BLOMST—An Optimization Model
for the Bioenergy Supply Chain

Michal Kaut, Ruud Egging, Truls Flatberg and Kristin Tolstad Uggen

Abstract In this chapter, we present a new model for optimal strategic and tactical
planning of the bioenergy supply chain under uncertainty. We discuss specific
challenges, characteristics and issues related to this type of model. The techno-
logical details, variability in supply and demand, and uncertainty in virtually all
aspects of the supply chain require advanced modeling techniques. Our model
provides a broad modeling approach that addresses the entire supply chain using an
integrated perspective. The broad applicability of the approach is illustrated by the
two cases discussed at the end of the chapter. The first case presents a forest to
bioenergy supply chain in a region of the Norwegian west coast. The second case
presents the miscanthus supply chain to a transformation plant in Burgundy, France
and takes into consideration uncertain final demand.

1 Introduction

Renewable energy is the fastest-growing source of energy generation, according to
the IEO2013 Reference case (U.S. Energy Information Agency 2013). Total power
generation from renewables is projected to increase by 2.8 % annually until 2040.
Although about 80 % of the total increase is in hydroelectric and wind power,
bioenergy generation is expected to grow at about the same pace. The growth of
non-hydro renewable energy sources in OECD Europe is stimulated by renewable
energy policies. The EU mandates that 20 % of total energy production must come
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from renewables by 2020 (according to the 20-20-20 target); this is up from about
13 % in 2010. In addition to the EU targets, several countries provide incentives
that promote the expansion of renewable energy generation. For example,
Germany, Spain, Denmark, and the United Kingdom have enacted feed-in tariffs
that guarantee minimum prices for energy generated from renewable sources.

The market for bioenergy plants is expected to grow quickly in the coming years
(ecoprog GmbH 2013). In 2020, 3500 bioenergy plants are expected to be opera-
tional worldwide, implying a growth of installed capacity by about 46 % in an
eight-year period.

A beneficial characteristic of biomass is that it can be stored, in contrast with
solar or wind-based generation, which means that bioenergy generation can more
easily be matched with varying demand. Unfortunately, biomass often requires
large production and collection areas, has low energy density, is expensive to
harvest and transport, and has high maintenance and logistics costs. This makes it
challenging for the bioenergy industry to compete with the highly developed
fossil-fuel supply chains (De Meyer et al. 2014). Also, biomass quality can be
affected by transport and storage. Although passive drying reduces the moisture
content, which is a favorable outcome, storage can also induce fiber deterioration,
which reduces the energy content (Wolfsmayr and Rauch 2014). Furthermore,
bioenergy supply chains have to deal with the geographical spread of supply
sources and weather and season induced supply variations. In addition, the supply
chain is challenged by complex logistics and inventory management aspects, as
well as variety of uncertain factors.

Almost every step in the supply chain may have uncertainty factors. Some
uncertainties are inherited from the biomass supply part, others from the energy
generation and demand parts. Weather conditions and technical disruptions affect
harvesting time windows as well as biomass yield and quality. Transportation and
logistic uncertainties involve fleet availability, storage and road conditions, all of
which induce unpredictable supply. Technological innovation and government
policies and incentives greatly affect the competitiveness of investments and
operations.

Researchers have looked at biomass-bioenergy markets in settings varying from
a single feedstock and a single consumer to integrated settings in the local economy
or other energy markets. To a large extent the modeling approaches reported in the
literature are inspired by a specific case, resulting in many specialized optimization
models for certain parts of the value chain or for specific supply chains.

Van Tilburg et al. (2006) present the BIOTRANS model, a general model for the
biomass-to-biofuel supply chain. This model is deterministic, has a
cost-minimization focus, and does not consider seasonality, storage, or biomass
quality variations, although yields are location specific. Eksioglu et al. (2009)
develop a mixed-integer design and management model for the supply chain of
bioethanol produced from lignocellulosic biomass. It is a deterministic
cost-minimization model and considers seasonal variation and storage.

Several papers consider uncertainties in specific biomass-to-biofuel supply
chains. Marufuzzaman et al. (2014a, b) develop stochastic biofuel supply chain
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models considering various types of risks and apply enhanced variants of Benders
Decomposition to solve the models. Marufuzzaman et al. (2014a) consider tech-
nological progress and biomass supply uncertainties, whereas Marufuzzaman et al.
(2014b) consider supply disruption risks at intermodal hubs due to various natural
disasters with varying impact levels. There results indicate significant expected cost
savings due to the explicit consideration of uncertainty in the modeling approaches.

Uncertain events will materialize frequently over a multi-year planning horizon,
and there are multiple decision types, and associated costs and profits, in bioenergy
supply chain design and management that can (should) be affected by this. To
adequately represent the random events and multiple decision moments (recourse
options) we believe a multi-stage modeling approach is necessary. We are aware of
only two multi-stage stochastic optimization models which aim to cover the entire
supply chain. Cundiff et al. (1997) develop a multi-stage linear program that
considered the impact of weather conditions during the growth season and har-
vesting period. They include four scenarios, which take into consideration good and
bad weather in each period. They considered one type of biomass and allowed
storage capacity expansions with fixed locations, but no discrete investment deci-
sions about new capacities or locations were allowed. Walther et al. (2012) present
a strategic stochastic optimization model for investments related to production
networks for synthetic bio-diesel in North-west Germany. Neither of these models
include active drying, or the terminal concept which we include in the model
presented in this chapter.

Many papers discuss challenges and recommended future research directions.
Sharma et al. (2013) indicate that the combined complexity and uncertainty plus
non-financial objectives require advanced multi-objective approaches. Yue et al.
(2014) note that models covering uncertainty in biomass quality as well as energy
prices and correlation between uncertain parameters are not handled by any known
optimization model. For instance Shabani et al. (2013), De Meyer et al. (2014),
Mafakheri and Nasiri (2013), and Wolfsmayr and Rauch (2014) argue for a holistic,
integrated approaches taking into account interrelationships, interdependences, and
coordination needs between all stakeholders in the supply chain, rather than a single
agent. In what follows we propose a stochastic biofuel supply chain model for a
general network structure of the various supply chain components.

Considering the list of challenges and lack of generalized stochastic models in the
literature, we have developed a general framework for optimizing the supply chain
for bioenergy production under uncertainty. This generic stochastic bioenergy
optimization model can be used in many types of analysis, independent of tech-
nologies considered, types of biomass used, the user operating in a specific part of
the supply chain, or the geographical region. Our model is flexible in taking a
strategic and/or tactical planning perspective, and considers uncertainty in virtually
all aspects relevant to the biomass bioenergy supply chain (although in this chapter
we do not cover the model extensions needed to handle mandatory crop rotation and
perennial crops). Through an adequate composition of the stochastic scenario tree,
even correlations between uncertain parameters could be captured. We illustrate the
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broad applicability of our approach with two case studies that are entirely different in
nature; these studies are presented at the end of the chapter.

The rest of the chapter is organized as follows: in the next section (Sect. 2), we
present the core model, i.e. the minimal set of constraints needed for a functional
deterministic model. Since uncertainty is such an important characteristic, Sect. 3
deals with reformulation of the model into a stochastic one. In Sect. 4, we extend
the core model with additional features. Finally, in Sect. 5, we present two test
cases, one dealing with forest biomass in Norway and the other with miscanthus in
France.

2 The Core Model

The model is based on a network representation of the supply chain from pro-
duction to consumption. The nodes of the network represent activities and pro-
cesses that the products can undergo. Currently, the model has nodes for
production, transformation, storage, and consumption. Arcs between the nodes are
used to model flow of commodities or equipment between nodes.

This structure means that the model naturally decomposes into several parts: one
for each node type and one for the flows between them. The actual network
structure is then provided by data, while the model itself is case-independent. The
result is a flexible model, capable of handling complex supply chains, such as the
one shown in Fig. 1. There, we can see that ‘chipping’ and ‘pelletizing’ are rep-
resented by the same node type, ‘transformation’. This means that both the input
and output products have to be specified as data. We could save the amount of
required data by having separate node types for the two processes, but that would
increase the model complexity dramatically; not only would we have to model more
node types, but we would also have to model more possible links between them.

Forest Terminal Pellets factory Customers
fresh chips fresh chips
resh chips T resh chips A
fresh d —
resh woor e Trosh Chips
fre,
% Y dry chips .
fresh - fresh chips s Dryine Burning
Harvest ————Chipping —————— >\ Pymng
wood A
&
%‘ dry wood dry chi s%k dr; ellets
%oq Drying ly—VChipping Y P Storage h’]y)s Pelletizing —peels, Burning
chij
production node transformation node
storage node consumption node

Fig. 1 Structure of a stylized forest-biomass supply chain
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2.1 Notation

2.1.1 Indices, Sets, and Subsets

The model supports the flow of multiple products and their transformation to other
products. Each actual product is specified by its product type (referred to simply as
‘product’) and by the crop that it is made from. Hence, birch chips are a product
‘chips’ made of crop ‘birch’.

Name Description Information
ac o Transportation arcs

ce¥ All crops

de 9 Dimensions

icJt Production limits

je s Alternatives

nenN Nodes in production network

peP All products: input, intermediate and final

te T Time periods g =1,...,T
ne NP Production nodes NP cop
ne T Transformation nodes NTcop
ne s Storage nodes NScCp
ne /€ Consumption nodes NCCcp
pE B All basic biomass (untreated, possibly harvested) crops PBCcp
pe? All intermediate products (treated, possibly ready for use) P cp
pe P’ All final products (ready for use) Pcp

Note that #B, 2' and 2¢ may overlap partially, while sets .4~ P T 48, and
A€ must form a partition of A"

2.1.2 Constants

The flow of products can be measured in a number of dimensions; in bioenergy
models, a typical unit is the energy content [GJ] or dry mass content [t*™], while in
other applications, a volume measure is more appropriate, e.g., [lm3] (loose m3, e.g.,
for wood chips). In the model, subscript d in q,; denotes the unit of measurement.
Furthermore, each product p has its default dimension d; along which it is mea-
sured; it follows that the default units used for the product are ;> which we denote
by q,. This can then be converted into other units using the unit-conversion

parameters U, 4.
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Name Description Unit
CnA, ropd Transport costs €/q4
cN Operating costs of node n, per period €

5 . Production costs, per area €/ha
CSC Production costs, per volume €/q;}g
C}i; Transformation costs (per input unit) €/qq
Dpiin, Demand minimum Qu
Dy Demand maximum qa

D - - P

o Efficiency of product p in satisfying demand at node n
Puia Market price €/qq
A Transportation capacit
Quipa P pacity da
QR; Input capacity of a transformation qu

U
Q‘**d Output capacity of a transformation qu

My

P . *

e Actual produced volumes at each period q,
QP Production capacity (area) ha

n,c
Qtfni“ Minimum production of production limit i d;
Q™ Maximum production of production limit i d;
Sna Storage capacity qu
Uepa Unit conversion (‘density”) q4/q;
Yip Transformation efficiency (output per input)
YP, Production yield q;lc,/ha

2.1.3 Variables

The model has one set of binary decision variables for the node usage, used for
calculating operating costs, plus several continuous, non-negative variables for
modeling the flows and volumes.

Name Description Unit
Jnimept Transportation flow q;
Dcps Production quantity q,
qr[: epi Consumption quantity q,
rili‘c’p’t Transformation input quantity q,
i Transformation output quantity q,
Snepi Storage levels at the end of a period q,
Znt Whether a node is used in a period 0/1
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Note that we model flows using continuous variables, ignoring the fact that they
are carried by (discrete) vehicles. This is a natural simplification for a
tactical/strategic model, with periods spanning weeks or even months.

2.2 Production Nodes

Production nodes are the sources of the biomass, i.e. the fields or forests. Each node
can produce multiple crops and products, because one field or forest can be planted
with more than one crop and some crops can be harvested in several ways. Note
that the latter effect could also be achieved by letting the production node only
‘produce’ the plant, and by modeling the harvesting process in separate transfor-
mation nodes. This would give us more control over the harvesting techniques and
allow for associating different efficiencies and costs to the harvesting methods—
assuming that we (the optimizing agent) actually can control these processes.

It follows that the constraints describing the production nodes are necessarily
case-dependent. If we, for example, do not have any control over the production,
the produced volumes are input data to the model:

P _ P
qmc,pf?,t - Qn,c.p?.l’

where p? € 2" denotes the product of harvesting crop c.

If we, on the other hand, control the production, then we have to distinguish
between cases where there is a harvest time when we harvest all of the crop (as with
grains) and cases where the crops grow continuously and we harvest only a part of
the crop (as with forests). In the former situation, production is limited by the
planted area Qy ., and the yields Yy .:

n,c’

D e SQrctie me AN, M

€T

where the unspecified indices run over their default sets, i.e. ¢ € €. We use this
simplification throughout the paper.

In the latter case with partial harvesting, we specify the production limits for
each product in some given time period, to ensure sustainability. Each production
limit i € .7 is specified for every production node (n;), crop (c;), and dimension (d;)
and time interval [t7,t"] at which it was measured:

QU< M Ug.p,dqubﬁgQ?‘“ icJs. (2)

S <r<iE
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If a harvested crop results in several products, as it does for trees, we can model
this through a transformation node, attached to the production node.

Note that the planted area is taken as input data, i.e., the model does not control
what gets planted where in the first model version. This is because in all of our test
cases, we optimized other parts of the supply chain and, therefore, could not make
these decisions. However, the model is easily extensible to situations where the
planting/sowing is a part of the decision process.

2.3 Transformation Nodes

Transformation nodes convert products; they represent processes like chipping of
trees, production of pellets from chips, and gasification of biomass.

There are many possible types of transformation nodes, depending on the
number of input and output products, and by the way they combine. In our model,
we use two different types. First, we have a one-to-many transformation node 7, in
which an input product P gets transformed into one or more output products. This
is used to model, for example, tree harvesting, where we separate output products
logs and branches.

The produced volumes of each output product p are controlled using the
transformation yield per unit of input product. In addition, each transformation node
has a conversion capacity in terms of the input volume, possibly along several
dimensions (weight, volume).

out __ yvR in T
Tnepr = Yn.pi," Thepne T € (3)

in ~R~ T
Z UCvPL“-,drn,c.p‘n",t <z Qg NEN (4)

ce?

The other type of transformation nodes in our model represents many-to-one
transformations, where the input products are alternatives, i.e., the output product
can be made using any of the inputs or their mixture. For example, in the mi-
scanthus supply chain that we present in Sect. 5.2, pellets can be made from both
bales and baled chips."

The constraints are similar to the ones listed above, except that we have one
output product P9 and the conversion capacity is given in terms of the output
volumes.

"Note that this transformation is different from another common many-to-one process, namely the
assembly of parts into one product. There, all inputs are needed to make the output, typically with
fixed proportions—something we have not encountered in any biomass chain that we have studied.
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out _ R in T >
Fnepoitt = E Yoo Theps NEN (3%)
pEP
out AR T s
§ : Ut'ap}:"[zdrn,c.pg“‘,t < g Qn,d ne A (4 )
44

Another example of this type of transformation is gasification of biomass, though
this would require removing the crop-subscript ¢ from the output product in (3’):
out R in T
r Z Yo neN

npUt = ncpit
PEP cEC

Note that having one many-to-one transformation node is very similar to having
one transformation node for each input product p, with a one-to-one transformation
from p to PO, The difference is that this would imply separate capacity for each
input product, and to represent a shared input capacity additional transformation
nodes would have to be introduced.

For both presented transformation node types, it is natural to attach costs to the
incoming products. In the former, there is only one product that gets split into
several different ones, while in the latter, the output can be produced from several
inputs, where each one can have different transformation costs.

2.4 Storage Nodes

A storage node models the storage of one or several products between time periods.
Each such node is specified by its capacity limits, which can be given along several
dimensions (volume, weight). Storage levels for each product are tracked
throughout all time periods:

§ E Uc,p,dsn,c,p,t S Znt * Sn,d ne ‘/V‘Su d: E!Sn,d (5)
<CpeP:
Elsnac:pvt
Snept = Vn Snept—1 — Z fl‘z’,n,(zpj + Z .f)‘I’.IX,(',[},t ne ‘/Vs7 ¢, p,t: EISIX,(',[}J? (6)
nenN: nenN:
(n,n') € oA (n',n) € o

where 1 — 7, represents the mass loss due to storage for one period at node #; y,, is
typically a number very close to one. Note that this model assumes that if the
storage can handle several products, then they all share the whole capacity. If each
product has its own dedicated part of the storage place, each should be modeled by
their own storage node, all placed in the same location.
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Initial storage levels can be provided or the model can use cyclic behavior where
the storage level in the last period is used as the initial level. The first is modeled as
Sn.ep0 = Sn,cp and the second one is modeled as s, ¢, 0 = V,, - Sucp,7- In the second
case, the initial storage level is a decision variable whose optimal value becomes an
important part of the solution.

2.5 Consumption Nodes

Consumption nodes are nodes consuming some of the products. They are specified
by a minimum and maximum demand for each period:

Dnm;ndgzz ,quichtgz Dnm';l,)zl nE./VC, (7)

ce¥ pejF

where each inequality is created only if the associated parameter exists. Note that if
Dm}"d > 0, then we can fix z,, = 1. Parameters E,Iip can be used to limit which
products can satisfy the demand at each given node.

Furthermore, the customers may have limits on different crop shares in the total
amount that they buy. This is modeled similarly to the production limits, i.e., we
have a set 4 of limits, each specified by its node nX and a minimum and/or
maximum proportion of crop cX in the mix, denoted by k" and k™. The con-
straints are then

S @ € D SHED N B, ked, (8)

cEC pePt PEP c€b pe?F

where each inequality is created only if the corresponding limit k,i“i" or k'™ exists
for given k.

2.6 Transportation and Flows

Transport capacity can be provided for any measurement unit:

Z Uc,p,dﬁu,nz,c,p,t < QnAl,nsz’d (nl s i’lz) € o (9)

ceb

Moreover, in all nodes except storage nodes, we need conservation-of-flow
constraint, that is, the total consumption, outward transportation flows, and
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transformation inputs must equal production, inward transportation flows, and
transformation output, in every time period:

P out _ D in
qn,c:p,l + § :ﬁl’,n,c,p,t + rnA,c,pA,t - qnﬁc,p.l + E :ﬁl.n’.c,p.l + rn,qp,t? (10)

neN el

for all n € A"\ A", In the model implementation, only the required variables will
actually be created at the different types of nodes: production nodes will only have
production and outward transportation flows, etc.

2.7 Objective Function

The exact form of the objective function is case dependent: if there is a given
demand that has to be satisfied, then it is natural to minimize the costs of doing so.
If, on the other hand, we can freely choose how much to deliver to each customer,
then one also has to take into account income and maximize the overall profit
instead.

Therefore, instead of stating the complete objective function, we list its com-
ponents: the income and different types of costs.

income from sale Z Uc,p_dantvdanc y (11a)
n,cpt.d
. . CP
production/harvesting costs, Z e Q| P (11b)
using constraint (1) vt P ne |dnepr
. A
transportation costs Z G mpaUcpdfuimcpi (11¢)
ny,m,cpitd
transformation costs Z CR L Ucpar, y (11d)
ncp,td
node-usage costs Z CNzps (11e)
n;t

Note that the node-usage variables z,, are really needed only for nodes with
non-zero costs C}j; without these costs, we could omit the variables, though this
would require slight reformulation of some of the constraints.
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3 Stochastic Formulation

In most bioenergy applications, the problems are subject to multiple uncertainties,
as future demand, supply (yield), and prices are seldom known with precision ahead
of time. It is therefore natural to use a model that can handle at least some of the
uncertainties. There are several approaches to optimization under uncertainty, of
which we have chosen stochastic programming, in particular its formulation with
stochastic variables represented by discrete scenarios.

It is relatively easy to convert a deterministic model to a two-stage stochastic
model since all we need to add is a scenario index to all the stochastic entities.
However, we want a general multi-stage formulation, because this gives us the
freedom to change the complexity of the stochastic representation solely using data,
i.e., without changing the model.

There are two basic approaches to converting a deterministic model into a
general stochastic one, illustrated graphically in Table 1.

In a scenario-based formulation, we simply add a scenario index to all
time-dependent model entities and then enforce the scenario-tree structure using
so-called non-anticipativity constraints (Birge and Louveaux 1997). While adding
the extra index is easy, adding the constraints is not a trivial task. In addition, it will
make the model bigger. Even in the very simple scenario tree in Table 1, we have
five groups of constraints, one with four nodes and four with two nodes. To enforce
the equality, one typically sets all nodes equal to the first one, resulting in k — 1

Table 1 Comparison of the two types of stochastic model representations, on a five-period tree
with binary branching in periods 2 and 4

Model type Graphical representation Example constraint
Deterministic 20 21 1) 23 u 4
o 0 =1
=0
Stochastic 20,1 21,1 22,1 23,1 24,1 4
Scenario-based O O O O sz =1,
=0
20,2 212 2.2 32 242
O O O O Vs e {l,...,4}

20,3 213 223 233 243
O O

Stochastic 2y + Zpa(v) T ZPa(Pa(v))
Node-based

+ Zpa(Pa(Pa(v)))

+ Zpa(Pa(Pa(Pa(v))) = 1,

vy € {4,6,10,12}

The blue boxes in the scenario-based formulation denote groups of nodes that have to be set equal
using non-anticipativity constraints
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constraints for a group of k nodes. In our case, this means 3 + 4 x 1 = 7 constraints
for every stochastic variable.

Alternatively, in a node-based approach, we replace the time index by a
scenario-tree-node index for all time-dependent model entities. The structure of the
scenario tree is then described by providing a parent (or predecessor) node Pa(v) to
eachnode v € 2v" : Pa(1)=0, Pa(2)=1,..., Pa(11) =8, Pa(12) = 11. While this
avoids extra constraints, it makes the model more difficult to read, especially if we
have constraints that cover more than two periods (as we can see in Table 1).

Hence, we use a ‘hybrid’ approach where we use the node-based approach for all
model entities, but provide extra data structures that allow us to use scenario
numbers in the model formulation where needed. In particular, we define SP(z, s) to
specify the node in period r € J of scenario s € &; taking an example from the
last figure of Table 1, the scenario-tree node corresponding to ¢ = 2 in scenario
s =3 1is zg, so we have SP(2,3) = 8. Using this parameter, we can write the
constraint from Table 1 as

4
ZZSP(I,.V) =1, se{l,...4}
=0

This way, we have eliminated the major disadvantage of the node-based for-
mulation, without the extra constraints needed for the scenario-based approach.

With this notation in place, rewriting the deterministic model from Sect. 2 into a
stochastic one becomes relatively straightforward. For all of the variables, we
replace the time index ¢ with the new stochastic-node index v € ¥". For links
between periods, t — 1 becomes Pa(v), while links further back in time are easiest
written using the SP(z,s) table.

As we have discussed in Sect. 2, one can construct several different objective
functions using the elements presented in (11a)—(11s), depending on the optimizing
agent. Here, we present a stochastic version of one of the variants, namely an agent
maximizing the overall profit in the supply chain. For simplicity, we assume a
risk-neutral agent and therefore maximize the expected profit, i.e., the
probability-weighted profit over all scenario nodes.

The whole model from Sect. 2, with equation numbers referring to the original
deterministic ones, is then as follows:

CP
maximize Z Pr(v) ( Z Uc_rpﬂP,,ﬁper(’)quE_’%v _ Z (Y';”C + C36> qz,&p,v

ve?” nep,d n,c,p n,c
§ A
- Cnl Ja,p,d UC,P-,dﬁll M2,C,P5V
ny,nyc.p.d
R— in N
- E : Cn,d UC,P’drn,c,p,v - § :Cn Zny
ncp.d

(11s)
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subject to
P P -P »B
ancpSPts anYnU ne.n 7p650 (IS)
teT
mm max
Qi Z U [’dqnx c,Vpc ,SP(t,s) Q it (25)
15 <<
out _ yR m T
rn,lixp,v Y ‘" n cp“‘ v ne /V (35)
HR— T
Z U6'7Pf1“~,drn c.piny < Zny Qn,d’ ne A (4§)
ceb
Z Z Uc,p,dsn,c,p,v Szn,v . Sn,d ne N (SS)
ccb pe?:
EA

Snepy = Vn " Snep,Pa(y)

Z fn,n’,c,p,t + Z ﬁl’,n,c,p,t neNs (65)

Wew W
(n,n') € o (n',n) € o/
min D max C
Dn,t,d —= § : E : EnpUnP dqn,c,p,t S Zny Dn,t.d nenN (7S>
ceC p@d)F
mm § : max § §
qunk,pv— anck,pv— an C,p,v G,%/ (SS>
cEC pe? PEP CEC peP’
AHA
E UC,p-,df;’l],nz.C,p.V < in nap.d (nl, nz) IS4 (95)

ce?

P out _ in S
qn,c,p,v + § :ﬁl/ﬂnvcﬂpvv + Ty, c,p,v qn ,C.D,V + 2 :f;lvn/vcvpvv + rn7c,p7v nec /1/‘\/‘/‘

neN nenN

(10s)

Just like in the deterministic model, we have to decide how to deal with the
initial storage levels in (6s). If we used the initial-storage constraint (s,.c .0 = Sp.cp)
in the deterministic model, then we can use it without change. If, on the other hand,
we used the cyclical storage approach (s,c,0 =7, Sncp,r.), then we have to
decide how to interpret this in the stochastic settings. There are several possible
approaches to this, each with merits and problems:

Sn,e.p,0 = Z PI‘(V) *Sn,ep,y (12a)

veYV 1
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Sn,e.p,0 = Snepy YWerr (12b)
Snep,0 < Sn,epv Yy € "f/T, (120)

where v = 0 is the root node of the scenario tree and ¥ "7 is the set of last-period
nodes, ¥'r = {v € ¥ :Per(v) =T}.

The first formulation, (12a), ensures that on average, we will finish with the
same amount in storage at the end as at the start. This is probably the most natural
extension of the deterministic version. It can, however, give undesired effects; for
example, assume that we include demand as the only stochastic parameter in the
model and that the optimal storage level in the first period is s; > 0. Constraint
(12a) will then cause the end-of-horizon storage level to be higher than s in
low-demand scenarios and lower—possibly even zero—in scenario(s) with the
highest demand. The end-of-horizon storage level could even be zero in the
‘average’ scenario, which would imply that the results found by the model would
not provide proper guidance for two successive average years (since the average
year needs positive initial storage levels, but finishes with empty storage).

This problem is avoided in version (12b), where the final storage has to be equal
in all scenarios. Unfortunately, this creates new problems. If we, for example, have
one scenario with very low demand, it may be optimal to end up with a high level of
storage at the end. With (12b), however, the final storage at the end of the
low-demand scenario has to be the same as in high-demand scenarios. The optimal
solution might then be to produce lower amounts of biomass, which may imply a
huge loss of profit potential. The last issue is resolved in (12c), where we allow the
low-demand scenarios to end up with more storage. Another way of resolving the
issues in (12b) is to add extra time at the end of the horizon, to allow the models to
settle on common storage levels (Thapalia et al. 2009).

In contrast to (12a) that ensures that on average, we will finish with enough
storage to continue another average year, (12c) ensures that this happens in every
scenario. In this sense, the latter represents a more conservative risk attitude. For
this reason, this is the formulation we use in our implementation.

4 Extensions to the Model

In this section, we present several extensions to the model. We formulate them for
the stochastic version of the model, but note that they can be used for the deter-
ministic version as well. Each of these adds specific functionality to the model.
They can be combined, depending on what is needed for each case.
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4.1 Terminals

By terminal, we mean an area with multiple facilities (e.g., transformation and
storage). In the context of the model, a terminal is a grouping of one or more nodes.
There are at least two uses for terminals in the model: they allow us to model costs
associated with running the terminal in addition to costs for each facility/node. For
this, we just need to associate a binary variable y, to each terminal g € % and then
require that the nodes belonging to the terminal, n € A~ gG can be used only if y, is

equal to one:
Iay<Ys NE ,/Vg, v, & : 3z, and Jy,.

More importantly, in some applications the goal of the model is to establish a
new terminal, by choosing one from a list of candidate locations. We model this in a
more general way, using a set ¢ of ‘alternatives’. For each alternative j € ¢, we
then specify a group of terminals, ¥;, with associated lower and upper bounds on
the number of terminals to be opened, Qj and Gj:

G<Y %<G jes
8€Y;

If we are to choose exactly one from all of the potential terminals, we do this
using # ={1},%, =%, and G, = G1 = 1. This formulation assumes that the
decision regarding terminals is made at the start of the first period and is valid for
the entire duration of the model. An alternative would be to add a time index to
these decisions, so that they can be postponed. Note that this would increase the
number of binary variables, and hence, the solution time.

In addition to the above constraints, we would also need to add the costs of
opening the terminals, Zg ngg, to the objective function. Note that we could
easily add terminal-usage costs (per period) as well, though it would require extra
binary variables.

4.2 Drying

In forestry applications, it is important to model drying of the wood. There are at
least two approaches to modeling the process in an optimization model, where the
difference is whether we treat the moisture content continuously or discretize it. In
the former case, we attach a variable for moisture content to each product that needs
drying and then track how this value decreases over time. The difficulty with this
approach is that one needs to express the energy content of the product as a function
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of the moisture content—and since this relationship is non-linear, this would mean
employing some kind of piecewise-linear approximation (Van Dyken et al. 2010).

In the latter approach, we expand the set of products to contain additional
information about moisture content. For example, we replace the product type ‘log’
by ‘log 20 %,” ‘log 40 %,” ‘log 60 %,” and ‘log 80 %, each with the appropriate
energy content. With this approach, drying is modeled as a change in the product
type, after given time in storage.

In our implementations, we have used the latter approach, where the transfor-
mation does not depend only on the time spent in the storage, but also on the actual
period—the model was developed for a customer in Norway, where wood dries
only during the summer.

In the model, the possibility that a product p of crop ¢ can transition into another
product in storage node 7 is signaled by existence of » = R, . ,. The transition is
then specified by its output product p2™, the last period in which the product must
arrive to the storage in order to undergo the transition tir“, the first time period when
the transition is finished and the output product can be taken out of the storage t",
and finally, the mass loss during the transition k,. In our particular case, we say that
all fresh wood that is in storage by the end of April is dry at the start of September,
so we have t" = 3 and " = 9.

With this notation, (6) is modified in the following way:

Snepy = Vn* sn,c,p,Pa(V) - E fnﬁn’,c,p,v + E ﬁl’,n,c,p,v

nenN: nenN:
(n,n') € o (n',n) € o/
A (out_¢in ) . . . __ out
=0 Spepan  if exists r =R, pand Per(v) = R, (6)
2 : (out _in
+ Y "o (1 - Kr) : Sn.,c,p"li,"
pPeP:
Ir=Rycp

p =p, Per(v) ="

With the values stated above, the second line ensures that in September, the fresh
wood will be removed from storage, while the third line replaces it with a corre-
sponding amount of dry wood (minus the losses x,). Note that this assumes that no
fresh trees are removed from storage during the drying period.”

An alternative, and simpler, way of modeling the drying process would be to
assume a constant drying rate throughout the year, that is, to assume that crop
c stored at node n needs Atg’n time periods to transition from product p* to product
p°. If we assume that only fresh crops enter storage and only dry crops leave
storage, then the storage Eq. (6) would become

2If this was a problem, one could add additional product types for ‘drying wood' that would be
forbidden to be taken out of the storage.
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Snepv = Vn " Sn,ep™ Pa(v) + E f;l’.n‘c,p“"v - E fn’,n,c,pw.Per(v)7Atf,_ﬁ
nenN: nen:
(n',n) € o (n',n) € o

(67)
Snepdy = VY " Snepd Pa(v) — E fn,n’ﬁc,pd,v + § f;l’,n,c,pw,]:’er(v)—Al‘(‘{,x
ne N

ne N
(n,n') € o (n',n) € o

Note that this approach can be used to model active drying, we just need to set
the storage-using costs accordingly and perhaps introduce a volume-dependent cost
as well.

4.3 Tracking Equipment

The transformation Eq. (4) assumes that the capacity is given and constant for each
transformation node. This, however, ignores the fact that some transformations
need extra equipment—which we refer to as a ‘transformation device’—to be
present in the transformation node. An example of such a requirement is a mobile
chipper needed for off-terminal chipping of wood. Since we normally have only a
limited amount of these devices, we need to ensure that each is used only in one
place at a time.

There are several ways of handling this in the model. If the devices are so mobile
that they can be used in several nodes during one period, we can simply add
constraints that limit the overall transformation capacity (summed over all trans-
formation nodes) to the capacity of the available devices. Note that this means that
we do not control the amount of nodes a device is used at during one period and it
also ignores relocation costs. On the other hand, the approach does not add any new
variables, and therefore, should not increase the solution time of the model. This
approach is used, for example, in Gunnarsson et al. (2004).

If, on the other hand, the transformation devices are costly and/or
time-consuming to move, we would need a more detailed representation in our
model. There, each transformation device h € J# is specified by its output product

Pl € 2, set of nodes where it may be needed .47}, and transport costs C}fmm
h

ny

between nodes n, and n,. We then introduce binary variables w  denoting whether

a transformation device # is present in node n in scenario-tree node v, plus addi-
tional variables for tracking their movements where: wZ,n,‘v is equal to one if the
transformation device 4 is moved from node n to node n’ at the end of period of the
scenario-tree node v.
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WZ,V = WZ,Pa(v) - Z Wﬁ,n’,Pa(v) + Z WZQn,Pa(v) he#,ne '/‘/hH (13)

e\ {n} ne N \{n}
Swhi=1 hex (14)
ne,x‘"}j
an< Y wh, neT (15)
heA# meN}!

Note that it is enough to have (14) only for the first period, since the
flow-conservation constraints (13) guarantee that they will hold in all periods.
Finally, constraints (15) ensure that transformation nodes cannot be used without
the required device in place.

Furthermore, the movement-tracking variables wﬁ‘n,,v do not need to be declared
as binary in the model, since they will be automatically integer because of con-
straints (13). Nevertheless, these variables might increase the solution time sig-
nificantly, so they should be included only if relocation costs of the devices are high
enough compared to other costs. If not, we can simply remove these variables and
constraints (13) from the model.

5 Illustrative Examples

In this section we present two different cases. In one case, we used a deterministic
version of the model, while in the other we included uncertainty. The first case is
based on the harvesting of trees, while the raw material in the second one is
cultivated. The examples are meant to illustrate the flexibility of the model and
show benefits from using an optimization based decision support tool. For this
reason, to emphasize the illustrative insights, only three future scenarios are con-
sidered in the case with uncertainty.

Both examples have been implemented in the Mosel modelling language and
solved using FICO™ Xpress Optimizer, on an dual-core 2.4 GHz machine with
8 GB of RAM.

5.1 Wood-Based Bioenergy Supply Chain

In this example we consider a supply chain where wood chips are used in heating
plants in western Norway. Wood is available in large quantities in the area, but
difficult to harvest due to the steep terrain, which translates to high production costs.
The wood chips can be produced from different species, each with different energy
contents: pine, spruce, and hardwood.



56 M. Kaut et al.

Production of wood chips can be performed with a mobile wood chipper at the
felling areas or at the terminals. The difference between these two alternatives is
that transportation of wood chips is cheaper than transportation of logs, but the
operational costs of a mobile chipper are larger than those of a stationary chipper at
a terminal.

The wood can be used directly (as fresh chips) in some heating plants, but, more
commonly, drying is needed before use. Drying can take place at felling areas or at
the terminal, and before or after chipping, which means that there are a lot of
choices to be made in the upstream part of the supply chain. Trees cut in
winter/spring can be used the fall, while trees cut in summer/fall cannot be used
until the next fall. This means that timing of felling and storage capacity are
important factors to consider in order to meet demand (Fig. 2).

Terminals are usually a large area where logs and chips can be dried and stored
for protection against rain and snow. Storage and drying at the felling sites is more
uncertain and the losses are higher due to less controlled conditions. The heating
plants have limited capacity for storage of chips and their demand for chips is

Fig. 2 The area used in the test case in Sect. 5.1. The heat plants are denoted by ‘am’, while ‘@’
denotes the possible locations of terminals
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Fig. 3 Structure of the forest supply chain in Sect. 5.1. Note that the case includes three heat
plants and three possible terminal locations, each with three forest areas attached. The forest areas
are connected only to the nearest terminal, while each terminal can supply all three heat plants

largely correlated with weather conditions, which results in seasonal variation.
Some of the plants are even closed during summer. An illustration of the supply
chain in this example is given in Fig. 3.

In the example case from the Mare region in Norway, we have the perspective of
the society of forest owners. A map of locations in the example case can be seen in
Fig. 2. Note that ferries are needed for transportation between Héhjem and Orsta,
Héhjem and Arg, and Aspeya and Are, but Malo and Are are connected by tunnel.

We want to decide timing and area for felling, when and where to chip, and
where to deliver. We also want to make decisions regarding if and where a terminal
should be opened. In the example, we have three existing heating plants and three
candidate locations for a terminal. Another important input parameter is the available
wood from different species; these data are generated by using a GIS tool based on
data from the Norwegian government. The costs incurred are production costs for
felling, transportation costs, chipping costs, and costs related to storage. Sales
amounts to heating plants are measured in energy output of delivered chips (not
volume). We do not include rental costs for the terminal areas. In negotiations, profit
can be used as a guideline for the forest owners to decide how much they are willing
to pay in rent for a terminal. The objective function is to maximize total profit.

We want to decide timing and area for felling, when and where to chip, and
where to deliver. We also want to make a decision on if and where a terminal
should be opened. In the example we have three existing heating plants and three
candidate locations for a terminal. Another important input parameter is available
wood of different species, this data is generated by the use of a GIS tool based on
data from the Norwegian government. The costs incurred are production costs for
felling, transportation costs, chipping costs, costs related to terminal and costs
related to storage. Sales amounts to heating plants are measured in energy output of
delivered chips (not volume). The objective function is to maximize total profit.

In this example case, we use all of the extensions presented in Sect. 4: we have
multiple terminals to choose from (4.1), the wood or chips need drying before they
can be sent to the heat plants (4.2), and we have one mobile chipper whose location
and movement have to be tracked (4.3). For initial storage levels, we use the
‘steady-state’ formulation with initial levels equal to the end-of-horizon levels,
minus some losses.
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In addition, we added extra constraints to prohibit harvesting, drying and
chipping around a closed terminal. In the core model, the storage constraints (6)
allow flow of products through a storage node, even if the node is closed. In our
particular case, this was not realistic, so we added the following constraints for the
storage nodes at terminals:

Do Ftmept < Mg Ty
neunN:
(n',n) € oA

where the constants M,, . ,, are upper bounds on the left-hand side sums, ensuring
that the constraints are inactive when z,, = 1. Note that this type of ‘big-M con-
straints’ is known to lead to bad LP relaxation, especially with large values of the
constants. It is therefore advisable to find as tight upper bounds of the left-hand
sides as possible. Note that in our case, it is actually possible to avoid the ‘big-M
formulation’ of these constraints altogether, though at the cost of more changes to
the model.

The time perspective of the example case is one year, with each time period
being a month in length. The heat plants’ demand varies throughout the year. We do
not require the demand to be fully satisfied, as there are other sources from which
the heat plants can buy their fuel.

5.1.1 Numerical Results

The example case has been tested imposing how many of the three potential ter-
minal locations should be opened. The differences between opening one, two, and
three terminals were then been analyzed and compared. Solution times for the three
cases were, respectively, 7, 8, and 31 s. Most of the complexity comes from the
binary variables used for tracking the mobile chippers—without them, the model
solves much quicker.

In the case where we allow only one terminal to be opened, the model uses the
one at Aspaya. Looking at the map in Fig. 2, this may be surprising, as one could
expect the middle terminal (Malo) to be preferred. This, however, can be explained
by the topology of the Norwegian west coast. Because of the fjords, the shortest
way from Malo to Tingvoll passes by both Arg and Aspeya, and to @rsta by Are
and Hahjem.

In all the cases, the terminals are used only for storing chips. In other words, all
drying and chipping is done in the forest area adjacent to the terminals. This is due
to the fact that the disadvantages (higher costs and losses) of forest storage and
chipping are more than compensated by lower transportation costs of chips versus
whole trees—a finding that is in concordance with Kanzian et al. (2009).

The numerical results are summarized in Table 2. There, we can see that having
two terminals increases the expected profit by 274 thousand NOK, due to decreases
in transportation costs. This value should then be compared to the cost of opening
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Table 2 Summary of results  Nymper of terminals 1 2 3
f th i Sect. 5.1. All
o Hhe case o Se¢ Revenues 11,020 | 11,020 |11211
financial values are in
thousand NOK Transp cost 1,572 1,296 1,271
Profit 4,276 4,550 4,642
Total consumption [MWh] 40 40 41

Avg. demand satisfaction 806 % |80.6% |932 %
Cost increase for 100 % sat. 0.77 % 0.19 % 0.06 %
Value of extra terminal - 274 92

the extra terminal. For three terminals, the advantage of the extra terminal decreases
to 92 thousand NOK.

While the optimal strategy with one and two open terminals is to satisfy only
80.6 % of the energy demand at the three heat plants (on average), the extra costs of
satisfying all off the demand are very low. It can therefore be expected that, in
practice, one would aim to satisfy all demand. This would decrease the plant
operators’ incentives to look for alternative fuel sources giving competitors access
to the region. For this reason, we assume 100 % demand satisfaction in the fol-
lowing figures.

Figure 4 presents the storage levels of the final product (chips) at the terminal
and heat plant storages in the case with full demand satisfaction. The graph for the
results with one open terminal is on the left, two in the middle, and three to the
right. We can see that there is a big difference between one and two open terminals.
Having the extra terminal allows for more storage to build up, which then leads to a
decrease in transportation costs, and therefore higher profit. Common to all of the
three cases is the buildup of storage during the fall, caused by the fact that the wood
has to first dry during the summer.

Finally, Fig. 5 presents the flow of chips through storage at the heat plants, for
the case of three open terminals and full demand satisfaction. In addition, this figure
shows chipping activity at and around the terminals.

We can see that even with all three terminals open, only the heat plant at
Tingvoll gets its supply solely from the closest terminal; the Qrsta plant uses two
terminals and the Arg plant, being in the middle, gets supplied from all three. This

6,000 6,000 6,000
4,000 4,000 4,000
2,000 2,000 2,000
0 0 7 0

1234567 89101112 123456789101112 123456789101112

[ZZZ1 Malo ] Héhjem =] Aspgya 1 Arg [ Tingvoll ] @rsta

Fig. 4 Storage levels of chips at the heat plants and terminals
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Fig. 5 Flow of chips through the storage at the heat plants, plus the chip production, per month.
The negative values in the first three charts denote the flow of chips to the plant (i.e. consumption)

is caused by the fact that we only have one mobile chipper, combined with limited
storage volume at both terminals and heat plants.

5.2 Miscanthus Transformation Plant

Miscanthus is a perennial grass that is increasingly being used for bioenergy pur-
poses. We consider a miscanthus transformation plant located in the Burgundy
region of France. The plant previously produced pellets from sugar beets; it now
produces pellets from perennial grasses and wood.

Miscanthus is harvested in March and April with three possible options: har-
vesting and chipping to small chips (2-3 cm) transported directly to the plant, or
harvesting and baling with 8—10 cm strands or with 20-30 cm strands. The small
chips are compressed, packed, and sold in bags for use in gardening (mulching).
The bales can be stored locally at the farmer’s location and transported to the plant
as needed. All bales should have been picked up by the end of July to make room
for autumn crops. The bales with short strands, also called baled chips, can be used
for pellet production and animal bedding, as well as for energy purposes. Bales with
long strands are only used for pellet production. Due to the smaller strands,



BLOMST—An Optimization Model for the Bioenergy Supply Chain 61

Farmer locations Plant locations

Harvest and - Storage

chipping Bagging > (bags)
Miscanthus \ N Harvest and Storage Storage Sale
field . baling,short (farmer) (plant) (bags)

Harvest and Milling and

baling,long pelletizing Sale .

: (baled chips)
. Y
e mliscanthus bales Storage Sale
chips » bags (pellets) |~ “7 (pelletes)

— baled chips ---» pellets

Fig. 6 Structure of the flow of miscanthus

producing baled chips will incur greater losses both during baling and later han-
dling, but provides flexibility due to multiple sales options. Each harvesting option
is modeled as a separate transformation node, see Fig. 6. We do not consider drying
explicitly in the model as miscanthus is only harvested when moisture levels are
acceptably low.

We consider a case based on current fields planted with miscanthus using
estimated yields for mature crops (Rizzo et al. 2014) and increased storage capacity
compared to the existing state. To illustrate the value of a stochastic model, we
consider a situation where the demand of pellets is uncertain. This uncertainty is
revealed after harvesting decisions have been made, with demand at the expected
level, or 20 % higher or lower than that level, with probabilities 0.4, 0.3, and 0.3,
respectively. This is an example of a two-stage stochastic programming problem,
where the first-stage decisions (how to harvest) are based only on the data available
at that time. Table 3 gives a summary of the test case characteristics; note that
pellets sell at a slightly higher price than bagged and baled chips. We use a
profit-maximizing objective similar to Eq. (11a)-(11s); we have twelve periods,
corresponding to a monthly granularity and we use a cyclic storage behavior.

We start by comparing solutions of the stochastic and deterministic versions of
the model, where the latter uses expected values for the stochastic parameter, as
presented in the left chart of Fig. 7. There, we can see that the results are quite
intuitive: the deterministic model produces more bales (long strands) due to smaller
losses compared to baled chips (short strands). The stochastic model, on the other
hand, produces more baled chips, because these can be used to produce pellets
(albeit more expensive than using bales with long strands), and thus compensates
for the uncertainty of the pellets’ demand.

We proceed by comparing how the two solutions fare in the stochastic envi-
ronment. To do this, we solve the stochastic model with the first-stage decisions
(production variables) fixed to the solution of the deterministic model, and compare



62 M. Kaut et al.

Table 3 Test case characteristics

Production: Producers 60 farmer locations
Yield 10-18 t“"/ha
Total area 320 ha
Harvesting: Chipping Cost €6.7 ™, loss 5 %
Baling, long Cost €29.2 /td’“, loss 5 %
Baling, short Cost €29.2 /tdm, loss 10 %
Transport: Distances Road distances based on OpenStreetMap data
Cost €0.4-1.2 /1™ km
Storage: Capacity Plant 6720 m>
Cost No storage cost or loss is considered
Sales: Chips Max 100 t*™ /month, price €75 /4m
Baled chips Max 200 t*™ /month, price €75 /™
Pellets Max 300 t*™ /month, price €85 /ti™

the results to the optimal solution of the stochastic model.” The results of this
comparison are in the right chart of Fig. 7. We can see that the deterministic
solution fares better in the mean-value and high-demand scenario, but suffers in the
low-demand scenario, so it is worse on average. Again, this is due to its higher use
of the cheaper, yet inflexible, bales. This can be seen explicitly in Fig. 8, which
shows negligible differences in the sold amounts in the first two scenarios, but
higher sales of baled chips for the stochastic solution in the last, low-demand,
scenario. Again, this shows that the stochastic solution covers part of the pellets’
demand in the first two scenarios using baled chips (causing smaller profits in these
two scenarios), which gives it the opportunity to sell more when the demand for
pellets is low. In other words, the baled chips are used as a buffer against uncer-
tainty in pellets demand.

Finally, we compute the value of stochastic solution (VSS, see Birge and
Louveaux 1997), given as the difference between the expected profit of using the
optimal stochastic and deterministic solution. This is the difference between the last
two columns shown in the right chart of Fig. 7:

VSS =€116902 —€ 114 666 = €2236. (16)

This means that in this case, the stochastic solution adds only about 2 % to the
deterministic one. This is mainly because we have only one stochastic parameter in
the model (the demand of pellets). If we let more of the parameters (other demands
and prices) be stochastic, the stochasticity would have a higher impact and the value

3In our case, the model becomes infeasible because in the low-demand scenarios, we are left with
more unsold products than we have storage for. For this reason, we have added additional variables
that allow ‘throwing away' products (with neither cost nor income). Obviously, these variables are
all zero in the optimal stochastic solution.
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Fig. 7 Results of the miscanthus case using the deterministic and stochastic solutions are
presented. The left chart displays the transformed quantities of harvested miscanthus. The right
chart displays the expected profit of the two solutions when evaluated on the scenario tree
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Fig. 8 Sold amounts are presented per scenario. The left column in each set represents the
deterministic solution; the right column represents the stochastic solution

of stochastic solution would increase. On the other hand, it would make interpre-
tation of the results significantly more complicated.

Let us go back to the second value in (16), that is, the expected value of using
the expected-value solution (EEV) and compare it to the objective value of the
deterministic model, which is €117467. This shows that if we ignore the uncertainty
and solve the deterministic model, the reported profit is an over-estimation of the
actual profit in the uncertain world (this is a known, and general, observation). It is
also interesting to note that the expected profit of the stochastic solution is very
close to this figure, showing that its flexibility can almost compensate for the
uncertainty.

5.3 Adding More Scenarios

So far, we have only tested the stochastic formulations with three scenarios. While
this allowed us to examine the difference between scenario solutions, one needs
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zzgesée‘ctRSGS;ﬂ;Zroiigleer:rise #sc. obj. value VSS #variables sol. time
number of séenarios 117.5 - 6437 0.3
3 116.9 22 12773 0.4
10 116.4 2.0 34949 0.8
30 116.1 1.8 98309 22
100 116.0 1.8 320069 7.7
300 116.0 1.8 953669 28.0
1000 1159 1.8 3171269 206.7

Objective values and the VSS are in thousand Euro, while the
solution time is in seconds and includes also the time to build the
model

more scenarios to obtain reliable results. To test how many, we have solved the
same problem with varying number of scenarios. To keep the model consistent with
the three-scenario case, we have used normal distribution with the mean and var-
iance computed from the three scenarios.

The results of the test are presented in Table 4. There, we can see that both the
objective value and VSS stabilize at about hundred scenarios. Furthermore, we can
see that the case with one thousand scenarios takes three and a half minutes to
solve; the time is equally split between building the model and solving it.

6 Concluding Remarks

We present a new, generic optimization model for strategic and tactical planning of
the biomass to bioenergy supply chain under uncertainty. The model structure is
flexible and capable of representing relevant characteristics and issues related to the
biomass-bioenergy supply chain, including technological process details, capacity
limitations in multiple units of measurement, time variability in supply and demand,
and uncertainty in virtually all aspects. Two cases of different supply chains
illustrate how the model can be parameterized for different types of analysis, and
give insight in the effects of uncertainty on optimal decisions.

The model presented can be used by actors in all parts of the supply chain
considered. It can improve the decision making processes by giving results and
enabling analysis of different possibilities much faster than traditional planning.
Integrated in the companies’ software this can be a powerful tool for planners and
decision makers in an industry with high competition and tight margins.

The flexibility of the model opens for easy expansion and improvement of the
model. More details about different stages in the model or tailor-made setups for
different companies are examples of likely requests from the industry that can be
included. Further development can make the model even more powerful and the
value of using the model can be increased, making the bioenergy industry more
competitive.
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