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Fig. 3.7 Case (P+I): Measurements and model simulations for initial guess and final Gauss-
Newton iterate. Left (a): Prey population N (¢). Right (b): Predator population N, (f)

full rank 6. The final iterate came out as

p* = (%, B y*. 8 Ni(0)*, N2(0)*)
= (0.481599,0.024847,0.925125, 0.027508, 34.910103, 3.868005) .

The finally achieved accuracy is 3.01 - 107#, indicating that the parameter values
have been determined up to 4 decimal digits. The incompatibility factor came out as
k& = 0.13, for the final iterate the subcondition turned out to be sc(F’(p*)) = 400.0,
which here, too, confirms that the solution is unique. In fact, by leaving N;(0) and
N,(0) open, a better fit than in case (P) is achieved. The least-squares functional
was further reduced from |F(p*)|| = 4.24 in case (P) to |[F(p*)| = 3.76 in case
(P+I). In the absence of any modelling error, this would point to a measurement
error in the values Nj;(0), with Nj(0) = 34.9 thousands and N,(0) = 3.9
thousands probably being the “true” values. However, model (1.10) represents a
strong simplification. Certain mechanisms are missing, which is the main reason
for the mismatch between data and simulation results. Nevertheless, the overall
dynamical interactions between hares and lynxes are captured quite nicely by the
model, as illustrated in Fig. 3.7.

3.5.2 A Simple Rank-Deficient Problem

Here we want to illustrate the importance of possible rank-deficiency in the course
of the above presented Gauss-Newton iteration. For this purpose, we revisit the
bimolecular reaction from Sect. 1.2.1, which reads

ki

ky

A+B C+D.
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The corresponding ODE system (1.13) has been shown to be
A'=B = —-kjAB+ k,CD, C =D = +kAB—kCD ,

wherein the rate coefficients ki, k; have the role of the two parameters p;, p, to
be identified from a comparison with measurements. For initial values and rate
coefficients we set

A0)=2,B(0)=1,C(0)=0.5D0)=0, k =01k =02.

From (1.15) we recall that in the chemical equilibrium phase classical mass
action kinetics holds, which can be described by a single parameter, the Arrhenius
coefficient

ko = -2 =20. (3.61)

With this insight in mind, we choose two different sets of measurements:

e Case (T+E): measurement data cover both transient and equilibrium phase.
* Case (E): measurement data cover equilibrium phase only.

In order to generate “measurements”, we integrate the above ODE system by means
of the explicit Runge-Kutta integrator DOPRIS (see Sect.2.2.1) with relative and
absolute accuracies RTOL= 1078, ATOL= 107 and interpret the values computed
for the adaptive time points as measurement data. In both cases, we choose the initial
guesses

(K9, k) = (0.2, 0.5)

to start the Gauss-Newton iteration. The required relative final accuracy of the
iteration has been set to PTOL = 107,

Case (T+E)

As documented in Table 3.6, the solution of the corresponding nonlinear least
squares problem is obtained within 5 Gauss-Newton iterations, all of them with
full rank 2. The final iterate came out as

p* = (k'.kX) = (0.10000001,0.19999997) = k% = 1.9999994 .

Obviously, this recovers the original kinetic parameter values to 7 decimal digits
in agreement with the output value of the final achieved accuracy 1.8 - 107", In
passing we note the (rounded) results for the incompatibility factor « = 0.008 and
for the subcondition number sc(F’(p*)) = 6.3 for the final iterate, which confirms
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Table 3.6 Case (T+E): Iteration history for global Gauss-Newton method

k IF @ lAp || A Rank
0 4.81e-02 3.55e-01 2
1 2.55e-02 1.75e-01 0.389 2
2 1.04e-02 4.22e-02 1.000 2
3 9.16e-04 1.90e-03 1.000 2
4 8.00e-06 1.99¢-05 1.000 2
5 3.21e-07 1.54e-09 1.000 2
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Fig. 3.8 Case (T+E): Comparison of measurements and model. Left (a): Model simulation for
initial guess (k) k9). Right (b): Model simulation for final parameter (k, k3)

Table 3.7 Case (E): Iteration history for local Gauss-Newton method (within global GN
algorithm). Due to the occurrence of rank-deficiency, a unique solution cannot be expected

k IFEHI lAp“l A Rank
0 3.85¢-02 2.96e-02 1
1 2.40e-03 1.85¢-03 1.000 1
2 1.11e-05 7.67e-06 1.000 1
3 6.67e-06 6.75e-11 1.000 1

the expectation of a unique solution. In Fig. 3.8, a comparison of measurements and
model for both the initial guess and the final iterate is given.

Case (E)

As documented in Table 3.7, a solution of the corresponding nonlinear least squares
problem is obtained within 3 local Gauss-Newton iterations, here, however, all of
them with deficient rank 1. This means that we cannot expect to have obtained a
unique solution.
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Fig. 3.9 Case (E): Comparison of measurements and model. Left (a): Simulation of model for
initial guess (Y, k9). Right (b): Simulation of model for final Gauss-Newton iterate (k}™*, k3*)

The final parameter iterate came out as
P = (k7" k") = (0.24155702,0.48312906) = k5 = 2.0000622 .

Again, we note the rounded incompatibility factor (here for the rank-deficient Gauss
Newton iteration) k = 0.004. The final subcondition number (for full rank 2) came
out to be sc(F'(p*)) = 4.5 x 10°, by the way only slightly less than the condition
number cond F’(p*) = 5.6 x 10° (computed here only for comparison reasons). In
view of the numerical integration accuracy, the Jacobian accuracy value g4 = 10™*
has been set, compare Sect. 3.2.2. With this specification, the rule (3.18) gives rise to
the observed rank deficiency. In Fig. 3.9, a comparison of measurements and model
for both the initial guess and the final iterate is presented.

Clearly, the invested kinetic parameters (kj, k) = (0.1,0.2) have not been
recovered. Nevertheless, although the obtained result (k{*,k3*) is totally “off the
track”, the rank-deficient Gauss-Newton method is able (i) to deliver a “nice
fit”, see Fig.3.9b, and (ii) to recover the Arrhenius coefficient kp;. The latter
occurrence is in direct agreement with formula (3.30), as a careful examination
would reveal (skipped here, too technical). However, it is important to understand
that the obtained computational results cannot serve as interpretable values beyond
the equilibrium phase.

Summary

For unaware observers it is certainly puzzling that both “solutions”, p* = (k,k3)
as well as p** = (k*, k3™), yield the same “perfectly matching” plots compared
with data set (E). However, this is in agreement with the analysis given in (3.49):
both solutions are minimal points in a parabolic “valley”

F(p) = Fp*) +O(p—p*I7) . F(p) = Fp**) + O(lp —p™|*) -
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Fig. 3.10 Gauss-Newton iterations in the parameter plane. Unique solution point p = (0.1, 0.2)
marked as (o). Straight line represents subspace S according to (3.62). Left (a): Case (T+E). Full
rank iteration p° — p* = p. Unique solution recovered. Right (b): Case (E). Rank deficient
iteration p® — p** € S. Observe the orthogonality of the iteration path towards the subspace

For further illustration, Fig. 3.10 shows the two cases in a (ki, k»)-plane. Starting
from the same initial guess p°, both final iterates p* and p** are contained in the
subset

S = {(kl,kz) | ky—2.0k = O} s (362)

which was determined by the algorithm via the rank decision device within the
QRQ-decomposition of the Jacobian F’(p). In passing, recall that, by algorithmic
construction, the Gauss-Newton corrections are orthogonal to the nullspace of the
Jacobians, which, assuming not too much Jacobian variation close to the solution
point p**, means also roughly orthogonal to S.

Remark 13 Note that the above occurrence in the rank-deficient case is in perfect
agreement with the model reduction based on chemical insight as presented in
Sect. 1.2.1 above. In [35] the question of identifiability of parameters in nonlinear
dynamical models has also been treated in detail. In contrast to the presently
advocated techniques, that article tries to implement an interactive technique that
does not exploit any of the information coming from the Gauss-Newton method or
its local realization via some rank-deficient QR-factorization. Here, however, the
model reduction has been automatically realized by the algorithm itself.

3.5.3 A Complex Human Menstrual Cycle Problem

In this final section, we want to present more general parameter identification
techniques assumed to be helpful when treating a wider class of complex problems.
For this purpose, we revisit Example 1 (Sect.1.2.1), which models the human
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