Chapter 2
Lévy Processes and Lévy-Driven Queues

In classical queueing systems, there is the notion of customers (or work) arriving,
and subsequently being processed by the server. The class of Lévy processes, being
defined as processes with stationary and independent increments, covers processes
with highly non-regular trajectories (think for instance of Brownian motion). As a
consequence, it is not immediately clear how one should define a queue with Lévy
input. One of the goals of the present chapter is to introduce a sound notion of
Lévy-driven queues.

We do so by first providing an explicit definition of Lévy processes, and then
extending the classical definition of a queue to a notion that can be used for general
input processes as well (i.e. in principle any real-valued stochastic process can
serve as input). For more background, we refer the reader e.g. to Applebaum [11],
Asmussen [19], Kyprianou [146], and Sato [193].

In Section 2.1, as a first step we introduce notation, to be used throughout
this book, together with a number of fundamental properties. As mentioned in
Chapter 1, for the special case of one-sided jumps, the results are more explicit.
Notation related to such spectrally one-sided Lévy processes is given in Section 2.2;
this section also includes a number of frequently used Lévy processes. Another
important class of Lévy processes, that is, a-stable Lévy motions, is covered by
Section 2.3. Finally, in Section 2.4 we present the definition of Lévy-driven queues.

2.1 Infinitely Divisible Distributions, Lévy Processes

We say that a continuous-time real-valued stochastic process (X;), is a Lévy process
if it has stationary and independent increments, with Xo = 0 and cadlag sample
paths a.s. (cadlag meaning ‘continuous from right, limits from left’). The stationary
increments property entails that for given s the distribution of X,4; — X; is the same
irrespective of the value of ¢, whereas the independent increments property means
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8 2 Lévy Processes and Lévy-Driven Queues

that, for ¢ > 0, the increment X, — X; is independent of the history of the Lévy
process, that is, (X,,),<s.

The initial condition X, = 0 together with the stationary increments property
leads, for each ¢ > 0, to the equation

n

= it/n — X(i— ,
X; Z(Xt/n X(L l)t/n)

i=1

in which the increments X/, — X(;—1);/, are all distributed as X;/,. Moreover, by
virtue of the independent increments property, it follows that these increments are
also independent. We thus arrive at the following distributional equality, with X,(i)
i.i.d. copies of X;:

d - i
X =Y X Q2.1
i=1

for any n € N. In this way we see that, for any ¢, X; has an infinitely divisible
distribution. Indeed, let us recall that a random variable Z is infinitely divisible if
for any n € N there exist independent and identically distributed (i.i.d.) random
variables Z; ,,, . .., Z,, such that Z is distributed as an=1 Zy n; see e.g. De Finetti
[70]. Conversely, for each infinitely divisible random variable Z there exists a Lévy

process (X;),; such that X Lz This, for example, straightforwardly implies the
existence of a Lévy process with Poisson marginals: if Z has a Poisson distribution
with mean A, it is distributed as the sum of n independent Poisson random variables
with mean A /n. Other examples of infinitely divisible distributions are the normal
distribution, the negative binomial distribution, and the gamma distribution, as is
readily verified.

One can alternatively say that, for any value of ¢,

£/(s) := log e = tlog B! = 1£(s),

for s € R, where £(s) := log Ee™! is referred to as the so-called Lévy exponent.
This equality is a direct consequence of (2.1), as can be seen as follows. Fixing an
s € R, we find for any two integers m and n that &,,(s) = n&,/,(s) and &,(s) =
mé&1(s). Combining these relations, we obtain &,,/,(s) = (m/n) §(s) = (m/n) §(s),
and hence for all € Q it follows that & (s) = r£(s). By using a limiting argument,
it follows immediately that the right continuity of the Lévy process implies that
&(s) = t&(s) for any t € R. As a result, one could informally say that each Lévy
process can be associated with an infinitely divisible distribution, and vice versa.

It is immediately seen that the class of Lévy processes contains a number of
canonical stochastic processes. In the first place it can be concluded that the Poisson
process is Lévy. A Poisson process (X;), can be defined as follows: with Y,, i.i.d.
exponential random variables with mean A le (0, o0), we let X, have the value n
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if at the same time ) . _, Y,, < rand Zfr;ll Y,, > t. It is well known that X, has a

Poisson distribution with mean Az, and as a consequence,

- (A"
isX; __ isn _—A _ is
log Ee** = log (Z e ’T> = At(e” —1),
n=0

and hence (X;); is indeed Lévy (with Lévy exponent £(s) = A(e* — 1) for A > 0).
Likewise, we can show that Brownian motion without drift is Lévy; here £(s) =
—%azsz for 2 > 0. In Sections 2.2 and 2.3 we mention various other examples.

It is possible to characterize Lévy processes more specifically: it can be shown

that the Lévy exponent & (s) is necessarily of the form
1 .
E(s) = isd — Eszoz + / (€™ =1 —isxlyy <)) (dx), (2.2)
—0o0

where d € R, o > 0, and the spectral measure (or Lévy measure) I1(-), concentrated
on R\ {0}, satisfies

/ min{x?, 1317 (dx) < oo.
R

For a proof of this fundamental representation of Lévy processes (or, in fact, a
stronger version of it), called in the literature the Lévy—Khintchine formula, we refer
e.g. to Kyprianou [146, Chapter II].

The triplet (d, o2, 1) is commonly referred to as the characteristic triplet, as
it uniquely defines the underlying Lévy process: every Lévy process has its own
specific d, 02, and IT. Tt is noted that in some cases it is possible to extend the
domain of £(s) to (a subset of) C; we return to this issue in greater detail in
Section 2.2 when we speak about Lévy processes with one-sided jumps.

For obvious reasons, we call the first parameter of the characteristic triplet, d,
the deterministic drift, whereas the term %sza2 is often referred to as the Brownian
term. The third term in (2.2) corresponds to the jumps of the Lévy process by the
relation that the jumps of size x occur at intensity I7(dx). More precisely, for any
bounded interval M such that 0 ¢ M, the sum of the jumps of size within M in
the time interval [0, ¢) is distributed as a compound Poisson random variable with
intensity 7 f,, IT(dy) and the jump-size distribution

TT(dx) 1eenny
Sy Idy)

Thus, if the jumps are only in the upward (respectively, downward) direction, then
the support of IT is concentrated in (0, 0c0) (respectively, (—oo, 0)). The process
(X;); is of bounded variation if and only if both 0 = 0 and f_ll |x|11(dx) < oo; we
do not provide details on this, but refer to Kyprianou [146, Section 2.6.1].
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Fig. 2.1 Spectrally positive case: Laplace exponent and its inverse

2.2 Spectrally One-Sided Lévy Processes

Let (X;)r>0 be a Lévy process, as introduced in Section 2.1. Unless stated otherwise,
we assume throughout the book that the ‘mean drift” EX; of the Lévy process is
negative, so as to make sure that the corresponding workload process (to be formally
introduced in Section 2.4) is stable, thus guaranteeing the existence of a proper
stationary workload distribution.

In this monograph, two special cases will often be considered in great detail, that
is, spectrally positive and spectrally negative Lévy processes.

The Lévy process has no negative jumps—Here the Lévy process (X;);>0 has no
negative jumps, or is spectrally positive; in the sequel this is denoted by X € .7;.
In this case the spectral measure I1(+) is concentrated on (0, 00).

It turns out, in this case, to be convenient to work with the Laplace exponent,
given by the function ¢(a) := log Ee ®X!, rather than the Lévy exponent £(s). It
is a consequence of the fact that there are only positive jumps that this Laplace
exponent is well defined for all ¢ > 0.

It follows immediately from Holder’s inequality that the Laplace exponent ¢(-)
is convex on [0, 00); due to the assumption EX; < 0, and observing that ¢(-) has
slope ¢’'(0) = —EX, at the origin, we conclude that ¢(-) is increasing on [0, o),
and hence the inverse () of ¢(:) is well defined on [0, c0); see Fig.2.1. In the
sequel we also require that X, is not a subordinator, that is, a monotone process;
this means that X; has probability mass on the negative half-line, which implies that
limg— o0 @) = 00.

The Lévy process has no positive jumps—In this case the Lévy process (X;);>0
has no positive jumps, or is spectrally negative; throughout this book we denote this
by X € .#_. Now the spectral measure I1(-) is concentrated on (—oo, 0). In this
case, we define the cumulant ®(B) := log Ee#X1. This function is well defined and
finite for any 8 > 0 due to the fact that there are no positive jumps. We now rule out
that (X,), has decreasing sample paths a.s. Recalling that ®'(0) = EX; < 0, we see
that @(B) is not a bijection on [0, 00); we define the right inverse through

U(q) :=sup{f > 0: D(B) = q}.
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Fig. 2.2 Spectrally negative case: the cumulant and its right inverse

Note that o := ¥(0) > 0; this parameter plays a crucial role when analyzing
queues with spectrally negative input; see Fig. 2.2.

The Lévy exponent (or the Laplace exponent for X € ., or cumulant for X €
#_) contains all information about X;, and hence, due to the infinite divisibility,
also about the whole process (X;),. For instance, it enables the computation of all
moments (provided they exist), as follows. For example, for X € .7, we have
EX, = —¢’(0) t and Var X; = ¢”(0)  (given that these derivatives are well defined).
It is also noted that

’ g " — 52 2
©'(0) =—d /[Loo)xl'[(dx), 0" (0) =0 +/(0’oo)x1'[(dx),

whereas, forn = 3,4, ...,

6™(0) = (1" / VIT(d).

(0,00)

We now treat in greater detail a number of examples of spectrally one-sided Lévy
processes.

(1) Brownian motion with drift. This process has sample paths that are continuous
a.s., and is therefore both spectrally positive and spectrally negative. In this
case X, has a normal distribution with mean dt and variance o¢. It is readily
verified that, with U denoting a standard normal random variable, Ee X =
e—athe—a I‘UU’ and

Ee*V= /oo e_a"—l e dy = /2 /oo L e’ 2qy = /2,
—00 V2w —oco 21
It is concluded that log Ee™* = 1(—ad + 1o?0?). We write X € Bm(d, 0?)

when ¢(a) = —ad + %05202. The mean drift of this process is d, which is
assumed to be negative (to make sure that EX; < 0).
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Compound Poisson with drift. This process corresponds to i.i.d. jobs arriving
according to a Poisson process, from which a deterministic drift is subtracted.
More concretely, we let the jobs By, By, ... be i.i.d. positive-valued random
variables with Laplace transform b(c) := Ee~*F and (N;); be a Poisson process
of rate A (independent of the job sizes). Then the time-changed random walk,
with the parameter r assumed to be positive,

Ny
X, = ZB,- —rt
i=1

(following the convention that Z?:l B; := 0) is a spectrally positive Lévy
process which we call a compound Poisson process with drift. We write
X € CP(r, A, b(+)).

It can be verified that

Be = 3 (bl))'e ™ exp (tra— 1+ 2.

n=0

As a consequence, ¢(«) = ra — A + Ab(«). The mean drift of this process is
EX; = AEB — r, which we assume to be negative to ensure stability.

Clearly, if the depletion rate r were negative, and the jobs were i.i.d. samples
from a non-positive distribution (i.e. the jumps were downward), then the
resulting process would be spectrally negative.

It is instructive to express the compound Poisson process in terms of a triplet
(d, 0, IT). Obviously, because of the lack of a Brownian term, o> = 0. In
addition, for the Lévy measure we have I1(dx) = APP(B € dx). It is then readily
verified that

1
d:—r+k/ xI1(dx).
0

Gamma process. This process is characterized by the characteristic triplet
(d,o?, IT), where 02 =0and
'3 1
M(dx) = —e dx for x>0, d= / x[1(dx),
X 0

for y,§ > 0. From the above formulation it is clear that the jumps of this
process are non-negative, that is, the gamma process is spectrally positive. In
fact its sample paths are non-decreasing a.s.; we return to this property below.
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The Laplace exponent corresponding to the gamma process can be evaluated
explicitly, but this requires some non-standard computations. These rely on the
well-known Frullani integral: for z € C with non-positive real part,

Blog (1 ) / 1- e”) e Vdx; (2.3)

see e.g. Kyprianou [146, Lemma 1.1.7]. The validity of Eqn.(2.3) is a direct
consequence of the identity (given that appropriate regularity conditions are
imposed on the function f(-))

/Owwdx = —/OOO /abf’(xy)dde= —/abfooof’(xy)dxdy

b f(0) - b
= [T = g0 oo og?

by picking f(x) ;= e, a=y,andb =y —z.
As a consequence of the above computations, it follows that the correspond-
ing Laplace exponent

1 00
o) = logEe—“XI = —a/ xI1(dx) + / (e =1 4 axly 1y (|x]) 1 (dx),
0 —00

can now be rewritten as

—ax —yx _ Y
/ (e —1)— e”dx—,Blog(—y+a).

From the equation
[e’e] pr—1
[ ()
0 (B

Bt Bt—1 Bt
e (7 + @) y
— (y+a)x —
(y+a) / v+ a)e gy (y+a) ’

where I'(z) := fooo e~ *x*"!dx denotes the gamma function, it follows that the
marginals X, have a gamma distribution with parameters y and ft. We write
throughout this monograph X € G(y, ).

The gamma process has interesting qualitative properties. Observe that X, has
the same distribution as the sum of X, and X,—; (with s € (0,7)), with the
latter two random variables being sampled independently, which are both non-
negative random variables. From this we conclude that (X,), is a non-decreasing
process.
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In the second place, it is observed that the gamma process is not compound
Poisson. This is a consequence of the fact that we cannot write I7(dx) as
AP(B € dx). To see this, realize that, as a consequence of 8/x - e7?* being
roughly B/x for x close to 0,

/Ooo M(dy) = /Ooo ée_y"dx = oo,

and hence it is not possible to properly define a (finite) jump intensity A. Indeed,
the gamma process is a Lévy process with the remarkable property that it has
infinitely many jumps (almost surely) in any finite amount of time. We refer
to this phenomenon by saying that the gamma process has small jumps, or,
equivalently, infinite activity.

As mentioned above, the gamma process is increasing; to make sure that
EX; < 0 (so as to guarantee that the corresponding workload process is stable)
a negative drift has to be added.

Inverse Gaussian process. Like the gamma process, this process is increasing.
It is defined as follows. For any X € .%;, we define the first passage time,

T(x) :=inf{r > 0: X, < —x};

this is a notion that will play an important role later in this book. It is
straightforward to observe that e #®" ¢=%Xr is a mean-1 martingale [220]: for
all s < ¢, using the properties of Lévy processes,

E (e—w(a)t e X | {e—¢(a)u ey < s})
=E (e e [{X, :u < s})

= P8 oK (@) gmoXims) — (s moXs

Considering X € Bm(d, 0?), clearly d < 0 implies 7(x) < oo almost surely.
The a.s. continuous sample paths imply that Xy = —x, which, together with
‘optional sampling’ [220, Chapter A14], leads to

Ee¢@t() _ ,=ax,

As a consequence, replacing ¢ () by ¥ (and hence o by ¥ (%)),
d d\* v

Ee 77 = exp | — — + (—2) +2— |«
o o o

Conclude that 7(x) is an increasing Lévy process (in x); the class of these
processes we call inverse Gaussian, and we denote it by IG(d, o?). Again,
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to have EX; < 0, a negative drift is added. The identification of the spectral
measure [1(-) is the subject of one of the exercises. The inverse Gaussian
process has ‘small jumps’, too: it experiences an infinite number of jumps
(almost surely) over any time interval of finite length.

2.3 «-Stable Lévy Motions

This section focuses on a subclass of Lévy processes that has attracted substantial
attention in the literature: o-stable Lévy motions. This class of processes is
particularly suitable when modeling various sorts of heavy-tailed phenomena [192].

To introduce a-stable Lévy motions, we first define the class of stable distribu-
tions. Here we follow the exposition in Samorodnitsky and Taqqu [192], but various
other parameterizations are possible [213]. We say that a random variable Y has a
stable distribution if for any a, b > 0 there exist ¢ > 0 and d € R such that

ay +bY" Ly +d,

where Y’ and Y” are independent copies of Y. Due e.g. to Bingham et al. [47,
Thm. 8.3.2], it turns out that the characteristic function of Y can be written in the
form

loo EelfY — —0*|0]*(1 — iBsign(0) tan(wra/2)) + imb, o # 1;
& | —o|0|(1 + i /2sign(8) log |6]) + imb, a = 1;

where a € (0,2], B € [-1,1], 0 € [0,00), m € R, and sign(x) := 1(,00)(x) —
1 (—00,0)(x). We write that Y is distributed S, (o, B, m).
Let us consider the meaning of the parameters in more detail.

* The parameter o is commonly referred to as the index of stability. Later we will
observe that « is directly related to the ‘heaviness’ of the tail distribution. In
particular, if « € (0, 1], then E|Y| = oo (for « = 1 we have the Cauchy
distribution). For o« = 2 we obtain the normal distribution.

e The parameter 8 is known as the skewness. The extreme cases are § = 1,
corresponding to a totally skewed to the right distribution, and 8 = —1, which
corresponds to a fotally skewed to the left distribution. For@ < 1, m = 0, and
B = 1 (respectively, § = —1), the support of the distribution is the positive
(respectively, negative) half-line, but this is no longer true for > 1. The choice
of m = 0 and B = 0 leads to a symmetric distribution.

» For obvious reasons, ¢ is called the scale parameter.

e For ¢ € (1,2], we have EY = m. This explains why m is called the shift
parameter.
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The following useful property, describing the distribution’s tail asymptotics,
can be found in e.g. Samorodnitsky and Taqqu [192, p. 16]. As before, I'(z) :=
fooo e~*x*"!dx denotes the gamma function. Also, f(x) ~ g(x) as x — oo means
that f(x)/g(x) — 1 as x — oo.

Proposition 2.1 LetY 4 Sy (0, B,m) with B € (—1,1]. Then, as u — o0,

P(Y > u) ~ Cypp (#) u,

where

C. = 0*(l1—a)/ (I'2—a)cos(ra/2)) ifa #1;
7 20/ fo=1

The case B = —1 has to be treated separately; see e.g. [192, pp. 17-18].
Proposition 2.2 Let Y 4 Sy(0,—1,0).
(i) Ifa =1, then as u — oo,

B (/20 )u—1

1
P(Y > u) ~ —exp( >

V2

(ii) Ifa > 1, then as u — o0,

1 ab, a/(2(a=1)) uw \¥/e=D
PY>u~—oouou | — exp|—(x—1 ~ ,
( ) V2ra(a —1) ( u ) Pl )((Ma)

where
e (o (7552))
0y := 0 | cos — .

Having defined stable distributions, we can now introduce «-stable Lévy
motions, as follows. We say that (X;), is an «-stable Lévy motion if (X;), has
stationary and independent increments such that the marginals obey

_ e(n/ZU)u—l) )

X, < S,(:V%, B, mt);
we write X € S(«, 8, m). From the above we conclude that if § = +1, then X €

Tk
For given « € (0, 2] the Lévy measure has the form, for A, B > 0,

A B
(dx) = (ml{)«o} + xa_+11{x>0}) dux;
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it is verified that we again have the property of infinitely many jumps in any finite
time interval, almost surely.

One could say that -stable Lévy motions are self-similar: picking m = 0, and
writing (X,(a))t to stress the dependence on «, one has that, for M > 0,

(Xj(;t))t 4 (Ml/aXt(a))

(unless @ = 1, B # 0). In other words, when zooming in, one sees essentially the
same pattern, given that one adjusts the axes in a suitable fashion.

t

2.4 Lévy-Driven Queues

Having defined Lévy processes, in this section we introduce the notion of queues
with Lévy input (or Lévy-driven queues). It is noticed, however, that these definitions
are by no means restricted to the Lévy framework; based on the formalism defined
below, one can define for any real-valued stochastic process the corresponding
workload process. We provide two types of characterizations.

In the first approach, we define the Lévy-driven queue as the continuous-time
counterpart of the classical discrete-time queue. In discrete time, a queue can be
described through the well-known Lindley recursion: we have that the workload
process (Q,) satisfies

Ont+1 = max{Q, + Y,, 0},

where Y, is the net input to the queue in slot n (i.e. the input minus the amount that
can potentially be served). Iterating this recursion, we obtain 0,4+, = max{Q,— +
Y1+ Y,,Y,,0}. With X,, := Z?:o Y;, and with Qyp = x for x > 0, this eventually
leads to

0, = X,, + max {x, max —Xi} .
0<i<n
In this way we have written the workload process (Q,), as a functional of the
cumulative net input process (X,),, and now the idea is to use the very same
functional to define the workload in continuous time.
More concretely, a queue in continuous time can be defined by just taking the
continuous-time analogue of the above, so that we obtain

Q[ = X[ + maX{x, L[}, t Z 0, (2.4)
with

L := sup —X; = — inf Xj;

0<s<t O0<s=<rt
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this increasing (and therefore of bounded variation) process L, is often referred to
as local time (at zero) or a regulator process; see e.g. Harrison [108]. Assuming the
queue has been running from —oo, one can alternatively write

0= SUP(Xr - Xs)-

s<t

To ensure the existence of a stationary distribution, it is evident that a stability
condition needs to be fulfilled. In the case of input processes (X;); with stationary
increments (as is the case in our Lévy context) it needs to be assumed that EX; < 0
for the workload process to be stable (which we do throughout this book). If the
input process X; is reversible, that is, (X(s—y_ — X;): < (—X;), for each given s > 0
(which is true in the Lévy case), then we have the following distributional equality
for the stationary workload Q, commonly attributed to Reich [182]:

(0] L sup X;. (2.5)

>0

Above we constructed the Lévy-driven queue in continuous time analogously to
its discrete-time counterpart. An alternative way of introducing Lévy-driven queues
is by defining them as the solution of a so-called Skorokhod problem, as introduced
by Skorokhod in [201, 202]; then one commonly says that (Q;), is the reflection of
(X1); at 0. This is done as follows. Let (L}); be a non-decreasing right-continuous
process such that the following two requirements are fulfilled.

(A) The workload process (Q;);, defined through Qp := x and Q; := X, + L}, is
non-negative for all 7 > 0.
(B) L; can only increase when Q; = 0, that is,

T
/ QdLr =0, forall T > 0.
0

Observe that it is natural to impose these conditions on a queueing process. The
process (L)), can be informally thought of as the cumulative idle time process; then
(A) indicates by how much X, should be increased to obtain Q; (to account for the
effect of the boundary at 0), and (B) entails that it is not possible that at the same
time the queue is non-empty and the cumulative idle time grows.

Importantly, it can be proved that the only process satisfying these two conditions
is L} = max{x, L}, so that O, = X, + max{x, L,} for ¢t > 0, where L, is defined as
above; see e.g. Asmussen [19, Prop.X.2.2] and Robert [185, p. 375]. We conclude
that the expression found in this way coincides with the one obtained when taking
the continuous counterpart of the discrete-time definition, as in (2.4). For the sake
of completeness we include the proof here.
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Proposition 2.3 The process (L}),, defined by L' := max{x, L}, is the unique
solution to the Skorokhod problem (A)—(B).

Proof There are several ways to prove the statement; we follow the proof of
[19, Prop.IX.2.2]. Let (L*), be another solution to (A)—(B), and (Q,); be the
corresponding workload process. Defining D, := Zt* —L7, itis our goal to verify that
necessarily D, = 0. By applying integration by parts for right-continuous processes
of bounded variation, and defining AD := D; — D;_,

t
D} =2 / DydD; — Y "(ADy)*

0 s<t

t t
=2 / (Lt —L*)dLr —2 / (Lt — L})dL; — > (ADy)*
0 0

s<t

_ t__ Tx t__ * 2
=2 [ @-0uii; 2 [ @ -0 - Y any”

s<t

where the last stepisdueto X; = Q, — L} = Q, — I:,* . Realizing that

t t
/ Q,dL} = / Q*dLr =0,
0 0

it follows that

t t
D=2 oul:- [ Qar;- Y (an.y.
0 0

s<t

As Qy and QS are non-negative, we conclude that D? < 0, and therefore D, = 0. O

In the case X € CP(r, A, b(+)), the queue under study is the well-known M/G/1
queue. We refer to Fig. 2.3 for a pictorial illustration of the evolution of the workload
in time, jointly with the (X;), process (where we consider for ease the special case
of Oy = 0 and r = 1). It is elementary to verify that in the case that

arg inf (X; — Xj)
0<s<t

is smaller than ¢, this time epoch can be interpreted as the start of the busy period
in which ¢ is contained; if it equals ¢ (meaning that X; is the ‘all-time low’ of the
process so far), then the workload is 0 at time ¢. It also follows that in this context,
the process L; is the queue’s cumulative idle time up to time ¢.

Importantly, however, we would like to stress that this general notion of a
queueing system can be used in settings beyond traditional queues: the process (X;),
does not need necessarily to relate to positive quantities of work arriving. In this
sense, we now have developed the concept of a queue fed by for instance Brownian
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N

X; o,

Fig. 2.3 Net input process and workload process for a compound Poisson process

~

Fig. 2.4 Net input process and workload process for an erratic, ‘Brownian-like’ process

motion, or any other real-valued continuous-time stochastic process. In the case
X € Bm(d, o), the resulting workload process is often referred to as reflected (or
regulated) Brownian motion. We refer to Fig. 2.4 for an illustrative example of such
a workload process.

One of the main objectives in this book is the identification of the distribution of
the transient workload Q, and its stationary counterpart Q := lim,—, Q,. Note that
due to (2.5),as t 1 oo,

X, = sup X; 1 supX; < 0.

0<s<t s>0



Exercises 21

Likewise, (Qo | O—; = 0) increases to Q as ¢ goes to co. In operations research the
steady-state workload is the natural performance metric when studying queueing
systems that are in operation over long periods of time.

A second frequently used performance measure is the so-called busy period, to
be denoted by 7, being the time it takes for the queue to drain (starting from time 0):

r:=inf{tr > 0: Q, = 0}.

In this book we study the busy period in detail, where we typically assume that the
workload is in stationarity at time 0. Several other metrics are analyzed as well, such
as the workload correlation function Corr(Qy, Q;) and the infimum attained by the
workload process over a time interval of length ¢, that is, infiejo 4 O, in both cases
assuming the workload is in stationarity at time 0.

Exercises

Exercise 2.1 Prove the Frullani integral equality, Eqn. (2.3), for z € C with non-
positive real part.
Hint: In the text a rough sketch was provided. Consider first z < 0. Use that

eV — o= (r—2)x =z
- O @O @ = e yxdy,
X y

and then change the order of integration. Finally, by analytic extension, show that
the formula is valid for z € C with non-positive real part.
Exercise 2.2 Consider X € IG(—1, 1). Prove that

1
IM(dx) = ———e /2,
(dx) e

Exercise 2.3 Let X € S(«y, f1,m) and Y € S(az, B2, my) be independent.

(a) Check that X; is infinitely divisible.

(b) Characterize when Z, = X, + Y, has a stable distribution. Find the parameters
of Z;.

(c) Assume that m; = 0 and check that X is self-similar, that is, show that

d
(XMt)t = (Ml/alXt)t-

(d) Characterize y for which E(X;)" < oo.
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Exercise 2.4 Let X < S, (0. B, m) with a € (1,2). Check that

(a) aX < Sy (|alo, sign(a)B, am), for a # 0;
(b) —X = S,(0,—B. —m);
(c) X is symmetric if and only if §,m = 0.

Exercise 2.5 Let X = Sy (0, B,0) with @« € (1,2). In addition, we have the

processes X1 Lg, (0,1,0), X® Lg, (0, —1,0), which we assume to be mutually
independent. Check that

1/« 1/a
x4 (ﬂ) X0 4 (ﬂ) x@
2 2

Exercise 2.6 Prove that the sum of independent compound Poisson processes is a
compound Poisson process. Find its parameters.

Exercise 2.7 Let X and Y be two independent Lévy processes; assume Y is
increasing.

(a) Show that (Xy,)r>o is a Lévy process as well.
(b) Let X be a (standard) Brownian motion, and ¥ € G(8, y). Determine the Lévy
exponent of (Xy,);>o0-

(Note: With a specific choice of the parameters, this process is called a variance
gamma process; see also Chapter 15.)

Exercise 2.8 Prove Prop.2.1.

Exercise 2.9 For a given Lévy process X with EX; < 0, let Oy obey the stationary
workload distribution, and let L be the regulator process, with

L, := sup —X; = — inf X

0<s<t 0<s<t
Then, according to the definition of the workload process, for ¢ > 0,
0 = X; + max{Qo, L;}.

Show that Q; = sup_.,_,,(X; — X;), and that Q, is stationary.
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