
Chapter 2

Description of the Most Important Elements

of Leibniz’s Planetary Theory

This chapter is divided into four parts according to an ideal division of the

Tentamen. In the first part Leibniz dealt with harmonic circulation and introduced

paracentric motion; in the second one he analysed the properties of paracentric

motion; in the third one he dealt with the inverse square law and the elliptic

movements of the planets; in the fourth one Leibniz provided a summary of his

model. Every paragraph is divided into two subparagraphs: 1. Leibniz’s assertions;
2. commentaries.

2.1 Physical Presuppositions, the Circulatio harmonica
and the Motus paracentricus

2.1.1 Leibniz’s Assertions

In the published version of the Tentamen, Leibniz, after a general historical

introduction concerning the development of astronomy and vortex theory, clarified

the physical assumption on which his planetary theory is based: the planets are

moved by a rotating fluid in which they are situated, because: a) planets’ orbits are
curved lines; b) each body moving in a curved line is subject to a conatus to recede
along the tangent, that is a centrifugal force; c) the planets do not recede along the

tangent; d) hence it is necessary that something exists allowing the planets to

continue their curved paths; e) thus, the only physical possibility to explain this

motion is the hypothesis of a moving fluid vortex, which surrounds every planet

and transports the planet by means of its motion. The planets are afloat in the vortex

which communicates them its movement.

After these physical considerations, Leibniz introduced the definition of

Circulatio Harmonica (harmonic circulation) like this:
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I call a circulation a harmonic one if the velocities of circulation in some body are inversely

proportional to the radii or distances from the centre of circulation, or (what is the same) if

the velocities of circulation round the centre decrease proportionally as the distances from

the centre increase, or most briefly, if the velocities of circulation increase proportionally to

the closeness.1

According to Leibniz, the harmonic circulation can characterize the arcs of every

curve, not only the arcs of a circle.

The next step consists in two different possible decompositions of the curvilinear

motion (see Fig. 2.1). Let a body move along a curve M1M2M3 describing the

elementary arcsM1M2 andM2M3 in equal time, then its motion can be decomposed

into: a) a circular motion around the centre Θ (M2T1 and M3T2 are, in this case,

infinitesimal circular arcs) plus a rectilinear motion as T1M1 and T2M2; b) the

motion of a rigid ruler around the centre Θ plus the rectilinear motion of the body

M along the rotating ruler. The motion of M along the ruler was called by Leibniz

motus paracentricus (paracentric motion). Leibniz adopted this second decompo-

sition of the curvilinear motion. Then, without considering for the moment the

paracentric motion, a circulation is harmonic if the infinitesimal circulations M2T1
and M3T2, completed in equal elements of time, are inversely as the radii ΘM2 and

ΘM3. Leibniz wrote:

For since these arcs of elementary circulations are as the times and the speeds combined,

and the elements of time are taken to be equal, the circulations will be as the velocities, and

consequently the velocities inversely as the radii, and therefore the circulation will be called

harmonic.2

Leibniz could now prove that the area law is valid for bodies which move

according to a harmonic circulation. Actually, rather than a demonstration, the

area law is a definitory property of the harmonic circulation, once specified the

proportionality between elementary circulations and speeds.

In the sixth paragraph of the Tentamen Leibniz claimed that, since the planets

move according to the area law and given the logical equivalence between area law

and harmonic circulation, the planets move with a harmonic circulation.

The seventh paragraph deals briefly with a problem which is important in order

to understand Leibniz’s way of reasoning, which runs as follows: a) as already seen
a body which is posed in a fluid does not move spontaneously in a curved line, this

means that the aether itself is not at rest; b) it is reasonable to think (rationis est

1 Translation drawn from Bertoloni Meli (1993, pp. 129–130). Original latin text: “Circulationem

voco Harmonicam, si velocitates circulandi, quae sunt in aliquo corpore, sint radiis seu distantiis a

centro circulationis reciproce proportionales, vel (quod idem) si ea proportione decrescant

velocitates circulandi circa centrum, in qua crescunt distantiae a centro, vel brevissime, si crescant

velocitates circulandi proportione viciniarum.” (Leibniz 1689, 1860, 1962, VI, pp. 149–150).
2 Translation drawn from Bertoloni Meli (1993, p. 130). Original latin text: “Cum enim arcus isti

elementarium circolationum sunt in ratione composita temporum et velocitatum, tempora autem

elementaria assumantur equalia, erunt circulationes ut velocitates, itaque et velocitates reciproce ut

radii erunt, adeoque circulatio dicetur harmonica.” (Leibniz 1689, 1860, 1962, VI, p. 150).
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credere, ivi, p. 151) that the movement of the aethereal fluid has the same features

as planet’s movement, hence, it follows: c) the motion of the fluid itself is harmonic.

Leibniz imagined the situation like this: the planet moves in an ellipsis (he dealt

with the properties of the elliptic motion in the next paragraphs of the Tentamen) of
harmonic circulation. Let us consider the part of aether, which constitutes a ring,

whose centre is in the sun, whose major radius is the distance sun-aphelion and

whose minor radius is the distance sun-perihelion. This ring can be thought as

divided into concentric circumferences of small thickness (exiguae crassitudinis,
ivi, p. 152), centred in the sun with the property that the fluid composing every

circumference moves harmonically. Therefore, the planet moves harmonically on

an ellipsis, every aethereal fluid’s circular section of infinitesimal thickness moves

harmonically, this means that the whole aethereal fluid moves harmonically

according to a circular motion. Therefore (par. 8), the motion of a planet can be

considered as decomposed in the harmonic motion of the fluid plus the paracentric

motion along the ruler. When a planet, at the time t, moves in the circumference

C of the aethereal fluid, the planet itself does not retain the impetus of circulation

(impetus circulandi, ivi, p. 152) it had got while moving along a different circum-

ference at the time ti < t; rather it assumes immediately the harmonic movement of

the circumference in which it is at the time t.
This assertion in paragraph 8 concludes ideally the first part of the Tentamen, in

which the essential properties of the planetary harmonic circulation are explained.

The second part will face the paracentric motion.
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Fig. 2.1 Leibniz’s planetary theory model. (a) This is Leibniz’s original figure posed by Gerhardt
at the end of Leibniz 1860, 1962. The diagram is unclear. There are many letters and this makes it

difficult to clearly read the diagram. There is a typo because the 2Mwritten immediately over 4M is

a mistake. The right form is 3M. Furthermore there is the habit to write the index of a letter before

the letter, while nowadays we write after the letter. Because of all these reasons—if I do not

specify otherwise—I will refer to (b), which is written in a more modern form but does not betray

Leibniz’s thought, at all. This diagram is drawn from Aiton (1960, p. 69)
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2.1.2 Commentaries

In these commentaries I will remain strictly adherent to Leibniz’s text, while

dealing with more general questions in Chap. 3.

1. The role of harmonic circulation of the aethereal fluid is twofold:

a) from a kinematical point of view, it has to provide the mean motion of the

planet. The deviation from the uniform circular motion is given by the

paracentric motion.

b) from a physical-structural point of view, the aethereal vortex is a real existing

entity, according to Leibniz. As we will see, he proposed, at least, two

hypotheses on the features of the vortices when he needed to better specify

some dynamical properties of gravity or to explain the movements of the

comets inside his system, but Leibniz never doubted the physical existence of

the vortices and of their harmonic circulation. In this regard, the correspon-

dence with Huygens is significant: it is well known that both Leibniz and

Huygens did not accept the idea of action at a distance, both of them

sustained vortex theory, but Huygens never accepted the role ascribed by

Leibniz to the harmonic motion of the aethereal vortex. He saw harmonic

circulation as a useless additional hypothesis, because the area law was given

for granted in this hypothesis and, as to gravity, the harmonic circulation—

not the vortices in themselves—seemed to play no role. Therefore Huygens

was not able to understand the meaning of harmonical vortices.

In a brief but dense passage of a letter to Leibniz on 11 July 1992, Huygens

wrote:

It is sure that the gravities (pesanteurs) of the planets are in inverse double reason as their

distances from the sun, which, together with the centrifugal virtue (vertu), provides

Kepler’s eccentrical ellipses. But I was never able to understand, relying upon your

explanation given in the Acta of Leipzig [the published version of the Tentamen], how
you deduce the same ellipses, replacing your harmonic circulation and maintaining the

same proportions of gravities. I do not see how you find the place for a kind of Descartes’
deferent-vortex, which you want to maintain, since the mentioned proportion of gravity,

joined with the centrifugal force, produces—by itself—Keplerian ellipses, according to the

proof given by Mr. Newton. For a long time, you promised me to clarify this difficulty.3

3 LSB, III, 5, p. 337. Original French text: “Il est certain que les pesanteurs des Planetes estant

posees en raison double reciproque de leurs distances du soleil, cela, avec la vertu Centrifuge,

donne les Eccentriques Elliptiques de Kepler. Mais comment en substituant vostre Circulation

Harmonique, et retenant la mesme proportion des pesanteurs, vous en deduisez les mesmes

Ellipses, c’est ce que je n’ay jamais pu comprendre par vostre explication qui est aux Acta de

Leipsich; ne voiant pas comment vous trouvez place �a quelque espece de Tourbillon deferant de

des Cartes, que vous voulez conserver; puisque la dite proportion de pesanteur, avec la force

Centrifuge produisent elles seules les Ellipses Keplerienes selon la demonstration de Mr Newton.

Vous m’aviez promis il y a longtemps d’eclaireir cette difficulté”.
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Aiton claims:

Since the harmonic vortex played no part in the motion of a planet in its orbit, this vortex

may be left out of account in the analysis of Leibniz’s theory.4

And again:

What he [Leibniz] still failed to see clearly was that the harmonic circulation of the planet

followed from the attraction, so that his resolution of the orbital motion into transverse and

radial components, which gave a correct mathematical representation, had a sufficient

physical foundation in the attraction without the addition of the harmonic vortex.5

As a matter of fact, Aiton’s observation is similar to Huygens’: the harmonic

hypothesis is useless for the theory,6 which is certainly true if the aim is a mere

mathematical analysis of the paracentric motion. However, from a conceptual

point of view the harmonic motion has an important role because it allowed

Leibniz to prove the area law without resorting to the immediate action at a

distance of a centripetal force. On the other hand, to admit a harmonic circula-

tion means, essentially, to postulate, not to prove, the area law. The situation

looks like this: Leibniz was going to provide a theory which described the real

structure and functioning of the solar system, not only a kinematical and

dynamical model, but a very physical-structural theory. The harmonic vortex

has a fundamental role because it describes something really existing, not

exclusively a model. Leibniz preferred to sacrifice the empirical content of his

theory—because he almost postulated the area law—rather than to admit a

Newtonian force, for which no mechanical support had been given. It is neces-

sary to add that a further problem exists: Leibniz condemned the action at a

distance and every action which should be immediately transmitted without

respecting the principle of continuity. But, if one reflects on the way Leibniz

imagined the harmonic motion in the planetary ellipses, one discovers a problem

similar to the immediate action (even though not at a distance): we have seen

that every circumference of infinitesimal thickness of the aethereal vortex

included between aphelion and perihelion moves harmonically and that the

planet, while moving from a circumference C to another D assumes immediately
the motion of D without retaining the one of C. But this is exactly an action

which is immediate, though by contact. The principle of continuity is not

respected because the motion should instantaneously lose its previous properties.

Not only: this immediate action should take place in every instant because the

planet changes its distance from the sun in every instant and hence, in a finite

time, there should be 2ℵ0—to use a Cantorian language—immediate adaptions of

the planet to its new condition of harmonic motion. Every point of the space-

4Aiton (1964, p. 112).
5 Aiton (1972, p. 136).
6 Huygens’ and Aiton’s aims are, however, different, which is obvious: Huygens seems to invite

Leibniz to abandon the harmonic circulation, while Aiton has the intention to prove that the

mathematical treatment of the paracentric motion is independent of harmonic circulation.
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temporal continuumwould represent a point of discontinuity in the motion of the

planet. Leibniz was against an immediate action in physics, also considering the

action with contact: his well known ideas on the collisions—which, according to

him, can never be considered as if they took place among perfectly hard

bodies—and his oppositions to the existence of the atoms are, in great part,

based exactly on the refusal of an immediate action, which changes the condition

of the bodies-motion. Whereas the elliptic harmonical circulation of the planets

needed more than a denumerable infinity of these immediate changes in a finite

time. It seems difficult to conceive a physical mechanism which allows a body to

completely cancel its preceding motion-state, at least as far as the transversal

direction is concerned and Leibniz was absolutely clear that this is a property of

the harmonic circulation shared with no other kind of motion. For, he wrote to

Huygens in 1690:

And the body itself is moved in the aether, as if it tranquilly navigated, without either

impetuosity or residue of the preceding impressions. The body only obeys to the aether,

which surrounds it. [. . .] But in each other circulation, excluded that harmonic, the bodies

maintain the preceding impression.7

Therefore, from a logical point of view the fact that a body does not retain any

data of its preceding physical state seems to be in conflict with Leibniz refusal of

an immediate action and with his principle of continuity; from a physical

standpoint, the one described is a mechanism which is difficult to conceive.

Anyway, the harmonic vortices aimed at: a) supplying the real structure of the

solar system; b) offering an alternative to Newton’s model; c) avoiding the

action at a distance.

2. The kind of velocity, of which Leibniz was speaking about while referring to the

velocitas circulandi.
There is no doubt after Aiton’s contributions: he was considering a reference

frame in polar coordinates, whose pole is in the sun and the model applied is that

of the rotating-ruler plus paracentric motion. Leibniz considers the situation

from the perspective of the rotating planet and analyses, in every moment, the

planetary movement in terms of the physical quantities experienced by the

planet. The velocitas circulandi is the transverse velocity. Under the condition

that such a velocity is harmonic, it is trivial to prove that (in modern terms) the

angular moment—even though this is not a concept, to which Leibniz explicitly

referred—is conserved and that, which is equivalent, the areolar velocity is a

constant of the motion, that is the area law.

7 Leibniz (1690a, 1860, 1962, VI, pp. 189–190). This is a letter written in October 1690 and edited

by Gerhardt in Ivi, pp. 187–193. This letter was never sent to Huygens. On this see Aiton (1964,

p. 114, note 16). Original French text: “El le même corps aussi est mû dans l’ether comme s’il y
nageoit tranquillement sans avoir aucune impetuosité propre, ny aucun reste des impressions
precedentes, et ne faisoit qu’obeı̈r absolument �a l’ether qui l’environne [. . .] Mais quelque autre

circulation qu’on suppose hors l’harmonique, le corps gardant l’impression precedente [. . .]”.
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A confirmation that the velocitas circulandi is the transverse velocity is given

by the above mentioned letter to Huygens, where Leibniz wrote that, if we

compare velocities’ modules of the different planets in their orbits, then they

are as square root of the distance (as Newton had proved in Principia, I, prop. IV,
cor. 6), but if we consider a single planet in its orbit, then in the different points

of the orbit, the velocitas circulandi is as the inverse distance from the sun,

which supplies the area law. Thence there is no contradiction between the two

assertions because they are referred to different kinds of velocity. Leibniz is

clear, for he wrote:

Perhaps, Mister, you will immediately say that the hypothesis of the squares of the

velocities equal to the reciprocal of the distaces is not in agreement with the harmonic

circulation. But I answer that the harmonic circulation is valid for each singular body, if

ones compares its different distances [from the sun], but the harmonic circulation in
potentia (where the squares of velocities are reciprocal to the distances) is valid when

one compares the different bodies, both in the cases in which they describe a circular line,

or when one considers their mean movement [. . .] for the circular orbit they describe.8

2.2 The Motus Paracentricus and Its Properties

2.2.1 Leibniz’s Assertions

The circulatio harmonica provides the mean motion of the planets, while the motus
paracentricus is the motion of approaching and moving away of the planet from

centre of gravity along the radius-vector. It is the radial motion. The paracentric

motion is due to two opposite tendencies: 1) the impressio excussoria circulationis;
2) the attractio solaris (ivi, par. 9, p. 152).

The impressio excussoria circulationis (translated by Bertoloni Meli as “out-

ward impression of the circulation”, p. 132) is the centrifugal force due to the

harmonic circulation. The centrifugal force tends outwards. Leibniz’s problem is to

find a geometrical representation and an analytical expression for the instantaneous

centrifugal acceleration that he called conatus centrifugus or conatus excussorius
circulationis. In paragraph 10 and 11 of the Tentamen Leibniz solved the problem

to find a geometrical representation of the conatus centrifugus. For, he wrote:

8 Ivi, p. 192. See also Aiton (1964, pp. 113–115). Original French text: “Vous dirés peutestre

d’abord, Monsieur que l’hypothese de quarrés des vistesses reciproques aux distances ne s’accorde
pas avec la circulation harmonique. Mais la réponse ast aisée: la circulation harmonique se

rencontre dans châque corps a part, comparant les distances differentes qu’il a, mais la circulation

harmonique en puissance (o�u le quarrés des velocités sont reciproques aux distances) se rencontre
en comparant des differens corps, soit qu’ils décrivent une ligne circulaire, ou qu’on prenne leur

moyen movement [. . .] pour l’orbe circulaire qu’ils décrivent”.
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This conatus can be measured by the perpendicular from the following point to the tangent

at the inassignably distant preceding point.9

This means (Tentamen, par. 11) that the conatus excussorius can be represented

by PN (see Fig. 2.1b), namely the versed sine of the angle of circulationM1ΘN. For,
the versed sine—Leibniz continues—“is equal to the perpendicular drawn from one

end-point of the arc of a circle to the tangent from the other end-point”.10 The

versed sine can be identified with D1T1, the inassignable difference between two

infinitely near radii-vector. This means that, in general, the conatus escussorius can
be represented by segments of the type DiTi, for every position of the radius vector.
It is then easy to prove that the conatus centrifugus is equal to PV.11

Leibniz is here imagining the trajectory as composed of an infinite number of

infinitesimal circular arcs whose radii have infinitesimal differences and are all

centrated in the sun. Given this situation, the infinitesimal arcs of circumference can

be considered as sides of a polygon. In the commentaries we will see that the

consideration of the trajectory as composed of infinitesimal arcs or of infinitesimal

sides of a polygon implies a problem as to the concept of tangent, with the

consequence that Leibniz wrongly added a factor 2. This mistake did not have

remarkable effects on the coherence of Leibniz’s theory.
With regard to the analytical expression of the conatus centrifugus, if the motion

is circular and uniform, than the conatus is as V2, where V is the transverse velocity,

since the versed sine is proportional to the square of the chord and the transverse

velocity is proportional to the chord. If two or more circles are considered in which

the movement is uniform, then the conatus are as V2/R, where R is the radius. From

this expression for the centrifugal force, Leibniz deduced another expression which

is fundamental in his reasoning: if a body moves with a harmonic circulation, the

conatus centrifugus is inversely proportional to the radius vector. This happens

because of the inverse proportion between transverse velocity and radius vector in

the circulatio harmonica and because of the relation c ¼ V2=R, where c is the

centrifugal conate. From here another expression is possible: Leibniz considered a

fixed elementary area, completed by the radius-vector in an infinitesimal time dt
(the area law is valid), which he indicated by ϑa and assumed it equal to the double

of the elementary triangle M2M3Θ, namely equal to D2M3 � ΘM2. The expressions

ΘMn can be indicated by r¼ radius, because the difference between ΘMi and

ΘMi�1 is an infinitesimal, which can be neglected in this calculation. There-

fore D2M3 ¼ ϑa=r and the centrifugal conate D2T2 ¼ D2M3ð Þ2=2ΘM3. Thus, in

conclusion

9 Translation drawn from Bertoloni Meli (1993, p. 132). Original Latin text: “Hunc conatum metiri

licebit perpendiculari ex puncto seguenti in tangentem puncti praecedentis inassignabiliter

distantis.” (Leibniz 1689, 1860, 1962, VI, p. 152).
10 Translation drawn from Bertoloni Meli (1993, p. 133). Original latin text: “ [. . .] aequatur
perpendiculari ex uno extremo arcus circuli puncto in tangentem alterius ductae [. . .].” (Leibniz

1689, 1860, 1962, VI, p. 153).
11 See Leibniz (1689, 1860, 1962, VI, paragraph 11, p. 153).
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D2T2 ¼ ϑ2a2

2r3:

That is: the centrifugal conate is as the inverse of the radius-cube.

This means that Leibniz is considering a non-inertial reference frame in polar

coordinates, whose origin is posed in the rotating planet. From the point of view of

the planet, the acceleration along the radius is given by two components: one

outwards, which is the conatus centrifugus due to the harmonic circulation; the

other one is due to gravity or levity. Leibniz thought that this second component can

be either inwards (gravity), which is the normal experienced case, or outwards

(levity), which is a theoretical case. The acceleration along the radius is the

algebraic sum of the two components, which is an arithmetical difference in case

of gravity and an arithmetical sum in case of levity. Considering the case of gravity,

if the conatus centrifugus prevails,12 the radial acceleration is directed outwards.

While, if the solicitatio gravitatis prevails, the radial acceleration is directed

inwards.

We have seen how Leibniz represented the conatus centrifugus. As to the

solicitatio gravitatis, Leibniz claimed:

Paracentric solicitation, whether of gravity or levity is expressed by the straight line M3L
drawn from the pointM3 of the curve to the tangent M2L (produced to L ), of the preceding
inassignably distant point M2 parallel to the preceding radius ΘM2 (drawn from the centre

to the preceding point M2).
13

Leibniz imagined hence that, given an infinitesimal arc M1M2, which can be

approximeted by its chord, the inertial motion of a body moving in such an arc can

be approximated by the prolongation of the chord (the tangent in the Leibnizian

sense) rather than by the Euclidean tangent (on this, see the following commentar-

ies) without a detectable mistake. This kind of representation, as well as the idea

that the trajectory can be considered a polygon with infinitesimal sides, is evidently

the same as the one used by Newton in the proposition I of the first book of his

Principia.
The section of the Tentamen, which concludes the part concerning the general

properties of the paracentric motion is the 15th paragraph, where Leibniz deter-

mined geometrically the element of the impetus paracentricus, that is the instanta-
neous acceleration along the radius. He claimed that in every harmonic circulation

the element of impetus paracentricus is the difference or the sum of the paracentric

12 Leibniz wrote “[. . .] differentia vel summa solicitationis paracentricae [. . .] et dupli conatus
centrifugi [. . .]” (my italics, Leibniz 1689, 1860, 1962, VI, p. 154), referring to the double

centrifugal conate and not to the simple centrifugal conate. This is a mistake highlighted by

Varignon. For an explanation see next Sect. 2.2.2. Commentaries.
13 Translation drawn from Bertoloni Meli (1993, p. 134). Original Latin: “Solicitatio

paracentrica, seu gravitatis vel levitatis exprimitur recta M3L ex puncto curvae M3 in puncti

praecedentis inassignabiliter distantisM2 tangentemM2L (productam in L ) acta, radio praecedenti
ΘM2 (ex centro Θ in punctum precedens M2 ducto) parallela”. (Leibniz 1689, 1860, 1962, VI,

p. 154).
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solicitation and of the double centrifugal conatus. We refer to Leibniz reasoning

because:

A) it is an example of what one could call infinitesimal geometry applied to
physics, that is both the finite and the infinitesimal quantities are represented

by means of geometrical constructions and, at least in this paragraph, there is

not a transcription into analytical terms;

B) it is an example which clearly shows the use of differentials of different degree

in a geometrical context (for more details see the next commentaries).

Leibniz reasoned like this:

1. let M1N and M3D2 be the perpendiculars from M1 and M3 to ΘM2.

2. The circulation is harmonic, hence the triangles M1M2Θ and M2M3Θ are

congruent. Therefore their altitudes M1N and M3D2 are congruent.

3. Let M2G be congruent to LM3 and M3G parallel to M2L.
4. The trianglesM1NM2 andM3D2G are congruent.14 Therefore it isM1M2 ¼ GM3

and NM2 ¼ GD2.

5. Let us assume ΘP ¼ ΘM1 and ΘT2 ¼ ΘM3, so.

14 I remind the reader that the two triangles are congruent because: a) M3D2 ¼ M1N; b) they are

right triangles; c) For the angles the following identities are valid: M1M2N ¼ D2M2L and

D2M2L ¼ D2GM3, because of the parallels M3G and M2L. Thus, M1M2N ¼ D2GM3. Hence, the

thesis follows.

Fig. 2.2 Enlarged imagine

of Leibniz’s planetary
theory-figure. I offer here

the reader an enlarged

imagine of Leibniz’s
planetary theory. The

imagine is the same as

Fig. 2.1a. I present this

imagine because in Aiton’s
the point G is not

represented, while it is quite

important in the context I

am dealing with. I hope this

imagine can help the reader

to follow the mathematical

reasoning developed in the

running text. Let us remind

the reader that the symbol

2M near 4M has to be

replaced with 3M (in my

running text M3)
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6. PM2 ¼ ΘM1 � ΘM2 and T2M2 ¼ ΘM2 � ΘM3.

7. PM2 ¼ NM2ð Þ ¼ GD2 þ NP and T2M3 ¼ M2Gþ GD2 � D2T2. Hence.

8. PM2 � T2M2 ¼ NPþ D2T2 �M2G. But.
9. NP ¼ D2T2 because they are the versed sines of two angles and radii whose

differences are inassignable. Hence.

10. PM2 � T2M2 ¼ 2D2T2 �M2G.
11. The difference of the radii expresses the paracentric velocity; the difference of

the differences expresses the element of the paracentric velocity (that is the

paracentric acceleration). But D2T2 or NP is the centrifugal conatus of circu-

lation andM2G orM3G is the paracentric solicitation. This proves the theorem.

In this demonstration: the segments, one extremum of which is the centre of

gravity Θ are finite; all other elements used in the proof are infinitesimal. The

quantities P2M2 and T2M2 are first differences and represent the instantaneous

radial velocity; their difference PM2 � T2M2 is a second difference and represents

the radial instantaneous acceleration.

With this demonstration, Leibniz completed the description and the explanation

of the basic elements of his theory. He then applied these elements to the case of the

elliptical orbits, the ones which are relevant for the planetary motions. In particular:

at the moment Leibniz has been able to determine both a geometrical and an

algebraic-analytical form with regard to the conatus centrifugus, while, for the

solicitatio paracentrica, he has only given the geometrical form. His next step is to

prove that such a solicitation is as the inverse of the square distance.

2.2.2 Commentaries

1. Relation between harmonic circulation and paracentric motion.

Let us summarize the results obtained by Leibniz till the paragraph 17 of the

Tentamen: Leibniz considered the situation from the point of view of an observer

posed in the rotating planet, which is subject to three actions:

1) the action due to the circulatio harmonica, which determines the transverse

velocity of the planet;

2) the centrifugal force due to the rotating vortex. In this case it is necessary to

underline that the physical cause of the transverse velocity and of the

centrifugal force is the same, that is the harmonic vortex, but, while the

area law depends on the fact that the circulation of the vortex is harmonic so

that the areal velocity is constant, the centrifugal force depends on the

rotation, not on the fact that the rotation is harmonic;

3) the solicitation of gravity or of levity. In the case of the solar system, the

solicitation of gravity due to the sun. Centrifugal force plus solicitation of

gravity provide the paracentric motion.
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A brief physical explanation is maybe useful: from the point of view of an

inertial reference frame, the so called centrifugal force is not a really existing

force. However, from the point of view of the rotating observer the situation is

different: for him the centrifugal force is a real force and depends on the rotation

originated—according to Newton–by two physical quantities and situations:

A) The centripetal force;
B) The initial conditions of the motion; basically the initial inertial velocity.15

The conditions A) and B) determine the rotation of the planet and hence the

intensity and the direction of the physical quantities in the rotating system, in

particular, of the centrifugal force. The physicists call it fictitious centrifugal force
and we can call Leibnizian centrifugal force. This force simply depends on the fact

that a system is rotating, independently of the dynamical causes of the rotation,

because the rotating observer experiences a centrifugal force in the case of

planetary motion (and this, in Newtonian terms, depends on centripetal force

plus initial velocity), but also, for example, in a roundabout, where no centripetal

force exists. When the intensity of the centripetal force is equal to that of Leibniz-

ian centrifugal force, then the motion is circular and uniform, otherwise it is not.

An explanation in modern terms can be useful for a complete understanding of

Leibniz’s reasoning. In a rotating reference frame the forces equation can be

written, using polar coordinates like this:

F rð Þ ¼ m r
:: �rθ

: 2
� �

r̂

� �
þ rθ

:: þ2r
:
θ
:� �

θ
^� ð2:1Þ

where r is the variable radius vector, θ is the angular distance from an angular

position of the radius vector assumed equal to 0, r
^
is the radial versor and θ

^
is the

versor in the direction perpendicular to r
^
. Since we are in a field of central forces,

the transverse component of the acceleration rθ
:: þ2r

:
θ
:

is zero, the whole

acceleration is radial and is expressed by the term r
:: �rθ

: 2
. Therefore if one

wonders how the acceleration along the radius vector varies, one gets the

equation

mr
:: ¼ F rð Þ þ rθ

: 2
: ð2:2Þ

Since in a central field the angular moment L ¼ m θ
:
r2 is conserved, Eq. (2.2)

gets the form

15 The explanation of the centrifugal force in terms of A) and B) could be called an inertial

interpretation of a non-inertial reference frame. Historically, Leibniz did not resort to it. However,

this explanation is useful to catch the situation from a physical point of view and to better

understand the correct reasoning of Leibniz as to the centrifugal force.

18 2 Description of the Most Important Elements of Leibniz’s Planetary Theory



mr
:: ¼ F rð Þ þ L2

mr3
: ð2:3Þ

The term L2

mr3 is called centrifugal force. We have seen that the centrifugal conate

is expressed by Leibniz asD2T2 ¼ ϑ2a2

2r3 . Since ϑa represents an infinitesimal area,

it can be indicated by dA. In modern terms the relation between the infinitesimal

area swept by the radius vector and the angular moment isL ¼ 2m dA
dt . If one does

not take into account the constant factor m and considers (so to say)—as Leibniz

did—a unitary infinitesimal time, then the relation becomesL ¼ 2dA. Therefore,
if we exclude a constant factor 8, Leibniz’s result is perfectly correct.16 This is an
important and new result in history of physics. Let us add that, if in Eq. (2.3), we

consider F(r) acting as gravity acceleration, namely as � 1
r2, one gets exactly the

situation taken into account by Leibniz.

The structure in terms of forces is now complete, as to its fundamental

elements. Leibniz had still to determine the specific expression of the solicitation

of gravity. With regard to the physical structure of the world, the harmonic

vortex produces the first two actions; as to the mechanical cause of gravity,

Leibniz—as we will see—faced the problem in various works, but in the

Tentamen the question is merely outlined, hence, for the moment, I will not

deal with it. The examination of the paracentric motion along the radius vector is

basically correct and—from the standpoint of history of physics—is an impor-

tant contribution. It is however significant that Newton criticized17 the way in

which Leibniz presented the centrifugal force. For Newton wrote, speaking in

third person:

Eleventh proposition of the Tentamen: the centrifugal conate can be expressed by means of

circulation angle’s versed sine. This proposition is true, when the circulation takes place in
a circle, without the paracentric motion. But when the movement takes place in an eccentric

orbit, the proposition is not true. The centrifugal conate is always equal to gravity and is

directed in the opposite direction, according to the third law of motion of Newton’s
Principia Mathematica, and the force of gravity cannot be expressed by the versed sine of

circulation’s angle, but it is reciprocal to the distance square.18

16 For a slightly different explanation of this result by Leibniz, see Aiton (1960, pp. 61–62; 1964,

pp. 117–121).
17 The documents in which Newton and Keill criticized Leibniz are three: 1) Newton’s writing
titled “Epistola cujusdam ad amicum“, published in Edleston 1850. Edleston claims that, probably

this letter was written in 1712; 2) a second document sent by Newton to Keill and titled “Notae in

Acta Eruditorum an. 89 p. 84 et sequ”, available in the University Library of Cambridge, Add. MS

3985 f. 6; 3) the only published work on this question, that is Keill (1714). Keill’s work is almost

completely based upon Newton’s ideas. For a complete report on these critics, see Aiton (1962).
18 Newton in Edleston 1850, p. 311. Original latin text: “Undecima Tentaminis Propositio est haec:

Conatus centrifugus exprimi potest per sinum versum anguli circulationis. Et vera quidem est haec

propositio ubi circulatio fit in circulo sine motu paracentrico. Sed ubi fit in Orbe excentrico

propositio vera non est. Conatus centrifugus semper equalis est vi gravitatis et in contrarias partes

dirigitur per tertiam motus Legem in Principiis Mathematicis Newtoni, et vis gravitatis esprimi
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And again:

Propositions 20th (sic) and 25th are false, because they show a centrifugal force which is

less than planet’s gravity towards the sun. Therefore they are false. The motion of a planet

in its orbit does not depend on the excess of gravity upon centrifugal force (as Leibniz

believes), but the orbit is incurved only by gravity’s action, to which the centrifugal force

(as reaction or resistance) is always equal and opposed, as to the direction, according the

third law posed by Newton.19

The situation is like this: Newton believes that the centrifugal force is a mere

reaction to the centripetal force, which is the real force acting on the planets.

This is in agreement with the third law. Considering the question under this

perspective, one could claim that Newton did not correctly understand Leibniz’s
way of reasoning, in particular the fact that Leibniz was looking at the situation

from the point of view of the rotating planet. This is probably part of the truth.

The other part of the truth is that, likely, in Newton’s eyes the whole Tentamen
seemed something odd. We will deal with this general question in the fourth

section of this book, while analysing the final version of Leibniz’s planetary

theory written in 1706, after David Gregory’s critics in 1702.20

Anyway, according to Leibniz’s aims and way of thinking, the correct expres-

sion for the movement along the radius vector is an instrument in his hands to

present his system of the world. If he had considered such an examination just as

a contribution to mathematical-physics, it would have been only a different

presentation of results already obtained by Newton—although Newton did not

recognize this point—, it would have been something like “some new points of

view in Newtonian physics”, not certainly a new system of the world alternative

to Newton’s, whereas Leibniz intended to construct such a system. Because of

this it is necessary to follow the way in which Leibniz continued to construct his

planetary theory.

2. The concept of tangent and the second order differences.

In the item 4) of Leibniz’s demonstration, the triangles M1NM2 and M3D2G
are congruent, so NM2 ¼ GD2. Newton criticized this assertion by Leibniz21: if

M2L is the Euclidean tangent in the point M2, the direction is not the same as

M1M2, therefore GM3 is not parallel to M1M2 and the triangles M1NM2 and

M3D2G are not congruent, hence NM2 is not equal to GD2. Aiton provides a

non potest per sinum versum anguli circulationis, sed est reciproce ut quadratum radii”. Italics in

the text.
19 Ivi, p. 313. Original latin text: “Propositio vigesima (sic) prima et vigesima quinta, minorem

exhibent vim centrifugam quam gravitatem Planetae in Solem ideoq: falsae sunt. Motus Planetae

in orbe non pendet ab excessu gravitatis supra vim centrifugam (ut credit Leibnitius) sed Orbis

incurvatur a gravitatis actione sola, cui vis centrifuga (ut reactio vel resistentia) semper est equalis

et contraria per motus Legem tertiam a Newtono positam”.
20 See Gregory (1702, pp. 99–104).
21 Newton in Edleston 1850, p. 312.
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different interpretation22: the segment M2L is not the Euclidean tangent, but the

prolongation of the chord M1M2, that is the model presented by Leibniz is the

“polygonal model“, in which the trajectory is interpreted as composed of a

polygon with infinitesimal sides.23 This interpretation is surely the correct one,

taking into account that Leibniz in the Illustratio Tentaminis explicitly claimed:

Furthermore, in general, let us consider (Fig. 31) two sidesM1M2 andM2M3 of the polygon

which constitutes the curve, and let us prolong one of them,M1M2, till L, so that the straight
line M2L represents the velocity, with which the mobile tends to continue its motion along

the same line, after having passed through M1M2.
24

Therefore Aiton’s interpretation is correct and no mistake is present in this

mathematical reasoning by Leibniz.

A further question, connected to the preceding one, concerns the calculation

of the centrifugal force: Varignon calculated the centrifugal force according to

the concept of Leibniz’s tangent and discovered that its value is double that

computed by Leibniz. He wrote to Leibniz on 6 December 1704.25 Leibniz

corrected the mistake and expressed his gratitude to Varignon for having dis-

covered and communicated the mistake to him. In paragraph 12 of the Illustratio
Tentaminis, Leibniz highlighted all the occurrences26 of the Tentamen in which

the expression double conatus centrifugus has to be replaced with conatus
centrifugus.

Newton and the Newtonians also criticized Leibniz for the problem of second

order differences: Newton and Keill objected that Leibniz’s assumption,

according to which NP and D2T2 are equal (assumption 9) is not correct because

22Aiton (1962, p. 37; 1964, pp. 119, 120; 1972, pp. 138–142), where the most clear explanation is

provided. See also Bertoloni Meli (1993, p. 188).
23 In his work Nova Methodus pro Maximis et Minimis, itemque tangentibus [. . .] (see Leibniz

1684, 1858, 1962, V, p. 223), Leibniz explicitly claimed that the tangent can be considered as the

ordinary Euclidean tangent or as the prolongation of the side of the infinitangular polygon which

can be thought as equivalent to the curve, at least as far as some mathematical considerations are

concerned. For, Leibniz wrote: “to find the tangent is to draw the straight line which joins two

points of a curve, whose distance is infinitely small, or the prolonged side of the infinitangular

polygon, which, for us, is equivalent to the curve”. Original Latin text: “[. . .]tangentem invenire

esse rectam ducere, quae duo curvae puncta distantiam infinite parvam habentia jungat, seu latus

productum polygoni infinitanguli, quod nobis curvae equivalet.” (I am grateful to Professor

Dr. Eberhard Knobloch for this indication). In the case I am analysing, the two representations

of the tangent as ordinary tangent or as prolongation of the infinitangular polygon, are not

equivalent as the mathematical consequences are different, according to which representation

one uses. However: Leibniz had already spoken of the two representations, as the mentioned

passage confirms, hence this makes Aiton’s interpretation quite plausible.
24 Leibniz (1706, 1860, 1962, VI, p. 261). Original latin text: “Porro generatim concipiendo (fig.

31) duo Latera polygon curvam constituentis M1M2 et M2M3, et unum ex illis M1M2 continuando

in L ita, ut recta M2L celeritatem repraesentet, quo mobile post percursam M1M2 in eadem recta

pergere tendit[. . .]”.
25 Varignon to Leibniz 6 December 1704 in Leibniz (1859, 1962, IV, pp. 113–127).
26 Leibniz (1706, 1860, 1962, VI, pp. 264–266).

2.2 The Motus Paracentricus and Its Properties 21



the two segments differ by a second order infinitesimal and, in the context dealt

with by Leibniz, where second differences are taken into account, an error of a

second order infinitesimal is not acceptable. Aiton has shown that such a mistake

does not exist in Leibniz’s theory, if one interprets the word tangent as prolon-
gation of the chord and that the mistake is a third order infinitesimal. We refer to

Aiton’s works for this problem.27

2.3 Elliptical Motion and Inverse Square Law

2.3.1 Leibniz’s Assertions

The two paragraphs of the Tentamen in which Leibniz faced the motion on an

ellipsis, where both the centres of the harmonic circulation and of the gravitational

attraction are in the same focus, are the 18th and the 19th. The form in which

Leibniz expounded the results is quite different in the published Tentamen and in

the unpublished Zweite Bearteitung because, in this second work, he added the

complete demonstrations of his propositions and a series of further mathematical

propositions which allowed him to reach interesting astronomical results, whereas

in the published version the demonstrations are only outlined and many results are

missing. The literature, whose aim has been to provide the general ideas behind

Leibniz’s planetary theory and the analysis of the problems connected with Huy-

gens’, Newton’s and Newtonians’ critics, has underestimated the importance of the

specific contributions expounded in the Zweite Bearbeitung.28 I will face the results
and methods of proof explained in this work, because all the results of the Tentamen
are included here together with further ones.

Leibniz (see, Fig. 2.3) reminded the reader that the velocity of circulation

(transverse velocity) can be expressed by the segments T2M3 or D2M3, since the

difference between these two segments is negligible. The paracentric (radial)

velocity is expressed by means of D2M2 and the velocity of the body in the orbit,

which, Leibniz underlined, is composed of the two, by the segment M2M3 (ivi, par.
18, p. 172).

27 Aiton (1962, p. 39; 1972, pp. 144–145).
28 Up to now, the most complete report of the Zweite Bearbeitung is in Bertoloni Meli (1993,

pp. 155–161).
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Leibniz’ reasoning (ivi, par. 18, pp. 172–174) is developed as follows:

for the previous segments, which represent the three velocities, the proportion

D2M3 : D2M2 : M2M3 ¼ BE :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FΘþ Θφð Þ FΘ� Θφð Þ

p
: 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘM3 � FM3

p
ð2:4aÞ

holds, where F is the focus of the ellipsis in which there is not the sun and

FM3 ¼ φM3.

Leibniz proved easily that the following proportion holds:

D2M3 : D2M2 : M2M3 ¼ M3H : HΘ : ΘM3 ð2:4bÞ

where M3H is the perpendicular to the ellipsis in M3 and FQ and ΘH the perpen-

diculars from the foci to M3H.
Therefore he has to prove

1)
M3H : HΘ : ΘM3 ¼ BE :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FΘþ Θφð Þ FΘ� Θφð Þ

p
: 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘM3 � FM3

p

Since M3H is perpendicular to M2M3 (ellipsis’ arc), that is to its tangent, in

M3, then the angles HM3F and HM3Θ are equal, as follows from the properties

of the tangents to the ellipsis, thence

2) the triangles M3HΘ and M3QF are similar and the angle ΘM3F is bisected by

M3H.
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Fig. 2.3 Enlarged view of

the Fig. 2.1b. I propose here

an enlarged view of the

figure Fig. 2.1b, because it

can facilitate the reader to

follow Leibniz’s long
reasoning, of which all the

steps are explained in the

running text.
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Therefore, if M3H saws ΘF in R, it holds, from a theorem of elementary

geometry

3) ΘR : FR ¼ M3Θ : M3F;
4) the triangles ΘHR and FQR are similar, hence

5) their homologous sides are asΘR :FR, that is, from 3), asM3Θ :M3F and hence

as the homologous sides of the similar triangles M3HΘ and M3QF.
6) M3ΘþM3F ¼ AΩ because the figure is an ellipsis.

7) Let M3Θ�M3F ¼ Θφ.
8) from the properties of the ellipsis it is: AΩ2 � ΘF2 ¼ EB2 ¼ AΩ � XW, where

XW is the latus rectum.
9) (my addition) given a triangle abc, let la be the bisectrix of the angle in A, it is

known that its measure is la ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc p p�að Þ

p
bþc , where p is the half-perimeter. This

expression can also be written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc bþcð Þ2�a2½ �p

bþc , from which the proportion

la :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ cð Þ2 � a2

q
¼ ffiffiffiffiffi

bc
p

: bþ cð Þ follows. Leibniz applied this proportion

to the triangle FM3Θ, considering the bisectrix M3R. Therefore he could

write:

10) M3R :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2�Θφ2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M3Ω�M3F
p

:AΩ. But, because of 8),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2�Θφ2

p
¼BE

and, elevating to square the relations 6) and 7), and subtracting the results of

7) from that of 6), one gets M3Θ �M3F¼ 1
4
AΩ2�Θφ2
� �

, so that Leibniz can

obtain the proportion M3R :BE¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2�Θφ2

p
:AΩ.

11)

M3R ΘH þ QFð Þ ¼ 2area ΘM3

Δ
F

� �

12) 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2 � ΘF2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2 � Θφ2

p
¼ 2area ΘM3

Δ
F

� �
, because of the Heron-

formula applied at the triangle ΘM3F, hence:

13) M3R ΘH þ QFð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2 � ΘF2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2 � Θφ2

p
, which can be written

M3R : BE ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2 � Θφ2

p
: ΘH þ QFð Þ.

14) From10) and 13) one gets
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2�Θφ2

p
: AΩ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2�Θφ2

p
: ΘHþQFð Þ, which

can, obviously, be written as ΘHþQFð Þ : AΩ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2�Θφ2 :

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2�Θφ2

p
.

15) Applying 5) one has: ΘH þ QFð Þ : M3ΘþM3Fð Þ ¼ ΘH : M3Θ. But

M3ΘþM3F ¼ AΩ, hence from 14) and 15), Leibniz obtained

16) ΘH :M3Θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2 � Θφ2 :

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2 � Θφ2

p
and elevating to square and

subtracting

17) M3Θ
2 � ΘH2

� �
: M3Θ

2 ¼ AΩ2 � ΘF2
� �

: AΩ2 � Θφ2
� �

, that is

M3H
2 : M3Θ

2 ¼ BE2 : AΩ2 � Θφ2
� �

. And finally, from 16) and 17), it follows

18)

M3H : ΘH : M3Θ ¼ BE :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘF2 � Θφ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΩ2 � Θφ2:

q
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At the conclusion of this reasoning, Leibniz can claim:

If a body is moved in an ellipsis, the velocity of circulation around a focus is at the

paracentric velocity, that is the velocity with which the body descends towards the focus,

as theminor or transverse axis is at the square root of the difference between the square of the

focal distance and the square of the difference of the mobile’s distances from the two foci.29

From this proposition a series of corollaries follow, which describe important

properties of the motion in an elliptical orbit in which the centre of the forces is in

one of the foci.

The first corollary, which Leibniz deduces easily from the explained reasoning,

is: in an ellipsis, given a point P, the ratio between the paracentric (radial) velocity

and the velocity of circulation (transverse velocity) is proportional to the ordinate

PH, that is: the ratio between the velocity with which the planet approaches to or

recedes from the sun is to the velocity of circulation as the distance of the planet

from the apses-line.30

29 Leibniz (1790?, 1860, 1962, VI, p. 174). Original latin text: “Si quid moveatur in Ellipsi,

velocitas circulandi circa focum est ad velocitatem paracentricam, nempe descendendi ad focum

vel a foco recedendi, ut axis minor seu transversus est ad latus differentiae inter potestatem

distantiae focorum inter se et potestatem differentiae distantiarum mobilis a focis”. At the end

of the quotation, Leibniz used the Euclidean language to indicate the segments. I have provided a

modern translation of “[. . .] ad latus differentiae inter potestatem distantiae focorum inter se et

potestatem differentiae distantiarum mobilis a foci”. It is, obviously, possible to give a translation,

which is more faithful to Euclid’s tradition: “[. . .] at the side of the difference between the power

of foci’s distance and the power of the difference of mobile’s distances from the foci”.
30 Leibniz (1790?, 1860, 1962, VI, p. 175). This is an important relation between the radial and

transverse velocity, which, in modern terms, can be proved like this:

the radial velocity is vr ¼ dr=dt and the transverse velocity is vθ ¼ r � dθ=dt, therefore
vr=vθ ¼ dr=r � dθ. Since the orbit is an ellipsis, its polar equation is r ¼ ed

1þe cos θ, where e is

the eccentricity and d is the distance F1K of the focus F1 from the directrix d. Differentiating
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Two other corollaries proved by Leibniz are:

1) in an ellipsis, given the mobile point P, the ratio between the velocity in the orbit
and the velocity of circulation is as the mean proportional between the distances

of P from the foci. (This corollary is a direct consequence of 18).

2) The velocities, with which a point M3 changes its distance from the minor axis

BE, are as the velocities with which it changes its distance from the focus Θ.

All these corollaries are missing in the published version of the Tentamen. These
sets of results show that Leibniz’s knowledge of the kinematical aspects of the

planetary motions were profound and that he was an original thinker, as to this

subject.

Let us now consider how Leibniz approached the problem of determining

gravity attraction. In this case, too, the difference between the published and the

unpublished version of the Tentamen is conspicuous. In both contributions the

following reasoning exists:

Positions (referring to Fig. 2.3):

a) AΩ¼ q; b)ΘF ¼ e (eccentricity); c) BE¼ b (minor axis); d)ΘM2 ¼ r (radius
vector); e) Θφ ¼ OM2 � FM3 ¼ 2r � q ¼ p; f) WX¼ a¼ b2/q (latus rectum); g)

double area element¼ 2M1M2Θ ¼ ϑa, where ϑ is a constant element of time; h)

D2M2 is the difference between two radii¼ dr; i) ddr¼ d2r second difference.

Reasoning:

1) D2M3 (¼circulation)¼ ϑa/r (for what was proved in paragraph 12);

2) dr ¼ D2M2ð Þ : ϑa=r ¼ D2M3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � p2

p
: b, for the proved theorem we have

seen in details. Therefore

3) br � dr ¼ ϑa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � p2

p
. By differentiating, one gets the second order differences

equation

4) b � dr2 þ br � d2r ¼ �2paϑ � dr :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � p2

p
. That is, replacing dr with its value

deduced from 3), Leibniz got:

5) d2r ¼ b2a2ϑ2 � 2a2qrϑ2
� �

=b2r3.

But: d2r is the element of paracentric velocity and the first expression in the

right-hand member of the equation 5); furthermore a2ϑ2/r3 is the double conatus
centrifugus. This means that the other expression represents the solicitation of

gravity. Since a ¼ b2=q, such expression gets the form 2aϑ2/r2. Leibniz multiplies

this expression by the constant value a/2 and obtains a2ϑ2/r2, that is the square of
the circulation. This means that the solicitation of gravity is as the square of the

circulation, namely is as the inverse of the radius-square.

This concludes Leibniz’s proof, which is explained both in the published and in

the unpublished version of the Tentamen. However in the unpublished version

Leibniz added a series of interesting considerations which do not exist in the

this expression one gets dr
dθ ¼ r2 sin θ

d ; therefore vr
vθ
¼ rsenθ

d ; but d is a constant and rsenθ¼PH; this

is the corollary of Leibniz (diagram drawn from www.fmboschetto.it/tde2/gravit4.htm).
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published one. First of all he developed some remarks and clarifications as to the

differential equation in 3). Actually, what is far more interesting from a physical

point of view, is the following long observation, which includes almost three pages

in the edition by Gerhardt (pp. 178–180): up to this moment, Leibniz provided a

representation of the planetary motions using the concept of conatus centrifugus.
However the conatus centrifugus is referred to the harmonic motion of the vortex,

that is to a circular harmonic motion. In fact, the orbit is an ellipsis and the

movement in the ellipsis is harmonic, too, as Leibniz underlined. This means that

another conatus centrifugus exists which depends only indirectly on the harmonic

circulation of the vortex responsible for the mean motion of the planet and directly
form the elliptical harmonic circulation, that is, from the true orbit of the planet. To

indicate this conatus Leibniz used the generic expression conatus excussorius
(used, in the published version of the Tentamen, as a synonymous of conatus
centrifugus, as we have seen), maintaining the expression conatus centrifugus
only in the case in which the motion is circular. Since the conatus excussorius is
not, in general, referred to a circular motion, but to every curvilinear motion,

Leibniz was in the need to exploit the concept of osculating circle to get a

representation of its, which is useful for a mathematical treatment. The aim of

Leibniz is rather interesting: he wanted to prove that, even in the case one adopts the

representation through the conatus excussorius, one obtains the inverse square law,
though by different steps than those used while exploiting the concept of conatus
centrifugus. In the commentaries, I will deal with the possible reasons which

induced Leibniz to deal with two different approaches. Leibniz represented the

conatus excussorius like this (see Fig. 2.2): he considered in the ellipsis two

infinitely near points M2 and M3, he drew the perpendiculars to the curve in these

two points and indicated by S their intersection. This is the centre of the osculating

circle. He drew the straight lineM3G, parallel to the line which is the tangent at the
ellipsis in M2. This line saws perpendicularly M2S in K. Considering M2M3 as an

infinitesimal arc of the osculating circle and adopting the same representation for

gravity and the conatus excussorius-centrifugus as that used up to now, one has that
M2G represents the solicitation of gravity andM2K the conatus excussorius. During
the proof, Leibniz demonstrated two interesting theorems as to the kinematics of the

elliptical motion considering the osculating circle.31

31 The two theorems which Leibniz proved and used to prove the inverse square law by means of

the conatus excussorius are: 1) in every straight line the solicitation of gravity M2G is at the

excussorius conate M2K as M3G (that is M2M3, which is the element of the curve or the orbital

velocity) is at the velocity of circulationM3D2 (Leibniz 1690?, 1860, 1962, VI, pp. 178–179); 2) in

every line of motion, it isM2K ¼ M3K
2

SM , namely, to tell �a la Leibniz: the conatus excussori are as the

duplicate ratio of the orbital velocities directly and the simple ratio of the radii of the osculating

circle inversely (Ivi, p. 179).
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2.3.2 Commentaries: Two Different Models for Planetary
Theory

In the Zweite Berbeitung of the Tentamen, Leibniz proposes, as a matter of fact, two

different models to prove the inverse square law:

a) the model already used in the published version, in which the orbit is imagined

as a polygon composed of triangles, with one infinitesimal side (that, whose

extrema are the points of the trajectory). The infinitesimal sides of all the

triangles compose the polygon.

b) the model in which the osculating circle is used and where, so to say, the main

point of the reasoning becomes the variable centre S of the osculating circle.

Both models are referred to rotating reference frames. Bertoloni Meli underlines

that:

The additions to paragraph 19 consist in an attempt of reformulating the demonstration of

the equation of paracentric motion without the differential calculus.32

This is true. Anyway some further specifications seem to me necessary: the

description of the model a) has two conceptual cores:

i) Leibniz provided the geometrical expressions of his physical—both finite and

infinitesimal quantities—one could say �a la Newton.33—;

ii) Calculus is used to differentiate the expression of dr, so to get ddr as a function
of centrifugal force and gravitational attraction.

As Bertoloni Meli rightly highlights, in model b) calculus is not used and

Leibniz underlined the difference between the methods a) and b), as he writes:

“[. . .] exactly as previously, in this same article we had found our result by means of a

different way, that is by resorting to our differential calculus and by the theorem proposed

in the article 15.34

I think the reasons why Leibniz provided a different proof are three:

32 Bertoloni Meli (1993, p. 159).
33 In Newton’s Principia, one could speak of “infinitesimal geometry” because Newton needs the

instantaneous physical quantities, but his resort to calculus is—at least explicitly—limited enough

in his masterpiece. He provides geometrical demonstrations in which the infinitesimal segments

and areas are described as part of a figure. Since in many cases these segments represent

potentially infinite quantities, it is possible to speak of infinitesimal geometry. The literature on

this subject is conspicuous. I provide here only five references in which the problem is faced and

explained: Bussotti and Pisano (2014a), in particular pp. 35–37; Bussotti and Pisano (2014b), in

particular p. 435; De Gandt (1995), Guicciardini (1998, 1999, 2009). Leibniz uses here a similar

technique.
34 Leibniz (1790?, 1860, 1962, VI, p. 180). Original latin text: “[. . .] prorsus ut antea in hoc ipso

praesente articulo per viam diversam, nempe ope calculi nostri differentialis et theorematis

articulo 15 propositi inveneramus”.
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1) the one indicated by Bertoloni Meli;

2) every great mathematician is pleased to offer different demonstrations of the

same proposition. Strictly connected to our context, let us think of Newton’s
Principia, in which numerous propositions are proved in different manners;

3) this is maybe the most important reason: we have to remember that Leibniz had

the intention to provide the real physical-structural system of the world, not just

a dynamical model. The planet, in its orbit, as a matter of fact, feels the conatus
excussorius, not the conatus centrifugus because its orbit is not a circumference.

This means that the model expressed in terms of conatus excussorius is more

adherent to the forces really experienced by the planet, although the two models

are equivalent from a dynamical point of view. This is the reason why Leibniz

felt the need to add these considerations on the conatus excussorius. This does
not mean that the model of the infinitangular polygon cannot be applied to an

eccentric path, too.

2.4 The Final Description of the Solar System

in the Tentamen

2.4.1 Leibniz’s Assertions

Leibniz explained the mean motion of a planet in its orbit as due to the constant

transverse velocity of the harmonic aethereal vortex in which the planet is afloat and

the deviations from the mean motion in terms of two opposite tendencies: the

conatus excussorius/centrifugus; the solicitation of gravity. In the paragraph

27, he supplied a unified vision of his planetary system, also based on two

corollaries expounded in the paragraphs 21 and 24. In the former Leibniz proved

that the ratio between gravity and centrifugal conate (really the half of the centrif-

ugal conate) are as the distance of the planet from the sun; in the latter that the

greatest speed of approaching to or of receding from the sun occurs when the

distance of the planet from the sun is equal to ½ latus rectum of the ellipsis. This

speed is equal to 0 at aphelion and perihelion.

Leibniz summarized his results in this manner: at the aphelion A, gravity is

stronger than double centrifugal conate (really centrifugal conate, not double)

because of the corollary in paragraph 21, hence the planet approaches the Sun.

The speed with which the planet approaches the sun gets a maximum in W

(corollary in 24), here the double centrifugal conate (really the simple centrifugal

conate) begins to prevail on gravity and the approaching speed diminishes till the

perihelion Ω (see Fig. 2.3) where its value is 0 and after Ω, this value becomes

negative, this means that the planets begins to recede from the sun till the point X,

where the receding velocity has a maximum and where gravity begins to prevail on

the double centrifugal conate (really the simple centrifugal conate); the planet

continues to recede until the aphelion A, where the receding velocity is null and
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the cycle begins once again. This is the general mechanism through which the

planets rotate around the sun.

Leibniz concluded (paragraph 30) that if the centrifugal conate (really ½ cen-

trifugal conate) is equal to gravity, the trajectory is a parabola; if it is stronger, the

trajectory is a hyperbola whose focus is between the sun and the focus of the

parabola, if the attraction is an attraction of levity and not of gravity, then the planet

is repelled from the sun along the opposite hyperbola.

2.4.2 Commentaries

The description of the planetary motions given by Leibniz in the two versions of the

Tentamen has its conclusion in the described picture, in which the motion of

approaching to or receding from the sun is described as due to the difference

between the solar attraction and the centrifugal force, while the deviation from

the rectilinear path is due to the harmonic vortex. From a physical point of view, the

most interesting aspect is the use made by Leibniz of the initial radial velocities for

a given time t. Leibniz is aware that for a time t1 > t the motion is given by the

radial velocity at time t and by the forces acting on the body. For—as we have

seen—he underlines that—starting from the aphelion—the approaching velocity of

a planet has a maximum when the solar attraction is equal to the conatus
centrifugus. However, in the moment in which the conatus begins to prevail, the

velocity of approaching begins to diminish, but this does not mean that the planet

begins to recede. This happens only when, at the time t2, the prevailing conatus has
produced an effect which is superior to the combined effect of the gravity and of the

velocity, which is direct inwards until t2. This is the case in the perihelion.

Therefore Leibniz considered the velocity as an initial instantaneous datum for

every instant t. This datum changes in every instant. Thence a constant datum as the

initial velocity when the elliptic motion is described in terms of centripetal forces �a
la Newton does not exist in Leibniz’s description. For every instant the initial

velocity changes, but, in that instant, it has to be considered as an initial constant

of the motion. It is necessary to highlight that the description of the curvilinear

motion using a rotating reference frame is not in contradiction with Newton’s work,
even if Newton himself thought otherwise, as we have seen. It is a description

which uses a different point of view, but there is no contradiction among the two.

However, if the description in kinematical and dynamical terms provided by

Leibniz is coherent with Newton’s, the situation completely changes when one

analyses the physical-structural point of view. In particular: why did Leibniz feel

the need to provide such a description of planetary motion? Which are Leibniz’s
physical convictions and how did they influence his planetary theory? What is the

real value of such a theory and in which sense can it represent a real alternative to

Newton’s conception? Who are the authors who can be considered Leibniz’s
reference points? The answers to these questions are the subjects of the next

chapters.
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