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Abstract With the rapid development of intelligent devices, motion recognition
methods are broadly used in many different occasions. Most of them are based on
several traditional machine learning models or their variants, such as Dynamic Time
Warping, Hidden Markov Model or Support Vector Machine. Some of them could
achieve a relatively high classification accuracy but with a time-consuming training
process. Some other models are just the opposite. In this paper, we propose a novel
designed deep Convolutional Neural Network (DBCNN) model using “Data-Bands”
as input to solve the motion sequence recognition task with a higher accuracy in
less training time. Contrast experiments were conducted between DBCNN and sev-
eral baseline methods and the results demonstrated that our model could outperform
these state-of-art models.

1 Introduction

Nowadays, intelligent devices and modern life are more and more inseparable.
These devices could record humans’ motion sequences through embedded sensors
precisely. Lots of motion recognition models have been proposed, such as Hid-
den Markov Models, Dynamic Time Warping, and Feature-Based Support Vector
Machine. There are drawbacks more or less. Some of them can not attain a high
accuracy, others might be time-consuming. In this paper, we proposed a new model
that pre-processes motion sequences to form “data-bands” and then trains special
designed deep convolutional neural network using “data-bands” as inputs. We call
this model as DBCNN, in which “DB” means “Data-Bands” and “CNN” means
“Convolutional Neural Network”. Experiments show that our novel model could
attain a better recognition accuracy compared with other state-of-art methods. Due to
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characteristics of deep convolutional neural network, training process can be accel-
erated on GPU in extremely short time, which makes DBCNN win more scores.

This paper is organized as follows. Section 2 introduces some backgrounds,
including problem description, related works and some basic knowledge about Con-
volutional Neural Network (CNN) in brief. Section 3 presents DBCNN for motion
recognition task, including data process and deep Convolutional Neural Network
design. Section 4 takes a glance at some details of parameters learning. Section 5
reports experiment results of our model comparing with two other state-of-art meth-
ods. And Sect. 6 concludes this paper.

2 Background

2.1 Problem Description

Now we describe motion recognition task more formally : Motion sequence recog-
nition is a classification task with N categories, and each of these categories has
a corresponding training set D;. The total training set is D = {D;,D,, ..., D }.
Training set D; has N; action instances: D; = { M, M,, ..., M ~;}- As mentioned
before, each motion instance is constituted by several sequences gathered by differ-
ent sensors, so we have M; = {S, 5,5, ..., S pannel num }- Assuming that processed
sequences have ¢ dimension, sequence S; would be a vector with length ¢. The motion

recognition task is to build a classifier given training dataset D.

2.2 Related Works

A wide variety of motion sequence recognition models have been proposed, such
as Hidden Markov Models (HMMs) [1-4], Dynamic Time Warping (DTW) [5],
and Feature-Based Support Vector Machine (Feature-SVM) [6] etc. Among models
of HMMs, continuous-HMM proposed in [3] claimed to gain the highest accuracy.
In a task with 10 pre-setting motions, it got a classification accuracy of 96.76 %.
This result has beaten the discrete-HMM [4], which could achieve an accuracy of
96.1000 % in the same dataset. Liu et al. has given a better result than both discrete-
HMM and continuous-HMM in [5] using Dynamic Time Warping. SVM could
not be used in our task directly due to the large scale and high dimensionality of
sequences. Wu et al. [6] proposed a feature-based SVM algorithm, which extracts
new features with a lower dimension from the original sequences in a manual proce-
dure. Wang et al. [7] proposed a similar method in different feature extraction rules.
Experiment results in [7] show that Wang’s method could achieve higher accuracy
comparing with HMMs [1-4], DTW [5] and Feature-SVM designed by Wu et al. [6],
we adopt this Feature-SVM model as one of our baseline methods in our experiment.
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2.3 Convolutional Neural Network

Convolutional Layer in CNN Although full connection structure in multi-layer per-
ception could make the networks to have more ability in expression, model will be
more possible to overfit the data. CNN solves these problems via sparse connec-
tion structure, as shown in Fig. 1. First, nodes in high layer only connect to parts of
nodes in low layer, which could reduce the number of parameters efficiently. More-
over, nodes in high layer share identical weights. Just like Fig. 1, arrows with the
same weight value have identical colors. This structure make the model to detect
position independent features, from which we benefit a lot.

Sub-sampling Layer in CNN Pooling is a form of non-linear down-sampling in
CNN. Among several different pooling methods, max-pooling and average-pooling
are the most common. LeCun et al. [9] used this method in their LeNet-5 for two
reasons: reducing the computational complexity for upper layers and providing a
form of translation invariance.

3 The DBCNN Model for Motion Sequence Recognition

3.1 Data Preprocess

Different people might do the same motion in different duration time. Sequences of
motion gathered by intelligent devices are usually sampled in a constant time inter-
val. So our obtained sequences of motion instances have different dimensionality.
To overcome this, our model introduces an approximation, linear interpolation.
We get values of a sequence in specific proportional position to form new feature vec-
tors, which have a fixed dimensionality. Actually, the value in specific proportional
position is a linear combination of two real sample values near the position.
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Fig. 2 Data band of the motion swipe right

3.2 Data-Band

Now, the new sequences of motion instances are in a same dimension. In our exper-
iment, each instance of motion data consists of six sequences. Instead of arranging
the six sequences into a long vector, we organize them into a “data-band”, which is a
narrow matrix with a small row number and a large column number, just like a band.

Figure 2 shows “data-bands” of two motion instances belong to a same motion
category, “Swipe Right”. It is obvious that they have position invariance: there are
similar parts appearing in distinct positions. This invariance in a same motion class
is an inherent attribute of motion itself and irrelevant to the motion’s duration or
executors. Our model use “data-bands” as input could grasp the position invariant
successfully, which could not be achieved if we organize the data into a long vector.

3.3 Specially Designed CNN for Recognition
of Motion Sequence

Input of CNN In our proposed CNN for sequences of motion, the input of network
are actually “data-bands” as mentioned before. In Fig. 3, the input of the network is
showed in the left side clearly. These “data-bands” are matrices with dimensional-
ity of 6 X 96. The rows of matrices correspond to 6 axes (e.g. X, ¥, z axes in both
accelerator and angular speed), and the columns correspond to 96 sampled points.

Design of Convolutional Layer LeCun et al. [9] have shown that CNN model
is extremely suitable for data with high dimensionality and invariant attributes.
Sequences of motion instance just fit the properties mentioned above. However, in
LeNet-5, receptive fields are little squares to capture the invariance between images
pixels. In our model, we treat our pre-processed sequences, ‘“data-bands”, as images.
The difference is that the invariance of “data-bands” exhibits in a narrow form
spreading in the lengthways dimension in “data-bands” matrices. If we use small
squares as receptive fields, more receptive fields are necessary to catch the invari-
ance. At the same time, the CNN model has more parameters and is more possible to
be overfitting. Our model solves the invariance extraction problem in a very elegant
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Fig. 3 The DBCNN model for sequences of motion data

way: we set up several convolutional windows to cover the lengthways of “data-
bands” matrices, just like dashed rectangles with distinct colors in left of Fig. 3.
This design could catch the invariance in lengthways using relatively small number
of receptive fields. Moreover, each convolutional window scans a “data-band” and
could get a 1-D feature vector, not a matrix in general CNN for image recognition.

Pooling Layer A pooling layer provides a further dimensionality reduction. We con-
catenate a max-pooling layer after a convolutional layer to shrink the feature space.
At the same time, pooling layer provides an auxiliary way to grasp position invariant
feature.

Classifier After two convolution-pooling structures, we connect a hidden layer and
a logistic regression layer. They form a general multi-layer perception. In fact, two
convolution-pooling layers mentioned before could be regarded as a function of fea-
ture transformation.

4 Details of Learning

4.1 Gradients in Convolutional Layers
In convolutional layers, a small patch (pﬁ_l)uv in previous layer’s feature maps xﬁ_l

then activation

are convolved with kernels kﬁj and added a bias bf to get a value (uﬁ)w,

function f(-) would act on this value to form the corresponding‘element at (u,v) in
the output feature maps xf, which is noted by (xﬁ)w:

l _ -1 1 I
@), = g‘; Pkl + b, (1)
1eM;
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D = (W))- )

In Eq. 1, M; means the selection of input maps in layer / — 1. It is decided by the

[Tk L

network structure when you design it. pﬁ‘l and kf. are two matrices, and the “x” oper-
ation means to do element-wise multiplication and get the sum of the new matrix.
Generally, there is an objective error function E for a neural network to optimize the
parameters. In order to compute derivatives of parameters on the error function E,
we could firstly compute sensitivity 6}1. defined as follows:

OE
a (uj) uv

By = 3)

Sensitivity computation is a top-down process similar to the situation in general
neural network but with a little difference. We compute sensitivity ((‘5/1.),4V in layer /

via the sensitivity (5Jl.+1)w in layer [ + 1:
I _ pll et | 1+1
8, = ;7 (f (upoup(8,7)), “)

where up(-) function is exactly an inverse process of the down-sampling and Bj[“
is a parameter in next sub-sampling layer (please refer to sect.4.2). In Eq. 4, we
use the notation “o” to indicate the element-wise multiplication of two matrices.
After getting sensitivities for feature maps in convolutional layer, we could compute
gradients about parameters in convolutional layers as follows:

oE Ini—1
— = )P )
ok w

OE '
= =), 6)
ob, Z 7

4.2 Gradients in Sub-sampling Layers

Sub-sampling layers don’t change the number of input maps, and they are really
down-sampled versions which would downsize the output maps as follows:

le. = f(ﬁ;down(xj.—l) + bjl.). (7

Here, down(-) means the sub-sampling function, such as average-pooling or max-
pooling. The parameter ﬂ; is a scalar to control the efficiency of sub-sampling, and

bj’. is still a bias item just like in convolutional layers. To compute the gradients about
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ﬁjl and bjl., we adopt similar steps to compute the sensitivities and gradients:

& = f'w)oq. (8)

InEq. 8, qjl. is a matrix which has the same size as 6jl., and its element at (u, v) is noted

by (qjl.)uv, which has a complex definition form as follows:

(q]l')uv = 2 Z (kg}_l)s,t(6§+1)u’(s,t),v’(s,t)’ ©))

ied(j) st

where @(j) is a layer [ + 1 feature maps’ set for which feature map j in layer /, le.,

is participated the convolutional process. (6ﬁ+1)u/(s’t),v,(s’t) is a tricky representation
I+1
i

convolutional process with weight (kﬁ;l)s,,. It is worth to notice that if the element

that means an element in feature map x."° which use the element xj’.)w during its

corresponding to weight (kﬁl)s’l does not exist, the value of (55+1 i (.00 (s,r) Would
be zero.
Now, we could compute the gradients for bﬁ and ﬂ; as the following equations:

OE
7= 2 (10)
j u,v
dj. = down(x[™), (11)
OE
i Z(ﬁ/l.odj’.)w. (12)
j u,v

After combining all the details mentioned before, we have our parameters opti-
mization algorithm for CNN in Algorithm 1.

5 Experiment Results

5.1 Introduction to 6DMG

Our experiments are based on the dataset 6DMG [8], which is a 6-D Motion ges-
ture database developed by Chen et al. in Georgia Institute of Technology. In our
experiments, we use parts of original sequences: acceleration sequences (including
X,y,z—axies) and angular speed sequences (including x, y, z—axies). Figure 4 shows
20 kinds of motion in 6DMG. The size of training set is 32300. The size of validation
set is 4000 and the one of test set is 5100.
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Algorithm 1 Parameters Optimization for Convolutional Neural Network

Require: processed dataset D; learning rate a; epoch number N'; batch size n,,; Network Structure
M
Ensure: CNN’s parameters W, k, b, 8
initialize network parameters W, k, b,  randomly
for each i € [1, N'] do
for each batch data D; with size n, do
for layer / :=Lto 1 do
1. compute sensitivities of layer / according to back-propagation
2. compute gradient of each parameters in layer /
3. update parameters in layer / in gradient descent method with learning rate «
end for
end for
end for

Fig. 4 Twenty kinds of motion in 6DMG

5.2 Feature-SVM

Feature-SVM proposed by Wang et al. [7] is claimed to outperform HMMs [1-4],
DTW [5] and another featured-SVM given by Wu et al. [6]. We adopt this model
as one of baseline experiments. After feature transformation, new features have the
length of 48. We list the feature design rules in Table 1.

New 48-d features are trained using Gaussian Kernel SVM and Linear Kernel
SVM with a 5-fold cross validation. For Linear Kernel SVM, the best accuracy
96.9125 % is attained when the cost parameter log,C is 2.3206. And for Gaussian
Kernel SVM, the best result appears when log, C is 1.9459 and log, g is -2.8332, and
the best classification accuracy is 93.7011 %.

5.3 Deep Belief Network

Hinton et al. [14] proposed a fast learning algorithm for deep belief network, which
use a greedy layer-wise training method. Deep architecture could be built with blocks
(e.g. restricted boltzmann machine). Parameters in DBN would be fine-tuned finally.
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Table 1 Feature extraction map in feature-SVM

Stochastic characteristic Dimension
Acceleration (X, y, z) and angular speed (X, y, z) mean 6
Acceleration and angular speed standard deviation 6
Acceleration and angular speed variance 6
Acceleration and angular speed interquartile range 6
Acceleration correlation coefficient 3
Angular speed correlation coefficient 3
Acceleration and angular speed MAD 6
Acceleration and angular speed root mean square 6
Acceleration and angular speed energy (mean square of DFT items) 6
Total 48
Table 2 Deep belief network’s results for motion sequence recognition
Learning rate | DBN structure 1000 epoch accuracy (%) | 2000 epoch accuracy (%)
0.10 [600, 600] 97.5736 97.5736
[1000, 1000] 97.5713 97.5713
[600, 600, 600] 97.7295 97.7736
[600, 600, 600, 600] 97.7104 97.7210
0.03 [600, 600] 97.3512 97.6059
[1000, 1000] 97.4776 97.7585
[600, 600, 600] 97.8736 97.9571
[600, 600, 600, 600] 97.7753 97.8560
0.01 [600, 600] 97.3340 97.5913
[1000, 1000] 97.3933 97.5407
[600, 600, 600] 97.5852 97.7107
[600, 600, 600, 600] 97.5115 97.6781

We get the best result with accuracy of 97.9571 % using the DBN model. The
structure with the highest classification accuracy has 3 hidden layers, and each layer
has 600 nodes. Learning rate in the process is 0.03 with 20 % attenuation every 500
epochs. Table 2 records experiment results in more details.

5.4 The DBCNN Model

Table 3 gives the classification accuracy under distinct parameters configuration. As
we could see, our DBCNN model has achieved a recognition accuracy of 98.66 %,
which outperforms the other two methods. Left part of Fig. 5 gives a results com-
parison among these three models.
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Table 3 DBCNN’s results for motion sequence recognition

R. Zhang and C. Li

#Kernels Ist conv filter | 1st pooling 2nd conv filter | 2nd pooling | Accuracy (%)
[20,40] 25%6 3x1 5x1 2x1 98.06
[30,40] 25%6 3x1 5x1 2x1 98.22
[30,50] 25%6 3x1 S5x1 2x1 98.40
[40,40] 25%6 3x1 5x1 2x1 98.66

33x6 4x1 5x1 2x1 98.57
[40,50] 25%6 3x1 S5x1 2x1 98.58
[45,35] 25%6 3x1 5x1 2x1 98.42
[45,45] 25%6 3x1 5x1 2x1 98.52
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Fig. 5 Recognition accuracy comparison and training time comparison

DBN DBCNN

In our experiments, a GTX-660 graphic unit with 2G GPU RAM is used. Training
time using DBCNN model is about 22 min on GPU. As a contrast, it takes about 3
times longer to train the Feature-SVM model on GPU, and about 7 times longer
to train the DBN model on GPU. Training Feature-SVM model and DBN model
on CPU might take much longer time. Right part of Fig. 5 shows an approximate
training time of these models on CPU and GPU.

6 Conclusion

In this paper, we proposed a novel motion sequence recognition model, DBCNN.
First of all, we pre-process motion sequences to form “data-bands”. Then we train a
specially designed convolutional neural network using these “data-bands” as input.
Our experiments on 6DMG demonstrate that our model can get a higher recognition
accuracy than state-of-art algorithms in less training time.
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