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Abstract With the rapid development of intelligent devices, motion recognition

methods are broadly used in many different occasions. Most of them are based on

several traditional machine learning models or their variants, such as Dynamic Time

Warping, Hidden Markov Model or Support Vector Machine. Some of them could

achieve a relatively high classification accuracy but with a time-consuming training

process. Some other models are just the opposite. In this paper, we propose a novel

designed deep Convolutional Neural Network (DBCNN) model using “Data-Bands”

as input to solve the motion sequence recognition task with a higher accuracy in

less training time. Contrast experiments were conducted between DBCNN and sev-

eral baseline methods and the results demonstrated that our model could outperform

these state-of-art models.

1 Introduction

Nowadays, intelligent devices and modern life are more and more inseparable.

These devices could record humans’ motion sequences through embedded sensors

precisely. Lots of motion recognition models have been proposed, such as Hid-

den Markov Models, Dynamic Time Warping, and Feature-Based Support Vector

Machine. There are drawbacks more or less. Some of them can not attain a high

accuracy, others might be time-consuming. In this paper, we proposed a new model

that pre-processes motion sequences to form “data-bands” and then trains special

designed deep convolutional neural network using “data-bands” as inputs. We call

this model as DBCNN, in which “DB” means “Data-Bands” and “CNN” means

“Convolutional Neural Network”. Experiments show that our novel model could

attain a better recognition accuracy compared with other state-of-art methods. Due to
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characteristics of deep convolutional neural network, training process can be accel-

erated on GPU in extremely short time, which makes DBCNN win more scores.

This paper is organized as follows. Section 2 introduces some backgrounds,

including problem description, related works and some basic knowledge about Con-

volutional Neural Network (CNN) in brief. Section 3 presents DBCNN for motion

recognition task, including data process and deep Convolutional Neural Network

design. Section 4 takes a glance at some details of parameters learning. Section 5

reports experiment results of our model comparing with two other state-of-art meth-

ods. And Sect. 6 concludes this paper.

2 Background

2.1 Problem Description

Now we describe motion recognition task more formally : Motion sequence recog-

nition is a classification task with  categories, and each of these categories has

a corresponding training set i. The total training set is  = {1,2,… , }.

Training set i has i action instances: i = {1,2,… ,i
}. As mentioned

before, each motion instance is constituted by several sequences gathered by differ-

ent sensors, so we have i = {1,2,… ,channel_num}. Assuming that processed

sequences have t dimension, sequence i would be a vector with length t. The motion

recognition task is to build a classifier given training dataset .

2.2 Related Works

A wide variety of motion sequence recognition models have been proposed, such

as Hidden Markov Models (HMMs) [1–4], Dynamic Time Warping (DTW) [5],

and Feature-Based Support Vector Machine (Feature-SVM) [6] etc. Among models

of HMMs, continuous-HMM proposed in [3] claimed to gain the highest accuracy.

In a task with 10 pre-setting motions, it got a classification accuracy of 96.76 %.

This result has beaten the discrete-HMM [4], which could achieve an accuracy of

96.1000 % in the same dataset. Liu et al. has given a better result than both discrete-

HMM and continuous-HMM in [5] using Dynamic Time Warping. SVM could

not be used in our task directly due to the large scale and high dimensionality of

sequences. Wu et al. [6] proposed a feature-based SVM algorithm, which extracts

new features with a lower dimension from the original sequences in a manual proce-

dure. Wang et al. [7] proposed a similar method in different feature extraction rules.

Experiment results in [7] show that Wang’s method could achieve higher accuracy

comparing with HMMs [1–4], DTW [5] and Feature-SVM designed by Wu et al. [6],

we adopt this Feature-SVM model as one of our baseline methods in our experiment.
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Fig. 1 Shared weights of

convolutional layers in CNN

2.3 Convolutional Neural Network

Convolutional Layer in CNN Although full connection structure in multi-layer per-

ception could make the networks to have more ability in expression, model will be

more possible to overfit the data. CNN solves these problems via sparse connec-

tion structure, as shown in Fig. 1. First, nodes in high layer only connect to parts of

nodes in low layer, which could reduce the number of parameters efficiently. More-

over, nodes in high layer share identical weights. Just like Fig. 1, arrows with the

same weight value have identical colors. This structure make the model to detect

position independent features, from which we benefit a lot.

Sub-sampling Layer in CNN Pooling is a form of non-linear down-sampling in

CNN. Among several different pooling methods, max-pooling and average-pooling

are the most common. LeCun et al. [9] used this method in their LeNet-5 for two

reasons: reducing the computational complexity for upper layers and providing a

form of translation invariance.

3 The DBCNN Model for Motion Sequence Recognition

3.1 Data Preprocess

Different people might do the same motion in different duration time. Sequences of

motion gathered by intelligent devices are usually sampled in a constant time inter-

val. So our obtained sequences of motion instances have different dimensionality.

To overcome this, our model introduces an approximation, linear interpolation.

We get values of a sequence in specific proportional position to form new feature vec-

tors, which have a fixed dimensionality. Actually, the value in specific proportional

position is a linear combination of two real sample values near the position.
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Fig. 2 Data band of the motion swipe right

3.2 Data-Band

Now, the new sequences of motion instances are in a same dimension. In our exper-

iment, each instance of motion data consists of six sequences. Instead of arranging

the six sequences into a long vector, we organize them into a “data-band”, which is a

narrow matrix with a small row number and a large column number, just like a band.

Figure 2 shows “data-bands” of two motion instances belong to a same motion

category, “Swipe Right”. It is obvious that they have position invariance: there are

similar parts appearing in distinct positions. This invariance in a same motion class

is an inherent attribute of motion itself and irrelevant to the motion’s duration or

executors. Our model use “data-bands” as input could grasp the position invariant

successfully, which could not be achieved if we organize the data into a long vector.

3.3 Specially Designed CNN for Recognition
of Motion Sequence

Input of CNN In our proposed CNN for sequences of motion, the input of network

are actually “data-bands” as mentioned before. In Fig. 3, the input of the network is

showed in the left side clearly. These “data-bands” are matrices with dimensional-

ity of 6 × 96. The rows of matrices correspond to 6 axes (e.g. x, y, z axes in both

accelerator and angular speed), and the columns correspond to 96 sampled points.

Design of Convolutional Layer LeCun et al. [9] have shown that CNN model

is extremely suitable for data with high dimensionality and invariant attributes.

Sequences of motion instance just fit the properties mentioned above. However, in

LeNet-5, receptive fields are little squares to capture the invariance between images

pixels. In our model, we treat our pre-processed sequences, “data-bands”, as images.

The difference is that the invariance of “data-bands” exhibits in a narrow form

spreading in the lengthways dimension in “data-bands” matrices. If we use small

squares as receptive fields, more receptive fields are necessary to catch the invari-

ance. At the same time, the CNN model has more parameters and is more possible to

be overfitting. Our model solves the invariance extraction problem in a very elegant
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Fig. 3 The DBCNN model for sequences of motion data

way: we set up several convolutional windows to cover the lengthways of “data-

bands” matrices, just like dashed rectangles with distinct colors in left of Fig. 3.

This design could catch the invariance in lengthways using relatively small number

of receptive fields. Moreover, each convolutional window scans a “data-band” and

could get a 1-D feature vector, not a matrix in general CNN for image recognition.

Pooling Layer A pooling layer provides a further dimensionality reduction. We con-

catenate a max-pooling layer after a convolutional layer to shrink the feature space.

At the same time, pooling layer provides an auxiliary way to grasp position invariant

feature.

Classifier After two convolution-pooling structures, we connect a hidden layer and

a logistic regression layer. They form a general multi-layer perception. In fact, two

convolution-pooling layers mentioned before could be regarded as a function of fea-

ture transformation.

4 Details of Learning

4.1 Gradients in Convolutional Layers

In convolutional layers, a small patch (pl−1i )uv in previous layer’s feature maps xl−1i
are convolved with kernels klij and added a bias bli to get a value (ulj)uv, then activation

function f (⋅) would act on this value to form the corresponding element at (u, v) in

the output feature maps xli, which is noted by (xlj)uv:

(ulj)uv =
∑

i∈Mj

pl−1i ∗ klij + blj, (1)
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(xlj)uv = f ((ulj)uv). (2)

In Eq. 1, Mj means the selection of input maps in layer l − 1. It is decided by the

network structure when you design it. pl−1i and klij are two matrices, and the “∗” oper-

ation means to do element-wise multiplication and get the sum of the new matrix.

Generally, there is an objective error function E for a neural network to optimize the

parameters. In order to compute derivatives of parameters on the error function E,

we could firstly compute sensitivity 𝜹
l
j defined as follows:

(𝜹lj)uv =
𝜕E

𝜕(ulj)uv
. (3)

Sensitivity computation is a top-down process similar to the situation in general

neural network but with a little difference. We compute sensitivity (𝜹lj)uv in layer l
via the sensitivity (𝜹l+1j )uv in layer l + 1:

𝜹
l
j = 𝛽

l+1
j (f ′(ulj)◦up(𝜹

l+1
j )), (4)

where up(⋅) function is exactly an inverse process of the down-sampling and 𝛽

l+1
j

is a parameter in next sub-sampling layer (please refer to sect. 4.2). In Eq. 4, we

use the notation “◦” to indicate the element-wise multiplication of two matrices.

After getting sensitivities for feature maps in convolutional layer, we could compute

gradients about parameters in convolutional layers as follows:

𝜕E
𝜕klij

=
∑

u,v
(𝜹lj)(p

l−1
i )uv, (5)

𝜕E
𝜕blj

=
∑

u,v
(𝜹lj)uv. (6)

4.2 Gradients in Sub-sampling Layers

Sub-sampling layers don’t change the number of input maps, and they are really

down-sampled versions which would downsize the output maps as follows:

xlj = f (𝛽 lj down(x
l−1
j ) + blj). (7)

Here, down(⋅) means the sub-sampling function, such as average-pooling or max-

pooling. The parameter 𝛽
l
j is a scalar to control the efficiency of sub-sampling, and

blj is still a bias item just like in convolutional layers. To compute the gradients about
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𝛽

l
j and blj, we adopt similar steps to compute the sensitivities and gradients:

𝜹
l
j = f ′(ulj)◦q

l
j. (8)

In Eq. 8, qlj is a matrix which has the same size as 𝜹
l
j, and its element at (u, v) is noted

by (qlj)uv, which has a complex definition form as follows:

(qlj)uv =
∑

i∈Φ(j)

∑

s,t
(kl+1i,j )s,t(𝜹l+1i )u′(s,t),v′(s,t), (9)

where Φ(j) is a layer l + 1 feature maps’ set for which feature map j in layer l, xlj,
is participated the convolutional process. (𝜹l+1i )u′(s,t),v′(s,t) is a tricky representation

that means an element in feature map xl+1i which use the element xlj)uv during its

convolutional process with weight (kl+1i,j )s,t. It is worth to notice that if the element

corresponding to weight (kl+1i,j )s,t does not exist, the value of (𝜹l+1i )u′(s,t),v′(s,t) would

be zero.

Now, we could compute the gradients for bli and 𝛽

l
j as the following equations:

𝜕E
𝜕blj

=
∑

u,v
(𝜹lj)uv, (10)

dlj = down(xl−1j ), (11)

𝜕E
𝜕𝛽

l
j

=
∑

u,v
(𝜹lj◦d

l
j)uv. (12)

After combining all the details mentioned before, we have our parameters opti-

mization algorithm for CNN in Algorithm 1.

5 Experiment Results

5.1 Introduction to 6DMG

Our experiments are based on the dataset 6DMG [8], which is a 6-D Motion ges-

ture database developed by Chen et al. in Georgia Institute of Technology. In our

experiments, we use parts of original sequences: acceleration sequences (including

x, y, z−axies) and angular speed sequences (including x, y, z−axies). Figure 4 shows

20 kinds of motion in 6DMG. The size of training set is 32300. The size of validation

set is 4000 and the one of test set is 5100.
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Algorithm 1 Parameters Optimization for Convolutional Neural Network

Require: processed dataset ; learning rate 𝛼; epoch number  ; batch size nb; Network Structure



Ensure: CNN’s parameters W, k, b,𝜷
initialize network parameters W, k, b,𝜷 randomly

for each i ∈ [1, ] do
for each batch data i with size nb do

for layer l ∶= L to 1 do
1. compute sensitivities of layer l according to back-propagation

2. compute gradient of each parameters in layer l
3. update parameters in layer l in gradient descent method with learning rate 𝛼

end for
end for

end for

Fig. 4 Twenty kinds of motion in 6DMG

5.2 Feature-SVM

Feature-SVM proposed by Wang et al. [7] is claimed to outperform HMMs [1–4],

DTW [5] and another featured-SVM given by Wu et al. [6]. We adopt this model

as one of baseline experiments. After feature transformation, new features have the

length of 48. We list the feature design rules in Table 1.

New 48-d features are trained using Gaussian Kernel SVM and Linear Kernel

SVM with a 5-fold cross validation. For Linear Kernel SVM, the best accuracy

96.9125% is attained when the cost parameter log2C is 2.3206. And for Gaussian

Kernel SVM, the best result appears when log2C is 1.9459 and log2g is -2.8332, and

the best classification accuracy is 93.7011%.

5.3 Deep Belief Network

Hinton et al. [14] proposed a fast learning algorithm for deep belief network, which

use a greedy layer-wise training method. Deep architecture could be built with blocks

(e.g. restricted boltzmann machine). Parameters in DBN would be fine-tuned finally.
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Table 1 Feature extraction map in feature-SVM

Stochastic characteristic Dimension

Acceleration (x, y, z) and angular speed (x, y, z) mean 6

Acceleration and angular speed standard deviation 6

Acceleration and angular speed variance 6

Acceleration and angular speed interquartile range 6

Acceleration correlation coefficient 3

Angular speed correlation coefficient 3

Acceleration and angular speed MAD 6

Acceleration and angular speed root mean square 6

Acceleration and angular speed energy (mean square of DFT items) 6

Total 48

Table 2 Deep belief network’s results for motion sequence recognition

Learning rate DBN structure 1000 epoch accuracy (%) 2000 epoch accuracy (%)

0.10 [600, 600] 97.5736 97.5736

[1000, 1000] 97.5713 97.5713

[600, 600, 600] 97.7295 97.7736

[600, 600, 600, 600] 97.7104 97.7210

0.03 [600, 600] 97.3512 97.6059

[1000, 1000] 97.4776 97.7585

[600, 600, 600] 97.8736 97.9571
[600, 600, 600, 600] 97.7753 97.8560

0.01 [600, 600] 97.3340 97.5913

[1000, 1000] 97.3933 97.5407

[600, 600, 600] 97.5852 97.7107

[600, 600, 600, 600] 97.5115 97.6781

We get the best result with accuracy of 97.9571 % using the DBN model. The

structure with the highest classification accuracy has 3 hidden layers, and each layer

has 600 nodes. Learning rate in the process is 0.03 with 20 % attenuation every 500

epochs. Table 2 records experiment results in more details.

5.4 The DBCNN Model

Table 3 gives the classification accuracy under distinct parameters configuration. As

we could see, our DBCNN model has achieved a recognition accuracy of 98.66 %,

which outperforms the other two methods. Left part of Fig. 5 gives a results com-

parison among these three models.
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Table 3 DBCNN’s results for motion sequence recognition

#Kernels 1st conv filter 1st pooling 2nd conv filter 2nd pooling Accuracy (%)

[20,40] 25 × 6 3 × 1 5 × 1 2 × 1 98.06

[30, 40] 25 × 6 3 × 1 5 × 1 2 × 1 98.22
[30, 50] 25 × 6 3 × 1 5 × 1 2 × 1 98.40
[40, 40] 25 × 6 3 × 1 5 × 1 2 × 1 98.66

33 × 6 4 × 1 5 × 1 2 × 1 98.57
[40, 50] 25 × 6 3 × 1 5 × 1 2 × 1 98.58
[45, 35] 25 × 6 3 × 1 5 × 1 2 × 1 98.42
[45, 45] 25 × 6 3 × 1 5 × 1 2 × 1 98.52
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Fig. 5 Recognition accuracy comparison and training time comparison

In our experiments, a GTX-660 graphic unit with 2G GPU RAM is used. Training

time using DBCNN model is about 22 min on GPU. As a contrast, it takes about 3

times longer to train the Feature-SVM model on GPU, and about 7 times longer

to train the DBN model on GPU. Training Feature-SVM model and DBN model

on CPU might take much longer time. Right part of Fig. 5 shows an approximate

training time of these models on CPU and GPU.

6 Conclusion

In this paper, we proposed a novel motion sequence recognition model, DBCNN.

First of all, we pre-process motion sequences to form “data-bands”. Then we train a

specially designed convolutional neural network using these “data-bands” as input.

Our experiments on 6DMG demonstrate that our model can get a higher recognition

accuracy than state-of-art algorithms in less training time.
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