Chapter 2
Dislocations

A first attempt to understand how crystals deform was made by Frenkel [1], who
posited that under an applied shear stress a crystal undergoes the bulk shear strain
illustrated in Fig. 2.1, meaning that the shear stress o between two crystal planes must
vary periodically with the shear displacement strain, i.e. ¢ = o sin(ke). Requiring
Hooke’s law o = e to hold at small strain, where p is the shear modulus, one obtains
a maximum shear strength of oo ~ /5 [2]. Unfortunately for this elegant picture, it
was already known that the shear stress required to induce plastic deformation was
known to be at most 11/10%, going down to 11/10° for ductile metals such as Copper.

After many attempts to explain this discrepancy a solution was proposed inde-
pendently by Taylor, Orawan and others in 1934 [3]. It was argued that in contrast
to the collective planar movement of Frenkel’s model, a real crystal localises its
deformation into linear regions known as dislocations. As shown in Fig.2.2, when
the deformation is localised an ‘excess’ atomic plane can be transferred from one
side of a crystal to another without requiring the bulk motion of atoms, which has
a much lower energy cost compared to the collective motion required in Frenkel’s
theory. This was famously analogised by Bragg to the action of moving a carpet by
creating a ‘ruck’ or ripple at one end and then pushing the ruck rather than trying
to slide the whole carpet. As with anything that buckles rather than homogeneously
deforming, it is energetically cheaper to heavily deform a small amount of material
rather than lightly deforming a large amount of material. This phenomena is central
to dislocations and cannot occur in a harmonic system. The comparative ease of
dislocation motion was quantified in a seminal paper by Peierls [4], who showed that
a dislocation motion requires a shear stress exponentially smaller than Frenkel’s oy.

It could be argued that Frenkel’s ground-breaking work was an attempt to keep
crystal plasticity in the realm of linear response, i.e. bulk deformation must be a ‘long-
wavelength’ excitation requiring the collective motion of all the atoms in the system.
It is important to note that this did not work, showing immediately that dislocations
are intrinsically non-linear objects unsuited to interpretation by conventional field
theories. Furthermore, it is very difficult to construct a continuum field theory that
possesses both translational invariance and the ability to sustain static, localised
excitations [5], especially in more than one dimension. In contrast, this has been
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Fig. 2.1 A crystal deforming in Frenkel’s model
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Fig. 2.2 A crystal deforming by dislocation motion

shown to be a generic property of non-linear discrete systems [6], which obviously
provide a better approximation to a crystal.

These observations strongly imply that dislocations should be treated as non-
linear, discrete objects. This is ill suited to the linear continuum of classical elasticity
theory, which treat dislocations as line singularities in a vector field of displacements
u(x) that are regularised either by ad-hoc cut-offs in traditional elasticity [2] or
more advanced non-singular methods that suppress singularities through the mapping
u(x) — u(x) + A - Vu(x) then applying the same linear field theory [7].

Despite such conceptual failings the predictions of elasticity theory are valid
in the far-field when the deformation induced by dislocations is weak and slowly
varying, and these interactions are essential to describe realistic dislocation networks.
However, in the current work we focus on accurately coarse graining the stochastic
forces acting on thermally fluctuating crystal defects, meaning that we need to be
explicitly aware of the non-linear, discrete structure of the dislocation core. This
investigation is essentially orthogonal to the valid and important far-field results of
elasticity theory. Whilst we will review the topology of dislocation formation and
motion, and briefly report initial work on combining the stochastic force with long
range elastic interactions, we do not give a review of elasticity theory as there already
exist many excellent works on the subject [2, 8, 9].

2.1 Topology and Burgers’ Vector

Dislocations are defined as line like defects in a crystalline material, as distinct
from point defects such as impurities, vacancies and self-interstitials atoms or areal
defects such as surfaces and grain boundaries. These defects are obviously not



2.1 Topology and Burgers’ Vector 9

mathematically ideal entities, but their configurational space has topological restric-
tions which can be identified with the topology of points, lines and planes.

For example, a line of point defects do not form a line defect, as this linear cluster
of point defects can clearly be continuously transformed to any other cluster of
arbitrary shape, losing any topological definition. The topology of a line is defined
by Jordan’s curve theorem [10] in the plane, which states that a closed curve which
does not cross itself (either a loop or a line terminating on the boundaries of the
containing plane, which may be at infinity) divides a plane into two distinct regions.
An open curve can only be contained in the topology of lines if it is considered as
the limiting case of an infinitely thin loop. This two-dimensional construction can
be translated to three dimensions if we instead consider the continuous family of
concave surfaces bounded by a dislocation line [11] as opposed to the division of a
plane.

These considerations give our first main topological constraint, namely that for
a linear defect to be a dislocation, i.e. to have the topology of a line, it must either
form a closed curve or terminate on the boundaries of an areal defect.

For the dislocation to be a structural defect there must be some topologically
identifiable structural ‘charge’ associated with the line, which we will restrict to
be rigid translations by a vector b.! In close analogy with Ampere’s law [13], the
appropriate operation to extract this ‘charge’ is any closed path around the line, known
as a ‘Burgers circuit’ after its creator. Starting from an arbitrary atom and taking steps
only to nearest neighbours, execute a closed path enclosing one or many dislocation
lines, in close analogy to an Ampere circuit. As we know the vectors representing
nearest neighbour atomic separations of a perfect crystal, for each step calculate the
vectorial difference between the ‘ideal’ vector and the actual step vector, then sum
all of these vectors around the path. In a perfect, dislocation-free crystal this would
give identically zero, meaning that dislocations are defined to be linear defects which
contribute a a non-zero result, giving the total displacement b induced by the defect
which will be independent of the details of the path taken. This independence is simple
to demonstrate by comparing two paths which both enclose the same dislocations.
First, if the paths do not overlap, add a closed loop to one path to give overlap with
the second path. The two paths now form a set closed loops which do not enclose
any dislocation and thus give no contribution to the net displacement (c.f. Fig.2.3).
As these closed loops represent the transformation from one path to the other the
path independence is proved.

Crucially, if the Burgers vector b is not a symmetry operation of the host lattice, an
areal stacking fault equal in size to the minimal plane bounded by the dislocation line
would develop (the shaded area in Figs.2.4 and 2.5), meaning that the dislocation
becomes a stacking fault and so can no longer be classified as a line defect. This

I'There also exist rotational defects called disclinations, but as they can only appear where the
violation of bulk translational symmetry induced by this lattice rotation has a controllable energy
cost, such as in nanocrystalline metals [12] or liquid crystals [11] we do not consider them here.
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Fig. 2.3 Left An (100)(010) edge dislocation in Iron. An edge dislocation is formed through
the insertion of an additional semi-infinite crystalline plane. Right A cartoon of the same edge
dislocation line with an example surface bounded by the line and a possible Burgers path, with the
line direction t and Burgers vector b shown

Fig. 2.4 A demonstration of Burgers path independence. The difference between two paths can
always be considered as a closed loop enclosing no defects which cannot therefore contribute to
the path integral
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Fig. 2.5 Left A(1 10) plane containing a 1/2(11 1)[110] screw dislocation overlaid on an unfaulted
(110) plane in Tungsten. We see that the ‘disregistry’ between the two planes eventually becomes
equal to b. Right A cartoon of the same dislocation

leads to the second main topological constraint on dislocations- the ‘Burgers vector’
b must be a vector of the host lattice.”

We now have all the topological elements to build arbitrary dislocations. For
straight dislocation lines, the relationship between the line direction t and the Burgers
vector b defines the character of a dislocation line; when b - t = 0 the dislocation is
of ‘edge’ character and the line represents the boundary of an inserted semi-infinite
crystallographic plane of normal b as illustrated in Fig.2.3. When |b A t| = 0 no
additional material is required and we say the line is of ‘screw’ character- the line
represents the centre of a spiralling displacement that translates the crystal by b
around one circuit; an overlay of a plane containing a screw dislocation and a perfect
lattice plane is shown in Fig.2.5.

2Strictly, this restriction only applies to dislocation in the bulk. On surfaces this restriction does
not apply, meaning a different partial dislocations can exist depending on the coincident site lattice
[14] of grain boundaries or simply the crystallographic character of a free surface.
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Fig. 2.6 Illustration of a
dislocation core ‘unit’ for a
1/2(111)(110) edge
dislocation in bee Iron. The
atoms are coloured from blue
to ref by potential energy. We
see the core structure repeats
over the line direction lattice
vector t = [112]

2.2 Dislocation Core Structure

We have discussed how the non-linear discrete structure of a crystal localises defor-
mation into dislocations, such that the bulk of the inserted half plane, or spiral defor-
mation, is accommodated in a tight core region within which a line co-ordinate may
be defined. For a straight line dislocation lying along a lattice vector t, the core struc-
ture will be periodic with a period of t by the discrete translational symmetry of the
host crystal, as demonstrated in Fig. 2.6. This naturally leads to a definition of dislo-
cation core ‘units’, a concept which we find very useful to understand the dynamics
of dislocation cores. Whilst the picture of a compact core is always appropriate for
dislocation formation, in some close packed structures such as face centred cubic
metals? it can be the case that a compact dislocation can be unstable to core dis-
association: an areal stacking fault band bound by two ‘partial’ dislocations where
only the total Burgers vector is a lattice vector [2]. As shown in Fig.2.7, such an
arrangement can either be considered as an areal defect or, far from the stacking
fault band, a dislocation line.

Such an ambiguity is to be expected as the topological definitions only strictly
apply to ideal mathematical entities rather than real localised deformations. Nev-
ertheless, the two restrictions that a dislocation line must be closed and that the
(potentially total) Burgers vector must be a lattice vector remain valid as to violate
this would induce a stacking fault of a size only determined by the geometry of the
line rather than any ‘intrinsic’ energetic considerations that lead to a disassociated
core.

3Hexagonal close packed and face centred cubic crystal structures assume the optimal packing of
spheres, meaning in turn that they maximise inter-planar distances [16], which often leads to very
glissile dislocation structures with a low stacking fault energy [15].
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Fig. 2.7 Comparison of dislocation cores. Left a disassociated 1/2(110)(112) edge dislocation in
fce Nickel. The wide stacking fault can clearly be seen, though a line picture emerges far from the
core. Right the compact core of a 1/2(111)(110) edge dislocation in bee Iron. As bee metals have
no metastable stacking faults dislocation cores never disassociate [15]

2.3 Dislocation Motion and the Kink Mechanism

As mentioned above, when t, b are not aligned the dislocation requires the addition
of material to the host crystal proportional to M |b A t|, where b, t are lattice vectors
and L is the shortest distance from the dislocation line to the boundary of the crystal.
As the dislocation line itself can be thought of as the boundary of this additional
material, if the dislocation line moves out of the plane defined by bAt, M will change,
meaning that material will have to be added or removed. Such non-conservative
motion is known as climb motion and is typically facilitated by the biased diffusion
of vacancies to the dislocation core [17]. Whilst such a motion is certainly dependent
on stochastic thermal forces to drive vacancies over their large migration barriers,
these barriers are very large meaning that climb motion is extremely slow (and
consequently atomistic simulation becomes extremely expensive). In this thesis we
focus on glide motion, where dislocation motion is restricted to the glide plane of
normal t A b. As glide motion is conservative it occurs much more readily and is
the dominant form of dislocation mediated deformation under typical mechanical
conditions. Such is the predominance of glide motion, dislocations are typically
characterised by their Burgers vector and glide plane in the form

(Burgers Vector){Glide Plane} Character, i.e. (100){010} Edge.

Glide planes are normally low index lattice planes, as these have the greatest atomic
density hence a larger interplanar separation [16]. However, although dislocation
glide is a conservative process, the discrete structure of a crystal breaks any con-
tinuous translational symmetry, meaning minimum energy configurations will only
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Fig. 2.8 A cartoon of the kink mechanism. The background gradient illustrates the variation of
dislocation core energy due to the discrete structure, which when aggregated into motion perpendic-
ular to the bulk line direction gives a one dimension periodic function known as the Peierls barrier,
as illustrated in the right hand strip. The red line illustrates the typical kink pair configuration a
dislocation line takes to migrate through the periodic landscape. This occurs because the barrier for
rigid migration scales linearly with the line length, whilst the kink pair energy is length independent

by invariant after rigid translation by a lattice vector. In between these positions the
energy varies periodically under rigid translation. This energy barrier to dislocation
motion is called the Peierls barrier and is a rate limiting process in transition metals
such as Iron and Tungsten, where the highly directional bonding accentuates this
discreteness effect. To see the influence of the Peierls barrier, consider an infinitely
long straight dislocation sitting in a minimum energy position. It is clear that the
magnitude of the energy barrier to rigid motion will scale linearly with the dislo-
cation line length (the Peierls barrier is defined by unit length) implying that an
infinitely long dislocation line has an infinitely large barrier between adjacent mini-
mum energy positions. Nevertheless, the dislocation can still migrate through the a
process known as the kink mechanism.

The kink mechanism can be pictured in direct analogy to a first order phase
transition, with the initial and final configurations as two phases. Rather than a
homogeneous change of state, a small region of the new phases is nucleated, then
grows through the motion of domain walls. The domain walls are short segments
known as kinks. A more physical picture of the kink mechanism is given in Fig.2.8;
we shall explain the kink mechanism in more detail when investigating the atomistic
simulation of dislocations.

2.4 Dislocations and Phonon Scattering Theory

All treatments of dissipative defect forces have employed scattering theory to describe
the interaction between dislocations and thermal vibrations [2, 18, 19]. As we take
an entirely independent approach in this thesis we will only summarise the qualita-
tive results. Indeed, one disadvantage of scattering theory predictions is even under
drastic assumptions of dislocation core structures the resulting expressions involve
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Fig. 2.9 A diagrammatic picture of phonon scattering. The dislocations and phonons are assumed
to be well defined entities which to only interact through scattering processes which may be sys-
tematically evaluated. Higher order processes contribute terms of higher order in temperature. The
linear and quadratic dispersion relations mean the first order term vanishes for subsonic defect
speeds. The second process represents a simple ‘in-out’ scattering and represents the well-known
‘Phonon Wind’ mechanism

complicated integrals meaning quantitative predictions are sensitive to regularisa-
tion techniques such as infra-red/ultraviolet cut-offs or gradient approximations [20]
required by all continuum linear field theories [21].

Scattering theories assume that dislocations and phonons are canonical objects
which are non-interacting to quadratic order, meaning each have well defined energy
and momenta. One then perturbs this harmonic system with higher order terms giv-
ing an expression for v which be evaluated in a series of scattering events. A cartoon
diagrammatic representation is shown in Fig.2.9. Given that we expect the phonon
number to be proportional to temperature, it is not surprising that higher order scat-
tering events lead to higher order temperature dependence in . However, given the
simulation evidence we only consider the zeroth and first order terms o and ywkgT.

As dislocations and phonons are assumed to be canonical in this scattering
approach each diagram is dependent on the phase space available for the scattering
process they represent. This means the temperature independent term - is reliant
on a one-body absorption or emission, whilst kg T includes more typical ‘in-out’
process. Selection rules for these terms can be derived when noting that we are con-
cerned only with subsonic dislocations moving much slower than the wave speed.
Taking a linear phonon dispersion relation fwpn = hck where ¢ is the wave speed
(it turns out that more complicated dispersion relations do not qualitatively affect
the results) and a quadratic dislocation dispersion Awgis = (RK )2/2m, we obtain the
balance

hick + (hK)?/2m = (hK + hk)*/2m = ¢~ hK/m. (2.1)
But we know that the dislocation speed is subsonic, i.e. AK/m <« ¢, meaning that
the above balance cannot be met in the subsonic regime. This is universally invoked

in all scattering approaches to conclude that

Yo =0. 22)
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We will show, through the analysis of extensive atomistic simulations by ourselves
and many other researchers that this conclusion is false. This qualitative failure
is a manifestation of the erroneous canonisation present in all scattering theories.
The main result of this thesis is an entirely new approach that solves these shortcom-
ings.For higher order processes the phase space is not so restrictive and so continuum
theories in general predict that

v =~ YwksT, (2.3)

with the second term in Fig. 2.9 being the dominant contribution.
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