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Privacy in Pervasive Systems: Social and Legal
Aspects and Technical Solutions
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Stefano Paraboschi, and Pierangela Samarati

3.1 Introduction

In today’s society, most actions we perform are recorded and the collected data are
stored, processed, and possibly shared in a way that was impossible until a few years
ago before the development of ubiquitous and pervasive technologies. Ubiquitous
technologies represent one of the most significant revolutions in information and
communication technologies. The term “ubiquitous computing” was introduced by
Mark Weiser in the late 1980s to describe a future world based on “the idea of
spreading computers ubiquitously, but invisibly, throughout the environment” [48].
Pervasive and ubiquitous technologies are now present everywhere in our daily life.
People may have several devices (e.g., smartphones, tablets) that can be used to
access any kind of services anywhere, anytime. There are also devices that can keep
track and measure health conditions (e.g., blood pressure and heart rate) and send
such information to different parties. The amount of data that is therefore generated
everyday has grown exponentially and is expected to continue in the coming years.
Since the cost of data storage and processing has significantly decreased, all these
data can be stored long term and made accessible when needed.

While the technology advancements and the possibility of collecting, storing,
processing, and accessing data everywhere in the world bring enormous benefits,
users are becoming more and more concerned about their privacy. In fact, collected
data can be used to identify individuals or infer something that was not intended
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for disclosure. The location information generated by a cell phone, the pattern of
walking as recorded by a surveillance camera, and the combination of seemingly
innocuous information (e.g., the ZIP code and the date of birth) are all examples of
data that can be exploited to identify the person to whom they refer, not to mention
information like the biometrics that may raise some privacy concerns (e.g., [5, 20,
24, 42]). The main motivation behind these privacy issues is that when users, for
example, subscribe to a new social networking service or provide some information
to access a service, they immediately lose control over their data.

The users’ abilities to manage their personal information and also to delete such
information may then become difficult, if not impossible. This is a well-recognized
problem that research and development communities, governments, and public and
private organizations are all trying to solve. In particular, at the European level, a
proposal for a regulation was released in 2012 with the aim of unifying all the data
protection laws within the European Union with a single General Data Protection
Regulation (http://ec.europa.eu/justice/data-protection/). The main goal of this new
regulation on data protection is to take into consideration the recent technological
developments (e.g., cloud computing and social networks) and their security and
privacy risks [21, 30] to build trust in the digital world and to empower users to
keep control over their data. There are several key aspects that are considered in the
proposed regulation such as the introduction of new concepts (e.g., encrypted data
and genetic data), which address new privacy concerns; the right to be forgotten,
which allows users to require the erasure of their personal data whenever, for
example, such data are no more necessary for the purpose for which they have been
collected; and the applicability of such a regulation also to companies based outside
the EU that process the personal data of EU residents.

Clearly, privacy in the modern digital society is a complex concept that should be
addressed from several points of view: legal, social, economical, and technological.
The main focus of this chapter is on the technological aspect of privacy within
today’s ubiquitous and pervasive systems. In particular, we aim to analyze the
main privacy issues that can arise when collecting, processing, and sharing data
in pervasive and ubiquitous environments and then at presenting available techno-
logical solutions that can be put in place to counteract them. As a running example,
we will consider a museum that manages a large cultural heritage. The museum
aims to exploit the pervasive availability of computing infrastructures to develop a
framework for providing a cultural site (e.g., indoor museums, archaeological sites,
historical archives, old town centers) with several smart services for assisting users
(e.g., visitors or staff personnel) in the seamless exploration and management of the
related environment. In this context, smart and pervasive solutions can be adopted,
for example, from the electronic management of ticket purchases, to interactive and
guided tours based on the sensed proximity of a visitor to a specific exhibition, to
the continuous monitoring of environmental conditions (e.g., humidity, temperature,
pollutant concentrations) in the museum premises through sensors.

The remainder of the chapter is organized as follows: Section 3.2 illustrates our
reference scenario and presents the main related privacy risks. Section 3.3 provides
an overview to the most well-known approaches to protect location information.

http://ec.europa.eu/justice/data-protection/
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Section 3.4 discusses some solutions that allow the privacy-preserving sharing of
personal/sensitive data. Section 3.5 shows possible approaches that allow the secure
storage of personal/sensitive data. Finally, in Sect. 3.6 we provide our final remarks
and conclude the chapter.

3.2 Privacy in Pervasive Systems

We first introduce the reference scenario that will be considered in the remainder of
this chapter (Sect. 3.2.1). We then illustrate the privacy issues that may arise in such
a scenario (Sect. 3.2.2).

3.2.1 Reference Scenario

Our scenario (Fig. 3.1) refers to a museum with both indoor and outdoor exhibitions
and facilities, distributed in a wide geographical area, such as a city or a region (e.g.,
Rome, Paris, New York). To be considered “smart,” the museum features a digital
infrastructure providing digital services and pervasive solutions to both enhance the
experience of the visitors and efficiently manage the museum and its exhibitions.
As illustrated in Fig. 3.1, the considered scenario is characterized by the interaction
of different subjects. In particular, users (i.e., visitors to the museum) interact with
the museum system through an app that they can install on their smartphone and by
enabling GPS and location services. The app acts as a smart guide, as described
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in the following. Also, the museum features a set of environmental monitoring
stations to measure different environmental parameters (e.g., temperature, humidity,
pollutants). Data about users and the environmental measures collected by the
museum are stored at different servers (i.e., the registrations and payments server,
the location-based service (LBS) provider, and the environmental measures server).
The smart solutions adopted by the museum can be classified in the following three
groups, depending on their objective:

• Ticket purchases and visitor registrations. Visitors to the museum can buy their
tickets either on spot or online. When buying online, users pay by credit card
and can then collect their tickets presenting the credit card used for the payment
at an automatic machine at any of the museum facilities. When purchasing a
ticket, a visitor becomes a user of the museum systems. Users can also register
to the museum web site and/or follow it on social networks to receive news,
discounts, and other information. Data about users and registrations are stored
at the registrations and payments server, which is in charge of maintaining all
information provided by users. Figure 3.1 illustrates the information flows caused
by ticket purchases and registration activities by users as dashed arrows, labeled
data, from users to the registrations and payments server. Figure 3.2 illustrates
an example of the relation stored and managed by this server. The relation
stores personal data (attributesPhone, Name, DoB, and Sex), ticket information
(attribute TicketType), and payment information (attribute Payment) about
the visitors to the museum. Attribute TicketType represents the kind of ticket
bought by a visitor, which can be either regular (i.e., full price and no discount)
or discounted/free if, for example, the visitor suffers from specific pathologies
(health ticket) or has a particular job (e.g., army or government) for which the
museum adopts reduced fares.

• Smart guides to artworks. Besides traditional guided tours to the different
exhibitions, in which an authorized guide escorts the visitors, the museum
also offers location-based and automatic guided tours. To this end, visitors can
download an ad hoc location-based app, provided by the museum, on their
smartphone (smartphone icon close to users in Fig. 3.1), which describes the

Phone Name DoB Sex ZIP TicketType Payment

(800) 917-5551 Alice 1960/04/10 F 97401 Health Credit card
(500) 234-5678 Bob 1970/05/12 M 98302 Army Debit card
(541) 271-2136 Carol 1960/04/04 F 97467 Regular Cash
(360) 474-4614 Daniel 1970/05/20 M 98245 Army Cash
(360) 373-2030 Erik 1970/07/12 M 98312 Navy Cash
(541) 946-1711 Fred 1960/04/11 F 97434 Professor Credit card
(360) 435-3746 Greg 1970/07/25 M 98223 Government Check
(253) 863-5555 Hal 1970/07/30 M 98389 Marines Cash
(360) 794-7058 Ian 1970/05/12 M 98290 Army Credit card
(503) 497-91 33 John 1950/12/01 M 97210 Air Force Debit card

Fig. 3.2 Sects. 3.3 (a), 3.4 (b), 3.5 (c)
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artworks based on the position of the user. This indeed represents a great
advantage for the visitors to the museum, who can decide their own itineraries
without the need of reserving a guide in advance while, at the same time, enjoying
professional illustrations of the exhibitions based on their position. Visitors can
then walk around in the city, and as soon as they approach an artwork (such as the
Trevi Fountain, the Sistine Chapel, or the Colosseum in Rome), their location-
based app will ring an alarm and a description of the artwork will start. The
LBS offered by the museum can also suggest to visitors the best itinerary to
avoid queues that would delay their visit. To this end, it collects and aggregates
location data about the users who are using the location-based app and takes them
into consideration when determining the best itinerary to be suggested to a new
visitor. For instance, it can rearrange the itinerary of visitors (e.g., if a place is too
crowded, an updated itinerary skipping that place can be suggested to a visitor).
Figure 3.1 illustrates the communications from users to the LBS provider of the
museum to support the smart guide service as dashed arrows, labeled position.

• Environmental monitoring. To protect the artworks, the museum uses a pervasive
environmental monitoring system (sensor icons distributed in the environment
in Fig. 3.1). This system analyzes and keeps under control different parameters
that might harm the artworks such as the temperature of a room to regulate
air conditioning, the quality of the air (e.g., specific pollutants and humidity
to enforce specific countermeasures to protect the artworks), and the number
of visitors at an exhibition or in a given room to regulate further access to the
same. Figure 3.1 illustrates the communication exchanges from sensors to the
environmental measurements server as dashed arrows, labeled measurement.
Figure 3.3 illustrates an example of the relation kept by this server storing
the measurements of temperature (in Celsius degrees), humidity percentage,
concentration of PM10 pollutant (in �g/m3), and noise pollution (in dB).

The data about users and environment are analyzed (either at runtime, such as
for the environmental sensing, or offline, such as for discovering statistics on the
visitors based on the contact information provided at the time of purchasing tickets),
stored, and maintained for possible future use, possibly including disclosure to third
parties. For instance, the ministry of arts and culture periodically asks the museum

Fig. 3.3 Environmental
measurements at the facilities
of the museum

Sensor Temp (oC) Humidity PM10 (µ g/m3) Noise (dB)

int A 25 40% 25 60
ext B 28 60% 30 55
int C 27 45% 40 57
ext D 30 55% 50 62
ext E 29 53% 55 58
int F 22 42% 59 32
ext G 30 59% 50 47
ext H 28 60% 42 50
int I 28 43% 58 30
int J 22 51% 35 35
ext K 32 63% 37 65
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to provide all data related to visits and payments. Thanks to these data, the ministry
can study marketing strategies and take knowledge-based decisions regarding, for
example, special rates and discounts for specific groups of visitors, increasing the
personnel working in the museum, adjusting the opening hours, planning special
exhibitions, and many other activities. The museum can also decide to share these
data with third parties. For instance, the museum can provide its data to research
organizations to study countermeasures for improving the quality of the air by
reducing the concentration of specific pollutants. The paths of users among the
different facilities of the museum can be shared with other museums to suggest
to each user the most appropriate smart visit based on their previous ones.

3.2.2 Privacy Issues

The main privacy issues that arise in the considered scenario are related to the fact
that the data collected by the museum include sensitive information that can put
at risk the privacy of users to whom it refers. The collected data span from the
contextual information generated by the pervasive infrastructure to the information
released by the users themselves. Contextual information is needed to develop smart
services that can react to the environment surrounding a user. A notable example of
this kind of information is the location information that users continuously release
during their visits. Such information can then be used to track the movements of
users, which is considered intrusive and harmful to their privacy. The data released
by the users are needed to take advantage of the museum services. The storage
and processing of these data should always be performed in respect of the privacy
of the users. For instance, information like phone numbers cannot be shared with
an advertising company without the prior consent of the users. When accessing
sensitive information, both direct and indirect privacy violations may occur, as
illustrated in the following:

• Direct violations. Direct violations are caused by the presence in the collected
data of sensitive information available to all parties accessing the data. For
instance, all recipients accessing the data collection in Fig. 3.2 can discover the
phone numbers of the visitors to the museum.

• Indirect violations. Indirect violations are caused by the possibility of determin-
ing sensitive information that is not explicitly included in the collected data but
can be obtained from them. For instance, by observing the discounts applied to
the tickets purchased by visitors to the museum in Fig. 3.2, a recipient can infer
that Alice suffers from a disease and that Bob is from the military.

It is interesting to note that privacy violations might affect both individuals
represented in the collected data (i.e., registered visitors) and individuals that are
apparently not involved in the data release. For instance, the relation in Fig. 3.2
includes personal and payment information of the visitors to the museum, and its
improper sharing or distribution can affect the privacy of the visitors. As another
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example, consider the table in Fig. 3.3. An insurance company might increase the
premium to individuals living in the areas close to the museum and for which the
table reports a high PM10 concentration. This behavior clearly affects the privacy
of individuals who are not necessarily visitors to the museum.

As might be clear from the discussion above, privacy violations can occur for
a variety of different reasons, including the presence of sensitive information in
the data collection (e.g., attributes Phone and TicketType in the relation in
Fig. 3.2), the existence of correlations and associations among different datasets
(e.g., correlations among pollutant concentrations and respiratory diseases), and
the observation of data evolution. As an example of this latter aspect, suppose
that environmental sensor ext_B of the museum (see Fig. 3.3) be close to the city
railway and record noise levels continuously at regular time intervals. Assume also
that the schedule of freight trains be sensitive and therefore not publicly available.
By observing peaks in the sensed noise levels and linking them to the (public)
timetables of passenger trains, it might be possible to deduce the schedule of freight
trains. Unusual data can also leak sensitive information: for example, an individual
paying the museum ticket with a very exclusive credit card makes her/him stand
apart from others and reveals that, in all probability, she/he enjoys a relatively high
income.

In the remainder of this chapter, we survey some of the approaches that can be
adopted to protect data and users from the privacy issues described above. To guide
the reader through the chapter, Fig. 3.4 illustrates a summary of the solutions that
will be described in the remaining sections.

3.3 Protecting Location Information

The widespread adoption of mobile communication devices and the advancements
made on location technologies have contributed to the development of a great
variety of LBSs for business, social, or informational purposes. As an effect
of such innovative services, however, privacy concerns are increasing. In fact,
location information is subject to a variety of privacy threats, including stalking
or physical harassment. Location information can also be exploited for inferring
sensitive information about users. As an example, consider a user running the
location-based app provided by the museum for smart guides in Rome. Since the
exhibitions and facilities of the museum are distributed over the city, while walking
from the Colosseum to Trevi Fountain, the user might stop by a pharmacy selling
medicaments for a specific disease, thereby releasing her/his position to the LBS
of the museum. While this might not be a problem when the service provider (the
museum, in our example) is trusted by the user, this situation becomes problematic
when location information is shared with (or managed by) third parties. Anyone
accessing such location information can in fact infer that the user (or an individual
close to her/him) suffers from that specific disease. The existing solutions for
protecting privacy of location information can be classified based on whether they
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Fig. 3.4 Summary of the solutions illustrated in Sects. 3.3–3.5 (a)–(c)

aim at protecting the single positions of a user or her/his path whenever she/he
continuously releases the trace of her/his movements to a provider. In our running
example, the first class of solutions are important if the user decides to use the smart
guide app in pull mode, that is, the app issues a query to the LBS of the museum
when the user is close to an artwork. The second class of solutions can instead be
useful when the user decides to use the smart guide in push mode. To this end, the
app continuously sends the user location to the LBS of the museum, and as soon as
she/he reaches a point of interest, the app automatically receives the description for
that art piece.

We will now illustrate the most well-known approaches for protecting location
privacy, distinguishing between solutions tailored to protect the single position of a
user and those aimed at protecting her/his path.
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Single Position Protection Anonymity-based techniques (e.g., [3, 6, 8, 25, 28, 33,
39, 40]) aim at protecting the association between users’ identities and their precise
position to prevent reidentification by observing users’ requests to the LBS. These
techniques include solutions based on the concept of k-anonymity [13, 43] originally
proposed in the database context (see Sect. 3.4.2). To protect users’ identities, their
explicit identifier is removed and the precision of their position is degraded in such
a way that a user is indistinguishable by other k � 1 users in a given location
area or temporal interval. Figure 3.5a illustrates an example of the application of
such protection techniques, where k D 4. In the figure, users are represented by a
small circle, labeled with the user name. On the right-hand side of the figure, users
Greg, Hal, Ian, and John are de-identified (i.e., their identities are not associated
with their queries), and all queries are associated with the area represented by
the gray rectangle in the figure. Therefore, every request can be indistinguishably

(a)

(b)

Fig. 3.5 Protecting users’ location through anonymity-based (a) and obfuscation-based (b)
approaches
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generated by any of the four users. Whenever the identity of a user needs to remain
attached to her/his location information (e.g., with reference to our scenario, when
descriptions of exclusive art pieces should be available only to specific visitors who
paid an additional ticket), obfuscation-based techniques (e.g., [2, 4, 22]) can be
adopted instead of anonymity-based solutions. Rather than anonymizing users, these
techniques degrade the accuracy of their location. The main goal of these techniques
is therefore to perturb the location information of the users while still maintaining
a binding with their identity. Figure 3.5b illustrates an example of the application
of these techniques. The right-hand side of the figure shows a degradation of the
released position of user Bob, represented by the shaded rectangle, so as to protect
his actual position. Note that, as opposed to Fig. 3.5a, the identity of Bob is not
hidden to the LBS provider and remains associated with his (degraded) position.

Path Protection The protection of the trajectory information of a user is a critical
aspect in our reference scenario. Suppose that the users adopt the museum app in
push mode, meaning that the app on their smartphone continuously sends their
positions to the LBS offered by the museum. While walking around the city and
sightseeing, a user might visit other places that can be considered sensitive as
they can be exploited to infer personal information about her/him. For instance,
the user can stop to a pharmacy selling drugs for rare diseases, hence making this
information available to all parties observing her/his movements. In this scenario, it
is possible to adopt path-protecting approaches. Figure 3.6 illustrates an example of
the application of such protection techniques, in which the real paths followed by
Alice and Bob on the left-hand side of the figure have been protected by appearing
indistinguishable to the eyes of an observer. Traditionally, these solutions use spatial
cloaking techniques: a cloaked spatial region must be shared by at least k users,
and to protect user trajectories, all k users must appear as belonging to the same
region as time passes (e.g., [11, 41, 49]). A different approach is based instead on the

Fig. 3.6 Protecting users’ path
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generation, and release to the LBS, of (partially) synthetic trajectories. For instance,
the technique in [38] relies on mix zones created over synthetic trajectories, obtained
with first-order Markov chains from historical data. The release of fake paths is
also at the basis of a recent technique aimed at counteracting the risk of sensitive
information disclosure due to the observation of unusual paths. In fact, being
unusual with respect to what is expected and considered common, these paths
can leak information not intended for disclosure. The proposal in [5] introduces
a framework, based on first-order Markov chains, to evaluate how “unusual” a path
followed by a user is with respect to traditional trajectories (in our example, common
itineraries followed by visitors) to reduce the risk of inferences by releasing a
slightly modified and safe (i.e., less unusual) path.

3.4 Privacy-Preserving Data Sharing

Data sharing and dissemination are becoming more and more common and, in some
cases, even mandatory by law. Collected data can be disseminated in the form
of macrodata or microdata [14]. Macrodata are aggregate values representing
statistics of interests computed over a sample population. Such statistics are mea-
sures that summarize the values of one or more properties/attributes of respondents
(i.e., individuals, organizations, associations, business establishments, and so on).
Microdata are specific data related to single respondents (i.e., single visitors, in
our example). The release of macrodata and/or microdata might cause leakage of
sensitive information that was not intended for disclosure. In this section, we will
illustrate available solutions for protecting macrodata (Sect. 3.4.1) and microdata
(Sect. 3.4.2) and for protecting data streams, which are common in pervasive
scenarios since data are often collected by sensing devices in streams (Sect. 3.4.3).

3.4.1 Protecting Macrodata

Macrodata are represented as tables where each cell of a table is the value of
a quantity computed over the considered properties. A macrodata table usually
includes marginal totals, that is, the aggregate computed over each row/column in
the table. Depending on how macrodata tables are defined, they can be classified as
(1) count and frequency tables, where each cell contains the number (percentage,
respectively) of respondents that share the same value over all attributes of analysis
reported in the table, and (2) magnitude tables, where each cell contains an
aggregate value (e.g., sum) of a quantity of interest over all attributes of analysis
reported in the table. Figure 3.7a, b illustrates an example of count and frequency
tables, respectively, computed over the data in Fig. 3.2, reporting the number and
percentage of male and female visitors who purchased tickets with a given payment
method. Figure 3.7c illustrates an example of magnitude table reporting the average
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Cash Check Credit Card Debit Card Tot
M 3 1 1 2 7
F 1 0 2 0 3
Tot 4 1 3 2 10

(a)

Cash Check Credit Card Debit Card Tot
M 30 10 10 20 70
F 10 0 20 0 30
Tot 40 10 30 20 100

(b)

Cash Check Credit Card Debit Card Tot
M 0 0 12.5 4 16.5
F 0 0 11 3.5 14.5
Tot 0 0 23.5 7.5 31

(c)

Fig. 3.7 Count (a), frequency (b), and magnitude (c) tables. (a) Number of male and female
visitors purchasing tickets with a given payment method. (b) Percentage of male and female
visitors purchasing tickets with a given payment method. (c) Average delay (number of days)
between ticket purchase and collection

delay between the purchase of a ticket and its collection. Columns in the tables
represent the payment methods, while rows represent male and female visitors,
respectively.

Although macrodata do not explicitly include information specifically related to
single respondents, sensitive information can still be leaked. To counteract the risk
of unintended information disclosure, it is necessary to first identify and then protect
cells that can be considered sensitive [14, 23].

Identifying Sensitive Cells Sensitive cells can be identified according to different
strategies [23]. In count and frequency tables, sensitive cells can be identified
through the threshold rule, which classifies a cell as sensitive if its value is less
than a given threshold. As an example, consider the macrodata table in Fig. 3.7a
and suppose that the threshold is set to 1. In this case, the second and third cells
in the first row and the first cell in the second row should be considered sensitive.
In magnitude tables, sensitive cells can be identified through different rules (e.g.,
(n; k)-rule, p-percent rule, pq-rule) all aimed at identifying cells whose value could
be exploited to estimate too accurately the contribution of one specific respondent.
As an example, according to the (n; k)-rule, a cell is considered sensitive if less than
n respondents contribute to more than k % of its value. For instance, the third cell
of the first row in Fig. 3.7c does not satisfy (2,90%)-rule as one respondent only
contributes to 100 % of the cell content.

Protecting Sensitive Cells Once detected, sensitive cells must be protected.
Several protection techniques have been proposed for macrodata tables. For count
and frequency tables, the easiest solution consists in suppressing sensitive cells
(primary suppression). Unfortunately, primary suppression might open the door
to inferences: if marginal totals are published together with the released table,
or are publicly known, it might still be possible to restrict the uncertainty about
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the missing values. To overcome this risk, additional cells need to be suppressed
(secondary suppression), and linear programming techniques are typically adopted
to minimize the number of cells undergoing secondary suppression. Besides
suppression, rounding techniques can also be used, which consist in modifying the
original value of a cell by rounding it to a near multiple of a chosen base number.
The roll-up categories technique instead modifies the original table combining rows
and/or columns to obtain a less detailed table. A widely used protection technique is
sampling, which consists in computing the aggregate values in the macrodata table
over a representative sample of the collected data (e.g., in our running example
over a sample of the museum visitors). Protection is provided by uncertainty, since
a recipient does not know whether a target respondent has been considered in the
sampling. These protection techniques can be adopted to protect both count and
frequency tables. We note however that other more sophisticated approaches have
also been proposed to protect sensitive cells in macrodata release.

3.4.2 Protecting Microdata

Many scenarios require that the specific stored data (microdata) be released.
Figures 3.2 and 3.3 represent two examples of microdata tables. Although microdata
provide higher flexibility and utility for final recipients than macrodata, they are
subject to a greater risk of privacy breaches. In particular, a microdata table must be
protected against both identity disclosure (i.e., disclosure of respondents’ identities)
and attribute disclosure (i.e., disclosure of respondents’ sensitive information). In
the remainder of this section, we present some well-known approaches to protect
microdata tables against identity and attribute disclosures.

3.4.2.1 Identity Disclosure

The attributes in a microdata table can be classified in four classes: identifiers, quasi-
identifiers, sensitive attributes, and nonsensitive attributes. Identifiers are attributes
whose values univocally identify respondents, such as social security numbers and
phone numbers. Quasi-identifiers are attributes that can be linked to external sources
of information to reduce the uncertainty over the identity of respondents, such as
ZIP, DoB, and Sex. Sensitive (nonsensitive, resp.) attributes correspond to the
remaining sensitive (nonsensitive, resp.) information of the microdata table. The
first step for protecting a microdata table consists in removing (or encrypting)
explicit identifiers. A de-identified microdata table, however, does not provide
any guarantee of anonymity, since quasi-identifiers might be linked to publicly
available information to reidentify respondents. For instance, the de-identified table
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Phone Name DoB Sex ZIP TicketType Payment

1960/04/10 F 97401 Health Credit card
1970/05/12 M 98302 Army Debit card
1960/04/04 F 97467 Regular Cash
1970/05/20 M 98245 Army Cash
1970/07/12 M 98312 Navy Cash
1960/04/11 F 97434 Professor Credit card
1970/07/25 M 98223 Government Check
1970/07/30 M 98389 Marines Cash
1970/05/12 M 98290 Army Credit card
1950/12/01 M 97210 Air Force Debit card

(a)

Name Address City ZIP DoB Sex

. . . . . . . . . . . . . . . . . .
John Jacob 1100 Garden State Parkway Portland 97210 50/12/01 male

. . . . . . . . . . . . . . . . . .

(b)

Fig. 3.8 An example of de-identified microdata table (a) and of publicly available non-de-
identified dataset (b). (a) De-identified version of the relation in Fig. 3.2. (b) Portland voters’ list

in Fig. 3.8a (computed from the table in Fig. 3.2 removing attributes Phone and
Name) can be linked with the public voters’ list of Portland (Fig. 3.8b), which
includes a single tuple related to a male, living in the 97,210 area, born on 1
December 1950. This combination of values, if unique in the external world as well,
uniquely identifies the corresponding tuple in the microdata table as pertaining to
John Jacob, 1100 Garden State Parkway, revealing that he works in the Air Force
and that he paid the visit to the museum with a debit card. It is interesting to note that
a study performed on 2000 US Census data showed that 63 % of the US population
can be uniquely identified combining their gender, ZIP code, and complete date of
birth [27].

To protect respondents’ identities from the linking attack illustrated above, k-
anonymity [43] requires that any released tuple be indistinguishably related to
no less than a certain number k of respondents. Since reidentification through
linking attacks exploits quasi-identifying attributes, this requirement is translated
as follows: Each release of data must be such that every combination of values of
quasi-identifiers can be indistinctly matched to at least k respondents [43]. Starting
from the assumption that each respondent is represented by a tuple in a microdata
table (and, vice versa, that each tuple is related to a single respondent), a microdata
table satisfies the k-anonymity requirement iff (1) each tuple in the table cannot
be related to less than k individuals in the population and (2) each individual in
the population cannot be related to less than k tuples in the table. Since it is not
possible to take into consideration all possible external sources of information,
the k-anonymity requirement is typically enforced by taking a safe approach and
requiring each respondent to be indistinguishable from at least k � 1 respondents
of the table itself (which represents a sufficient, though not necessary, condition for
the k-anonymity requirement). A table is therefore said to be k-anonymous if each
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PhoneName DoB Sex ZIP TicketType

1970/05/** M 98***Army
1970/05/** M 98***Army
1970/05/** M 98***Army
1960/04/** F 97***Health
1960/04/** F 97***Regular
1960/04/** F 97***Professor
1970/07/** M 98***Navy
1970/07/** M 98***Government
1970/07/** M 98***Marines

PhoneName DoB Sex ZIP TicketType

1970/**/** M 983**Army
1970/**/** M 983**Marines
1970/**/** M 983**Navy
1960/**/** F 974**Health
1960/**/** F 974**Regular
1960/**/** F 974**Professor
1970/**/** M 982**Army
1970/**/** M 982**Army
1970/**/** M 982**Government

)b()a(

Fig. 3.9 An example of 3-anonymous table (a) and 3-anonymous and 2-diverse table (b)

combination of values of the quasi-identifier appears with either zero or at least k
occurrences in the released table.

k-Anonymity is traditionally enforced by adopting generalization and suppres-
sion techniques on the attributes composing the quasi-identifier, without modifying
sensitive and nonsensitive attributes. Generalization substitutes the original values
with more general values (e.g., the date of birth can be generalized by releasing only
the year of birth). Suppression consists in removing information and is particularly
useful to reduce the amount of generalization necessary to guarantee k-anonymity
whenever a limited number of outliers (i.e., quasi-identifying values with less
than k occurrences) would require considerable generalizations. Generalization and
suppression can be applied at different levels of granularity, and several approaches
have been proposed combining them in different ways [7, 13, 34, 35, 43]. The
majority of available solutions rely on attribute generalization and tuple suppression.
Figure 3.9a illustrates a 3-anonymous microdata table obtained from the table in
Fig. 3.8, where attribute Payment has been projected out since it is not intended
for release. Attributes DoB, Sex, and ZIP in the table are considered as the
quasi-identifier, and TicketType is considered sensitive as the museum is not
authorized to disclose such information. The 3-anonymous table has been obtained
by generalizing attributes DoB (only the year and month of birth are released) and
ZIP (only the first two digits are released). Also, the outlier tuple related to John
Jacob has been suppressed not to force further generalization on the date of birth,
since John is the only respondent born in 1950.

Reducing the details in the anonymized table, k-anonymity inevitably causes
information loss. To find a good trade-off between data protection and utility for
final recipients, it is necessary to compute a k-anonymous table minimizing the
adoption of generalization and suppression. To this end, both exact and heuristic
algorithms can be adopted [13].

3.4.2.2 Attribute Disclosure

k-Anonymity, while effective for protecting respondents’ identities, does not pro-
tect against attribute disclosure. To protect the association between respondents’
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identities and their values of sensitive attributes, alternative solutions extending
k-anonymity have been proposed. In the following, we will illustrate `-diversity
and t-closeness, two well-known extensions that counteract attribute disclosure.

`-Diversity `-Diversity has been proposed to counteract two specific attacks that
might cause attribute disclosure in a k-anonymous table, namely, the homogeneity
attack [37, 43] and the external knowledge attack [37].

• Homogeneity attack. k-Anonymity does not impose restrictions on the values
that can be assumed by the sensitive attribute in an equivalence class (i.e., by the
tuples sharing the same value for the quasi-identifier). As a consequence, it might
happen that a given equivalence class includes tuples with the same sensitive
value. If a data recipient knows the quasi-identifier value of an individual that
is represented in the table, the data recipient can identify the equivalence class
corresponding to the target respondent and then infer the value of her/his sensitive
attribute. For instance, consider the 3-anonymous table in Fig. 3.9a and suppose
that a recipient knows that Daniel born on 20 May 1970 is included in the table.
Since all the tuple in the equivalence class with quasi-identifier value equal
to (1970/05/**,M,98***) have army as value for attribute TicketType, the
recipient can infer that Daniel works in the army, which represents a sensitive
information not intended for disclosure in our example.

• External knowledge attack. k-Anonymity assumes that the only external knowl-
edge a recipient can have be represented by external sources linking respondents’
quasi-identifier values to their identities. However, a recipient might exploit some
additional external knowledge about some respondents to infer their associated
sensitive information. For instance, consider a 3-anonymous equivalence class
where two out of three tuples have army as value for attribute TicketType,
while the third tuple has value health. Suppose now that a recipient knows that
a target respondent Phil is included in this equivalence class and that Phil does
not suffer from any specific disease. The recipient can easily infer that Phil is not
likely to pay for a reduced ticket for medical conditions, hence discovering that
he works in the army.

To counteract these two attacks, `-diversity extends k-anonymity by requiring
the existence of at least ` well-represented values for the sensitive attribute in
each equivalence class [37]. A straightforward understanding of “well-represented”
values requires each equivalence class to have at least ` different values for the
sensitive attribute. For instance, the 3-anonymous table in Fig. 3.9b is also 2-diverse.
It is easy to see that an `-diverse table is not vulnerable to the homogeneity attack as
each equivalence class has at least ` different values for the sensitive attribute. Also,
external knowledge attacks lose effectiveness as ` increases, since more external
knowledge is necessary to associate a specific sensitive attribute value with a target
respondent.

An `-diverse table that minimizes the adoption of generalization and suppression
to reduce information loss can be computed using any algorithm that computes
an optimal k-anonymous table by simply adding a control to check whether the
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condition on the diversity of the sensitive attribute values is satisfied by all the
equivalence classes in the table [37].

t-Closeness An `-diverse table might still cause improper disclosures of sensitive
information, since it is vulnerable to the following two attacks [36]:

• Skewness attack. This attack may occur when the distribution of values of the
sensitive attribute within a given equivalence class differs from the general
(demographic or in the whole table) one. Indeed, differences in these distributions
highlight changes in the probability with which a respondent in the equivalence
class is associated with a specific sensitive value. As an example, the 2-diverse
table in Fig. 3.9b leaks the information that respondents in the third equivalence
class work in the army with 2/3 probability, compared to the 1/3 probability over
the whole relation.

• Similarity attack. This attack may occur when the values of the sensitive attribute
within a given equivalence class are (despite being syntactically different as
demanded by `-diversity) semantically similar. For instance, all respondents in
the first equivalence class of the 2-diverse table in Fig. 3.9b work in the armed
forces, as the values assumed by the three tuples are army, marines, and navy.

To counteract these two attacks, t-closeness extends the k-anonymity requirement
taking into account the distribution of sensitive values in equivalence classes [36].
t-Closeness requires that the frequency distribution of the sensitive values in each
equivalence class be close (i.e., with distance smaller than a fixed threshold t) to the
distribution of the same attribute values in the microdata table. Note that the distance
between the frequency distributions of the sensitive attribute values in the released
table and in each equivalence class can be evaluated adopting several metrics (e.g.,
Earth Mover Distance [36]). The enforcement of the t-closeness requirement makes
the skewness attack harmless, as the knowledge of the quasi-identifier value for a
target respondent does not change the probability of inferring the sensitive value
associated with her/him. t-Closeness also reduces the effectiveness of the similarity
attack: the presence of semantically similar values in an equivalence class can only
be due to the presence of the same values in the whole microdata table.

3.4.3 Protecting Data Streams

The solutions proposed to provide k-anonymity, `-diversity, and t-closeness, as
well as the majority of microdata protection techniques, assume all data that
need to be released to be available at initial time. Then, the chosen protection
technique can be applied on the whole collection at once. In the context of pervasive
systems, however, this assumption might be too strong as new data are continuously
generated (and possibly need to be immediately released), forming a so-called
data stream. In the context of data streams, timeliness usually assumes paramount
importance in the release process, as disclosing old or outdated data is likely to be
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of little interest to the final recipients. Data streams can be protected by applying ad
hoc solutions to guarantee k-anonymity, which are typically based on generalization
and on the introduction of a limited delay in data publication. The first solution in
this direction has been proposed in [50] and consists in publishing all the tuples in
an equivalence class at the same time. To this end, a set of equivalence classes—
all initially empty—is prepared. When a new tuple is generated by the stream, it is
inserted into a suitable equivalence class, if such a class exists; a new equivalence
class suitable for the tuple is generated otherwise. As soon as an equivalence class
includes k tuples (which must be related to k different respondents), these tuples are
generalized to the same quasi-identifier value and published.

Aiming at enforcing `-diversity, rather than k-anonymity, an alternative approach
has been proposed in [46], where data are assumed to be generated and published
as “snapshots” (i.e., sets of records available at a given moment of time) of d
tuples each. This technique combines traditional generalization and suppression
techniques with tuple relocation to guarantee `-diversity. In a nutshell, relocation
consists in moving a tuple from one snapshot to a more recent one if this delay in
data publishing can be useful to satisfy `-diversity.

3.5 Privacy-Preserving Data Storage

Privacy concerns can also arise when data storage and management is delegated (for
various reasons, such as economical costs) to external, possibly not fully trusted,
storage providers. These scenarios present several challenging issues, ranging from
fault tolerance, data protection, and data and query integrity to private access
(e.g., [31, 32, 44]). Relying on external providers is particularly appealing in the
context of pervasive data, due to the high volume of data generated requiring
large storage space that, for example, the museum is most likely not to have. In
this scenario, to protect confidentiality of data from unauthorized users—including
the external provider—a straightforward solution is represented by wrapping an
encryption layer around the data to be protected. While effective for protecting data
confidentiality, encryption inevitably complicates query execution that becomes
possible only with the adoption of expensive ad hoc encryption schemes [10, 18, 26,
47] or indexes [9, 19, 29, 45]. Moreover, in many scenarios, the sensitive information
to be protected is represented by the association among data items, rather than
the data themselves singularly taken. For instance, with reference to our running
example, knowing that a user named Alice visited the museum and that a user paid
a reduced ticket for health reasons may not be sensitive. But discovering that Alice,
who visited the museum, paid a reduced ticket because of her health problems might
represent a confidential information.

Sensitive associations can be modeled as confidentiality constraints, which are a
set of attributes whose joint visibility (i.e., association) is sensitive. Attributes whose
values are sensitive per se correspond to singleton constraints. For instance, with
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Fig. 3.10 Confidentiality
constraints for the relation in
Fig. 3.2

c1 = {Phone}
c2 = {Name, Ticket Type}
c3 = {Name, Payment}
c4 = {Ticket Type, Payment}

reference to our running example, Fig. 3.10 represents an example of confidentiality
constraints over the relation in Fig. 3.2. Constraint c1 states that the phone numbers
of the visitors represent sensitive information to be protected, and constraint c2 (c3
and c4, respectively) states that the association between visitors’ name and type of
ticket (name and payment and type of ticket and payment, respectively) is sensitive
and must be protected.

The adoption of encryption to satisfy confidentiality can be (partially) avoided
storing the collected data through a set of privacy-preserving views, which are
defined in such a way as to satisfy confidentiality constraints [1, 12, 15–17]. To this
end, sensitive associations among attributes are broken (fragmented) by storing the
attributes composing each of them in different views. Sensitive associations are then
protected by restricting visibility over the views or by ensuring their unlinkability.

Given a relation to be protected, privacy-preserving views can be defined
according to different paradigms, differing on how data are fragmented to satisfy
the confidentiality constraints. In the following, we briefly illustrate the three most
important approaches that can be used in our scenario to create privacy-preserving
views.

Two Can Keep a Secret [1] Given a data collection, this strategy produces
two views V1 and V2 to be stored at two noncommunicating providers. Sensitive
attributes are protected by obfuscating (e.g., encrypting) them, while sensitive asso-
ciations are protected by distributing the attributes in the confidentiality constraint
between the two views. In addition to sensitive attributes, some attributes also
appearing in sensitive associations might be obfuscated when two views are not
sufficient to protect all sensitive associations. A common attribute tid is included
in both views, to allow the data owner (and all authorized users) to reconstruct
the original relation. Figure 3.11a illustrates two views defined over the relation
in Fig. 3.2 satisfying the constraints in Fig. 3.10. Note that attribute Payment,
although not sensitive per se, has been obfuscated in both views: in fact, its
plaintext representation in view V1 would violate constraint c3 and in view V2 would
violate c4.

Multiple Views [15, 17] Given a data collection, this strategy produces a set
fV1; : : : ;Vng of unlinkable views. The multiple views approach removes the limiting
assumption of the existence of two noncommunicating providers, hence it results
applicable to several real-world scenarios. According to this approach, sensitive
attributes are protected with encryption, while sensitive associations are protected
by distributing their attributes in different views. Views include disjoint sets of
attributes to guarantee their unlinkability. Note that since the number of views that
can be produced is not limited to two, no attribute that is not sensitive per se needs to
be protected with encryption. To allow query execution over a single view, each view
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V1

tid Name DoB Sex Paymentk Phonek

t1 Alice 1960/04/10 F
t2 Bob 1970/05/12 M
t3 Carol 1960/04/04 F
t4 Daniel 1970/05/20 M
t5 Erik 1970/07/12 M
t6 Fred 1960/04/11 F
t7 Greg 1970/07/25 M
t8 Hal 1970/07/30 M
t9 Ian 1970/05/12 M
t10 John 1950/12/01 M

V2

tid TicketType ZIP Paymentk Phonek

t1 Health 97401
t2 Army 98302
t3 Regular 97467
t4 Army 98245
t5 Navy 98312
t6 Professor 97434
t7 Government 98223
t8 Marines 98389
t9 Army 98290
t10 Air Force 97210

(a)

V1

salt enc Name DoB

s01 Alice 1960/04/10
s02 Bob 1970/05/12
s03 Carol 1960/04/04
s04 Daniel 1970/05/20
s05 Erik 1970/07/12
s06 Fred 1960/04/11
s07 Greg 1970/07/25
s08 Hal 1970/07/30
s09 Ian 1970/05/12
s10 John 1950/12/01

V2

salt enc TicketType Sex

s11
s12
s13
s14

Health F
Army M
Regular F
Army M

s15
s16 Professor F

Navy

s17 Government M
s18 Marines M
s19 Army M
s20 Assistant M

V3

salt enc Payment ZIP

s21 Credit card 97401
s22
s23 Cash 97467

Debit card    98302

s24 Cash 98245
s25 Cash 98312
s26 Credit card 97434
s27 Check 98223
s28 Cash 98389
s29 Credit card 98290
s30 Debit card 97210

(b)

Vo

Phone Name TicketType

(800) 917-5551 Alice Health
(500) 234-5678 Bob Army
(541) 271-2136 Carol Regular
(360) 474-4614 Daniel Army
(360) 373-2030 Erik Navy
(541) 946-1711 Fred Professor
(360) 435-3746 Greg Government
(253) 863-5555 Hal Marines
(360) 794-7058 Ian Army
(503) 497-91 33 John Assistant

Vs

DoB Sex ZIP Payment

1960/04/10 F 97401 Credit card
1970/05/12 M 98302 Debit card
1960/04/04 F 97467 Cash
1970/05/20 M 98245 Cash
1970/07/12 M 98312 Cash
1960/04/11 F 97434 Credit card
1970/07/25 M 98223 Check
1970/07/30 M 98389 Cash
1970/05/12 M 98290 Credit card
1950/12/01 M 97210 Debit card

(c)

M

Fig. 3.11 Privacy-preserving views over the relation in Fig. 3.2 satisfying the constraints in
Fig. 3.10. (a) Two can keep a secret. (b) Multiple views. (c) Keep a few

is complete, meaning that it stores all the attributes of the original relation in either
encrypted or plaintext form. Attributes that are encrypted in a view are encrypted
in a single encrypted chunk (at the level of tuple), which is properly “salted” not to
expose the frequencies of values. Figure 3.11 illustrates three views defined over the
relation in Fig. 3.2 satisfying the constraints in Fig. 3.10.

Keep a Few [16] Given a data collection, this strategy produces two views Vo and
Vs only, one of which (i.e., Vo) is stored at a trusted party (e.g., the data owner).
The keep a few approach completely departs from encryption: sensitive attributes
are protected by storing them in Vo maintained at the trusted party, while sensitive
associations are protected by storing at least one attribute, for each association,
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in Vo. The two views include a common attribute tid to allow the owner and
authorized users to reconstruct the content of the original relation. Figure 3.11c
illustrates the two views Vo and Vs defined over the relation in Fig. 3.2 satisfying the
constraints in Fig. 3.10, where view Vs stores attribute Phone, which is sensitive
per se, and one attribute for constraints c2, c3, and c4.

3.6 Conclusions

The pervasive availability of computing infrastructures, often enriched with senso-
rial capabilities and context awareness to provide personalized services to users,
causes unprecedented privacy risks that need to be carefully tackled. In this chapter,
starting from a sample scenario, we have illustrated such privacy risks and discussed
some available solutions to counteract them when accessing, sharing, and storing
information collected through pervasive systems.
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