the low level of design
automation.

A typical design process is iterative, first for finding a solution which meets the
nominal specification, and then moving on to a solution that meets yield and
economic constraints, including the effects of variations in device characteristics. It
helps to understand the relationship of the design parameters to the circuit response
and the relationships of the different types of circuit response. However, it is a slow
process, since it depends on the direct influence of the human designer.

The inclusion of yield prediction in the automatic circuit sizing procedure allows
for a realistic modeling which contributes for a first-time-right design. The problem
is that it often presents high complexity due to the long simulation time in the
optimization process. Several hours is often required to optimize a typical-sized
circuit.

In this work, we demonstrate the main aspects and implications of automatic
sizing including yield. Different strategies for accelerating performance estimation
are addressed.

In Sect. 2.2, we show the different strategies for automatic analog circuit sizing,
while in Sect. 2.3 we show how it can be approached as an optimization problem. In
Sect. 2.4, we present a tool for circuit sizing using optimization and considering
yield. Then, in Sect. 2.5, we discuss the results of the automatic design of a
Miller OTA using the tool. Finally, we draw conclusions in Sect. 2.6.

2.2 Strategies for Automatic Analog Integrated Circuit
Sizing

In the analog design flow, the definition of transistor sizes, device values, and bias
voltages and currents is called the sizing procedure. It can be implemented, in
general, by two approaches: knowledge-based sizing or optimization-based sizing.
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In the knowledge-based approach, the circuit sizing is performed based on the
experience of the design team. This method uses analytic design equations that
relate circuit performance to device characteristics. Although it is a good approach
for older technologies, it is not suitable for designs in modern fabrication tech-
nologies, since the modeling of short-channel effects turns the design equations
extremely complex and simplification leads to values far from the actual circuit
response. Also, it is difficult to explore transistor operation regions other than strong
inversion. An example of knowledge-based sizing tool is Procedural Analog Design
(PAD) tool [33].

The optimization-based approach transforms the design procedure in a general
optimization problem. The circuit performance is modeled in a cost function, and
the design space is explored automatically by an optimization heuristic in the search
for optimized solutions. According to Barros et al. [5], the optimization method is
dependent on the design optimization model, which can be classified in equation
based, simulation based, or learning based.

The equation-based method uses simplified equations originated from large- and
small-signal analysis of the circuit topology. It allows for a fast estimation of circuit
performance, but lacks in accuracy. The application of this method has been
demonstrated in the literature, mainly with the use of geometric programming [15,
23]. The circuit performance is modeled by posynomial equations, which guarantee
the finding of an optimal solution in a fast computational time. However, this
modeling implies simplifications that compromise accuracy, since performance
equations are not posynomials.

Simulation-based methods use electrical simulators such as SPICE to estimate
circuit performance. This performance estimation method is purely numerical and
tends to consume a large computational time, since several iterations are necessary
to resolve the convergence algorithm implemented by SPICE. However, this
method gives a very accurate performance estimation. Electrical simulation allows
the calculation of all design specifications, in both time and frequency domains.
Another advantage is that circuit variability and sensitivity can be estimated by
corner models or Monte Carlo simulation.

The tool proposed by Phelps et al. [29] uses simulated annealing heuristic to
explore a multi-objective cost function using Cadence Spectre simulator for per-
formance estimation. The exploration of the design space using multi-objective
genetic optimization is presented by De Smedt and Gielen [8], in which the cal-
culation of the hypersurface of Pareto-optimal design points explores the trade-off
between competing objectives.

Learning-based methods provide fast performance evaluation and good accu-
racy. It is obtained by using techniques such as support vector machines [5] and
neural fuzzy networks [3]. The models are trained from electrical simulations. The
drawbacks are the high effort necessary to train the models with the desired
accuracy—a huge amount of simulation data is necessary—and the low configu-
rability, since a simple modification in the circuit topology makes the trained model
no more suitable for the application.
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Figure 2.1 shows the execution scheme of an analog optimization-based tool
with simulation-based performance evaluation. The tool takes as input the circuit
topology, design specifications, and technology parameters. The optimization core
generates solutions for the optimization problem according to the implemented
optimization technique. For each iteration, it is necessary to evaluate the quality of
the generated solution. It is quantified by a cost function, which gives an indication
of the performance of the generated solution with respect to the desired specifi-
cations. The performance is estimated by SPICE simulation of a set of test benches
in which design specifications can be extracted.

2.2.1 Sources of Process Parameter Variability

Submicrometer integrated circuit technologies present high incidence of variability
in the fabrication process. These variations affect the performance of ICs, both
analog and digital. In digital circuits, the effects are directly perceived in the
propagation time of the digital signal. In analog circuits, process variations affect
the operation point of the individual transistors and cause mismatch that can lead to
loosing circuit functionality [10].

According to Orshansky et al. [27], the variations in the IC fabrication process
can be classified in three categories: front end, back end, and variations caused by
the environment. Front-end variations are caused by the first steps of device fab-
rication, such as ion implantation, oxidation, polysilicon deposition, and others.

Design Variables

Optimization Core

New Solution

Performance Evaluation

Design Specifications

Circuit Topology

Technology Parameters

Spice Simulation

Fig. 2.1 General
optimization-based design
flow
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In these stages, random variations occur in the transistor gate sizes (W and L),
threshold voltage (VTH), silicon oxide thickness (Tox), among others.

Back-end variations are characterized by the process variations caused in the
metallization step of the fabrication process. The width of metal lines and inter-
connection vias, at different metal levels, are affected by random variations. At the
same time, passive devices—such as capacitors and inductors—present variations
around the nominal values, because they are implemented, in general, by metal
lines.

The environment variations refer to the differences between the nominal and real
operation conditions of the IC. We can cite temperature and supply voltage vari-
ations as example. These variations are systematic and can be treated at design level
in order to attenuate their effects.

Figure 2.2 illustrates three of the main parameter variation sources present in an
IC fabrication process. A random fluctuation of dopants occurs due to the difficulty
in controlling the exact quantity and energy of the ion implantation in small
devices. Some ions are located at undesired regions, and the concentration presents
nonuniform patterns. At the same time, there is a random variation in the effective
channel length and width, making it slightly different from the drawn dimensions.
Devices with large gate length are less sensitive to process imperfections.
Polysilicon width does not produce large variations in W , since this dimension is
defined by the diffusion region, which, in general, has a large area [10]. Finally, the
gate oxide thickness Tox presents a random variation gradient along the wafer area.

According to Orshansky et al. [27], front-end variations are very relevant for an
analog design. In order to exemplify the influence of a variation in the fabrication
process over an integrated circuit, consider the threshold voltage VTH. For large
channel transistors with uniform doping [34], it can be estimated by

VTH ¼ VTH0 þ cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j/F j þ VSB

p
�

ffiffiffiffiffiffiffiffiffiffiffi
2j/F j

p
Þ;

Fig. 2.2 Representation of the main variation sources in the integrated circuit fabrication process:
random doping fluctuation, effective gate dimensions, and gate oxide roughness
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where VTH0 is the threshold voltage for a long-channel device with source-bulk
voltage equal to zero, /F is the Fermi level, and c is obtained by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q�SiNsub

p
Cox

:

Here, q is the fundamental charge of an electron, �Si is the silicon permittivity,
Nsub is the density of electrons in the substrate, and Cox is the silicon oxide
capacitance.

In this context, we can verify that a variation in the number of dopants in the
substrate (Nsub) has a great effect in the threshold voltage. The same occurs with a
variation in Cox, which is dependent on the gate oxide thickness Tox:

Cox ¼ �ox
Tox

:

Although well controlled, the gate oxide thickness can present relevant varia-
tions over different regions of the wafer.

The standard deviation of VTH can be estimated by Orshansky et al. [27] as
follows:

rVTH ¼ 3:19 � 10�8 ToxN0:4
subffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LeffWeff
p :

We can verify that, besides Tox and Nsub, the variation of VTH is related to the
inverse square root of the effective gate area. Small devices are, therefore, more
sensitive to process variations.

2.2.2 Estimating Circuit Yield

Yield is the ratio of accepted ICs over the total number of fabricated ICs. If the yield
is significantly less than 100 %, this implies a financial loss to the IC manufacturer.
Therefore, it is important to calculate and maximize the manufacturing yield already
during the design stage [12]. This is called design for manufacturability, which
implies techniques for yield estimation and yield optimization.

Failures that show up when the IC is in use in a product in the field are even
more expensive, for instance when the IC is used under extreme operating condi-
tions such as high temperatures. To try to avoid this, the design has to be made as
robust as possible. This is called design for robustness or design for quality, which
implies techniques for variability minimization and design centering.

Some works have been done in the analog automatic synthesis theme consid-
ering design for manufacturability. The strategy for calculating the yield-aware
specification Pareto front is explored by Mueller-Gritschneder and Graeb [25].

2 Automatic Synthesis of Analog Integrated … 35



Other approaches propose the use of simplified sampling techniques for yield
estimation in order to reduce computational time [6, 13, 22]. The use of response
surface method (RSM) for circuit performance modeled as quadratic functions of
the process parameters is also reported [31]. All of them, however, face challenges
in accuracy, compromising the search for the optimized circuit.

The problem is how to estimate yield with accuracy in a reasonable processing
time. Monte Carlo is the standard technique for statistical simulation of circuits and
for yield estimation during the design phase. The reason for this is that Monte Carlo
is applicable to arbitrary circuits, arbitrary statistical models, and all performance
metrics of interest, while allowing arbitrary accuracy. On the other hand, circuit
size, nonlinearity, simulation time, and required accuracy often conspire to make
Monte Carlo analysis expensive and slow. A single Monte Carlo run can cost a few
thousand SPICE simulations, and higher accuracy requirements demand longer
runs.

A detailed analysis of traditional pseudo-random Monte Carlo sampling, Latin
hypercube sampling (LHS), and quasi-Monte Carlo (QMC) techniques is done by
Singhee and Rutenbar [32]. The goal is to reduce the number of sample points
while keeping the accuracy of the yield prediction. For high-dimensional problems,
QMC presents advantages in terms of simulation speed, giving 2× to 8× speedup
over conventional Monte Carlo for roughly 1 % accuracy levels.

2.3 Problem Formulation

The problem of analog integrated circuit sizing is modeled as an optimization
problem by translating the circuit performance specifications to a cost function
dependent on the transistor dimensions, capacitances, resistances, and bias voltages
and currents (design free parameters). This cost function fully defines the perfor-
mance space, which can be explored by an optimization heuristic for a minimum (or
maximum) point. The optimized solution is contained in this point.

Consider a set of circuit performance functions (design specifications)
Xðp; qÞ ¼ fS1; S2; . . .; Skg, which depends on a set of design parameter values p
and on a set of technology parameter values q. S is an individual specification, and
k is the number of design specifications. Performance functions for an operational
amplifier can be the low-voltage gain (Av0), gain–bandwidth product (GBW), slew
rate (SR), dissipated power (Pdiss), etc. Design parameters are the free variables the
designer can handle in order to design the circuit, such as gate dimensions (length L
and width W), reference currents, and capacitor values. Technology parameters
include electrical MOS model parameters (such as oxide thickness Tox and
threshold voltage of the long-channel device at zero substrate bias VTH0), supply
voltages, and operation temperature range.
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The acceptance of a circuit by a specification test can be expressed as follows:

Xðp; qÞ 2 U.

U is the region of acceptable performance specifications in the performance
space. The acceptance region W in the design parameter space is defined by

Xðp; qÞ 2 U ! p 2 W:

A manufactured circuit will be considered acceptable if all of its actual perfor-
mances fall within acceptable limits, i.e., if SLi � Si � SUi , where the indexes L and U
correspond to lower and upper specification limits, respectively.

The parameter values q vary statistically around a nominal value, caused by
unavoidable process fluctuations in manufacturing, with a joint probability density
function (JPDF) gðp; qÞ.

Two different types of parameter variation are present in a semiconductor fab-
rication process: global (interdie) and local (intradie) variation. Global variation of
the electrical parameters is induced by process fluctuations in manufacturing, which
affect all devices in a circuit in the same way. It is independent of length L and
width W .

Local variation induces differences between identically designed devices caused
by edge roughness, doping variation, boundary effects, etc. In this case, the vari-
ation of L depends on the width of the device. Other parameters such as sheet
resistance, channel dopant concentration, mobility, and gate oxide thickness are
inversely dependent on the gate area (W � L), since the parameters average over a
greater distance or area [10]. Mismatch is dominated by local variation and affects
the electrical behavior of input differential pairs and current mirrors, even for
well-designed layouts.

The manufacturing yield Y of a circuit can be formulated by the number of
accepted circuits that pass the specification test over the total number of considered
circuits:

Y ¼ ProbðXðp; qÞ 2 UÞ:

The manufacturing yield can be estimated by repeating circuit electrical simu-
lation and performance specification evaluation. This is done by Monte Carlo
analysis, which simulates the variation of the electrical parameters that affect all
devices in a circuit. In order to simulate global variation, the process parameters are
randomly selected in each simulation run and globally assigned to all device
instances in a design. For local variation simulation, every instance of a device that
contains matching-relevant parameters receives an individual random value around
a typical mean.

There are some design techniques typically used to improve yield in analog
circuits [7]. These techniques can be implemented—in combination or not—in
three design stages: topology selection, transistor sizing, and physical synthesis
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[24]. The focus of this chapter is restricted to yield maximization at the transistor
sizing stage.

In our approach, yield maximization is performed by determining a set of
nominal values of the design parameters, p, that maximizes the probability of the
random performances lying within U [4]. However, there is not an explicit for
estimating gðp; qÞ. The yield optimization problem can be formulated in the space
of independent statistical disturbances. The region of acceptability in the distur-
bance space contains all possible combinations of disturbances that can occur in the
manufacturing of a circuit, which, for specific nominal parameter values, do not
result in unacceptable performance. Yield optimization is, therefore, performed by
modifying the acceptability region in a way that increases the coverage of a fixed
probability distribution [9].

This yield can be calculated in both the device parameter space and the circuit
performance space. This calculation, however, is complicated by the fact that, in
either space, one of the two elements is not known explicitly: the statistical fluc-
tuations are known in the device parameter space but not in the circuit performance
space, whereas the acceptability region is known in the performance space but not
in the parameter space [12]. Monte Carlo simulation, combined with an optimi-
zation procedure, is the most effective way to estimate acceptability region in the
performance space.

2.3.1 Transistor Sizing as an Optimization Problem

The proposed approach for optimization of circuit performance explores the yield
prediction as a design objective in an automatic sizing procedure. It is a nonlinear
programming problem and requires the formulation of a single performance func-
tion (cost) to minimize subject to a set of inequality constraints, as in the following
standard form [26]:

minimize
p;q

Fmðp; qÞ; i ¼ 1; . . .;M

subjectto Cnðp; qÞ�Cnðref Þ; n ¼ 1; . . .;N

where M is the total number of Fm specifications to optimize, and N is the number
of Cn constrained performance functions. Here, X can be rewritten as a set of design
objectives and design constraints:

Xðp; qÞ ¼ fF1; . . .;FM ;C1; . . .;CNg:

Cnðp; qÞ is a function that is dependent on the specification type: minimum
required value (Cminðp; qÞ) or maximum required value (Cmaxðp; qÞ) [5].
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These functions are shown in Fig. 2.3, where a is the maximum or minimum
required value, and b is the bound value between acceptable and unacceptable
performance values.

Acceptable but non-feasible performance values are the points between a and b.
They return intermediate values for the constraint functions in order to allow the
exploration of disconnected feasible design space regions. These functions return
additional cost for the cost function if the performance is outside the desired range.
Otherwise, the additional cost is zero.

The constrained problem can be transformed into an unconstrained minimization
problem using the penalty function approach:

fcðp; qÞ ¼
XM
m¼1

wm � F̂mðp; qÞ þ
XN
n¼1

vn � Ĉnðp; qÞ: ð2:1Þ

Here, wm and vn are weights that indicate the relative importance of design
objectives and design constraints, respectively. F̂ and Ĉ are normalized design
objective and design constraint functions, in order to keep all sum factors in the
same order of magnitude.

Yield prediction can be easily included as a design objective in the cost function
by adding a new term Ŷðp; q; �qÞ in the penalty function:

f Yc ðp; q; �qÞ ¼
XM
m¼1

wm � F̂mðp; qÞ þ
XN
n¼1

vn � Ĉnðp; qÞ þ Ŷðp; q; �qÞ: ð2:2Þ

This new term is dependent on the variability vector of technology parameters q
given by �q.

We define the characteristic function of U as

IUðXÞ ¼ 1 if X 2 U
0 if X 62 U

�

which is 1 for pass and 0 for fail. This is also known as the indicator function.

a b

Feasible

Acceptable Unacceptable

C (p,q)

ab

Feasible

AcceptableUnacceptable

(a) (b)
C (p,q)

Fig. 2.3 Design constraint performance metrics: a minimum required value specifications and
b maximum required value specifications
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We can now define the circuit yield as the probability of a circuit instance lying
in the acceptance region:

Y ¼
Z
<�

IUðXÞgðXÞdX:

There are other ways of calculating the yield, such as the use of process capa-
bility indexes (Cpk). The key idea is normalizing the distance to the feasible
boundary by the standard deviation (r) of its performance distribution to consider
different process sensitivity. The application of these indexes, however, is out of the
scope of this work.

In this work, the cost function is estimated by electrical simulations performed
by Synopsys HSpice®. The high computational cost of Monte Carlo simulations is
diminished by performing circuit statistical analysis only for a subset of design
solutions in the optimization process, as detailed in the next section.

2.3.2 Monte Carlo in the Optimization Flow

According to Eq. 2.2, we need to estimate circuit yield for the calculation of the cost
function in the optimization flow. However, it is computationally costly if done by
Monte Carlo simulation. On the other hand, if yield prediction is not considered, the
optimization algorithm tends to find optimal solutions close to the border of the
performance space. At these points, a small variation in the process parameters
makes the performance specifications fall outside the acceptable region. Thus, a
strategy for dealing with this problem must be included in the optimization process.
It is called design centering.

There are two approaches for improving processing time considering Monte
Carlo simulations: to reduce the number of iterations in which Monte Carlo sim-
ulations are necessary; and to reduce the number of runs in a Monte Carlo simu-
lation. Both strategies are essential for improving the processing time during the
search for an optimal design solution.

2.3.2.1 Reducing the Number of Monte Carlos Simulations

It is possible to reduce the number of iterations in which the calculation of Y is
necessary by analyzing the influence of this term over the entire cost function of
Eq. 2.2. Figure 2.4 illustrates this strategy. Consider first the cost function in
Eq. 2.1, which does not include yield. If the current solution is not a best solution
candidate, i.e., if it is already a worst solution even without the calculation of Y , this
solution can be discarded and Monte Carlo simulation is not necessary. As f Yc ðXÞ is
unknown before the Monte Carlo simulation, the test for best solution candidate is
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done by the calculation of fcðXÞ. Monte Carlo simulation is executed only when
fcðXÞ\minðf Yc ðXÞÞ—where minðf Yc ðXÞÞ is the current best solution.

At the start of the optimization process, the current best solution is frequently
updated. However, the update frequency tends to reduce along iterations.
Consequently, the number of iterations in which Monte Carlo simulation is nec-
essary also reduces. Computational time is spared, since useless Monte Carlo
simulations are avoided.

2.3.2.2 Reducing the Number of Runs in a Monte Carlo Simulation

The reduction in the number of runs in a Monte Carlo simulation can be imple-
mented with the calculation of the number of samples (n) necessary to achieve a
desired confidence level in the yield estimation.

From Optimization Core To Optimization Core

New Solution

Performance EvaluationSpice Simulation

fc(X) Calculation

Best Solution
Candidate?

Yield PredictionMonte Carlo Simulation

fY
c (X) Calculation

Yes

No

Fig. 2.4 Optimization flow including yield prediction only for best solution candidates
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The expected value of a random variable p is l ¼ EðpÞ. If we generate values
p1; . . .; pn independently and randomly from the distribution p, we can estimate l as

l̂ ¼ 1
n

Xn
i¼1

pi:

One of the great strengths of the Monte Carlo method is that the sample values
themselves can be used to get a rough idea of the error l̂n � l. The average squared
error in Monte Carlo sampling is r2=n. The most commonly used estimation of
standard deviation r2 is

r2 ¼ 1
n

Xn
i¼1

ðpi � l̂nÞ2:

Monte Carlo sampling typically uses large values of n for guaranteeing that this
estimation is a good approximation to the actual r2.

A variance estimate r2 tells us that the error is on the order of r=
ffiffiffi
n

p
. We know

that l̂n has mean l and we can estimate its variance by r2=n.
From the central limit theorem (CLT), we also know that l̂n � l has approxi-

mately a normal distribution with mean 0 and variance r2=n. The CLT can be used
to get approximate confidence intervals for l. For 95 % confidence interval,

l95% ¼ l̂n � 1:96
rffiffiffi
n

p :

For 99% confidence interval,

l99% ¼ l̂n � 2:58
rffiffiffi
n

p : ð2:3Þ

In a general way,

lc% ¼ l̂n � U�1ð1� a=2Þ rffiffiffi
n

p ;

where a ¼ 1� c=100 and Uð�Þ�1 is the inverse cumulative distribution function
(ICDF) of Nð0; 1Þ, the standard normal distribution. It is not available in closed
form, and computation requires careful use of numerical procedures. It is also called
“probit function,” an acronym for “probability unit function.” The probit function
can be calculated as

probitðpÞ ¼
ffiffiffi
2

p
� er f�1ð2p� 1Þ:

In Matlab, the erfinv function is available for er f�1 (inverse error function).
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The steps for determining the number of Monte Carlo runs that matches a 99 %
confidence interval for a determined specification are the following:

The correct choice of n0 is fundamental for correctly estimating niþ1, since the
confidence of r is dependent on n. With some simulations, we can infer that
n0 ¼ 50 is a good choice. Figure 2.5 shows the simulation of Eq. 2.3 for different
values of n for estimating the low-voltage gain of a Miller OTA. One can note that
the graph stabilizes for n ¼ 50, indicating a maximum number of samples (niþ1)
equal to 400.

2.4 The UCAF Tool

UCAF is a CAD tool we developed for the automatic design of analog basic blocks
including yield optimization. The tool sizes an integrated circuit by modeling it as
an optimization problem and exploring efficiently the design space searching for
optimal solutions. The main design flow of this tool is the same shown in Fig. 2.1.
This general design flow is implemented in Matlab, and Synopsys HSpice is used
for performance estimation.
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Fig. 2.5 Example of the
maximum number of Monte
Carlo runs calculated with
Eq. 2.3. The circuit is a Miller
amplifier, and the
specification being measured
is low-voltage gain. A good
choice for n0 is 50, the value
where the graph stabilizes
around 400
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The implementation of UCAF is made using modular functions to solve a
generic analog IC design. These modular functions are shown in Fig. 2.6.
Modularity allows a high degree of configurability, since each function can be
substituted by a similar one without loosing functionality. For example, the opti-
mization algorithm can be changed independently of the remaining functions. The
tool is configured with the aid of an specific script as the input interface. Also, a
graphical interface guides the user through the basic configurations. The output
interface presents the generated solutions.

The “Core” module is the main function, which creates and organizes a new
design, creates design folders, sets the modular functions, writes the simulation file,
and performs other important tasks.

The function “Manufacturing Technology” implements the interface between the
design and the fabrication technology. It reads and configures the parameters of
simulation models from the design kit provided by the foundry.

Each new analog block inserted in the tool is saved in a cell library. This task is
performed by the “Topology Library” function. These cells can be reused for
different design specifications.

Core

UCAF Options

Input and Output
Interfaces

Cost Function

Specifications

Electrical Simulations

Yield Prediction

Optimization

Topology Library

Manufacturing Technology

Modular Functions

Fig. 2.6 UCAF structure
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The “Optimization” function is responsible for the optimization algorithm that
will guide the design space exploration. This function will be detailed further in
Sect. 2.4.2.

The “Cost Function” implements Eq. 2.1 and is responsible for representing the
design as an unconstrained minimization problem. In order to evaluate the cost
function, it is necessary to estimate the values of the circuit specifications. Thus, the
UCAF tool has the “Electrical Simulation” and “Specifications” functions. These
functions are analyzed with more details in Sect. 2.4.3.

2.4.1 A Simplified Design Example

The design flow of the UCAF tool can be illustrated by the sizing of a simple active
load differential amplifier circuit, as shown in Fig. 2.7. It is composed of four
transistors and a tail current (Iref ). In order to simplify the design, we assume all
transistors have the same size and Iref is fixed at 10 μA. This is not of practical use,
but reduces the design problem to only two variables: the transistors channel width
(W) and length (L). It also allows the visualization of the design space and provides
an intuitive understanding of the optimization procedure.

M4M3

M1 M2

2

Vin1 Vin2

3 Vout

1

Iref

VSS

VDDFig. 2.7 Active load
differential amplifier

Table 2.1 Required
specifications for the
differential amplifier of
Fig. 2.7

Specification Required value

Gate area Minimize

Low-frequency gain (Avo) ≥40.00 dB

Phase margin (PM) ≥70.00

Gain–bandwidth product (GBW) ≥1.00 MHz

Input common-mode range (ICMR+) ≥0.40 V
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Table 2.1 summarizes the circuit performance specifications. The design
objective is to minimize the gate area (W � L). The cost function is calculated by

fcðXÞ ¼ 1
Arearef

� AreaðXÞ þ
XN
n¼1

CðXÞ; ð2:4Þ

where X is the vector of free variables (X ¼ ½WL�), Arearef is the weighting
parameter of the gate area, and CnðXÞ represents the constraint performance metric
for the required specifications.

P
CðXÞ is calculated by

X
CnðXÞ ¼ CminðAvðXÞ;AvrefÞ þ CminðPMðXÞ; PMrefÞ

þ CminðGBWðXÞ;GBWref Þ þ CminðICMRþðXÞ; ICMRþ
refÞ;

where Cmin and Cmax are the constraint performance functions shown in Fig. 2.3.
Assuming W can vary between 0.22 and 10 μm and L between 0.2 and 1 μm in

steps of 0.05 μm, the optimization problem has 3120 possible solutions. We
exhaustively calculated all 3120 solutions by electrical simulation. The resulting
design space is shown in Fig. 2.8, where one can see the high nonlinearity of the

0.2

0.4

0.6

0.8

1

1.22 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L (um)

Design Space

W (um)

C
os

t F
un

ct
io

n 
(f

c)

Fig. 2.8 Resulting design space composed by 3120 possible solutions for the differential amplifier
of Fig. 2.7
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cost function with respect to the design free variables. The optimization method
searches the design space in order to find the value of W and of L that make the cost
function have the lowest value. The optimal solution is reached at the point
W = 1.62 μm and L = 0.54 μm, with a cost value of 0:11958.

The yield of each solution is evaluated by Monte Carlo simulations with 200
samples. The yield design space is shown in Fig. 2.9. It is possible to see that the
design space is abruptly deformed at the region where the yield moves from 100 to
0 %. The optimal solution not considering yield represents, in practice, an yield of
51.8 %, indicating that the solution is located in a performance region very sensitive
to process variations.

Using Eq. 2.2, the design spaces of Figs. 2.8 and 2.9 can be joined to result in a
design space including yield prediction, shown in Fig. 2.10. The optimal solution is
now at W = 1.82 μm and L = 0.56 μm, with a cost value of 0:13658 and yield of
99.8 %. The optimal point moved just slightly, but enough for considerably
increasing the yield. The difference between this optimal value and the optimal
value without yield is ΔW = 0.02 μm and ΔL = 0.02 μm.

2.4.2 Optimization

This is the main function of the UCAF tool, because it is responsible for exploring
the design space. Here we opted for using genetic algorithms (GA), available in the
Matlab Genetic Algorithm Optimization Toolbox (GAOT) [17].
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Fig. 2.9 Yield design space estimated by Monte Carlo simulation
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The GA optimization approach is based on the biology theories of evolution and
genetics. It is a non-deterministic meta-heuristic and can be used for optimizing
nonlinear functions [11].

A specialized vocabulary is used for better reflecting the biological approach.
A solution is called an “individual,” and since GA work with a number of solutions
simultaneously, this set of solutions is called “population.” The iterations of the
optimization process are called “generations,” and the cost function is referred as
the “fitness” function.

In each generation, the individuals of the current population are crossed, gen-
erating new individuals that share characteristics from both parents (“crossover”)
and that may suffer “mutation.” Each individual is represented as a chromosome,
which in turn represents the optimization variables and their values.

Figure 2.11 shows the flowchart for optimizing the circuit size using GA.
The GA core receives three inputs: the configuration parameters, the design spec-
ifications, and the technology parameters. The first step is creating an initial set of
solutions, which is randomly performed by an initialization function. Each solution
is then evaluated according to the fitness (cost) function, given by Eq. 2.4, but
replicated here for convenience (recall that circuit specifications are estimated via
electric simulations):

fcðXÞ ¼ 1
Arearef

� AreaðXÞ þ
XN
n¼1

CðXÞ:
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Fig. 2.10 Design space considering yield prediction
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Afterward, a subset of the solutions is chosen based on a selection function.
The GAOT accepts the following selection functions: roulette wheel, normalized
geometric rank selection, and tournament selection. The roulette wheel function
first gives a normalized probability for each solution based on its fitness and then
builds a roulette based on these probabilities. A random number is generated, and
the solution with this number is selected. That way, the better the fitness, the higher
the chance of being selected.

The selection by ranking orders the solutions based on their fitness and assigns a
selection probability to each position. As with the roulette function, a solution is
randomly chosen according to the probabilities. The difference here is that the
probability of selection of a solution does not directly depend on its fitness, but only
on its rank.

The third selection function chooses a number of solutions uniformly at random
and keeps only the best solution. New tournaments are drawn, and the best overall
solution is kept.

GA Configurations Project Specifications Technology

Start

Create random
population

Select solutions

Apply crossover
and mutation

Insert solution
in population

Is stop condition
satisfied?

Cost function

Electric simulation

Finish: sized circuit

Yes

No

Genetic Algorithm Core

Fig. 2.11 Genetic algorithm flowchart for circuit sizing
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After selecting a subset of solutions, the next step in Fig. 2.11 is to perform
crossover and mutation over the solutions. These operations are responsible for the
state space search process of GA, since they generate new solutions. The crossover
operation takes two solutions (chromosomes), splits them at some random point,
and then combines one part from each chromosome, generating two new chro-
mosomes. The mutate operation takes a single chromosome, selects a random point,
and then inverts its value. Various functions for crossover and mutation are
described in Houck et al. [16].

The new population is tested and, if the stop condition is satisfied, the circuit is
sized and the process finishes. If it is not satisfied, a new generation (iteration) is
performed. A maximum number of generations or a minimum cost function dif-
ference can be used as stop conditions.

2.4.3 Circuit Characterization

The optimization procedure has an interface with an external electrical simulator to
estimate the circuit performance. For each specification, it is necessary to simulate a
circuit test bench, performing AC, DC, or transient analysis. The current version of
UCAF tool has some circuit standard test benches to measure the specifications of
operational amplifiers [2, 30]. These test benches are shown in Fig. 2.12.

An AC analysis is performed for measuring the low-frequency gain (Av0), the
gain–bandwidth product (GBW), and the phase margin (PM). The configuration is
shown in Fig. 2.12a. The results of this simulation can be plotted as a Bode
diagram. From the gain curve, Av0 and GBW specifications are extracted. In the
same way, the phase margin is obtained in the phase curve, as shown in Fig. 2.13.
In UCAF, this extraction is performed by the “Specification” modular function.

To obtain the input common-mode range (ICMR), the amplifier is connected in
unity gain configuration, as shown in Fig. 2.12b. In this simulation, the input
voltage is varied from a minimum to a maximum level through a DC analysis.
Positive and negative values are obtained from simulation output when the gain is
linear.

Figure 2.12c shows a circuit with a voltage gain of −10. This circuit is used for
measuring the output swing (OS) with a DC analysis of input voltage sweep. As the
gain is �10, the output level of saturation is obtained. The difference between the
minimum and maximum output levels is the OS specification.

The response speed of an amplifier (Slew Rate) is measured with the same
configuration as ICMR. The goal of this simulation is the transient analysis of a step
response of the circuit through the verification of the raise or fall behavior of the
output voltage level, as illustrated in Fig. 2.12d.

The common-mode rejection ratio (CMRR) is given by the ratio of the common
voltage (Vcm) by the generated output voltage. This specification represents the
rejection amount of the input common-mode voltage due to the non-idealities of the
amplifier. To measure this specification, an AC analysis is executed using the
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configuration shown in Fig. 2.12e, varying the operation frequency of the
common-mode voltage source.

Like the CMRR, the power supply rejection ratio (PSRR) indicates the amplifier
rejection capacity with respect to the noise coming from the power supply of the
circuit. The circuit used to measure the PSRR is shown in Fig. 2.12f. The noise
comes from the VDD and from the VSS power supplies, resulting in positive (PSRR

+)
and negative (PSRR−) rejection ratio, respectively. An AC analysis is executed to
sweep the frequency of the voltage sources, simulating the noise coming from the
power supplies. It is important to notice that these two simulations are performed
separately.

With a multi-core computer architecture, the electrical simulation task can be
carried out in parallel in different cores, since each specification has an independent
test bench. The UCAF implementation is capable of using all cores simultaneously
to simulate the circuit, resulting in a relevant reduction in the overall processing
time.

(a) (b)

(c) (d)

(f)

(e)

Fig. 2.12 Implemented test benches for measuring the performance of operational amplifiers.
a AC open loop. b ICMR. c Output swing. d Slew rate. e CMRR. f PSRR
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2.5 Automatic Design of a Two-Stage Amplifier

To illustrate the application of the optimization procedure described above, we
performed the automatic design of a two-stage CMOS Miller operational trans-
conductance amplifier (OTA). The schematics of this amplifier is shown in
Fig. 2.14. It is composed of an input differential amplifier as first amplification stage
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Fig. 2.14 Schematics of a
two-stage Miller amplifier
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and by an inverter amplifier in the second stage. A compensation capacitor (Cc) is
connected between stages for stability purposes [2].

This design has the following user specifications as input constraints:
low-frequency gain (Avo), gain–bandwidth product (GBW), phase margin (PM),
slew rate (SR), common-mode input range (ICMR), and output swing (OS). The
current mirrors and the differential pair result in the following matched transistors:
M1 ¼ M2, M3 ¼ M4 and M5 ¼ M8. Designing this circuit requires calculating all
CMOS gate sizes (W and L), the bias current source (IB), and the compensation
capacitor (Cc), resulting in the following 12 free variables: W1, L1, W3, L3, W5, L5,
W6, L6, W7, L7, IB, and Cc.

The target fabrication technology is XFAB 0.18 μm, which defines the minimal
values of transistor sizes: Lmin = 0.18 μm and Wmin = 0.22 μm, with a grid (k) of
0.01 μm. The variable bounds are shown in Table 2.2. The design space has 12
dimensions and 2:76� 1040 possible solutions, and thus, cannot be exhaustively
explored with current ordinary computational resources.

Table 2.2 Upper and lower
bounds for the free values in
the design of a Miller OTA

Variable Lower bound Upper bound

Wi 0.22 μm 50.00 μm

Li 0.18 μm 10.00 μm

IB 0.10 μA 100.00 μA

Cc 0.10 pF 10.00 pF

Table 2.3 Design specifications and results for the Miller amplifier

Specification Required
value

Automatic
design 1

Automatic
design 2

Automatic
design 3

Jafari
et al. [19]

Liu
et al.
[21]

Av0 (dB) ≥70.00 73.55 77.25 76.17 82.40 80.66

GBW (MHz) ≥2.00 2.32 2.39 4.17 9.77 2.04

PM (°) ≥50.00 55.69 54.17 66.58 60.00 55.60

SR (V/μs) ≥5.00 5.19 8.17 6.01 5.07 1.50

ICMR+ (V) ≥0.60 0.76 0.83 0.82 – –

ICMR− (V) ≤−0.60 −0.72 −0.68 −0.64 – –

OS (V) ≥1.00 1.17 1.65 1.61 1.17 1.91

Power
dissipation
(μW)

Min 25.82 108.49 144.16 52.00 1114.40

Gate area
(μm2)

Min 16.88 299.61 589.60 236.25 1407.78

Yield (%) Max 25.62 92.11 100 – –

Execution – 43.55 239.05 139.58 – 164.42

Time (min)
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The UCAF tool was set to use genetic algorithms with 100 binary individuals,
simple mutation, simple crossover, and roulette wheel selection function. The stop
criterion is the execution of 1000 generations, and the initial solution is randomly
generated. The cost function has power dissipation and gate area as design objec-
tives, and the remaining user specifications are the constraints. The required values
of the specifications are shown in the second column of Table 2.3.

The tool was executed in an Intel i7 processor with 8 GB of main memory. Three
different configurations were executed. The performance results are shown in the
third to fifth columns of Table 2.3, and device sizes are presented in Table 2.4.

The Automatic Design 1 was performed by UCAF without yield analysis in the
optimization procedure. This execution spent 43.55 min, and the final result sat-
isfied all constraints. The resulting power and area are equal to 25.82 μW and
16.88 μm2, respectively. Comparing with the designs presented by Jafari et al. [19]
and Liu et al. [21] for the same circuit, the values obtained by UCAF achieve a
considerable reduction in area and dissipated power.

To estimate yield of Automatic Design 1, we executed a Monte Carlo simulation
with 2000 samples. The resultant yield was 25.62 %, which is a very low pro-
ductivity index since approximately 3 of 4 of the fabricated circuits will not satisfy
the required specifications. This low yield was expected, because we did not
consider it in the optimization problem. The generated solution is very close to the
border of the performance space and is very sensitive to random fabrication process
variations in this region. Even a small variation causes the solution to move out of
the acceptable performance space. For example, the slew rate specification is
proportional to the bias current IB:

SR ¼ IB
Cc

:

At the same time, power dissipation depends on IB:

Pdiss ¼ ðVDD � VSSÞ � ð2 � IB þ I7Þ:

The optimization algorithm tries to satisfy the minimum SR constraint with the
smallest possible IB. This implies in reducing SR to the minimum value, moving the

Table 2.4 Generated solutions for the Miller amplifier designs

Variable Automatic design 1 Automatic design 2 Automatic design 3

W1/L1 (μm/μm) 2.87/0.27 2.89/5.87 38.99/0.58

W3/L3 (μm/μm) 5.84/0.21 27.61/1.95 35.97/2.80

W5/L5 (μm/μm) 1.42/0.90 8.99/5.39 10.68/0.86

W6/L6 (μm/μm) 31.90/0.26 43.87/0.52 31.58/4.55

W7/L7 (μm/μm) 2.36/0.82 6.06/6.34 21.12/8.6

IB (μA) 2.05 35.02 35.73

Cc (pF) 1.00 1.26 6.29
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solution point close to the border of the performance space. When not considering
yield prediction during the optimization procedure, all analog IC automatic design
tools tend to generate solutions with very low yield.

The other two configurations shown in Table 2.3 include yield prediction in the
optimization flow. The Automatic Design 2 was performed using MC simulation
for yield prediction for best solution candidates. As formulated in Sect. 2.3, this
strategy is used to reduce the number of Monte Carlo simulations. The number of
MC samples was fixed in 400. The generated solution satisfied all design con-
straints with 92.11 % of yield. The optimization process consumed 239.05 min,
which is 5.5 times slower than the process without considering yield. However, the
final yield increased to a practical value.

The Automatic Design 3 was executed with the same previous configuration, but
using the central limit theorem with 99 % confidence interval for determining the
number of MC samples in each iteration. The resulting solution showed 100 % of
predicted yield in 139.58 min of execution. With less processing time, this con-
figuration allowed a better exploration of the design space, leading to a solution
point with 100 % of yield.

The relevant increase in circuit yield in the Automatic Designs 2 and 3 is given
at the expense of gate area and power dissipation. This agrees with the Pelgrom’s
law [28], since the variation in the circuit performance is inversely proportional to
the square root of the gate area. Another characteristic of the yield optimization
results is that the distances between constraint values and reached specifications are
increased. This guarantees that specifications fall inside the performance space even
concerning the variations in the fabrication process.

2.6 Conclusion

The automatic design of a two-stage Miller amplifier including yield prediction in
the optimization flow generated a robust solution with 100 % of yield within a 99 %
confidence interval. All performance specifications were met, and gate area and
power dissipation were minimized.

The UCAF tool uses genetic algorithms for efficiently searching the design space
and produces reliable solutions, since the performance is estimated by means of
electrical simulation. The tool executes Monte Carlo simulations for yield predic-
tion, providing a realistic estimation of the performance sensitivity with respect to
fabrication process variations. The computational time is reduced by executing
Monte Carlo simulation only for best solution candidates and by calculating the
minimum number of MC samples for a given theoretical confidence interval.

We implemented an efficient yield-oriented sizing tool that generates robust
solutions, contributing for the increase in the number of first-time-right analog
integrated circuit designs.

The technique described in this work addresses the optimization of a single basic
analog block (a subsystem of a large analog circuit). When maximizing the yield of
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the whole circuit, losses might be caused by unmatched interconnections and
parasitic effects might appear when integrating subsystems on the top level.
Nevertheless, it is necessary to optimize the yield of each subsystem in order to
achieve a maximized yield in the whole circuit.

One of the drawbacks of our approach is dealing with large circuits composed by
several design variables. The computational cost rapidly increases with the number
of design variables, since the design space to be explored grows exponentially.
A practical strategy is to divide a large circuit into smaller parts and then size each
subcircuit at a time using our proposed methodology. After that, mixed-mode
simulation could be considered as an alternative to increase simulation speed for
these circuits.
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