
Origin Tracking + Text Differencing = Textual
Model Differencing

Riemer van Rozen1(B) and Tijs van der Storm2,3

1 Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
rozen@cwi.nl

2 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
3 Universiteit van Amsterdam, Amsterdam, The Netherlands

Abstract. In textual modeling, models are created through an interme-
diate parsing step which maps textual representations to abstract model
structures. Therefore, the identify of elements is not stable across differ-
ent versions of the same model. Existing model differencing algorithms,
therefore, cannot be applied directly because they need to identify model
elements across versions. In this paper we present Textual Model Diff
(tmdiff), a technique to support model differencing for textual lan-
guages. tmdiff requires origin tracking during text-to-model mapping
to trace model elements back to the symbolic names that define them in
the textual representation. Based on textual alignment of those names,
tmdiff can then determine which elements are the same across revisions,
and which are added or removed. As a result, tmdiff brings the benefits
of model differencing to textual languages.

1 Introduction

Model differencing algorithms (e.g., [1]) determine which elements are added,
removed or changed between revisions of a model. A crucial aspect of such algo-
rithms that model elements need to be identified across versions. This allows
the algorithm to determine which elements are still the same in both versions.
In textual modeling [6], models are represented as textual source code, similar
to Domain-Specific Languages (DSLs) and programming languages. The actual
model structure is not first-class, but is derived from the text by a text-to-model
mapping, which, apart from parsing the text into a containment hierarchy also
provides for reference resolution. After every change to the text, the correspond-
ing structure needs to be derived again. As a result, the identities assigned to the
model elements during text-to-model mapping are not preserved across versions,
and model differencing cannot be applied directly.

Existing approaches to textual model differencing are based on mapping tex-
tual syntax to a standard model representation (e.g., languages built with Xtext
are mapped to EMF [5]) and then using standard model comparison tools (e.g.,
EMFCompare [2,3]). As a result, model elements in both versions are matched
using name-based identities stored in the model elements themselves. One app-
roach is to interpret such names as globally unique identifiers: match model
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 18–33, 2015.
DOI: 10.1007/978-3-319-21155-8 2

Origin Tracking + Text Differencing = Textual Model Differencing 19

elements of the same class, irrespective of their location in the containment hier-
archy of the model. Another approach is to only match elements in collections
at the same position in the containment hierarchy.

Unfortunately, both approaches have their limitations. In the case of global
names, the language cannot have scoping rules: it is impossible to have different
model elements of the same class with the same name. On the other hand,
matching names relative to the containment hierarchy entails that scoping rules
must obey the containment hierarchy, which limits flexibility.

In this paper we present tmdiff, a language-parametric technique for model
differencing of textual languages which does support languages with complex
scoping rules, but at the same time is agnostic of the model containment hierar-
chy. As a result, different elements with the same name, but in different scopes
can still be identified. tmdiff is based on two key techniques:

– Origin Tracking. In order to map model element identities back to the
source, we assume that the text-to-model mapping applies origin track-
ing [7,19]. Origin tracking induces an origin relation which relates source
locations of definitions to (opaque) model identities. Each semantic model ele-
ment can be traced back to its defining name in the textual source, and each
defining name can be traced forward to its corresponding model element.

– Text Differencing. tmdiff identifies model elements by textually aligning
definition names between two versions of a model using traditional text differ-
encing techniques (e.g., [11]). When two names in the textual representations
of two models are aligned, they are assumed to represent the “same” model
element in both models. In combination with the origin relation this allows
tmdiff to identify the corresponding model elements as well.

The resulting identification of model elements can be passed to standard model
differencing algorithms, such as the one by Alanen and Porres [1].

tmdiff enjoys the important benefit that it is fully language parametric.
tmdiff works irrespective of the specific binding semantics and scoping rules of
a textual modeling language. In other words, how the textual representation is
mapped to model structure is irrelevant. The only requirement is that semantic
model elements are introduced using symbolic names, and that the text-to-model
mapping performs origin tracking.

The contributions of this paper are summarized as follows:

– We explore how textual differencing can be used to match model elements
based on origin tracking information.

– We provide a detailed description of tmdiff, including a prototype imple-
mentation.

– The feasibility of the approach is illustrated by applying tmdiff in the context
of a realistic, independently developed DSL.

2 Overview

Here we introduce textual model differencing using a simple motivating example
that is used as a running example throughout the paper. Figure 1 shows a state

20 R. van Rozen and T. van der Storm

Fig. 1. Doors1: a simple textual representation of a state machine and its model.

machine model for controlling doors. It is both represented as text (left) and
as object diagram (right). A state machine has a name and contains a number
of state declarations. Each state declaration contains zero or more transitions.
A transition fires on an event, and then transfers control to a new state.

The symbolic names that define entities are annotated with unique labels
dn. These labels capture source locations of names. That is, a name occurrence
is identified with its line and column number and/or character offset1. Since
identifiers can never overlap, labels are guaranteed to be unique, and the actual
name corresponding to label can be easily retrieved from the source text itself.
For instance, the machine itself is labeled d1, and both states closed and opened
are labeled d2 and d3 respectively.

The labels are typically the result of name analysis (or reference resolu-
tion), which distinguishes definition occurrences of names from use occurrences
of names according to the specific scoping rules of the language. For the purpose
of this paper it is immaterial how this name analysis is implemented, or what
kind of scoping rules are applied. The important aspect is to know which name
occurrences represent definitions of elements in the model.

By propagating the source locations (di) to the fully resolved model, symbolic
names can be linked to model elements and vice versa. On the right of Fig. 1, we
have used the labels themselves as object identities in the object model. Note
that the anonymous Transition objects lack such labels. In this case, the objects
do not have an identity, and the difference algorithm will perform structural
differencing (e.g., [20]), instead of semantic, model-based differencing [1].

Figure 2 shows two additional versions of the state machine of Fig. 1. First the
machine is extended with a locked state in Doors2 (Fig. 2a). Second, Doors3
(Fig. 2c), shows a grouping feature of the language: the locked state is part of
the locking group. The grouping construct acts as a scope: it allows different
states with the same name to coexist in the same state machine model.

Looking at the labels in Figs. 1 and 2, however, one may observe that the
labels used in each version are disjoint. For instance, even though the defining

1 For the sake of presentation, we use the abstract labels di for the rest of the paper,
but keep in mind that they represent source locations.

Origin Tracking + Text Differencing = Textual Model Differencing 21

Fig. 2. Two new versions of the simple state machine model Doors1.

Fig. 3. Identifying model elements in m1 and m2 through origin tracking and alignment
of textual names.

name occurrences of the machine doors and state closed occur at the exact
same location in Doors2 and Doors3, this is an accidental artifact of how the
source code is formatted. Case in point is the name locked, which now has
moved down because of the addition of the group construct.

The source locations, therefore, cannot be used as (stable) identities to used
during model differencing. The approach taken by tmdiff involves determining
added and removed definitions by aligning the textual occurrences of defining
names (i.e. labels di). Based on the origin tracking between the textual source
and the actual model it then becomes possible to identify which model elements
have survived changing the source text.

This high-level approach is visualized in Fig. 3. src1 and src2 represent the
source code of two revisions of a model. Each of these textual representations is
mapped to a proper model, m1 and m2 respectively. Mapping text to a model
induces origin relations, origin1 and origin2, mapping model elements back
to the source locations of their defining names in src1 and src2 respectively.

22 R. van Rozen and T. van der Storm

By then aligning these names between src1 and src2, the elements themselves
can be identified via the respective origin relations.

tmdiff aligns textual names by interpreting the output of a textual diff
algorithm on the model source code. The diffs between Doors1 and Doors2,
and Doors2 and Doors3 is shown in Fig. 4. As can be seen, the diffs show for
each line whether it was added (“+”) or removed (“-”). By looking at the line
number of the definition labels di it becomes possible to determine whether the
associated model element was added or removed.

For instance, the new locked state was introduced in Doors2. This can
be observed from the fact that the diff on the left of Fig. 4 shows that the
name “locked” is on a line marked as added. Since the names doors, closed
and opened occur on unchanged lines, tmdiff will identify the corresponding
model elements (the machine, and the 2 states) in Doors1 and Doors2. Similarly,
the diff between Doors2 and Doors3 shows that only the group locking was
introduced. All other entities have remained the same, even the locked state,
which has moved into the group locking.

With the identification of model elements in place, tmdiff applies a variant
of the standard model differencing introduced in [1]. Hence, tmdiff deltas are
imperative edit scripts that consist of edit operations on the model. Edit oper-
ations include creating and removing of nodes, assigning fields, and inserting or
removing elements from collection-valued properties. Figure 5 shows the tmdiff
edit scripts computed between Doors1 and Doors2 (a), and Doors2 and Doors3
(b). The edit scripts use the definition labels dn as node identities.

Fig. 4. Textual diff between Doors1 and Doors2, and Doors2 and Doors3. (The diffs
are computed by the diff tool included with the git version control system. We used
the following invocation: git diff --no-index --patience --ignore-space-change

--ignore-blank-lines --ignore-space-at-eol -U0 <old> <new>.)

Fig. 5. tmdiff differences between Doorsi and Doorsi+1 (i ∈ 1, .., 2)

Origin Tracking + Text Differencing = Textual Model Differencing 23

The edit script shown in Fig. 5a captures the difference between source ver-
sion Doors1 and target version Doors2. It begins with the creation of a new state
d7. On the following line d7 is initialized with its name (locked) and a fresh col-
lection of transitions. The transitions are contained by the state, so they are
created anonymously (without identity). Note that the created transition con-
tains a (cross-)reference to state d2. The next step is to add a new transition to
the out field of state d2 (which is preserved from Doors1). The target state of
this transition is the new state d7. Finally, state d7 is inserted at index 2 of the
collection of states of the machine d1 in Doors1.

The edit script introducing the grouping construct locking between Doors2
and Doors3 is shown in Fig. 5b. The first step is the creation of a new group d11.
It is initialized with the name "locking". The set of nested states is initialized to
contain state d7 which already existed in Doors2. Finally, the state with index
2 is removed from the machine d4 in Doors3, and then replaced by the new
group d11.

In this section we have introduced the basic approach of tmdiff using the
state machine example. The next section presents tmdiff in more detail.

3 TMDIFF in More Detail

3.1 Top-Level Algorithm

Figure 6 shows the tmdiff algorithm in high-level pseudo code. Input to the
algorithm are the source texts of the models (src1, src2), and the models them-
selves (m1, m2). The first step is identifying model elements of m1 to elements
in m2 using the matching technique introduced above. The match function is
further described in the next sub section (Sect. 3.2).

Fig. 6. tmdiff

Based on the matching returned by match, tmdiff first generates global
Create operations for nodes that are in the A set. After these operations are
created, the matching M is “completed” into M ′, by mapping every added object
to itself. This ensures that reverse lookups in M ′ for elements in m2 will always
be defined. Each entity just created is initialized by generating SetTree operations

24 R. van Rozen and T. van der Storm

which reconstruct the containment hierarchy for each element da using the build
function. The function diffNodes then computes the difference between each pair
of nodes originally identified in M . The edit operations will be anchored at
object d1 (first argument). As a result, diffNodes produces edits on “old” entities,
if possible. Finally, the nodes that have been deleted from m1 result in global
Delete actions.

3.2 Matching

The match function uses the output computed by standard diff tools. In par-
ticular, we employ a diff variant called Patience Diff 2 which is known to often
provide better results than the standard, LCS-based, algorithm [12].

Fig. 7. Matching model elements based on source text diffs.

The matching algorithm is shown in Fig. 7. The function match takes the
textual source of both models (src1, src2) and the actual models as input (m1,
m2). It first projects out the origin and class information for each model. The
resulting projections P1 and P2 are sequences of tuples 〈x, c, l, d〉, where x is the
symbolic name of the entity, c its class (e.g. State, Machine, etc.), l the textual
line it occurs on and d the object itself.

As an example, the projections for Doors1 and Doors2 are as follows:

P1 =
[〈doors, Machine, 1, d1〉,
〈closed, State, 2, d2〉,
〈opened, State, 5, d3〉]

P2 =

[〈doors, Machine, 1, d4〉,
〈closed, State, 2, d5〉,
〈opened, State, 6, d6〉,
〈locked, State, 9, d7〉]

2 See: http://bramcohen.livejournal.com/73318.html.

http://bramcohen.livejournal.com/73318.html

Origin Tracking + Text Differencing = Textual Model Differencing 25

The algorithm then partitions the textual diff in two sets Ladd and Ldel

of added lines (relative to src2) and deleted lines (relative to src1). The main
while-loop then iterates over the projections P1 and P2 in parallel, distributing
definition labels over the A, D and M sets that will make up the matching. If a
name occurs unchanged in both src1 and src2, an additional type check prevents
that entities in different categories are matched.

The result of matching is a triple M = 〈A,D, I〉, where A ⊆ LY contains new
elements in Y , D ⊆ LX contains elements removed from X, and I ⊆ LX × LY

represents identified entities.
For instance the matchings between Doors1, Doors2, and between Doors2

and Doors3 are:

M1,2 = 〈{d7}, {}, {〈d1, d4〉, 〈d2, d5〉, 〈d3, d6〉}〉
M2,3 = 〈{d11}, {}, {〈d4, d8〉, 〈d5, d9〉, 〈d6, d10〉, 〈d7, d12〉}〉

3.3 Differencing

The heavy lifting of tmdiff is realized by the diffNodes function. It is shown
in Fig. 8. It receives the current context (ctx), the two elements to be compared
(t1 and t2), a Path p which is a list recursively built up out of names and indexes
and the matching relation to provide reference equality between elements in t1
and t2. diffNodes assumes that both t1 and t2 are of the same class. The algo-
rithm then loops over all fields that need to be differenced. Fields can be of four

Fig. 8. Differencing nodes.

26 R. van Rozen and T. van der Storm

kinds: primitive, containment, reference or list. For each case the appropriate edit
operations are generated, and in most cases the semantics is straightforward and
standard. For instance, if the field is list-valued, we delegate differencing to an
auxiliary function diffLists (not shown) which performs Longest Common Subse-
quence (LCS) differencing using reference equality. The interesting bit happens
when differencing reference fields. References are compared via the matching M .
Figure 8 highlights the relevant parts.

In order to know whether two references are “equal”, diffNodes performs
a reverse lookup in M on the reference in t2. If the result of that lookup is
different from the reference in t1 the field needs to be updated. Recall that M
was augmented to M ′ (cf. Fig. 6) to contain entries for all newly created model
elements. As a result, the reverse lookup is always well-defined. Either we find
an already existing element of t1, or we find a element created as part of t2.

4 Case Study: Derric

4.1 Implementation in RASCAL

We have implemented tmdiff in Rascal, a functional programming language
for meta programming and a language workbench for developing textual Domain-
Specific Languages (DSLs) [8]. The code for the algorithm, and the application
to the example state machine language and the case study can be found on
GitHub3.

Since Rascal is a textual language workbench [4] all models are represented
as text, and then parsed into an abstract syntax tree (AST). Except for primitive
values (string, boolean, integer etc.), all nodes in the AST are automatically
annotated with source locations to provide basic origin tracking.

Source locations are a built-in data type in Rascal (loc), and are used to
relate sub-trees of a parse tree or AST back to their corresponding textual source
fragment. A source location consists of a resource URI, an offset, a length, and
begin/end and line/column information. For instance, the name of the closed
state in Fig. 2 is labeled:

Because Rascal is a functional programming language, all data is
immutable. As a result graph-like structure cannot be directly represented.
Instead we represent the containment hierarchy of a model as an AST, and
represent cross-references by explicit relations rel[loc from, loc to], once again
using source locations to represent object identities.

4.2 Differencing Derric File Format Descriptions

To evaluate tmdiff on a real-life DSL and see if it computes reasonable deltas,
we have applied it to the version history of file format specifications. These file
3 https://github.com/cwi-swat/textual-model-diff.

https://github.com/cwi-swat/textual-model-diff

Origin Tracking + Text Differencing = Textual Model Differencing 27

format specifications are written in Derric, a DSL for digital forensics analy-
sis [16]. Derric is a grammar-like DSL: it contains a top-level regular expression,
specifying the binary layout of file formats. Symbols in the regular expression
refer to structures which define the building blocks of a file format. Each struc-
ture, in turn has a number of field declarations, with constraints on length or
contents of the field.

There are 3 kinds of semantic entities in Derric: the file format, structures,
and fields. Inside the regular expression, symbolic names refer to structures.
Structures themselves refer to other structures to express inheritance. Finally,
field constraints may refer to fields defined in other structures or defined locally
in the enclosing structure.

In an earlier study, the authors of [17] investigated whether Derric could
accommodate practical evolution scenarios on Derric programs. This has resulted
in a public Github repository, containing the detailed history of three file format
descriptions, for GIF, PNG and JPEG4.

For each description, we have applied tmdiff on subsequent revisions, and
compared the resulting edit scripts to the ordinary textual diffs produce by the
Git version control system5. The results are shown in Table 1. The first three
columns identify the file and the two consecutive revisions (Git hashes) that have
been compared. Column 4, 5 indicate the number of lines added and removed,
as computed by the standard diff tool used by Git. To approximate the relative
size of the changes, column 6 shows the number of line additions and removals
per line of code in the source revision. The following eight columns then show
how often each of the edit operations occurred in the delta computed by tmdiff.
The results are summarized in the next three columns, showing the total number
of operations, the percentage indicating the number of operations per original
AST node, and the number of nodes literally built by the delta. The last column
contains the log message to provide an intuition of the intent of the revision.

Table 1 shows that some operations actually were never computed by tmdiff.
For instance, there are no Delete operations. This can be explained from the fact
that, indeed, all revisions involve adding elements to the file descriptions; nothing
is actually ever deleted.

The operations SetPrim and SetRef did not occur either. The reason is that
there are no revisions at that level of granularity. Most changes are additions of
structures and/or fields, or changes to the sequence constraints of a file format. In
both cases, references and primitives end up as part of InsertTree operations. An
example is shown in Fig. 9. The left and right columns show fragments of two ver-
sions of the GIF file format. The only change is and additional optional element
at the end of the sequence section. The delta computed by tmdiff is shown
at the bottom of the figure. It consists of a single InsertTree operation. Within
the inserted tree, one finds actual references to the structures CommentExtension
and DataBlock.

4 https://github.com/jvdb/derric-eval.
5 The actual command: git diff --patience --ignore-blank-lines

--ignore-all-space R1 R2 path.

https://github.com/jvdb/derric-eval

28 R. van Rozen and T. van der Storm

Table 1. Applying tmdiff to revisions of derric fileformat specifications.

The ratios of changes per total units of change (i.e. lines resp. AST nodes)
show that tmdiff deltas are consistently smaller that the ordinary textual
deltas. It is also not the case that a single operation InsertTree operation replaces
large parts of the model in one go. The before-last column shows that the num-
ber of nodes literally contained in a delta is reasonable. The largest number is
65 (fourth from below). As comparison, the average number of nodes across all
revisions in Table 1 is 432.

Figure 10 shows a typical delta computed by tmdiff on a Derric description.
It involves adding a new structure (COMASC) and its two fields (length and data).
They are initialized in three InsertTree operations. The last three operations wire
the newly created elements into the existing model.

Origin Tracking + Text Differencing = Textual Model Differencing 29

Fig. 9. A minimal change to the sequence part of a Derric description of GIF. A single
line is added on right (underlined). At the bottom the edit script computed by tmdiff
(between 9b3f919 and 872cd67)

Fig. 10. Fragment of revision afb17f7 of jpeg.derric (left, added lines are under-
lined), and the relevant part of the tmdiff delta from revision 712e583 to afb17f7

(right).

30 R. van Rozen and T. van der Storm

5 Discussion and Related Work

The case-study of the previous section shows that tmdiff computes reasonable
deltas on realistic evolution scenarios on DSL programs. In this section we discuss
a number of limitations of tmdiff and directions for further research.

The matching of entities uses textual deltas computed by diff as a guiding
heuristic. In rare cases this affects the quality of the matching. For instance,
diff works at the granularity of a line of code. As a result, any change on a
line defining a semantic entity will incur the entity to be marked as added. The
addition of a single comment may trigger this incorrect behavior. Furthermore,
if a single line of code defined multiple entities, a single addition or removal will
trigger the addition of all other entities. Nevertheless, we expect entities to be
defined on a single line most of the time.

If not, the matching process can be made immune to such issues by first
pretty-printing a textual model (without comments) before performing the tex-
tual comparison. The pretty-printer can then ensure that every definition is on
its own line. Note, that simply projecting out all definition names and perform-
ing longest common subsequence (LCS) on the result sequences abstracts from
a lot of textual context that is typically used by diff-like tools. In fact, this
was our first approach to matching. The resulting matching, however, contained
significantly more false positives.

Another factor influencing the precision of the matchings is the dependence
on the textual order of occurrence of names. As a result, when entities are
moved around without any further change, tmdiff will not detect it. We have
experimented with a simple move detection algorithm to mitigate this prob-
lem, however, this turned out to be too computationally expensive. Fortunately,
edit distance problems with moves are well-researched, see, e.g., [15]. A related
problem is that tmdiff will always see renames as an addition and removal of
an entity. Further research is needed if renames of entities can be detected, for
instance by matching up additions and removals of entities, where the deleted
node and the added node are the same, modulo the renaming.

Much work has been done in the research area of model comparison that
relates to tmdiff. We refer to a survey of model comparison approaches and
applications by Stephan and Cordy for an overview [14]. In the area of model
comparison, calculation refers to identifying similarities and differences between
models, representation refers to the encoding form of the similarities and differ-
ences, and visualization refers to presenting changes to the user [9,14]. Here we
focus on the calculation aspect.

Calculation involves matching entities between model versions. Strategies for
matching model elements include matching by (1) static identity, relying on
persistent global unique entity identifiers; (2) structural similarity, comparing
entity features; (3) signature, using user defined comparison functions; (4) lan-
guage specific algorithms that use domain specific knowledge [14]. With respect
to this list, our approach represents a new point in the design space: matching
by textual alignment of names.

Origin Tracking + Text Differencing = Textual Model Differencing 31

The differencing algorithm underlying tmdiff is directly inspired by Alanen
and Porres’ seminal work [1]. The identification map M between model elements
is explicitly mentioned, but the main algorithm assumes that model element
identities are stable. Additionally, tmdiff supports elements without identity.
In that case, tmdiff performs a structural diff on the containment hierarchy
(see, e.g.,[20]).

tmdiff’s differencing strategy resembles the model merging technique used
Ensō [18]. The Ensō “merge” operator also traverses a spanning tree of two
models in parallel and matches up object with the same identity. In that case,
however, the objects are identified using primary keys, relative to a collection
(e.g., a set). This means that matching only happens between model elements
at the same syntactic level of the spanning tree of an Ensō model. As a result,
it cannot deal with “scope travel” as in Fig. 2c, where the locked state moved
from the global state to the locking scope. On the other hand, the matching is
more precise, since it is not dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model transformation, model
migration, refactoring and comparison [10]. It integrates HUTN [13], the OMG’s
Human Usable Text Notation, to serialize models as text. As result, which ele-
ments define semantic identities is known for each textual serialization. In other
words, unlike in our setting, HUTN provides a fixed concrete syntax with fixed
scoping rules. tmdiff allows languages to have custom syntax, and custom bind-
ing semantics.

6 Conclusion

Accurately differencing models is important for managing and supporting the
evolution of models. Representing models as text, however, poses a challenge
for model differencing algorithms, because the identity of model elements is not
stable across revisions.

In this paper we have shown how this challenge could be addressed by con-
structing the mapping between model elements using origin tracking and tra-
ditional textual differencing. Origin tracking traces the identity of an element
back to the symbolic name that defines it in the textual source of a model.
Using textual differencing these names can be aligned between versions of a
model. Combining the origin relation and the alignment of names is sufficient
to identify the model elements themselves. It then becomes possible to apply
standard model differencing algorithms.

Based on these techniques, we have presented tmdiff, a fully language para-
metric approach to textual model differencing. A prototype of tmdiff has been
implemented in the Rascal meta programming language [8]. The prototype was
used to illustrate the feasibility of tmdiff by reconstructing the version history
of existing textual models. The models in question are file format descriptions
in an independently developed DSL in the domain of in digital forensics [16].

Although the work presented in this paper shows promise, important direc-
tions for further research remain. First of all, it is unclear if the deltas produced

32 R. van Rozen and T. van der Storm

by tmdiff are on average smaller than the deltas produced by, for instance,
EMFCompare [3], for languages which have scoping aligned with the contain-
ment hierarchy. Further evaluation should also include benchmarking the size
and speed of differencing against a broader set of practical examples.

References

1. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

2. Brun, C., Pierantonio, A.: Model differences in the eclipse modeling framework.
UPGRADE Eur. J. Inform. Prof. 9(2), 29–34 (2008)

3. Eclipse Foundation: EMF Compare Project. https://www.eclipse.org/emf/
compare/

4. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

5. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion,
OOPSLA 2010, pp. 307–309. ACM, New York (2010)

6. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete textual syntax
mapping approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008)

7. Inostroza, P., van der Storm, T., Erdweg, S.: Tracing program transformations
with string origins. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol.
8568, pp. 154–169. Springer, Heidelberg (2014)

8. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain-specific language for
source code analysis and manipulation. In: SCAM, pp. 168–177 (2009)

9. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In:
ICSE Workshop on Comparison and Versioning of Software Models (CVSM 2009),
pp. 1–6. IEEE (2009)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

11. Miller, W., Myers, E.W.: A file comparison program. Softw. Pract. Exper. 15(11),
1025–1040 (1985)

12. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica
1(1–4), 251–266 (1986)

13. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Constructing models with
the human-usable textual notation. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer,
Heidelberg (2008)

14. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD, pp. 265–277 (2013)

15. Tichy, W.F.: The string-to-string correction problem with block moves. ACM
Trans. Comput. Syst. 2(4), 309–321 (1984)

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/

Origin Tracking + Text Differencing = Textual Model Differencing 33

16. van den Bos, J., van der Storm, T.: Bringing domain-specific languages to digital
forensics. In: ICSE 2011, ACM (2011). Software Engineering in Practice

17. van den Bos, J., van der Storm, T.: A case study in evidence-based DSL evolution.
In: Van Gorp, P., Ritter, T., Rose, L.M. (eds.) ECMFA 2013. LNCS, vol. 7949, pp.
207–219. Springer, Heidelberg (2013)

18. van der Storm, T., Cook, W.R., Loh, A.: The design and implementation of object
grammars. Sci. Comput. Program. 96(4), 460–487 (2014). Selected Papers from
the Fifth International Conference on Software Language Engineering (SLE 2012)

19. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Symbolic Comput. 15, 523–545
(1993)

20. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract.
Exper. 21(7), 739–755 (1991)

http://www.springer.com/978-3-319-21154-1

	Origin Tracking + Text Differencing = Textual Model Differencing
	1 Introduction
	2 Overview
	3 TMDIFF in More Detail
	3.1 Top-Level Algorithm
	3.2 Matching
	3.3 Differencing

	4 Case Study: Derric
	4.1 Implementation in RASCAL
	4.2 Differencing Derric File Format Descriptions

	5 Discussion and Related Work
	6 Conclusion
	References

