
Chapter 2
The Irregularity Strength of a Graph

Throughout Chaps. 2–7, we will be concerned with connected graphs G of order
n � 3 and size m and an unrestricted edge coloring of G, that is, no condition is
placed on the manner in which colors are assigned to the edges of G.

The unrestricted edge colorings inducing vertex colorings that have attracted the
most attention are those where the vertex colorings are either vertex-distinguishing
or neighbor-distinguishing. In this chapter, we consider a particular example of the
first of these.

A nontrivial graph has been called irregular if its vertices have distinct degrees.
It is well known that there is no such graph; that is, no graph is irregular. This
observation led to a concept introduced by Gary Chartrand at the 250th Anniversary
of Graph Theory Conference held at Indiana University-Purdue University Fort
Wayne in 1986.

For a connected graph G, a weighting w of G is an assignment of numbers
(usually positive integers) to the edges of G, where w.e/ denotes the weight of an
edge e of G. This then converts G into a weighted graph in which the (weighted)
degree of a vertex v is defined as the sum of the weights of the edges incident with v.
A weighted graph G is then irregular if the vertices of G have distinct degrees. Later
this concept was viewed in another setting.

2.1 Sum-Defined Vertex Colorings: Irregularity Strength

Rather than consider connected graphs G of order at least 3 whose edges are
assigned weights, resulting in irregular weighted graphs, we can view this as vertex-
distinguishing edge colorings of G where the induced vertex coloring is sum-defined
and where then the vertices of G have distinct colors. Such vertex colorings are also
referred to as rainbow vertex colorings.

© Ping Zhang 2015
P. Zhang, Color-Induced Graph Colorings, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-20394-2_2

5



6 2 The Irregularity Strength of a Graph

We now formally define such vertex-distinguishing edge colorings. Let N denote
the set of positive integers and let Ev denote the set of edges incident with a vertex v

in a graph G. An unrestricted edge coloring c W E.G/ ! N induces a vertex coloring
c0 W V.G/ ! N, defined by

c0.v/ D
X

e2Ev

c.e/ for each vertex v of G: (2.1)

Proposition 2.1. Let G be a nontrivial connected graph and let c W E.G/ ! N be
an edge coloring of G, where c0 W V.G/ ! N is the induced vertex coloring defined
in (2.1). Then there exists an even number of vertices of odd color.

Proof. Let E.G/ D fe1; e2; : : : ; emg. Since

X

v2V.G/

c0.v/ D 2

mX

iD1

c.ei/

is even, there exists an even number of vertices of odd color. �

While no edge coloring of the graph K2 can induce a rainbow vertex coloring
defined in this manner, there is a vertex-distinguishing edge coloring for every
connected graph G of order 3 or more. To see this, let E.G/ D fe1; e2; : : : ; emg
where then m � 2 and let c be the edge coloring of G defined by c.ei/ D 2i�1 for
1 � i � m. Since no two vertices are incident with the same set of edges, c induces
a rainbow vertex coloring. This edge coloring shows that there is always a vertex-
distinguishing edge coloring of a connected graph of size m � 2 where the largest
color used is 2m�1. In general, there exist vertex-distinguishing edge colorings of a
graph of size m whose largest color is considerably less than 2m�1.

For a connected graph G of size m � 2, the minimum of the largest colors
used among the vertex-distinguishing edge colorings of G is called the irregularity
strength of G and is denoted by s.G/. (The strength of a multigraph M is the
maximum number of parallel edges joining two vertices of M.) Therefore, for a
connected graph G of order at least 3, there exists an edge coloring c W E.G/ !
Œk� D f1; 2; : : : ; kg for every integer k with k � s.G/ such that the induced (sum-
defined) vertex coloring c0 is vertex-distinguishing but there is no such edge coloring
c W E.G/ ! Œk� with this property for any integer k with 1 � k < s.G/.

Since no nontrivial graph is irregular, it follows that every connected graph of
order at least 3 must have irregularity strength at least 2. It is well known that there
is exactly one connected graph Gn of order n for each n � 2 containing exactly two
vertices having the same degree. All of these graphs have irregularity strength 2.

Proposition 2.2. If Gn is the unique connected graph of order n � 3 containing
exactly two vertices of equal degree, then s.Gn/ D 2.

Proof. As mentioned above, s.Gn/ � 2 for every integer n � 2. Each such graph Gn

can be described as having vertex set V.Gn/ D fv1; v2; : : : ; vng where vivj 2 E.Gn/

if and only if i C j � n C 1. Consequently,
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deg vi D
8
<

:
n � i if 1 � i � dn=2e
n C 1 � i if dn=2e C 1 � i � n.

(2.2)

So deg vd n
2 e D deg vd n

2 eC1 D bn=2c. Let c be the edge coloring of Gn in which
each edge is assigned the color 2 except for v1vd n

2 eC1, which is colored 1. Then

c0.vi/ D
8
<

:
2 deg vi if i ¤ 1; dn=2e C 1

2 deg vi � 1 if i D 1; dn=2e C 1.

Since c0 is vertex-distinguishing, s.G/ � 2 and so s.G/ D 2. �

To show that every complete graph of order n � 3 has irregularity strength 3,
we first make an observation concerning the irregularity strength of every regular
graph.

Proposition 2.3. The irregularity strength of every regular graph of order 3 or
more is at least 3.

Proof. Suppose that there exists an edge coloring of a regular graph G of order at
least 3 with the colors 1 and 2 and that H is the spanning subgraph of G whose edges
are color 1. Then H has two vertices u and v of equal degree. Since u and v have the
same induced color in G, it follows that s.G/ � 3. �

Theorem 2.4 ([24]). For each integer n � 3, s.Kn/ D 3.

Proof. By Proposition 2.3, it follows that s.Kn/ � 3. To establish the inequality
s.Kn/ � 3, we show that there is a vertex-distinguishing edge coloring of Kn with
the colors 1, 2 and 3. Since the edge coloring of K3 given in Fig. 2.1 has this property,
we may assume that n � 4.

Let Gn be the unique connected graph of order n � 4 having exactly two
vertices of equal degree that is described in the proof of Theorem 2.2. Thus
V.Gn/ D fv1; v2; : : : ; vng whose degrees are given in (2.2). As noted there, these
equal degrees are bn=2c. Assign the color 2 to the edges of Gn and the color 1 to the
edges of its complement Gn. The induced vertex colors c�.vi/ for this edge coloring
of Kn are then

c�.vi/ D 2 degGn
vi C .n � 1 � degGn

vi/ D n � 1 C degGn
vi (2.3)

Fig. 2.1 Showing s.K3/ D 3
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8 2 The Irregularity Strength of a Graph

for 1 � i � n. Next, increase the color of each of the edges v1v2; v1v3; : : : ; v1vd n
2 e

by 1, resulting in an edge coloring c using the colors 1, 2, 3. By (2.3), the induced
vertex coloring c0 of Kn satisfies

c0.vi/ D

8
ˆ̂<

ˆ̂:

.2n � 2/ C .dn=2e � 1/ if i D 1

n C degGn
vi if 2 � i � dn=2e

.n � 1/ C degGn
vi if dn=2e C 1 � i � n.

It then follows by (2.2) that

c0.vi/ D
(

2n C dn=2e � 3 if i D 1

2n � i if 2 � i � n.

Since the revised edge coloring c of Kn is vertex-distinguishing, s.Kn/ � 3 and so
s.Kn/ D 3. �

2.2 On the Irregularity Strength of Regular Graphs

We saw in Proposition 2.3 that the irregularity strength of every regular graph of
order 3 or more is at least 3 and in Theorem 2.4 that the irregularity strength of
the complete graph Kn, n � 3, an .n � 1/-regular graph, is 3. We now investigate
the irregularity strength of regular graphs in more detail. First, we present a lower
bound for the irregularity strength of a graph G in terms of the number of vertices
of a specific degree in G.

Proposition 2.5 ([24]). Let G be a connected graph of order n � 3 with minimum
degree ı.G/ and maximum degree �.G/ containing ni vertices of degree i for each
integer i with ı.G/ � i � �.G/. Then

s.G/ � max

�
ni � 1

i
C 1 W ı.G/ � i � �.G/

�
:

Proof. Suppose that s.G/ D s. Let there be given a vertex-distinguishing edge
coloring of G with the colors 1; 2; : : : ; s and let v 2 V.G/ where deg v D i. Then
the induced vertex color c0.v/ satisfies i � c0.v/ � si. Hence each vertex of degree i
has one of the si � i C 1 D i.s � 1/ C 1 induced colors in the set fi; i C 1; : : : ; sig
and so ni � i.s � 1/ C 1. Therefore,

s.G/ D s � ni � 1

i
C 1

for each i with ı.G/ � i � �.G/. �

If G is a regular graph, then Proposition 2.5 has the following corollary.
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Corollary 2.6 ([24]). If G is a connected r-regular graph, r � 2, of order n � 3,
then

s.G/ � n � 1

r
C 1:

When n � 2 .mod 4/ or n � 3 .mod 4/, Corollary 2.6 can be improved a bit.

Corollary 2.7 ([24]). If G is a connected r-regular graph of order n � 3 where
n � 2 .mod 4/ or n � 3 .mod 4/, then

s.G/ >
n � 1

r
C 1:

Proof. Suppose that n � 2 .mod 4/ and assume, to the contrary, that s.G/ D s D
n�1

r C 1. Then there is a vertex-distinguishing edge coloring of G with the colors
1; 2; : : : ; s. Hence each induced vertex color is one of the sr � r C 1 colors r; r C
1; : : : ; sr. By assumption, n D sr � r C 1 and so the induced vertex colors are
precisely the n colors r; r C 1; : : : ; sr. However, n=2 of these colors are odd, that is,
G has an odd number of vertices of odd color, contradicting Proposition 2.1.

The argument when n � 3 .mod 4/ is similar. �

By Corollary 2.7, the irregularity strength of the Petersen graph P satisfies s.P/ >
10�1

3
C 1 D 4, that is, s.P/ � 5. Since the edge coloring of the Petersen graph with

the colors 1; 2; : : : ; 5 shown in Fig. 2.2 is vertex-distinguishing, s.P/ � 5 and so
s.P/ D 5.

Since, by Theorem 2.4, s.Kn/ D 3 for every integer n � 3, it follows that the
complete n-partite graph in which every partite set consists of a single vertex has
irregularity strength 3. We now see that this is also true when each partite set consists
of exactly two vertices. For each integer r � 2, we write Kr.2/ for the .2r�2/-regular
complete r-partite graph where each partite set consists of two vertices.

Theorem 2.8 ([52]). For each integer r � 2, s.Kr.2// D 3.

Fig. 2.2 An edge coloring of
the Petersen graph
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10 2 The Irregularity Strength of a Graph

Proof. Since it is easy to see that s.C4/ D 3 and K2.2/ D C4, we may assume that
r � 3. Let G D Kr.2/. Since G is a .2r � 2/-regular graph of order 2r, it follows
by Corollary 2.6 that s.G/ � 3. We show that s.G/ � 3 by describing a vertex-
distinguishing edge coloring c W E.G/ ! f1; 2; 3g.

Denote the partite sets of G by V1; V2; : : : ; Vr, where Vi D fxi; yig for 1 � i � r.
We now relabel the vertices of G by u1; u2; : : : ; un, where n D 2r, such that ui D xi

for 1 � i � r and unC1�i D yi for 1 � i � r. Let H be the spanning subgraph of G
where uiuj 2 E.H/ if 1 � i < j � n and i C j � n. Thus

degH ui D
8
<

:
2r � 1 � i if 1 � i � r

2r � i if r C 1 � i � n.
(2.4)

Thus degH u1 � degH u2 � � � � � degH un and degH ui D degH uiC1 only when
i D r. Next, we define an edge coloring c W E.G/ ! f1; 2; 3g of G by assigning the
color 1 to each edge of H and the color 3 to the remaining edges of G. The induced
vertex coloring c0 is then defined by

c0.ui/ D degH ui C 3.2r � 2 � degH ui/ D 6r � 6 � 2 degH ui

for 1 � i � n. Hence c0.u1/ � c0.u2/ � � � � � c0.un/ with equality only for c0.ur/

and c0.urC1/. In particular, c0.ur/ D c0.urC1/ D 4r � 4.
We now revise the edge coloring c by replacing the color 1 of u1ur by 2,

producing a new edge coloring c of G. The induced vertex coloring c0 then satisfies
the following

c0.ui/ D

8
ˆ̂<

ˆ̂:

2r � 1 if i D 1

6r � 6 � 2 degH ui if 2 � i � r � 1 or r C 1 � i � n

4r � 3 if i D r.

This is illustrated for K4.2/ in the following table.

u1; u2; : : : ; u8 x1 x2 x3 x4 y4 y3 y2 y1

degH ui 6 5 4 3 3 2 1 0

c0.ui/ 6 8 10 12 12 14 16 18

c0.ui/ 7 8 10 13 12 14 16 18

Since c is a vertex-distinguishing edge coloring, it follows that s.G/ � 3 and so
s.G/ D 3. �

Even though each complete multipartite graph in which every partite set consists
of exactly one vertex or every partite set consists of exactly two vertices has
irregularity strength 3, this is not the case if every partite set consists of exactly three
vertices, as we now illustrate with the graph K3;3. By Corollary 2.7, s.K3;3/ � 3.
Assume to the contrary that s.K3;3/ D 3. Then there is a vertex-distinguishing edge
coloring c of G D K3;3 with induced vertex coloring c0. Therefore, fc0.v/ W v 2
V.G/g � S D f3; 4; : : : ; 9g. Since the order of G is 6 and jSj D 7, every integer in
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S is a vertex color of G except for one color in S. Because S consists of four odd
integers and three even integers and every graph has an even number of vertices of
odd color (by Proposition 2.1), each of the integers 3; 5; 7; 9 is the color of exactly
one vertex of G. Suppose that c0.x/ D 3 and c0.y/ D 9. Then the three edges incident
with x are colored 1 and the three edges incident with y are colored 3. This implies
that x and y belong to the same partite set U of G. Thus each vertex belonging
to the other partite set W of G is incident with at least one edge colored 1 and at
least one edge colored 3. Thus, the colors of the three vertices in W are 5, 6 and 7.
Since the sum of the colors of the three vertices of W is 18, the the sum of the
colors of the three vertices of U is also 18, which implies that the colors of the three
vertices in U are 3, 6 and 9. This is impossible, however, since there is a vertex of
W colored 6. Therefore, s.K3;3/ � 4. We now show that not only s.K3;3/ D 4 but
provide information about the value of s.Kr;r/ for every integer r � 2.

For two disjoint subsets A and B of the vertex set of a graph G, let ŒA; B� denote
the set of edges joining a vertex of A and a vertex of B.

Theorem 2.9 ([24, 51]). For an integer r � 2,

s.Kr;r/ D
(

3 if r is even

4 if r is odd.

Proof. Denote the partite sets of G D Kr;r by

U D fu1; u2; : : : ; urg and W D fw1; w2; : : : ; wrg:

By Corollary 2.6, s.G/ � 3. Assume first that r is even. Then r D 2k for some
integer k. Define an edge coloring c W E.G/ ! f1; 2; 3g by

c.uiwj/ D

8
<̂

:̂

1 if j > i or i D j � k C 1

2 if i D j � k

3 if j < i.

Then the induced vertex coloring c0 satisfies the following

c0.ui/ D
(

r C .2i � 1/ if 1 � i � k

r � 2 C 2i if k C 1 � i � 2k

c0.wi/ D
(

3r C 1 � 2i if 1 � i � k

3r � 2i if k C 1 � i � 2k.

Consequently, c0 W V.G/ ! fr; r C 1; : : : ; 3r � 1g is vertex-distinguishing. The
colorings c and c0 are illustrated for K4;4 in Fig. 2.3. Since c is a vertex-distinguishing
edge coloring, it follows that s.G/ � 3 and so s.G/ D 3 if r is even.
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Fig. 2.3 An edge coloring
of K4;4
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Next, assume that r � 3 is odd. First, we show that s.G/ � 4. Assume, to the
contrary, that s.G/ D 3. Then there exists an edge coloring c W E.G/ ! f1; 2; 3g
such that c0 W V.G/ ! fr; r C 1; : : : ; 3rg D T is vertex-distinguishing. Since jTj D
2r C 1 and there is an even number of vertices of odd color, there is an even integer
t 2 T that is not the color of any vertex in G.

If 1 is subtracted from each edge color, then we obtain a vertex-distinguishing
edge coloring c W E.G/ ! f1; 2g such that c0 W V.G/ ! f0; 1; : : : ; 2rg. Hence the
odd color i D t � r is not the color of any vertex of G.

Let V.G/ D S [ L, where jSj D jLj D r, such that S is the set of vertices of
G having the smallest r colors and L is the set of vertices of G having the largest r
colors. Let

�.S; L/ D
X

e2ŒS;L�

c.e/;

UL D U \ L, WL D W \ L, a D jULj and b D jWLj. Then a C b D r. If x 2 UL,
then

P
e2Œfxg;WL� c.e/ � 2b; while if x 2 WL, then

P
e2Œfxg;UL� c.e/ � 2a. Therefore,

�.S; L/ �
X

x2UL

Œc0.x/ � 2b� C
X

x2WL

Œc0.x/ � 2a� D
"
X

x2L

c0.x/

#
� 4ab:

Since a C b D r and r is odd, the maximum value of ab is 1
4
.r2 � 1/. Hence

�.S; L/ �
"
X

x2L

c0.x/

#
� .r2 � 1/: (2.5)

We consider two cases, according to whether i � r or i � r C 2.

Case 1. i � r. Since fc0.x/ W x 2 Lg D fr C 1; r C 2; : : : ; 2rg, it follows by (2.5) that

�.S; L/ � .r C 1 C r C 2 C � � � C 2r/ � .r2 � 1/ D r2 C r C 2

2
: (2.6)
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On the other hand, fc0.x/ W x 2 Sg D f0; 1; 2; : : : ; rg � fig and the sum of these
colors is maximum when i D 1. Thus,

�.S; L/ � 0 C 2 C 3 C � � � C r D r2 C r � 2

2
;

which contradicts (2.6).
Case 2. i � r C 2. Then fc0.x/ W x 2 Lg D fr; r C 1; : : : ; 2rg � fig and the sum of

these colors is minimum when i D 2r � 1. It then follows by (2.5) that

�.S; L/ � Œr C .r C 1/ C � � � C .2r � 2/ C 2r� � .r2 � 1/ D r2 � r C 4

2
: (2.7)

On the other hand, fc0.x/ W x 2 Sg D f0; 1; 2; : : : ; r � 1g. Hence

�.S; L/ � 0 C 1 C 2 C � � � C .r � 1/ D r2 � r

2
;

which contradicts (2.7). Therefore, s.G/ � 4.
It remains to show that there is a vertex-distinguishing edge coloring c W E.G/ !
f1; 2; 3; 4g. Since r � 3 is odd, r D 2k C 1 for some positive integer k. Define an
edge coloring c W E.G/ ! f1; 2; 3; 4g by

c.uiwj/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1 if j > i and .i; j/ ¤ .k C 1; k C 2/

or i D j D k C 1

2 if i D j � k or .i; j/ D .k C 1; 2k C 1/

3 if i D j � k C 2

4 if j < i.

Then the induced vertex coloring c0 satisfies the following

c0.ui/ D
(

r � 2 C 3i if 1 � i � k C 1

r � 1 C 3i if k C 2 � i � 2k C 1

c0.wi/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

4r C 1 � 3i if 1 � i � k

4r � 3i if i D k C 1

4r C 2 � 3i if k C 2 � i � 2k

r C 3 if i D 2k C 1.

The vertex coloring c0 W V.G/ ! fr; r C 1; : : : ; 4rg is vertex-distinguishing. This
is illustrated in Fig. 2.4 for K5;5. Since c is a vertex-distinguishing edge coloring,
it follows that s.G/ � 4 and so s.G/ D 4 if r is odd. �
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Fig. 2.4 An edge coloring of K5;5

In [41], it was shown that if G is a regular complete k-partite graph where k � 3,
then s.G/ D 3. We now verify this statement by giving a proof along the same lines
as the proofs of Proposition 2.2 and Theorems 2.4 and 2.8.

Theorem 2.10. If G is a regular complete k-partite graph where k � 3, then

s.G/ D 3:

Proof. Let G D Kk.r/ where k � 3. Thus G is a .k � 1/r-regular graph of order kr.
By Proposition 2.3, s.G/ � 3. Thus, it remains to show that G has a vertex-
distinguishing edge coloring using the colors 1; 2; 3. Let V1; V2; : : : ; Vk denote the k
partite sets of G where

Vi D
n
v

.i/
1 ; v

.i/
2 ; : : : ; v.i/

r

o
for 1 � i � k:

First, suppose that r is even, say r D 2` for some positive integer `. We
now construct an ordered list L of the n vertices of G, separated into r blocks
B1; B2; : : : ; Br of k vertices each. The first block is B1 W v

.1/
1 ; v

.2/
1 ; : : : ; v

.k/
1 . In

general, for 1 � j � `, the block Bj is

Bj W v
.1/
j ; v

.2/
j ; : : : ; v

.k/
j : (2.8)

For ` C 1 � j � r, the block Bj is

Bj W v
.k/
j ; v

.k�1/
j ; : : : ; v

.2/
j ; v

.1/
j : (2.9)

Consequently, the list L is

L W B1; B2; : : : ; B`; B`C1; B`C2; : : : ; Br: (2.10)

We relabel the vertices of L as u1; u2; : : : ; un. Next, we construct a spanning
subgraph H of G as follows. For integers i and j with 1 � i < j � n, the vertex
ui is adjacent to uj in H if i C j � n C 1 and ui and uj do not belong to the same
partite set of G. Thus degH u1 � degH u2 � � � � � degH vn and degH ui D degH uiC1
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11
E1

E2

E3

E4

E5

u12

v u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
degH v 8 7 6 6 5 4 4 3 2 2 1 0
c′(v) 8 10 12 12 14 16 16 18 20 20 22 24
c′(v) 8 10 12 13 14 17 16 18 20 21 22 23

Fig. 2.5 Constructing the graph H in K3.4/

only when i < n and i � 0 .mod k/. For G D K3.4/, the edge set [5
iD1E5 of the

graph H is shown in Fig. 2.5 where Ei D fuiuj 2 E.G/ W i C j � 13g for 1 � i � 5.
First, we define an edge coloring c W E.G/ ! f1; 3g of G by assigning the color 1

to each edge of H and the color 3 to each edge in G � E.H/. The induced vertex
coloring c0 W V.G/ ! N satisfies the following:

(1) c0.ui/ is even for all i (1 � i � n),
(2) c0.u1/ � c0.u2/ � � � � � c0.un/ and
(3) c0.ui/ D c0.uiC1/ only when i < n and i � 0 .mod k/.

We now revise the edge coloring c W E.G/ ! f1; 3g by constructing a new edge
coloring c W E.G/ ! f1; 2; 3g as follows:

c.e/ D

8
ˆ̂<

ˆ̂:

c.e/ C 1 if e D u.j�1/kC1ujk, j even, 2 � j � `,

c.e/ � 1 if e D u.j�1/kC1ujk, j even, ` C 1 � j � 2`

c.e/ otherwise.
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Then the induced vertex coloring c0 W V.G/ ! N satisfies

c0.v/ D

8
ˆ̂<

ˆ̂:

c0.v/ C 1 if v D u.j�1/kC1; ujk, j even, 2 � j � `

c0.v/ � 1 if v D u.j�1/kC1; ujk, j even, ` C 1 � j � 2`

c0.v/ otherwise.

It then follows by properties (1)–(3) of the vertex coloring c0 that c0 is vertex-
distinguishing. This is also illustrated for K3.4/ in Fig. 2.5.

Next, suppose that r � 3 is odd, say r D 2` C 1 for some positive integer `.
We now construct an ordered list L of the n vertices of G, separated into r blocks
B1; B2; : : : ; Br of k vertices each. For 1 � j � ` C 1, the block Bj is the one
in (2.8). For ` C 2 � j � r, the block Bj is the one in (2.9). Consequently, the
list L is as described in (2.10). Then relabel the vertices of L as u1; u2; : : : ; un.
We now construct a spanning subgraph H of G as in the case when r is even. That
is, for integers i and j with 1 � i < j � n, the vertex ui is adjacent to uj in H
if i C j � n C 1 and ui and uj do not belong to the same partite set of G. Thus
degH u1 � degH u2 � � � � � degH vn and degH ui D degH uiC1 only when either

(1) i � 0 .mod k/ and i ¤ n; .` C 1/k or (2) i D
ln

2

m
:

First, we define an edge coloring c W E.G/ ! f1; 3g of G by assigning the color 1
to each edge of H and the color 3 to each edge in G � E.H/. The induced vertex
coloring c0 W V.G/ ! N satisfies the following:

(1) c0.ui/ is odd for all i (1 � i � n) if k � 1 is odd and c0.ui/ is even (1 � i � n) if
k � 1 is even,

(2) c0.u1/ � c0.u2/ � � � � � c0.un/ and
(3) c0.ui/ D c0.uiC1/ only when either i � 0 .mod k/ and i ¤ n; .` C 1/k

or i D ˙
n
2

�
.

We now revise the edge coloring c W E.G/ ! f1; 3g by constructing a new edge
coloring c W E.G/ ! f1; 2; 3g as follows:

c.e/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

c.e/ C 1 if e D u`kC1ud n
2 e or

e D u.j�1/kC1ujk, j D ` � i, i odd, 1 � i � `�
c.e/ � 1 if e D u.j�1/kC1ujk, j D ` C i, i odd, 3 � i � ` C 1

c.e/ otherwise.

Then the induced vertex coloring c0 W V.G/ ! N satisfies

c0.v/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

c0.v/ C 1 if v D u`kC1, v D ud n
2 e or

v D u.j�1/kC1; ujk, j D ` � i, i odd, 1 � i � ` � 1

c0.v/ � 1 if v D u.j�1/kC1; ujk, j D ` C i, i odd, 3 � i � ` C 1

c0.v/ otherwise.
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It then follows by properties (1)–(3) of the vertex coloring c0 that c0 is vertex-
distinguishing. This is illustrated for K4.3/, K5.3/ and K4.5/ in the following three
tables. �

V.K4.3// u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

degH v 9 8 7 6 6 5 5 4 3 2 1 0

c0.v/ 9 11 13 15 15 17 17 19 21 23 25 27

c0.v/ 9 11 13 15 16 18 17 19 21 23 25 27

V.K5.3// u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

degH v 12 11 10 9 8 8 7 6 6 5 4 3 2 1 0

c0.v/ 12 14 16 18 20 20 22 24 24 26 28 30 32 34 36

c0.v/ 12 14 16 18 20 21 22 25 24 26 28 30 32 34 36

V.K4.5// u1; u2; u3; u4 u5; u6; u7; u8 u9; u10; u11; u12 u13; u14; u15; u16 u17; u18; u19; u20

degH v 15, 14, 13, 12 12, 11, 10, 9 9, 8, 8, 7 6, 5, 4, 3 3, 2, 1, 0

c0.v/ 15, 17, 19, 21 21, 23, 25, 27 27, 29, 29, 31 33, 35, 37, 39 39, 41, 43, 45

c0.v/ 16, 17, 19, 22 21, 23, 25, 27 28, 30, 29, 31 33, 35, 37, 39 38, 41, 43, 44

The following corollary then summarizes all results on the irregularity strength
of regular complete multipartite graphs.

Corollary 2.11. If G is a regular complete multipartite graph of order at least 3,
then

s.G/ D
�

4 if G D Kr;r where r � 3 is odd
3 otherwise.

2.3 The Irregularity Strength of Paths and Cycles

We now turn our attention to two other well-known classes of graphs, namely paths
and cycles. The next theorem gives the irregularity strength of all paths.

Theorem 2.12 ([24]). For an integer n � 3,

s.Pn/ D

8
<̂

:̂

n
2

if n � 0 .mod 4/

nC1
2

if n is odd
nC2

2
if n � 2 .mod 4/.

Proof. Let Pn D .v1; v2; : : : ; vn/ and ei D viviC1 for 1 � i � n � 1. First, we
establish a lower bound for s.Pn/. If c W E.Pn/ ! N is a vertex-distinguishing edge
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coloring with induced vertex coloring c0, then c0.vj/ � n for some vertex vj. If vj is
an end-vertex, say vj D v1, then c.e1/ � n; while if deg vj D 2, then either c.ej�1/ �
n=2 or c.ej/ � n=2. Thus s.Pn/ � n=2 when n is even and s.Pn/ � .n C 1/=2 when
n is odd. If n � 2 .mod 4/ and s.Pn/ D n=2, then fc0.vi/ W 1 � i � ng D Œn� and soPn

iD1 c0.vi/ is odd, contradicting Proposition 2.1. Hence s.Pn/ � .n C 2/=2 when
n � 2 .mod 4/.

Next, we show that each of these lower bounds for s.Pn/ is also an upper bound.
If n � 0 .mod 4/, then n D 4k for some positive integer k. Define the edge coloring
c W E.Pn/ ! N by

c.ei/ D
(

i if 1 � i � 2k

n � 2
�

i
2

˘
if 2k C 1 � i � n � 1.

For the induced vertex coloring c0, we then have

c0.vi/ D
(

2i � 1 if 1 � i � 2k

2n � 2i C 2 if 2k C 1 � i � n.

This is illustrated in Fig. 2.6 for n D 8. Since c is a vertex-distinguishing edge
coloring whose largest color is c.e2k/ D 2k D n=2, it follows that s.Pn/ � n=2 and
so s.Pn/ D n=2 if n � 0 .mod 4/.

Assume next that n is odd. Then n D 2k C 1 for some positive integer k. If n � 3

.mod 4/, then define the edge coloring c W E.Pn/ ! N by

c.ei/ D
(

i if 1 � i � k

n C 1 � 2
˙

i
2

�
if k C 1 � i � n � 1.

Then the induced vertex coloring c0 is given by

c0.vi/ D
(

2i � 1 if 1 � i � k C 1

2n � 2i C 2 if k C 2 � i � n.

If n � 1 .mod 4/, then define the edge coloring c W E.Pn/ ! N by

c.ei/ D

8
<̂

:̂

i if 1 � i � k � 1 or i D k C 1

k C 1 if i D k

n C 1 � 2
˙

i
2

�
if k C 2 � i � n � 1.

Then the induced vertex coloring c0 is given by

c0.vi/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2i � 1 if 1 � i � k � 1

2i if i D k; k C 1

2i � 3 if i D k C 2

2n � 2i C 2 if k C 3 � i � n.
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Fig. 2.6 Edge colorings of Pn in the proof of Theorem 2.12 for 6 � n � 10

This is illustrated in Fig. 2.6 for n D 7; 9. In each case, c is a vertex-distinguishing
edge coloring whose largest color is c.ekC1/ D .n C 1/=2, it follows that s.Pn/ �
.n C 1/=2 and so s.Pn/ D .n C 1/=2 when n is odd.

Finally, assume that n � 2 .mod 4/. Then n D 4kC2 for some positive integer k.
Define the edge coloring c W E.Pn/ ! N by

c.ei/ D

8
<̂

:̂

i if i D 1; 3 � � � ; 2k � 1

i C 2 if i D 2; 4 � � � ; 2k

n � 2
�

i
2

˘
if 2k C 1 � i � n � 1.

Then the induced vertex coloring c0 is given by

c0.vi/ D

8
<̂

:̂

1 if i D 1

2i C 1 if 2 � i � 2k

2n � 2i C 2 if 2k C 1 � i � n.

This is illustrated in Fig. 2.6 for n D 6; 10. Since c is a vertex-distinguishing edge
coloring having the largest color c.e2kC1/ D .n C 2/=2, it follows that s.Pn/ �
.n C 2/=2 and so s.Pn/ D .n C 2/=2 when n � 2 .mod 4/. �

The next theorem gives the irregularity strength of cycles (see [41]).

Theorem 2.13. For an integer n � 3,

s.Cn/ D

8
<̂

:̂

nC1
2

if n � 1 .mod 4/

nC2
2

if n is even
nC3

2
if n � 3 .mod 4/.

(2.11)
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Proof. By Corollaries 2.6 and 2.7, each of the expressions in (2.11) is a lower bound
for s.Cn/. Thus, it remains to verify that each of these expressions is also an upper
bound. Let Cn D .v1; v2; : : : ; vn; vnC1 D v1/ where n � 3.

We first consider the case when n � 1 .mod 4/. Then n D 4q C 1 for some
positive integer q and so nC1

2
D 2q C 1. Define an edge coloring c W E.C4qC1/ !

Œ2q C 1� by

c.viviC1/ D
(

2q C 1 � 2
�

i
2

˘
for 1 � i � 2q C 1

i � 2q for 2q C 2 � i � 4q C 1.

Then the induced vertex coloring c0 satisfies the following

c0.vi/ D
(

4q C 4 � 2i if 1 � i � 2q C 1

2i � 4q � 1 if 2q C 2 � i � 4q C 1.

This is illustrated in Fig. 2.7 for C9 and C13. Since c is a vertex-distinguishing edge
coloring whose largest color is 2q C 1, it follows that s.C4qC1/ � 2q C 1 and so
s.C4qC1/ D 2q C 1.

Next, we show that if n is even, the lower bound nC2
2

for s.Cn/ is also an upper
bound. Then n D 2k for some integer k � 2 and so nC2

2
D k C 1. Define an edge

coloring c W E.C2k/ ! Œk C 1� by considering two cases, according to whether k is
odd or k is even. If k is odd, then let

c.viviC1/ D

8
<̂

:̂

k C 1 � 2
�

i
2

˘
for 1 � i � k

k C 2 � 2
�

i
2

˘ D 1 for i D k C 1; k C 2

i C 1 � k for k C 3 � i � 2k

3

4
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Fig. 2.7 Edge colorings of C9 and C13
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Then the induced vertex coloring c0 satisfies the following

c0.vi/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

2k C 4 � 2i if 1 � i � k
3 if i D k C 1

2 if i D k C 2

5 if i D k C 3

2i � 2k C 1 if k C 4 � i � 2k.

This is illustrated in Fig. 2.8 for C10. If k is even, then let

c.viviC1/ D
(

k C 1 � 2
�

i
2

˘
for 1 � i � k

i C 1 � k for k C 1 � i � 2k

Then the induced vertex coloring c0 satisfies the following

c0.vi/ D
�

2k C 4 � 2i if 1 � i � k
2i � 2k C 1 if k C 1 � i � 2k.

This is illustrated in Fig. 2.8 for C12. Since c is a vertex-distinguishing edge coloring
whose largest color is k C 1, it follows that s.C2k/ � k C 1 and so s.C2k/ D k C 1.

Finally, we consider the case where n is odd and n � 3 .mod 4/. In this case,
n D 4q C 3 for some positive integer q. Define an edge coloring c W E.C4qC3/ !
Œ2q C 3� by

c.viviC1/ D

8
<̂

:̂

2q C 3 � 2
�

i
2

˘
for 1 � i � 2q C 3

i � .2q C 2/ for 2q C 4 � i � 4q C 2

2q C 3 for i D 4q C 3.



22 2 The Irregularity Strength of a Graph

C7 C11

5 5

2

1

1

3

3

7 7

5

5

3

3
1

1

2

3

4

10

8

6

24

3

7

14

12

10

8

6

42

3

7

5

11

Fig. 2.9 Edge colorings of C7 and C11

Then the induced vertex coloring c0 satisfies the following

c0.vi/ D

8
<̂

:̂

4q C 8 � 2i if 1 � i � 2q C 3

2i � 4q � 5 if 2q C 4 � i � 4q C 2

4q C 3 if i D 4q C 3.

This is illustrated in Fig. 2.9 for C7 and C11. Since c is a vertex-distinguishing edge
coloring whose largest color is 2q C 3, it follows that s.C4qC3/ � 2q C 3 and so
s.C4qC3/ D 2q C 3. �

2.4 Additional Bounds for the Irregularity Strength
of a Graph

A graph G is said to be factorable into the factors (spanning subgraphs of G)
F1; F2; : : : ; Ft if these factors are (pairwise) edge-disjoint and [t

iD1E.Fi/ D E.G/.
If G is factored into F1; F2; : : : ; Ft, then fF1; F2; : : : ; Ftg is called a factorization of
G. If a graph G has a factorization into two factors, one of which is regular, then the
irregularity strength of the other factor provides an upper bound for the irregularity
strength of G.

Proposition 2.14. If fF1; F2g is a factorization of a graph G where F2 is regular,
then s.G/ � s.F1/.

Proof. Suppose that s.F1/ D s and F2 is r-regular. Then there is a vertex-
distinguishing edge coloring c W E.F1/ ! f1; 2; : : : ; sg. Let c W E.G/ !
f1; 2; : : : ; sg be the edge coloring where

c.e/ D
�

c.e/ if e 2 E.F1/

1 if e 2 E.F2/.
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Fig. 2.10 Illustrating that the
inequality in Proposition 2.14
can be strict
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Fig. 2.11 Illustrating the equality in Proposition 2.14

Then c0.v/ D c0.v/ C r for every vertex v of G. Hence c is a vertex-distinguishing
edge coloring of G and so s.G/ � s.F1/. �

The inequality in Proposition 2.14 can be strict. For example, consider the graph
G of Fig. 2.10a. Thus, fP6; C6g is a factorization of G. By Theorem 2.12, s.P6/ D
6C2

2
D 4. The edge coloring of G in Fig. 2.10b shows that s.G/ � 3. If there was an

edge coloring of G with the colors in f1; 2g, then the vertex colors would belong to
the set f3; 4; 5; 6; 7; 8g. However, there must be an even number of vertices of odd
color by Proposition 2.1, a contradiction. Hence s.G/ � 3, implying that s.G/ D 3.

Equality in Proposition 2.14 is also possible. For example, consider the graph G
of Fig. 2.11a with the spanning subgraph H. Thus, fH; C6g is a factorization of G,
where the edges of H are drawn by bold lines in Fig. 2.11a. We show that s.G/ D
s.H/ D 3. First, we verify that s.G/ D 3. The edge coloring of G in Fig. 2.11b
shows that s.G/ � 3. If there was an edge coloring of G with the colors in f1; 2g,
then the set of vertex colors would be a subset of S D f4; 5; 6; 7; 8; 9; 10g. So only
one element in S is not a vertex color of G, necessarily an odd color. This implies
that 10 is the color of some vertex of G. So either u or v has all of its incident edges
colored 2, say u is colored 10. Since u is adjacent to all other vertices of G, every
vertex is incident with an edge colored 2. Thus, the colors of the vertices of degree 4
are 2C1C1C1 D 5, 2C2C1C1 D 6, 2C2C2C1 D 7 and 2C2C2C2 D 8.
Since 5 and 7 are two vertex colors, 9 is not a vertex color. Hence 4 must be the color
of v. Since deg v D 5, this is impossible. Hence s.G/ � 3, implying that s.G/ D 3.

Next, we show that s.H/ D 3. If s.H/ D 2, then for an edge coloring of H with
the colors in f1; 2g, the set of vertex colors of H is a subset of f2; 3; 4; 5; 6g. This is
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impossible since the order of H is 6. Thus, s.H/ � 3. Since the edge coloring of H
with colors 1; 2; 3 in Fig. 2.11c is vertex-distinguishing, it follows that s.H/ D 3.

In 1952, Dirac [27] obtained the first theoretical result dealing with Hamiltonian
graphs when he proved that if G is a graph of order n � 3 such that ı.G/ � n=2, then
G is Hamiltonian. The following is a consequence of Dirac’s theorem, Theorem 2.13
and Proposition 2.14.

Corollary 2.15 ([41]). If G is an r-regular graph of order n � 3 such that r � n=2,
then s.G/ � ˙

n
2

�C 1.

While the lower bounds for the irregularity strength of a graph G that we have
presented thus far have been expressed primarily in terms of the order of G and the
degrees of the vertices of G, the following lower bound is given in terms of the order
and the size of G.

Theorem 2.16. Let G be a connected graph of order n � 3 and size m. For each
integer k with 2 � k � �.G/,

s.G/ � kn � 2m
�k

2

� :

Proof. Let c be a vertex-distinguishing edge coloring of G with irregularity strength
s.G/ D s where c0 is the induced vertex coloring of G. For i D 1; 2; : : : ; �.G/, let
ni denote the number of vertices of degree i in G. For 2 � k � �.G/,

1 � n1 C 2 � n2 C � � � C .k � 1/nk�1 C k.n � n1 � n2 � � � � � nk�1/ D
�.G/X

iD1

ini D 2m:

Hence,

kn D .k � 1/n1 C .k � 2/n2 C � � � C 1 � nk�1 C 2m D
k�1X

jD1

 
jX

iD1

ini

!
C 2m:

For each integer j (1 � j � k � 1), the colors of the
Pj

iD1 ini vertices lie between 1

and js. Therefore,

jX

iD1

ini � js:

Thus,

kn D
k�1X

jD1

 
jX

iD1

ini

!
C 2m �

0

@
k�1X

jD1

.js/

1

A D s

 
k

2

!
C 2m
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and so

s D s.G/ � kn � 2m
�k

2

� ;

as desired. �

For k D 2 in Theorem 2.16, we have s.G/ � 2n � 2m. Since G is connected,
m � n � 1. If m D n � 1 (and so G is a tree), then s.G/ � 2, which, of course, we
already knew. If k D 3 in Theorem 2.16, we have s.G/ � 3n�2m

3
, while if k D 4 in

Theorem 2.16, we have s.G/ � 4n�2m
6

D 2n�m
3

. When G is a tree, 3n�2m
3

D nC2
3

is a
better bound for s.G/.

Corollary 2.17 ([24]). If T is a tree of order n � 3, then s.T/ � .n C 2/=3:

Following [24], we now see that the lower bound .n C 2/=3 for s.T/, where T is
a tree of order n � 3, cannot be improved in general by providing an infinite class
of trees T of order n � 3 for which s.T/ D .n C 2/=3.

For a positive integer q, let P4q�1 D .u1; u2; : : : ; u4q�1/ be a path of order
4q � 1. We attach two paths .u1; v1; w1/ and .u1; v2; w2/ of length 2 at u1. For
2 � i � 4q � 2, attach a path .ui; viC1; wiC1/ of length 2 at ui. In addition, attach
two paths .u4q�1; v4q; w4q/ and .u4q�1; v4qC1; w4qC1/ of length 2 at u4q�1. Denote
the resulting tree by Tq, which has order 12q C 1. The tree T2 is shown in Fig. 2.12.
By Corollary 2.17, s.Tq/ � .n C 2/=3 D .12q C 3/=3 D 4q C 1. It remains to show
that s.Tq/ � 4q C 1.

Define an edge coloring c W E.Tq/ ! Œ4q C 1� by c.viwi/ D i for 1 � i � 4q C 1,
c.u1v1/ D c.u4q�1v4qC1/ D 4q C 1 and c.uiviC1/ D 4q C 1 for 1 � i � 4q � 1. In
addition,

c.uiuiC1/ D
(

2q C ˙
i
2

�
for 1 � i � 2q C 1

2q C 1 C �
i
2

˘
for 2q C 2 � i � 4q � 2.

2 3 4 5 6 7

9 9 9 9 99999

5 5 6 6 7 8

8 9

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

1923 20 21 22 24 26

1

Fig. 2.12 An edge coloring of the tree T2
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This edge coloring c then induces the vertex coloring c0 W V.Tq/ ! N where

c0.wi/ D i for 1 � i � 4q C 1

c0.vi/ D 4q C 1 C i for 1 � i � 4q C 1

c0.ui/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

10q C 3 if i D 1

8q C 1 C i if 2 � i � 2q C 1

8q C 2 C i if 2q C 2 � i � 4q � 2

12q C 2 if i D 4q � 1.

This is illustrated in Fig. 2.12 for T2. Since c is a vertex-distinguishing edge coloring
whose largest color is 4q C 1, it follows that s.Tq/ � 4q C 1 and so s.Tq/ D 4q C 1.

If G is a unicyclic graph of order n and size m, then m D n. Letting k D 3 in
Theorem 2.16, we have the following corollary.

Corollary 2.18 ([24]). If G is a unicyclic graph of order n � 3, then s.G/ � n=3:

Next, we show that the lower bound n=3 for s.G/, where G is a unicyclic graph
of order n � 3, is sharp by providing an infinite class of unicyclic graphs G of order
n � 3 for which s.G/ D n=3.

For a positive integer q, let C D .u1; u2; : : : ; u4q; u4qC1 D u1/ be a cycle of
length 4q. At each vertex ui (1 � i � 4q), we attach a path .ui; vi; wi/ of length 2.
The resulting graph is a unicyclic graph G of order 12q. By Corollary 2.18, s.G/ �
12q=3 D 4q. To show that s.G/ � 4q, define an edge coloring c W E.G/ ! Œ4q� by

c.viwi/ D i for 1 � i � 4q

c.uivi/ D 4q for 1 � i � 4q

c.uiuiC1/ D
�

4q � �
i�1
2

˘
for 1 � i � 2q C 1

4q � �
i
2

˘
for 2q C 2 � i � 4q.

Then the induced vertex coloring c0 satisfies the following

c0.wi/ D i for 1 � i � 4q

c0.vi/ D 4q C i for 1 � i � 4q

c0.ui/ D

8
<̂

:̂

10q if i D 1

12q C 2 � i if 2 � i � 2q C 1

12q C 1 � i if 2q C 2 � i � 4q:

For q D 2, this graph is shown in Fig. 2.13. Since c is a vertex-distinguishing edge
coloring whose largest color is 4q, it follows that s.G/ � 4q and so s.G/ D 4q.

If G is a connected graphs of order n and size n C 1, then letting k D 4 in
Theorem 2.16 provides a lower bound for s.G/.
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Fig. 2.13 An edge coloring of a unicyclic graph G

Corollary 2.19. If G is a connected graph of order n � 3 and size n C 1, then

s.G/ � .n � 1/=3:

Here too, we show that the lower bound .n�1/=3 for the irregularity strength of a
connected graph of order n � 3 and size nC1, is sharp by providing an infinite class
of connected graphs G of order n � 3 and size n C 1 for which s.G/ D .n � 1/=3.

For a positive integer q, let H be the graph of order 4q C 1 and size 4q C 2

consisting of two .2q C 1/-cycles

.x; u1; u2; : : : ; u2q; x/ and .x; u2qC1; u2qC2; : : : ; u4q; x/:

At each vertex ui (1 � i � 4q) of H, we attach a path .ui; vi; wi/ of length 2. The
resulting graph is a connected graph G of order n D 12q C 1 and size 12q C 2. The
graph G is shown in Fig. 2.14 for q D 3. By Corollary 2.19,

s.G/ � .n � 1/=3 D 12q=3 D 4q:

It remains to show that s.G/ � 4q.
Define an edge coloring c W E.G/ ! Œ4q� by

c.viwi/ D i for 1 � i � 4q

c.uivi/ D 4q for 1 � i � 4q

c.xui/ D 4q for i D 1; 4q



28 2 The Irregularity Strength of a Graph

1

2 1

4

5
6 7

8

9

10

12

3

3

2 12
11

11

10

9

8
76

5

4

12

12
12 12 12

12

12

12121212

12

9 9

12
1211

11

10
10 8 8

7

76

1314

15

16

17 18 19 20

21

22

2324

3635
34

33
32 31 29 28

27

26
25

12

30

42

x

u7u6

u1 u12

Fig. 2.14 An edge coloring of a connected graph of size n C 1

c.xui/ D 3q for i D 2q; 2q C 1

c.uiuiC1/ D
8
<

:
4q � �

i
2

˘
for 1 � i � 2q � 1

4q � ˙
i
2

�
for 2q C 1 � i � 4q � 1:

Then the induced vertex coloring c0 satisfies the following

c0.wi/ D i for 1 � i � 4q

c0.vi/ D 4q C i for 1 � i � 4q

c0.ui/ D

8
<̂

:̂

12q C 1 � i if 1 � i � 2q

12q � i if 2q C 1 � i � 4q � 1.

10q if i D 4q

c0.x/ D 14q:

This is illustrated in Fig. 2.14 for q D 3. Since c is a vertex-distinguishing edge
coloring whose largest color is 4q, it follows that s.G/ � 4q and so s.G/ D 4q.

While the results presented on irregularity strength have either dealt with
formulas for the irregularity strength of certain classes of graphs or lower bounds,
we now present a number of upper bounds. Since the proofs for these results are
lengthy and do not provide additional insight into this topic, such results will be
stated without proofs.
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Theorem 2.20 ([3]). If G is a connected graph of order n � 4, then s.G/ � n � 1.

Since a connected graph G of order n � 3 and size m has irregularity strength m if
and only if G is a star and m D n�1 in this case, the upper bound in Theorem 2.20 is
sharp. Because the star of order n is the only tree whose irregularity strength is n�1,
there is an improved upper bound for other trees.

Theorem 2.21 ([3]). If T is a tree of order n � 4 that is not a star, then s.T/ � n�2.

Over the years, many research papers have dealt with the irregularity strength
of special classes of graphs. For example, the papers [38, 41, 42] deal with the
irregularity strength of regular graphs and [6, 13] concern trees. The papers [25, 40]
discuss the irregularity strength of dense graphs (those graphs of order n and size m
for which m=n is large). The irregularity strength of circulants and grids has been
studied in [11, 26], respectively. Graphs with irregularity strength 2 were studied
in [39].
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