
Chapter 2
A Fabric Component Based Approach
to the Architecture and Design Automation
of High-Performance Integer Arithmetic
Circuits on FPGA

Ayan Palchaudhuri and Rajat Subhra Chakraborty

Abstract FPGA-specific primitive instantiation is an efficient approach for design
optimization to effectively utilize the native hardware primitives as building blocks.
Placement steps also need to be constrained and controlled to improve the circuit crit-
ical path delay. Here, the authors present optimized implementations of certain arith-
metic circuits and pseudorandom sequence generator circuits to indicate the superior
performance scalability achieved using the proposed design methodology in com-
parison to circuits of identical functionality realized using other existing FPGACAD
tools or design methodologies. The Hardware Description Language specifications
as well as the placement constraints can be automatically generated. A GUI-based
CAD tool has been developed that is integrated with the Xilinx Integrated Software
Environment for design automation of circuits from user specifications.

2.1 Introduction

With a significant increase in circuit complexity for Field Programmable Gate Array
(FPGA)-based designs, even the most sophisticated Computer Aided Design (CAD)
tools often result in circuit implementations with unsatisfactory performance and
resource requirements owing to their inability to optimally exploit the underlying
FPGAarchitecture.Also, theCAD tool is unable to place the technologymapped sub-
circuits at the desired locations on the FPGA fabric. To overcome these shortcomings,
a designer needs to identify the basic building blocks of the circuit, andmake an effort
to optimally construct them from the hardware primitives available on the FPGA and
ensure their proper placement. Hence, implementations derived through the standard
automatic logic synthesis-based design flow starting with the behavioral or Register
Transfer Level (RTL) Hardware Description Language (HDL) of the circuit can be

A. Palchaudhuri (B) · R.S. Chakraborty
Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
e-mail: ayanpalchaudhuri@gmail.com

R.S. Chakraborty
e-mail: rschakraborty@cse.iitkgp.ernet.in

© Springer International Publishing Switzerland 2015
M. Fakhfakh et al. (eds.), Computational Intelligence in Digital
and Network Designs and Applications, DOI 10.1007/978-3-319-20071-2_2

33

34 A. Palchaudhuri and R.S. Chakraborty

outperformed bymore low-level “custom” design techniques. This chapter discusses
certain FPGA-specific design techniques which needs to be adopted for optimal
realization of high performance circuits and presents a relevant case study.

2.1.1 Overview of FPGA Design Philosophy

Modern FPGA CAD tools facilitate the automatic mapping of binary addition logic
and homogeneous wide AND andOR gates to carry-chain structures [1] to accelerate
signal propagation. It can also infer wide function multiplexers native to an FPGA
slice, thereby achieving speedup by avoiding switch-box routing to the extent possi-
ble. However, it fails to do all of this, as soon as the final carry outputs of individual
slices [2] or Lookup Table (LUT) outputs are tapped out or registered to facilitate
pipelining of the architecture. In such a scenario, the designer has to spell out special
directives in the HDL of the design or in the associated “constraints files,” so that
in the packing or clustering step (as known in the FPGA CAD literature [3]) of the
FPGA design flow, the desired technology mapped circuit is efficiently “packed”
into the available hardware resources.

Most current FPGA vendors allow direct instantiation of the available primitives
in the HDL code [4], and also a “mixed” style of HDL coding, whereby high-level
behavioral code is intermingled with relatively “low-level” structural code. Place-
ment steps also need to be constrained and controlled, otherwise the technology
mapped logic elements get unevenly distributed across the FPGA fabric, resulting
in greater routing and critical path delay. Although most modern FPGA vendors
provide special hardware IPs for common integer arithmetic operations that can be
directly instantiated in the HDL code, we would demonstrate that we can do better
by adopting careful design techniques.

With sufficient modularity in the circuit architecture, it becomes easy to automate
the generation of the HDL and constraint files, which are themselves very regular in
their grammar. Target FPGA-specific primitive instantiation is an effective approach
for design optimization [5], and is often the only approach, or is simpler than rewrit-
ing the RTL code to coax the logic synthesis tool to infer the desired architectural
components. In case the entire circuit is not amenable to primitive instantiation, the
philosophy can be adopted to design those sub-circuits that are amenable, and con-
tribute significantly to the critical path. The only disadvantage of using such a design
methodology is that the design becomes less portable and harder to maintain. In spite
of this, the methodology is very effective in practice, considering that (a) often the
target FPGA platform is known before the circuit is designed, and, (b) FPGAs from
a related family from the same vendor are often backward compatible regarding the
design elements supported. For example, newer versions of FPGAs of the “Virtex”
family fromXilinx are expected to support primitives supported in some older Virtex
versions. Thus, theHDL code for instantiating primitives targeting the older versions,
and the constraints file to control the placement, can be reused in the newer version
after small tweaks, if necessary.

2 A Fabric Component Based Approach to the Architecture … 35

2.1.2 Existing FPGA CAD Tools

Xilinx IP Core Generator and FloPoCo are the most common FPGA CAD tools
available. We shall now present the features, advantages, and limitations of each of
these tools.

2.1.2.1 Xilinx IP Core Generator

The standard Xilinx IP Core Generator has a GUI-based utility through which syn-
thesizable HDL code for common integer arithmetic circuits (both combinational
and pipelined versions) can be automatically generated. User gives the parameter
latency as input for pipelined architecture realizations. Although such HDL gener-
ated is functionally correct, it fails to give high performance when implemented,
because the synthesis tool performs inefficient technology mapping and the inferred
logic elements are scattered in an apparently random fashion across the FPGA fabric,
thereby causing large routing delays. Xilinx also allows the direct instantiation of
“Digital Signal Processing” (DSP) hardware macros in the HDL targeted for FPGAs,
to implement certain common arithmetic operations, but they can be outperformed by
the proposed circuits through maximal forward path pipelining at the cost of higher
latency.

2.1.2.2 FloPoCo (Floating-Point Cores)

FloPoCo is an open-source C++ framework for generating arithmetic cores for
FPGAs [6]. FloPoCo provides a command-line interface through which the user
can input operator specifications, and the program generates the corresponding syn-
thesizable HDL. The main features of FloPoCo as listed in [7] are as follows:

• Supports integer, fixed point, floating point, and Logarithmic Number System
(LNS) arithmetic.

• Supports pipelining by allowing the user to specify the desired operating frequency.
• Allows the user to specify the target FPGA implementation platform, and gener-
ates synthesizable HDL code optimized for that target platform since FloPoCo can
perform target platform specific pipelining. Its frequency-directed pipelining par-
adigm takes into consideration the timing information about the target FPGA [7].

However, detailed experimentation with the latest released version of FloPoCo
(v 2.5.0) [6], and implementation and characterization of the integer arithmetic circuit
descriptions generated by it indicate certain potential drawbacks:

• FloPoCo only generates pure behavioral HDL code which cannot correctly infer
the desired hardware primitives of the target FPGA platform and also has no
control over the inference and placement of logic blocks on the FPGA fabric. This
makes the post-synthesis performance of the circuit worse than the user-specified

36 A. Palchaudhuri and R.S. Chakraborty

target frequency. Thus, FloPoCo provides no guarantee that the target frequency
specified would be met in the final implementation.

• FloPoCo at times create very deep pipelines apparently to meet input frequency
constraints, but post place and route implementations do not guarantee that the
delay constraints are met.

• Pipelining behavior of FloPoCo is very inconsistent. It was observed that for inte-
ger adder circuit implementations,FloPoCo creates very deep pipelines, whereas it
creates fairly unbalanced and irregular pipelines for integer dual subtractor imple-
mentations, where each of the pipeline stages have different complexities. At the
same time, FloPoCo completely fails to pipeline integer multiplier circuits. Our
observations about these inconsistencies in the pipelining behavior of the cur-
rent version of FloPoCo have been concurred with by the creators of FloPoCo
through personal correspondence. They have acknowledged that a bug exists in
their program, which they have filed and would probably be taken care of in future
releases.

The important approach to note is that most or all of the existing options for
automatic generation of arithmetic circuit cores targeting FPGAs are agnostic of the
“low-level” architecture of the target FPGA platform. Consequently, they can be
predicted to be unable to take advantage of the hardware primitives, and to generate
the most optimal circuit descriptions for the target FPGA.

2.2 Architecture of Target FPGA Platform

The Configurable Logic Blocks (CLBs) of FPGAs are the main logic resources for
implementing sequential as well as combinatorial circuits. A typical CLB of Virtex-5
FPGA contains 2 “slices,” with each slice (called a “SLICEL” or “SLICEM”) com-
prising of four 6-input LUTs, four flip-flops (FFs), three wide function multiplexers,
and a length-4 carry chain comprising of multiplexers and XOR gates [8, 9] as shown
in Fig. 2.1.

For both Virtex-5 and Virtex-6 FPGAs, the 6-input LUT can also be configured
as a dual output LUT which can configure a 5 (or less)-input, 2-output logic function
with shared inputs, thereby reducing the requirement in the number of LUTs from
two to one for certain logic expressions. The LUTs present in SLICEL can imple-
ment arbitrary combinational logic, whereas the LUTs in SLICEM can additionally
implement distributed RAM elements [9]. The carry chain represents the fast carry
propagation logic and the LUTs in the slice can be optionally connected to the carry
chain via dedicated routes to implement complex logic functionality [4].

Each storage element or FF present in the slice can be controlled using the set,
reset, clock, and clock enable signals. Virtex-6 slice architecture is quite similar to
Virtex-5 slice architecture, other than the fact that it offers four additional FFs per
slice but each FF has one control signal less, i.e., it does not have independent set
and reset pins compared to Virtex-5 architecture [10].

2 A Fabric Component Based Approach to the Architecture … 37

Fig. 2.1 Xilinx Virtex-5 slice architecture [9]

2.3 A Fabric Component-Based Design Approach
for High-Performance Integer Arithmetic Circuits

Implementation of highly optimized arithmetic circuits targeted toward a specific
FPGA family continue to remain a challenging problem as many fast arithmetic
circuits proposed over the decades may not be amenable to a very optimized imple-
mentation. Often, the logic synthesis tools are unable to infer the desired native
circuit components from the input HDL, as they explore only a small design space
close to the input architectural description [11]. The logic synthesis algorithms are
also unable to apply the logic identities and perform appropriate algebraic factor-
ing and sub-expression sharing in many cases, especially when intermediate signals
are tapped out [2] or registered to facilitate pipelining of the architecture. It is in
general a nontrivial computational problem to decompose the Boolean equations
describing the implemented circuit, to forms such that the sub-expressions can be
mapped easily and efficiently to the fabric primitives on the target FPGA. It helps if
the designer manipulates the Boolean equations a priori in the HDL, to forms that
can be optimally mapped to the native target architecture by the CAD software.

38 A. Palchaudhuri and R.S. Chakraborty

A previous related work [12] had reported area requirements (for LUT-based
FPGAs) in terms of the total number of k-input LUTs required to map a function of
x variables, as

lut (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 1
1 if 1 < x ≤ k
� x−k

k−1 � + 2 if x > k and (k − 1) � (x − k)
x−k
k−1 + 1 if x > k and (k − 1) | (x − k)

(2.1)

The LUT estimation is based on the fact that LUTs are perhaps the principal
components for implementing combinational logic in FPGAs, where combinational
logic blocks with higher number of inputs are expected to be implemented by a
cascadeofLUTs,with permitted amount of parallel processing.However, for efficient
designs, the designer must explore the additional logical capabilities that the LUTs of
modern dayFPGAsprovide. In addition, thewide-functionmultiplexers and the carry
chains can significantly reduceLUT requirements. The above closed-formexpression
in (2.1) for hardware estimation thereby suffers from the following limitations:

• It assumes that all LUTs provide single outputs, whereas modern FPGAs from
Xilinx provide dual-output LUTs that can significantly reduce hardware cost, pro-
vided the logic functions to be mapped satisfy certain criteria.

• Certain logic expressions can be factored appropriately to form sub-expressions or
manipulated such that they can be compactly realized using LUTs, wide function
multiplexers, and carry chains, which can provide multiple outputs out of a single
slice. The closed-form expressions in (2.1) possibly hint at an approximate upper
bound on the number of LUTs required.

• The number of slices spanned by the logic elements give a more accurate estimate
of the hardware overhead in comparison to LUT count.
The philosophy behind estimating the LUT requirements [12] may not reflect its
actual implementation on FPGA. For example, let us consider an 8:1 multiplexer,
which is essentially an 11-input 1-output function.

f (s2, s1, s0, a, b, c, d, e, f, g, h) = s′
2s′

1s′
0a + s′

2s′
1s0b + s′

2s1s′
0c + s′

2s1s0d + s2s′
1s′

0e

+s2s′
1s0 f + s2s1s′

0g + s2s1s0h (2.2)

Going by (2.1), lut (x) = 2 for k = 6. This information indicates that the first six
variables go as input to the first LUTand the remaining five variables alongwith the
output of the first LUT go as input to the second LUT.However, on examining (2.2)
closely, it can be observed that there is no possible way to decompose it to the
following form comprising of two functions f1 and f2, which could have actually
realized it using two LUTs:

2 A Fabric Component Based Approach to the Architecture … 39

f (s2, s1, s0, a, b, c, d, e, f, g, h)

= f2 (f1

implemented using 1 LUT
︷ ︸︸ ︷
(x1, x2, x3, x4, x5, x6), x7, x8, x9, x10, x11)︸ ︷︷ ︸

implemented using 1 LUT

where each xi is distinct and can be any one of the variables of the function f .

2.3.1 Guidelines for High-Performance Realization

We list certain simple but useful guidelines for compact and high-performance real-
ization of circuits on modern high-end FPGAs from Xilinx:

1. A 6-input LUT can implement any arbitrary combinational logic function y,
having a maximum of six inputs and a single output, like y = f (x1, . . . , xn),
where 2 ≤ n ≤ 6.

2. A 6-input LUT can implement any arbitrary five (or less)-input two-output func-
tionwhere each of the single-output functionsmay ormay not have shared inputs.
For example, consider two functions g and h, where g = f (x1, . . . , xn) with
X = {x1, . . . , xn}, and h = f (y1, . . . , ym) with Y = {y1, . . . , ym}. Here, the
sets X and Y are called the support [13] of the functions g and h. For packing g
and h into a single LUT, either of the conditions must be satisfied:

• 4 ≤ |X | + |Y | ≤ 5; if X ∩ Y = ∅ (i.e., g and h are orthogonal functions)
• 2 ≤ |X | + |Y | ≤ 10; if X ∩ Y �= ∅
where |X | and |Y | are the cardinality of the support of the functions X and Y .

3. Let f be aBoolean function of n variables (8 ≤ n ≤ 13)which can be represented
in the following form (see Fig. 2.2):

f (i1, i2, . . . , in) = x ′
1 fx ′

1
+ x1 fx1

Fig. 2.2 Architecture
mapping for Boolean logic
that can be decomposed with
respect to a single variable

40 A. Palchaudhuri and R.S. Chakraborty

Here, fx1 and fx ′
1
are each six (or less)-input combinational functions that can be

individually realized using one LUT each. The wide function multiplexer present
in the same slice as that of the LUTs computes the final expression, as shown in
Fig. 2.2. Equation (2.1) however evaluates to lut (x) = 3, where x = xmax = 13
(6×2 (two 6-input LUTs) + 1 (select line)) and k = 6. If there exists p functions
of the form as in f , the design requires 	p/2
 slices, and 2p LUTs. An 8:1
multiplexer can be realized using this logic where the 6-input LUTs of Fig. 2.2
are configured as 4:1 multiplexers each (sharing the same select lines), and the
wide function multiplexer selecting one of the LUT outputs.

4. Let f be a function of n variables (17 ≤ n ≤ 26) such that we can apply recursive
decomposition twice on it as shown below:

f (i1, i2, . . . , in) = x ′
1 fx ′

1
+ x1 fx1

= x ′
1(x ′

2 fx ′
1x ′

2
+ x2 fx ′

1x2) + x1(x ′
3 fx1x ′

3
+ x3 fx1x3)

= x ′
1x ′

2 fx ′
1x ′

2
+ x ′

1x2 fx ′
1x2 + x1x ′

3 fx1x ′
3
+ x1x3 fx1x3

Here, fx ′
1x ′

2
, fx ′

1x2 , fx1x ′
3
and fx1x3 are each 6 (or less)-input combinational func-

tions that can individually be realized using one LUT each. Three wide function
multiplexers present in the same slice as that of the LUTs computes the final
expression as shown in Fig. 2.3. Equation (2.1) however evaluates to lut (x) = 6,
where x = xmax = 27 (6 × 4 (four 6-input LUTs) + 3 (select lines)) and k = 6.
If there exists p functions of the form as in f , the design requires p slices and 4p
LUTs. A 16:1 multiplexer can thus be mapped in a single slice using four LUTs,
and three wide function multiplexers.

5. Consider any expression R of the following form:

R = a′b + a[X] = a′b + a[c′d + c(Y)] = a′b + a[c′d + c(e′ f + e{Z})]
= a′b + a[c′d + c(e′ f + e{g′h + gi})] (2.3)

where X = c′d + cY , Y = e′ f + eZ and Z = g′h + gi . Here i is a single input
variable, and for every member of the pair (a, b), (c, d), (e, f) and (g, h), there
can be either of the following possibilities: either both the members satisfy the
criteria of being packed into a single LUT or the first member can be a six (or
less)-input function and the second member can be a single variable. The above
expression can be realizedwithin a single slice using four LUTs and a carry chain,
as shown in Fig. 2.4.
The Boolean logic (2.3) essentially represents a cascade of 2:1 multiplexer func-
tions. Here, R can have a maximum of 29 (6× 4 (four 6-input LUTs) + 4 inputs
v4:1 external to the logic slice +1 external input to the bottom MUXCY of the
carry chain) input variables. If the Boolean logic function to be realized is of the
form such that the variable i in (2.3) can be substituted by another expression
bearing a similar resemblance to (2.3), and in such a way, if a total of n such
substitutions can be carried out only at the position of variable i , then the entire

2 A Fabric Component Based Approach to the Architecture … 41

expression can be realized using (n + 1) slices and a maximum of 4(n + 1)
LUTs. From (2.1), we obtain lut (x) = 6, where x = 29 and k = 6 for which
a minimum FPGA area of two slices are required. However, with the help of
carry-chain fabric, the entire architecture can be compacted within a single slice.
For example, a wide 24-input AND gate can be realized by the function R to fit
the form of (2.3) as shown below:

R = a1a2. . .a23a24 = a19. . .a24.0 + (a19. . .a24)[a18a17. . .a1a0]
= a19. . .a24.0 + (a19. . .a24)[a13. . .a18.0 + (a13. . .a18)

[a7. . .a12.0 + (a7. . .a12)[a1. . .a6.0 + (a1. . .a6).1)]]]

Thus, going by Fig. 2.4, a = a19. . .a24, c = a13. . .a18, e = a7. . .a12 and
g = a1. . .a6, b = d = f = h = 0, and i = 1. Hence each 6-input LUT
realizes a 6-input AND gate and the outputs of the 6-input LUTs are AND-ed
using the carry chain.
Example of a wide 24-input OR gate where the logic equation can bemanipulated
to fit the form of (2.3) as shown below:

R = a1 + a2 + · · · + a23 + a24 = (a19 + · · · + a24).1 + (a19 + · · · + a24)[a18 + · · · + a1]
= (a19 + · · · + a24).1 + (a19 + · · · + a24)[(a13 + · · · + a18).1 + (a13 + · · · + a18)

[(a7 + · · · + a12).1 + (a7 + · · · + a12)[(a1 + · · · + a6).1 + (a1 + · · · + a6).0)]]]

Thus, going by Fig. 2.4, a = a19 + · · · + a24, c = a13 + · · · + a18, e =
a7 + · · · + a12 and g = a1 + · · · + a6, b = d = f = h = 1, and i = 0.
Hence, each 6-input LUT realizes a 6-input NOR gate and the outputs of the
6-input LUTs are fed to the carry chain and a wide input OR gate is realized by
following the absorption law a + ab = a + b.
We discuss certain practical circuits where a wide input AND and OR gate are
necessary for realization.

• Consider the design of a priority encoder which arbitrates among N units that
are all requesting access to a shared resource. Access is to be granted to a single
unit with highest priority decided by the LSB of the input. The corresponding
logic equations can be described as

Y0 = N0

Yi = Ni · Ni−1 · Ni−2 · ... · N2 · N1
︸ ︷︷ ︸

wide input AND gate

if i ≥ 1

42 A. Palchaudhuri and R.S. Chakraborty

• An incrementer that adds 1 to an input word N can be described as

Y0 = N0

Yi = Ni ⊕ (Ni−1 · Ni−2 · ... · N1 · N0)
︸ ︷︷ ︸

wide input AND gate

if i ≥ 1

• A decrementer that subtracts 1 from an input word N can be described as

Y0 = N0

Yi = Ni
 (Ni−1 + Ni−2 + · · · + N1 + N0)
︸ ︷︷ ︸

wide input OR gate

if i ≥ 1

• K = A + B Comparator [15]
To design a circuit to detect A + B = K , the usual approach followed by the
FPGA CAD tool is to infer an adder that adds inputs A and B, and feed the
sum and input K to an equality comparator. However, to significantly reduce
hardware and computational overhead, a methodology was proposed in [15].
The key observation is the fact that if A and B are known, the carry into each bit
to make K = A + B can be determined. Thus, it is sufficient to check adjacent
pairs of bits to verify that the carry-out produced by the previous bit and the
carry-in required by the current bit are both the same. The truth Table2.1 shows
the required and generated carries. The required carry-in cri−1 for bit i and the
generated carry-out cpi−1 for bit i − 1 are obtained as cri−1 = Ai ⊕ Bi ⊕ Ki

and cpi−1 = (Ai−1 ⊕ Bi−1)Ki−1 + Ai−1 · Bi−1. Equality check for the i th
bit position is performed using a single LUT as it can be computed using six
distinct variables—Ai , Bi , Ki , Ai−1, Bi−1 and Ki−1, by evaluating E Qi =
cri−1
 cpi−1. Final equality check is done using carry chain where all the
outputs corresponding to equality checks at every bit position are AND-ed
together.

E Q = E Q j · E Q j−1 · ... · E Qi · ... · E Q1 · E Q0
︸ ︷︷ ︸

wide input AND gate

Additionally, we can obtain the following outputs from the XORCY gates of
the carry chain: L = a ⊕ X , M = c ⊕ Y , N = e ⊕ Z and O = g ⊕ i . The
XORCY gates can compute the sum bits of an adder si = pi ⊕ ci where pi is
computed using LUT; pi = ai ⊕bi . The carry-out bit of each stage is computed
usingMUXCYof carry chain; ci+1 = pi ai + pi ci (see Sect. 2.4.1.1 for details).
Thus, an n-bit adder can be realized using 	n/4
 slices and a maximum of n
LUTs.

6. LUTs of SLICEM can be configured as shift registers which are typically imple-
mented for Linear Feedback Shift Register (LFSR) circuits. Each SLICEM LUT
can be configured as a variable 1–32 clock cycle shift register [4] whose length

2 A Fabric Component Based Approach to the Architecture … 43

Fig. 2.3 Architecture
mapping for Boolean logic
that can be decomposed with
respect to two variables

can be fixed, static, or dynamically adjusted by controlling A[4:0] as shown in
Fig. 2.5. The LUT can be described as a 32:1 multiplexer with the five inputs
serving as binary select lines, and the values programmed into the LUT serves
as the data being selected. Such LUTs can be cascaded with FFs and LUTs of
other SLICEMs to realize greater shift lengths. Presence of these special LUTs
reduce FPGA resource utilization compared to implementations using FFs only.
Since each SLICEM in a Virtex-5 FPGA contains four LUTs and four FFs, a shift
register of length 1–132 can be realized in a single slice; and a 1–136 clock cycle
register can be realized in a single slice for Virtex-6 FPGAs as it contains four
additional FFs. For realization of a shift register of length n, we require 	n/132

slices with amaximum of 4	n/132
 LUTs and 4	n/132
 FFs for Virtex-5 FPGA,
and 	n/136
 slices with a maximum of 4	n/136
 LUTs and 8	n/136
 FFs for
Virtex-6 FPGA.

2.4 Architecture of Arithmetic Circuits

Wepresent the pipelined implementations of a few important andwidely used circuits
with controlled placement on the fabric logic such that the critical path delay can be
significantly reduced and the throughput increased.

44 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.4 Architecture mapping for Boolean logic that can exploit the carry chain

Fig. 2.5 Configuration of an LUT (of SLICEM) as a shift register

2.4.1 Integer Adder Architecture

2.4.1.1 Hybrid Ripple Carry Adder

A pipelined “hybrid ripple carry adder” (hybrid RCA), using the carry chain, LUTs
and FFs available in a Xilinx slice, can be realized as shown in Fig. 2.6. The outputs
of the “XORCY” gates provide the sum bits, whereas the output of each MUXCY

2 A Fabric Component Based Approach to the Architecture … 45

Table 2.1 Required and generated carries [14]

Ai Bi Ki cr i−1 (required) cpi (produced)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 1

1 1 1 1 1

calculates the intermediate carries [16]. Latches can be inserted on the carry prop-
agation path for pipelining the design. Thus, for an n-bit adder, 	n/4
−1 pipeline
stages are required. The LUTs compute the propagate function pi = ai ⊕ bi . Let
gi = ai bi be the corresponding generate function. If ci is the i th carry-in bit, the i-th
sum bit can be calculated by XOR-ing the LUT and MUXCY outputs as

si = pi ⊕ ci = ai ⊕ bi ⊕ ci

The output of each MUXCY gate computes the i th carry-out as

coi = gi + pi ci = ai bi + (ai ⊕ bi)ci

= (ai bi + ai bi)ai + (ai ⊕ bi)ci = pi ai + pi ci

2.4.1.2 Xilinx DSP Slice-Based Adder

Adders can also be realized using embeddedDSP48E slices inVirtex-5 FPGAs. Each
slice can accept operands of width 48 bits. To realize adders with larger operand
width n(>48), we require 	n/48
 DSP48E slices. Such designs can be pipelined by
activating the pipeline registers internal to the slice. An n(> 48)-bit pipelined DSP
slice-based adder requires 	n/48
−1 pipeline stages. For addition, the attributes
“ALUMODE” and “OPMODE” have to be set to “0000” and “0001111” respec-
tively [17]. Figure2.7 illustrates the DSP adder architecture.

2.4.1.3 FloPoCo-based Adder

The behavioral synthesizable HDL generated by FloPoCo for Virtex-5 adders with
the user-specified constraints of operating frequency remaining the same as obtained
through our approach of constrained placement, shows that the circuit description

46 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.6 Basic building
bock for pipelined
implementation of hybrid
ripple carry adder (RCA)

Fig. 2.7 Xilinx DSP slice-based adder [17]

generated is pipelined after every 2-bit addition as shown in Fig. 2.8. This in itself
proves that the architecture cannot enjoy the benefit of utilizing a complete length-
4 carry chain natively available in the Virtex-5 family. This results in a complete
LUT-based implementation and the frequency constraints are not met.

2 A Fabric Component Based Approach to the Architecture … 47

Fig. 2.8 Architecture for FloPoCo generated adder

2.4.1.4 Fast Carry Adder Using Carry-Lookahead Mechanism

The novel adder proposed in [16] had been designed using carry-lookahead mecha-
nism by splitting an n-bit adder into two independent, identical portions L-RCA and
H-RCA, each of which calculates n/2 sum bits (assuming n to be even). The H-RCA
receives its carry input from a fast carry generator circuit. Both the L-RCA and
H-RCA are architecturally identical to the pipelined implementation of the hybrid
RCA shown in Fig. 2.6. The architecture of the fast adder architecture proposed in
[16] for 64-bit operands is shown in Fig. 2.9. The reformulation of the carry-chain
computation [18] has been addressed in the fast carry generator, where Pi : j and

Fig. 2.9 Fast adder architecture proposed in [16]

48 A. Palchaudhuri and R.S. Chakraborty

Gi : j denote the group-propagated carry and the group-generated carry functions,
respectively, for a group of bit positions i, i − 1, . . . , j (with i ≥ j) [19].

Pi : j =
{

Pi , if i = j

Pi Pi−1: j if i ≥ j
(2.4)

Gi : j =
{

Gi , if i = j

Gi + Pi Gi−1: j if i ≥ j
(2.5)

where Pi = ai ⊕ bi and Gi = ai bi .
The recursive Eqs. (2.4)–(2.5) can be further generalized to Pi : j = Pi :m Pm−1: j

and Gi : j = Gi :m + Pi :m Gm−1: j where i ≥ m ≥ j + 1. For the mth bit position,
(i ≥ m ≥ j), we have cm = Gm−1: j + Pm−1: j c j . In Fig. 2.10, Gi : j and Pi : j are
calculated using 6-input LUTs, where i = j + 1 and m = i + 1. cm are calculated
using the carry chain.

Thus,

Fig. 2.10 Architecture for
fast carry generator [16]

2 A Fabric Component Based Approach to the Architecture … 49

Pi : j = Pi Pj = (ai ⊕ bi)(a j ⊕ b j)

Gi : j = Gi + Pi Gi−1: j = ai bi + (ai ⊕ bi)a j b j

cm = Gm−1: j + Pm−1: j c j = Gm−1:m−2 + Pm−1:m−2cm−2

= Gi : j + Pi : j cm−2 = Pi : j Gi : j + Pi : j cm−2

Hence, cm can be obtained from cm−2 using only a single multiplexer in the fast
carry generator, which is in contrast to the hybrid RCA that computes cm from cm−2
using twomultiplexers of the carry chain. Hence, c8 can be obtained from c0 within a
single slice, which is shown as follows where (2.6) assumes the same form as (2.3):

c8 = P7:6G7:6 + P7:6c6 = P7:6G7:6 + P7:6[P5:4G5:4 + P5:4c4]
= P7:6G7:6 + P7:6[P5:4G5:4 + P5:4[P3:2G3:2 + P3:2[P1:0G1:0 + P1:0c0]]] (2.6)

The n/2-bit H-RCA requires 	n/8
−1 pipeline stages, while the n/2-bit fast
carry generator requires 	n/16
−1 pipeline stages. Overall, an n-bit fast carry adder
requires 	3n/16
−1 pipeline stages, including the pipeline stage between the fast
carry generator and the H-RCA.

2.4.1.5 Adder Implementation Results

Theadder circuit has been compared forfivedesign styles—FPGAfabric-based adder
(IP Core) generated by the GUI utility in ISE, DSP slice-based adder, the FloPoCo
generated adder, the fast carry generator-based adder [16] and hybrid RCA. The cir-
cuits were implemented on a Xilinx Virtex-5 FPGA, device family XC5VLX330T,
package FF1738 and speed grade-2 using the Xilinx ISE (v 12.4) design environment
and all the post place and route implementation results are tabulated and compared
with [16]. The dashed entries in Table2.2 indicate that the equivalent results are either
not applicable or not reported in [16]. The speed of operation, resource utilization,
and power-delay product (PDP) of the architectures have been compared with those
reported in the existing literature (if any) for different modes of implementation.
Power-delay product has been calculated as the product of the power dissipation,
the (minimum) clock-period (toggle rate of 12.5%), and the latency (in terms of the
number of clock cycles required to complete the computation). Although not explic-
itly mentioned in [16], the authors informed us through personal correspondence that
they inserted register banks in the Fast Carry Adder only at the input and output ports
of the circuit to estimate the frequency. The important trend to note here is that in all
cases, constrained placement adders give substantially better performance than the
corresponding unconstrained placed adders of the same operand width.

A partial floorplan view for a 128-bit adder is shown in Fig. 2.11 for two dif-
ferent implementation modes: fabric IP Core-based pipelined 128-bit adder with
unconstrained placement, and a 128-bit pipelined hybrid RCAusing proposed design

50 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.11 Partial floorplan views for 128-bit adder for fabric ISEGUI-based adder and hybrid RCA
with constrained placement. a Partial floorplan of IP core-based fabric adder with unconstrained
placement. b Partial floorplan of hybrid RCA with constrained placement

methodology. From this figure, it is clearly visible that synthesis tools perform an
unoptimized inference of logic elements and their random and haphazard placement.

2.4.2 Loadable Bidirectional Binary Counter Architecture

2.4.2.1 Proposed Counter Architecture

An up/down counter can be realized as a combination of a D-FF-based Parallel-
In Parallel-Out (PIPO) register and an incrementer/decrementer, which accepts the
output of the register as its input, and feedbacks its outputs to the input of the register,
as shown in Fig. 2.12. Thus, counters have higher routing complexity in comparison
to adders. The carry chain has been configured as wide AND gate for up-counter
and wide OR gate for down counter as shown in Fig. 2.12, where larger counters can
be realized by successive cascading of the “Stage 1” block. The PIPO register has
been realized using the “FDRSE”Xilinx primitive which is a D-FFwith synchronous
reset, set, and clock enable. Pipeline latency cannot be tolerated in a counter design,
as the inputs to the PIPO register come at a specific instant of time and outputs are
expected to be obtained in the following clock cycle. Hence, the pipelined latches
are realized using the “FDCPE” Xilinx primitive [4] which is a D-FF with clock
enable and asynchronous preset and clear. These FFs are presetted if the output from
the previous carry chain of the adjacent slice is high and cleared if low. For an n-bit
counter, 	n/4
−1 asynchronous pipeline stages are required.

2 A Fabric Component Based Approach to the Architecture … 51

Ta
bl

e
2.

2
In
te
ge
r
ad
de
r
im

pl
em

en
ta
tio

n
re
su
lts D
es
ig
n
w
ith

un
co
ns
tr
ai
ne
d
pl
ac
em

en
t

Pi
pe
lin

ed
de
si
gn

w
ith

co
ns
tr
ai
ne
d
pl
ac
em

en
t

O
pe
ra
nd

w
id
th

A
dd
er

ci
rc
ui
t

Fr
eq

(M
H
z)

L
at
en
cy

(#
cl
k

cy
cl
es
)

Po
w
er

de
la
y

pr
od

uc
t

(n
j)

#F
F

#L
U
T

#D
SP

#S
lic
e

Fr
eq

(M
H
z)

L
at
en
cy

(#
cl
k

cy
cl
es
)

Po
w
er

de
la
y

pr
od

uc
t

(n
j)

#F
F

#L
U
T

#D
SP

#S
lic
e

32
Fa
br
ic
ad
de
r
(I
P

co
re
)

37
8.
36

7
0.
67

98
11

6
0

44
–

–
–

–
–

–
–

D
SP

sl
ic
e
ad
de
r

55
0.
00

2
0.
08

0
0

1
0

–
–

–
–

–
–

–

F
lo

Po
C

o
ad
de
r

71
4.
29

16
1.
56

13
8

13
3

0
51

–
–

–
–

–
–

–

F
as

t
ca

rr
y

ad
de

r
[1
6]

52
1.
00

–
–

98
41

0
–

80
8.

41
5

0.
18

9
40

0
10

H
yb

ri
d

R
C

A
–

–
–

–
–

–
–

80
9.

06
7

0.
26

8
32

0
8

48
Fa
br
ic
ad
de
r
(I
P

C
or
e)

34
8.
43

11
1.
47

15
7

19
1

0
78

–
–

–
–

–
–

–

D
SP

sl
ic
e
ad
de
r

55
0.
00

2
0.
10

0
0

1
0

–
–

–
–

–
–

–

F
lo

Po
C

o
ad
de
r

66
4.
45

24
3.
66

21
0

20
5

0
11

2
–

–
–

–
–

–
–

F
as

t
ca

rr
y

ad
de

r
[1
6]

47
2

–
–

14
6

61
0

–
78

9.
27

8
0.

53
14

60
0

15

H
yb

ri
d

R
C

A
–

–
–

–
–

–
–

80
6.

45
11

0.
76

12
48

0
12

64
Fa
br
ic
ad
de
r
(I
P

co
re
)

46
8.
60

15
2.
48

21
7

26
3

0
11

7
–

–
–

–
–

–
–

D
SP

sl
ic
e
ad
de
r

50
0.
00

3
0.
23

0
0

2
0

–
–

–
–

–
–

–

F
lo

Po
C

o
ad
de
r

59
5.
59

32
6.
43

28
2

27
7

0
16

6
–

–
–

–
–

–
–

F
as

t
ca

rr
y

ad
de

r
[1
6]

39
7.
00

–
–

19
4

81
0

–
78

8.
02

11
1.

08
19

80
0

20

H
yb

ri
d

R
C

A
–

–
–

–
–

–
–

80
6.

45
15

1.
32

16
64

0
16

(c
on

tin
ue
d)

52 A. Palchaudhuri and R.S. Chakraborty

Ta
bl

e
2.

2
(c
on
tin

ue
d)

D
es
ig
n
w
ith

un
co
ns
tr
ai
ne
d
pl
ac
em

en
t

Pi
pe
lin

ed
de
si
gn

w
ith

co
ns
tr
ai
ne
d
pl
ac
em

en
t

O
pe
ra
nd

w
id
th

A
dd
er

ci
rc
ui
t

Fr
eq

(M
H
z)

L
at
en
cy

(#
cl
k

cy
cl
es
)

Po
w
er

de
la
y

pr
od

uc
t

(n
j)

#F
F

#L
U
T

#D
SP

#S
lic
e

Fr
eq

(M
H
z)

L
at
en
cy

(#
cl
k

cy
cl
es
)

Po
w
er

de
la
y

pr
od

uc
t

(n
j)

#F
F

#L
U
T

#D
SP

#S
lic
e

96
Fa
br
ic
ad
de
r
(I
P

co
re
)

41
3.
22

23
6.
05

33
7

40
7

0
18

2
–

–
–

–
–

–
–

D
SP

sl
ic
e
ad
de
r

50
0.
00

3
0.
26

0
0

2
0

–
–

–
–

–
–

F
lo

Po
C

o
ad
de
r

47
1.
48

48
15

.0
5

42
6

50
7

0
20

8
–

–
–

–
–

–
–

F
as

t
ca

rr
y

ad
de

r
[1
6]

30
3.
00

–
–

29
0

12
1

0
–

78
7.

40
17

2.
45

29
12

0
0

30

H
yb

ri
d

R
C

A
–

–
–

–
–

–
–

75
4.

15
23

3.
30

24
96

0
24

12
8

Fa
br
ic
ad
de
r
(I
P

co
re
)

41
4.
94

31
11

.8
0

45
7

55
1

0
27

1
–

–
–

–
–

–
–

D
SP

sl
ic
e
ad
de
r

50
0.
00

4
0.
47

0
0

3
0

–
–

–
–

–
–

–

F
lo

Po
C

o
ad
de
r

52
2.
19

64
25

.9
1

57
0

74
7

0
30

5
–

–
–

–
–

–
–

F
as

t
ca

rr
y

ad
de

r
[1
6]

–
–

–
–

–
–

–
78

7.
40

23
4.

42
39

16
0

0
40

H
yb

ri
d

R
C

A
–

–
–

–
–

–
–

76
0.

46
31

8.
16

32
12

8
0

32

2 A Fabric Component Based Approach to the Architecture … 53

Fig. 2.12 Architecture for
loadable, up/down counter
targeted towards Xilinx
Virtex-5 FPGA

The basic building block of this architecture is a 4-bit counter realized within a
single slice. The logic functionality of accepting a new data D AT Ai , when the “load
control” signal L D to load external data to the FFs is high, and accepting the output
from the FFs when L D is low, along with the XOR operation, is taken care of by the
6-input LUT configured as O6 = (L D · Qi + L D · D AT Ai)⊕U P/DOW N , where
the counter counts up if U P/DOW N = 0, and counts down if U P/DOW N = 1.
The terminal count is detected by the carry output of the most significant carry chain.
As the external data to be loaded into the register is not supplied directly to the input
of the FFs, but comes from the output of the incrementer/decrementer logic, the user
must send the value (x − 1) to load an up-counter with the value x , or send (y + 1)
to load a down-counter with the value y.

54 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.13 Xilinx Virtex-5
DSP slice-based counter [17]

2.4.2.2 DSP Slice-Based Counter

Counters can also be designed using DSP48E slices, where n-bit counters can be
realized by cascading 	n/48
 DSP48E slices along a column, as shown in Fig. 2.13.
To achieve the desired functionality, the slices have been configured as a 48-bit accu-
mulator each by setting the attributes “OPMODE” as 0101100, and “ALUMODE”
as 0000 for addition and 0011 for subtraction [17]. The additional usage information
to be taken note of is that while the counter is operating as a down-counter and the
user wants to load the registers with the value x , the two’s complement of x must be
given as input. Currently, FloPoCo (v 2.5.0) does not generate HDL for counters.

2.4.2.3 Counter Implementation Results

The circuits were implemented on a Xilinx Virtex-5 FPGA, device family
XC5VLX330T, package FF1738 and speed grade-2 using the Xilinx ISE (v 12.4)
design environment and all the post place and route implementation results are
tabulated. Operating frequencies for both the counter synthesized from behavioral
description and that generated through the GUI utility deteriorate steadily with
increase in the number of output bits. In contrast, the proposed design shows better
operand width scalability with respect to frequency. FloPoCo, however, does not
support counter implementations till its latest release (Table 2.3).

2.5 Compact FPGA Implementation of Cellular Automata
Circuits

Cellular Automata (CA) circuits are useful for test pattern generation and construc-
tion of Built-In Self Test (BIST) structures within VLSI chips [20]. The regular,
modular, and cascadable structure of CA with only local neighborhood dependence
of the cells makes it suitable for VLSI implementation [20, 21]. The perceived

2 A Fabric Component Based Approach to the Architecture … 55

Table 2.3 Counter implementation results

Operand
width

Counter circuit Freq (MHz) Power
delay
product
(pJ)

#FF #LUT #DSP #Slice

32 Behavioral
counter

504.80 48.67 32 49 0 15

Fabric counter
(ISE GUI)

536.19 50.52 32 47 0 14

DSP slice
counter

550.00 35.65 0 0 1 0

Proposed
counter

587.89 37.30 39 41 0 17

48 Behavioral
counter

400.32 43.39 48 70 0 29

Fabric counter
(ISE GUI)

427.35 59.09 48 69 0 30

DSP slice
counter

550.00 40.80 0 0 1 0

Proposed
counter

567.21 57.10 59 61 0 25

64 Behavioral
counter

367.51 53.33 64 94 0 32

Fabric counter
(ISE GUI)

387.59 67.47 64 93 0 39

DSP slice
counter

500.00 50.46 0 0 2 0

Proposed
counter

565.61 59.85 79 81 0 33

96 Behavioral
counter

292.65 89.08 96 139 0 46

Fabric counter
(ISE GUI)

298.95 84.39 96 137 0 43

DSP slice
counter

500.00 61.64 0 0 2 0

Proposed
counter

562.75 72.59 119 121 0 48

(continued)

56 A. Palchaudhuri and R.S. Chakraborty

Table 2.3 (continued)

Operand
width

Counter
circuit

Freq (MHz) Power
delay
product
(pJ)

#FF #LUT #DSP #Slice

128 Behavioral
counter

231.70 121.02 128 186 0 64

Fabric
counter (ISE
GUI)

246.49 119.03 128 184 0 67

DSP slice
counter

500.00 79.30 0 0 3 0

Proposed
counter

563.70 111.12 159 161 0 64

regularity and locality of interconnects in a CA are often logical rather than physi-
cal, and difficult to achieve in practical implementations. Implementation of CA on
FPGAs often turns out to be inefficient, because usually the user has limited control
on the inference of logic elements, along with their placement and routing.

In [22], authors had reported faster implementation of CA on FPGA hardware,
compared to optimized software implementation by achieving a speedup in the range
of 14–19. A methodology for VLSI implementation of CA algorithms, where an
automatic translation scheme from CA algorithms to the corresponding VHDL was
proposed in [23]. FPGA-based CA implementation was also reported in [24]. How-
ever, to the best of our knowledge, there has been no reported work regarding the
principles and design philosophy for efficient low-level implementation of CA on
modern families of actual FPGAs, aiming to map the CA structures optimally to the
native architecture of the FPGA.

To demonstrate our proposed design philosophy, consider a null boundary, max-
imal length linear CA [25] which is a collection of a discrete lattice of cells, where
each cell has a D-FF with associated combinational logic. If the CA has n cells,
then the state at any instant may be expressed as Yt = {q0(t), q1(t), . . . , qn−1(t)},
where qi (t) denotes the state of the i th cell at the t th instant of time. The state
of the i th cell at the (t + 1)th instant of time is denoted by qi (t + 1), where
qi (t + 1) = f (qi−1(t), qi (t), qi+1(t)), which determines the combinational logic
for each stage. Here, ‘ f ()’ is known as the rule of the CA [25], which, if expressed
in the form of a truth-table, the equivalent decimal output is called rule number of
the CA. For example, the next state logic equations for rule-90 and rule-150 CAs are
given as qi (t + 1) = qi−1(t) ⊕ qi+1(t) and qi (t + 1) = qi−1(t) ⊕ qi (t) ⊕ qi+1(t)
respectively [26] with their circuit representations as depicted in Fig. 2.14.

If the CA is linear, the combinational logic functions f () involves only XOR
logic. A CA having a combination of XOR and XNOR logic is called an additive
CA, whereas for non-linear or non-additive CA, f () involves AND/OR logic [27].
If all CA cells obey the same rule, then it is termed as uniform CA, else it is a hybrid

2 A Fabric Component Based Approach to the Architecture … 57

Fig. 2.14 Combinational logic for cells corresponding to rule-90 and rule-150

CA. By convention, CA is usually described by a string of 0’s and 1’s, where, for
example, ‘1’ refers to rule-150 and ‘0’ refers to rule-90. Our proposed methodology
can efficiently implement two-rule linear, additive, uniform and hybrid CAs.

2.5.1 Adapting CA to the Native FPGA Architecture

Packing is a key step in the FPGA tool flow that is tightly integrated with the bound-
aries between logic synthesis, technology mapping and placement [3]. For Virtex-5
FPGAs, the packing technique targets the dual-output LUTs to achieve area efficiency
by exploring the feasibility of packing two logic functions into a single LUT [3].
This is possible whenever the two logic functions have no more than five distinct
input variables. In such cases, a more efficient mapping of the design is expected,
culminating into shorter interconnect wirelength, which in turn results in lesser crit-
ical path delay. However, our implementation results for Virtex-6 family of FPGAs,
which is an advanced and modified version of Virtex-5, clearly show that in spite of
the methodology adopted by the common FPGA CAD tools, the packing behavior
is highly unpredictable and the tool fails to configure the LUTs in the dual output
mode. This doubles the overall LUT and slice requirement.

Consider a 1-D CA where the next state of a particular cell depends only on itself
or on one or both of its two immediate neighbors. It is easy to deduce that in such
cases, any two adjacent cells can have a maximum of four distinct inputs. In such a
situation, it is possible to pack the next state logic for any two adjacent cells of a CA
into a single LUT. Since Virtex-6 architectures facilitate registering of both the LUT
outputs using two FFs present in the same slice as that of the LUT, we can achieve
a compact FPGA realization of the architecture [28]. The architecture for a 16 cell
1-D linear maximal length CA for the (primitive) polynomial x16 + x5 + x3 + x2 +1
(or the equivalent hybrid rule < 0001111001001000>) [29] is shown in Fig. 2.15.
Thus, for an n-cell maximal length CA architecture, 	n/8
 Virtex-6 FPGA slices are
required.

58 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.15 Optimized architecture for a high-performance 16-bit 1-D linear CA for the (primitive)
polynomial x16 + x5 + x3 + x2 +1 (or the equivalent hybrid rule<0001111001001000>) mapped
on Xilinx Virtex-6 FPGAs [28]

2.5.2 CA Implementation Results

The CA circuits were implemented on Xilinx Virtex-6 FPGA, device family
XC6VLX550T, package FF1760 and speed grade -2 using the Xilinx ISE (v 12.4)
design environment. Polynomials of CAs of the order 32, 48, 64, 80, and 96
were implemented using two different techniques—RTL coding followed by uncon-
strained automatic logic synthesis by ISE and the custom design technique using the
proposed design methodology. It was observed that for an RTL description of the CA
circuit, the Xilinx post place and route results indicate that double the FPGA area
gets consumed than what a compact realization should have taken. The operating
speed for the CA circuits also drastically reduces as the order of the polynomial is
steadily increased, which is undesirable from the point of view of hardware accel-
eration. The implementation results were compared with respect to their frequency
of operation, PDP, and hardware resource requirement (FFs, LUTs and slices), and
are tabulated in Table2.4. The polynomials are from [30] and, for example, the
entry in the polynomial field of Table2.4, 32 28 27 1 0, represents the polynomial
x32 + x28 + x27 + x + 1.

2 A Fabric Component Based Approach to the Architecture … 59

Table 2.4 CA implementation results

Polynomial Mode of
implemen-
tation

Freq
(MHz)

Power
delay
product
(pJ)

#FF #LUT #Slice

32, 28, 27, 1, 0 RTL design 1014.20 31.61 32 30 8

Proposed
design

1103.75 31.15 32 16 4

48, 28, 27, 1, 0 RTL design 320.41 37.36 48 46 12

Proposed
design

1089.32 40.26 48 24 6

64, 4, 3, 1, 0 RTL design 361.40 43.80 64 64 16

Proposed
design

1083.42 52.92 64 32 8

80, 38, 37, 1, 0 RTL design 414.08 64.05 80 78 20

Proposed
design

976.56 59.08 80 40 10

96, 49, 47, 2, 0 RTL design 361.79 70.92 96 96 24

Proposed
design

908.27 62.59 96 48 12

2.6 Design Automation

The design of all the circuits has been automated using a CAD tool developed by us.
We call the CAD tool FlexiCore, short for “Flexible Arithmetic Soft Core Genera-
tor.” It is flexible in a sense that the operand widths for the mapped circuits can be
varied, and the CAD tool allows partial control to the user over the placement of the
circuits on the FPGA fabric. The tool is developed in JAVA, and includes a simple
GUI. The CAD software executable is invoked from the TCL command—prompt
in-built in Xilinx ISE using a top-level TCL script. Currently, FlexiCore can generate
synthesizable HDL and placement constraints for adders/subtractors, absolute differ-
ence circuits, multipliers, squarers, universal shift registers, comparators, counters,
and CA-based pseudorandom binary sequence generators.

The FlexiCore design flow is depicted in Fig. 2.16. Here, the top-level script
invokes aGUIwhichdisplays the list of circuits currently supportedbyFlexiCore, and
prompts the user to enter (in theGUI entryfields) the circuits (alongwith their operand
widths and whether the user wants pipelined/non-pipelined version), for which the
user wants constrained placement-based high-performance design. The user can also
optionally enter the starting coordinate for the entire constrained placement exercise.
If this is not provided, FlexiCore determines the feasible starting coordinate from
the existing project constraints file called User Constraints File (.ucf).

After the user enters her options, FlexiCore examines the feasibility of placement
of the selected building blocks on the FPGA fabric, with the starting coordinate

60 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.16 The FlexiCore design flow for arithmetic circuits

entered by the user as origin, or the starting coordinate inferred. It takes into con-
sideration the existing placement constraints, if any, in the project constraints file. If
the placement is deemed feasible, FlexiCore performs the following:

• Generates the Verilog module descriptions for the selected circuit building blocks,
and adds the files to the current project. Care is taken to ensure that no hardware
primitive on the FPGA is used more than once in building the high-performance
building blocks. Pipeline registers as required, are automatically inserted. At
present,FlexiCore supports two options—either amaximally pipelined implemen-
tation (optimized for Virtex-5 and Virtex-6 platform), or a purely combinational
circuit. We expect to support variable latency circuits in future.

• Modifies the project User Constraints File (.ucf), by adding the placement con-
straints for the generated high-performance circuit building blocks.

• Creates a log file to provide the user with all the necessary information about the
generated modules.

2 A Fabric Component Based Approach to the Architecture … 61

Fig. 2.17 The FlexiCore design flow for CA circuits [28]

If FlexiCore fails to find a feasible placement configuration, it reports it to the user
and again prompts her to enter a (reduced) number of building blocks, or a different
starting coordinate. Note that the situation where FlexiCore fails to find a feasible
placement rarely arises, given the large availability of resources on a Virtex family
FPGA. We did not find any such scenario with our real-life design testcases.

To accommodate the CA circuits into the CAD tool for their automatic generation,
provision has been kept for the user to invoke the GUI, which displays all the list of
rules corresponding to which equivalent CA circuits can be generated, and prompts
the user to enter the following fields: the two CA rule numbers, their corresponding
encoding of 0 and 1, and the hybrid CA rule comprising of a string of 0’s and 1’s.
The CAD tool interprets the string by reading two bits at a time, calculates the truth
table of the dual output LUTs appropriately for realizing the next state logic for
the CA cells, and instantiates the required FPGA logic elements in the HDL code.
The remaining CAD tool flow remains to be the same as for arithmetic circuits. The
design flow, particularly for CA circuits, is shown in Fig. 2.17.

62 A. Palchaudhuri and R.S. Chakraborty

2.7 Case Study—a Greatest Common Divisor (GCD)
Calculator

We shall present a case study of the hardware implementation of a Greatest Common
Divisor (GCD) calculator. The architecture uses several of the arithmetic building
blocks supported by FlexiCore such as the absolute difference circuit, counter, and a
barrel shifter. The architecture has been derived from the Binary GCD algorithm [31]
which has been explained in Algorithm 1. This algorithm uses simpler arithmetic
operations than the conventional Euclidean GCD algorithm as it replaces complex
operations such as division and multiplication with division and multiplications by
powers of two (implemented using only shift operations), comparisons and subtrac-
tions [32], thereby making it suitable for hardware implementation .

The architecture for the algorithm at the block diagram level is shown in Fig. 2.18.
We present two multi-function registers P and Qwhich are loaded in accordance with
the control signals: active low load control signal I N I T , which accepts two unsigned
integers as inputs whose GCD has to be computed, and LSBs of registers P and Q as
depicted in Table2.5. The multifunction registers and its associated combinational
logic, which is a nonstandard representation of a 4:1 multiplexer, has been mapped
intelligently to the 6-input LUTs and wide function multiplexers MU X F7 as shown

Algorithm 1: GCD Calculation Algorithm
Input: 2 unsigned integers: P and Q.
Output: S : GCD of P and Q
Rem(P, Q): Remainder when P is divided by Q1
abs(P − Q): Absolute difference of P and Q2
min(P, Q): Minimum of P and Q3
Computation_Over_Flag ← 0, R ← 04
begin5

while P �= Q do6
if (Rem(P,2)==0) then7

P ← P/2;8
if (Rem(Q,2)==0) then9

Q ← Q/2;10
R ← R + 1;11

else12
if (Rem(Q,2)==0) then13

Q ← Q/2;14

else15
P ← abs(P − Q);16
Q ← min(P, Q);17

end18

S ← P ∗ (2R);19
Computation_Over_Flag ← 1;20

2 A Fabric Component Based Approach to the Architecture … 63

Fig. 2.18 Overall architecture of the GCD computation circuit

Table 2.5 Function table for the multi-function registers and counter

Control/Select signals Registers Counter

I N I T P0 Q0 P Q R

0 X X LOAD LOAD 0

1 0 0 P/2 Q/2 R + 1

1 0 1 P/2 Q R

1 1 0 P Q/2 R

1 1 1 |P − Q| min(P, Q) R

in Fig. 2.19 to ensure compact implementation. The absolute difference circuit has
been realized as was proposed in [33] which comprises of a less-than comparator
(Fig. 2.20) and a subtractor (Fig. 2.21) as its sub-circuits. If A and B are two inputs, the
n-bit less-than comparator generates a high signal if A < B. Each LUT accepts 2-bit
sub-words Ai :i−1 and Bi :i−1, each of which has nomore than four distinct inputs, and
outputs two signals Aeq Bi :i−1 and Aless Bi :i−1. Aeq Bi :i−1 = 1 if Ai :i−1 = Bi :i−1
and Aless Bi :i−1 = 1 if Ai :i−1 < Bi :i−1. Aeq Bi :i−1 drives the select line of the

64 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.19 Multifunction register

multiplexer of the carry chain and Aless Bi :i−1 is an input to the multiplexer which
is selected if Aeq Bi :i−1=0. If xi = Ai
Bi and xi−1 = Ai−1
Bi−1, then

Aless Bi :i−1 = Ai Bi + xi Ai−1Bi−1

Aeq Bi :i−1 = xi xi−1

The output of the less-than comparator A_l_Bn decides upon the operation A− B
or B − A. For an n-bit less than comparator, its output A_l_Bn is obtained using the
following Boolean logic recurrence relation:

A_l_Bn = Aeq Bn:n−1Aless Bn:n−1 + Aeq Bn:n−1A_l_Bn−2

where the base condition is A_l_B0 = 0. This recurrence relation bears exact resem-
blance to (2.3) making it an ideal candidate for carry-chain implementation. When
A_l_Bn = 1, B + A + 1 is computed, else A + B + 1 is computed, as shown in
Fig. 2.21, where A and B are the 1’s complement of A and B respectively.

Fig. 2.20 Module
computing if A < B [33]

2 A Fabric Component Based Approach to the Architecture … 65

Fig. 2.21 Module
computing absolute
difference [33]

The absolute difference circuit has been pipelined using the “FDCPE” Xilinx
primitive [4] where these FFs are presetted if the output from the previous carry
chain of the adjacent slice is high and cleared if low. An intermediate output A_l_B
(which decidedwhether to compute A−B or B− A) of the absolute difference circuit
serves as a select line to the multiplexer which outputs the minimum of two numbers.
This architecture to compute the minimum of two numbers has been realized using
dual output LUTs as shown in Fig. 2.22. The counter keeps track of the number of
left shifts to be applied to the contents of the P register after the final iteration. The
contents of the register P are left-shifted using a barrel shifter which is implemented
using dual output LUTs as shown in Fig. 2.23 where stage i of the barrel shifter
(i ≥ 0) can implement a 2i /0 bit shift. Thus, the data to be shifted is given to the data
inputs of the multiplexers, whereas the amount of left shift is given as input to the
select lines of the multiplexers in the barrel shifter. The final output gives the GCD
of two numbers.

Fig. 2.22 Circuit to compute minimum of two numbers

66 A. Palchaudhuri and R.S. Chakraborty

Fig. 2.23 LUT level implementation of the barrel shifter

2.7.1 GCD Implementation Results

The GCD computation circuit for 32-bit operands was implemented on the Xilinx
Virtex-5 FPGA using two approaches: behavioral Verilog modelling, and second,
using constrained arithmetic circuit descriptions generated by FlexiCore. Results
are tabulated in Table2.6, where the two input operands are 70 and 100. The results
clearly indicate that using the second approach, the designer can achieve a higher fre-
quency and lower PDP value with considerable lesser amount of hardware resources.

Table 2.6 Implementation results for a 32-bit GCD Circuit (Operands: 100 and 70)

Implementation
mode

Freq (MHz) Power delay
product (pJ)

#FF #LUT #Slice

Behavioral mod-
elling

160.49 745.85 69 356 208

Primitive
instantiation

214.73 508.87 87 298 93

2 A Fabric Component Based Approach to the Architecture … 67

2.8 Conclusion

Manual instantiation of hardware primitives and macros, and their careful, con-
strained placement on the FPGA fabric leads to very promising performances in
terms of speed. We have considered some arithmetic circuits and pseudorandom
sequence generators which are very regular in their architectures and have shown
how to configure them using the bit-sliced design paradigm where an entire archi-
tecture has been constructed using identical sub-circuits. Designs that are pipelined
and have a very regular data flow, like those considered in our work, usually lend
themselves to regular floorplanning. Since each slice of an FPGA are register-rich,
pipelined implementations can be donewith easewithout consuming additional num-
ber of slices. The regular architectures also facilitate their design automation which
is taken care of by the FlexiCore CAD tool. The tool is not only capable of gener-
ating the synthesizable HDL and placement directives for the designs, but can also
examine the feasibility of placement of a circuit by ensuring that the area spanned
by it on the FPGA fabric is not occupied by any other logic.

Acknowledgments The authors would like to thank Prof. Anindya Sundar Dhar, Department
of Electronics and Electrical Communication Engineering, IIT Kharagpur, and Dr. Debdeep
Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur, for their valu-
able insights into the work. The authors would also like to acknowledge two undergraduate students
of the Department of Computer Science and Engineering, IIT Kharagpur, Mohammad Salman and
Sreemukh Kardas, for their contributions in developing the proposed CAD tool, FlexiCore.

References

1. Preuβer, T.B., Zabel, M., Spallek, R.G.: Accelerating computations on FPGA carry chains
by operand compaction. In: 20th IEEE Symposium on Computer Arithmetic (ARITH), pp.
95–102 (2011)

2. Preuβer, T.B., Spallek, R.G.: Mapping basic prefix computations to fast carry-chain structures.
In: International Conference on Field Programmable Logic and Applications (FPL), pp. 604–
608 (2009)

3. Ahmed, T., Kundarewich, P.D., Anderson, J.H.: Packing techniques for Virtex-5 FPGAs. ACM
Trans. Reconfig. Technol. Syst. (TRETS), 2(18), 18:1–18:24 (2009)

4. Xilinx Inc., Virtex-5 Libraries Guide for HDL Designs, UG621 (v 11.3) (2009). Cited 16 Sep-
tember 2009, http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/Virtex5_
hdl.pdf

5. Ehliar, A.: Optimizing Xilinx designs through primitive instantiation. In: Proceedings of the
7th FPGAworld Conference, pp. 20–27 (2010)

6. FloPoCo: Arithmetic core generator (2014). Cited 14 June 2014, http://flopoco.gforge.inria.fr/
7. Dinechin, F.de, Pasca, B.: Designing custom arithmetic data paths with FloPoCo. IEEE Des.

Test Comput. 28(3), 18–27 (2009)
8. Cosoroaba, A., Rivoallon, F.: Xilinx Inc., White paper: Virtex-5 family of FPGAs. Achieving

Higher System Performance with the Virtex-5 Family of FPGAsWP245 (v1.1.1) (2006). Cited
7 July 2006, http://www.origin.xilinx.com/support/documentation/white_papers/wp245.pdf

9. Xilinx Inc., Virtex-5 FPGA user guide, UG190 (v 5.4) (2012). Cited 16 March 2012, http://
www.xilinx.com/support/documentation/user_guides/ug190.pdf

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/Virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/Virtex5_hdl.pdf
http://flopoco.gforge.inria.fr/
http://www.origin.xilinx.com/support/documentation/white_papers/wp245.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

68 A. Palchaudhuri and R.S. Chakraborty

10. Xilinx Inc., Virtex-6 FPGA configurable logic block, UG364 (v 1.2) (2012). Cited 24 June
2009, http://www.xilinx.com/support/documentation/user_guides/ug364.pdf

11. Verma, A.K., Brisk, P., Ienne, J.P.: Challenges in automatic optimization of arithmetic circuits.
In: 19th IEEE Symposium on Computer Arithmetic (ARITH), pp. 213–218 (2009)

12. Roy, S.S., Rebeiro, C., Mukhopadhyay, D.: Theoretical modeling of the Itoh-Tsujii inversion
algorithm for enhanced performance on k-LUT based FPGAs. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1–6 (2011)

13. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic
Publisher, Dordrecht (1996)

14. Weste, N.H.E., Harris, D., Banerjee, A.: CMOS VLSI Design: A Circuits and Systems Per-
spective. 3rd edn. Pearson Publisher, New York (2011)

15. Cortadella, J., Llabería, J.: Evaluation of A + B = K conditions without carry propagation.
IEEE Trans. Comput. 41(11), 1484–1487 (1992)

16. Zicari, P., Perri, S.: A fast carry-chain adder for Virtex-5 FPGAs. In: 15th IEEEMediterranean
Electrotechnical Conference (MELECON), pp. 304–308 (2010)

17. Xilinx Inc., Virtex-5 FPGA XtremeDSP design considerations user guide, UG193 (v 3.5)
(2012). Cited 26 January 2012, http://www.xilinx.com/support/documentation/user_guides/
ug193.pdf

18. Koren, I.: Computer Arithmetic Algorithms, 2nd edn. A.K.Peters Ltd, Natick (2002)
19. Brent, R.P., Kung, H.T.: A Regular layout for parallel adders. IEEE Trans. Comput. C-31(3),

260–264 (1982)
20. Sarkar, P.: A brief history of cellular automata. ACM Comput. Surv. (CSUR) 32(1), 80–107

(2000)
21. Chowdhury, D.R., Chaudhuri, P.P.: Architecture for VLSI design of CA based byte error cor-

recting code decoders. In: Proceedings of the 7th International Conference on VLSI Design,
pp. 283–286 (1994)

22. Halbach, M., Hoffmann, R.: Improving cellular automata in FPGA logic. In: Proceedings of
the 18th International Parallel and Distributed Processing Symposium, pp. 258–262 (2004)

23. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.,Mardiris, V.: Amethodology for VLSI imple-
mentation of cellular automata algorithms using VHDL. Adv. Eng. Softw. 32(3), 189–202
(2000)

24. Torres-Huitzil, C., Delgadillo-Escobar, M., Nuno-Maganda, M.: Comparison between 2D cel-
lular automata based pseudorandom number generators. IEICE Electron. Express 9(17), 1391–
1396 (2012)

25. Das, A.K., Ganguly, A., Dasgupta, A., Bhawmik, S., Chaudhuri, P.P.: Efficient characterization
of cellular automata. IEEE Proc. Comput. Digital Tech. 137(1), 81–87 (1990)

26. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata
Theory and its Application. vol. 1. IEEE Computer Society Press (1997)

27. Mukhopadhyay, D.: Group properties of non-linear cellular automata. J. Cell. Autom. 5(1–2),
139–155 (2010)

28. Palchaudhuri, A., Chakraborty, R.S., Salman. M., Kardas, S., Mukhopadhyay, D.: Highly com-
pact automated implementation of linear CA on FPGAs. In: Cellular Automata—11th Inter-
national Conference on Cellular Automata for Research and Industry, pp. 388–397 (2014)

29. Cattell, K., Muzio, J.: Technical Report: Tables of linear cellular automata for minimal weight
primitive polynomials of degrees up to 300. Issue: 163.University ofVictoria (BC),Department
of Computer Science (1991)

30. Bardell, P.H., McAnney, W.H., Savir, J.: Built-In Test for VLSI: Pseudorandom Techniques,
Wiley, London (1987)

31. Stehlé, D., Zimmermann, P.: A binary recursive GCD algorithm. In: Proceedings of ANTS’04,
Lecture Notes in Computer Science, vol. 3076, pp. 411–425. Springer, New York (2004)

32. Brent, R.P., Kung, H.T.: A systolic algorithm for integer GCD computation. In: IEEE 7th
Symposium on Computer Arithmetic (ARITH), pp. 118–125 (1985)

33. Perri, S., Zicari, P., Corsonello, P.: Efficient absolute difference circuits in Virtex-5 FPGAs. In:
15th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 309–313 (2010)

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

http://www.springer.com/978-3-319-20070-5

	2 A Fabric Component Based Approach to the Architecture and Design Automation of High-Performance Integer Arithmetic Circuits on FPGA
	2.1 Introduction
	2.1.1 Overview of FPGA Design Philosophy
	2.1.2 Existing FPGA CAD Tools

	2.2 Architecture of Target FPGA Platform
	2.3 A Fabric Component-Based Design Approach for High-Performance Integer Arithmetic Circuits
	2.3.1 Guidelines for High-Performance Realization

	2.4 Architecture of Arithmetic Circuits
	2.4.1 Integer Adder Architecture
	2.4.2 Loadable Bidirectional Binary Counter Architecture

	2.5 Compact FPGA Implementation of Cellular Automata Circuits
	2.5.1 Adapting CA to the Native FPGA Architecture
	2.5.2 CA Implementation Results

	2.6 Design Automation
	2.7 Case Study---a Greatest Common Divisor (GCD) Calculator
	2.7.1 GCD Implementation Results

	2.8 Conclusion
	References

