
Chapter 2
Kernelization

Kernelization is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sunflower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for Vertex Cover, Feedback Arc Set

in Tournaments, Edge Clique Cover, Maximum

Satisfiability, and d-Hitting Set.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrink it) to its com-
putationally difficult “core” structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent “smaller sized” instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the effectiveness of such a preprocessing subrou-
tine? Suppose we define a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal definition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a definition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter
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18 2 Kernelization

do not have to be processed further. These ideas open up the “lost continent”
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion 2.1, provides formal definitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on Maximum Satisfiability. Section 2.5 studies tools based on linear
programming and gives a kernel for Vertex Cover. Finally, we study the
sunflower lemma in Section 2.6 and use it to obtain a polynomial kernel for
d-Hitting Set.

2.1 Formal definitions

We now turn to the formal definition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem Q is a function φ : Σ∗ × N → Σ∗ × N that maps an instance (I, k)
of Q to an equivalent instance (I ′, k′) of Q such that φ is computable in
time polynomial in |I| and k. We say that two instances of Q are equivalent
if (I, k) ∈ Q if and only if (I ′, k′) ∈ Q; this property of the reduction rule φ,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I, k) ∈ Σ∗ × N of Q, works in polynomial time, and returns an
equivalent instance (I ′, k′) of Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the output size of a preprocessing algorithm A is a function
sizeA : N → N ∪ {∞} defined as follows:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}.

In other words, we look at all possible instances of Q with a fixed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be infinite; this happens when we do not have
any bound on the size of A(I, k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is finite and bounded by a computable function of the parameter.

Definition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem Q is an algorithm A that, given
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an instance (I, k) of Q, works in polynomial time and returns an equivalent
instance (I ′, k′) of Q. Moreover, we require that sizeA(k) ≤ g(k) for some
computable function g : N → N.

The size requirement in this definition can be reformulated as follows:
There exists a computable function g(·) such that whenever (I ′, k′) is the
output for an instance (I, k), then it holds that |I ′|+ k′ ≤ g(k). If the upper
bound g(·) is a polynomial (linear) function of the parameter, then we say
that Q admits a polynomial (linear) kernel . We often abuse the notation and
call the output of a kernelization algorithm the “reduced” equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to fit into the introduced definition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
yes-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, k) of Q, the size of the kernel is defined
as the number of bits needed to encode the reduced equivalent instance I ′

plus the parameter value k′. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem Q, we could say that Q
admits a kernel with O(k3) vertices and O(k5) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem defined on formulas, we could say that the problem admits a
kernel with O(k) variables.

It is important to mention here that the early definitions of kernelization
required that k′ ≤ k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem — thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k′ ≤ k.

While usually in Computer Science we measure the efficiency of an
algorithm by estimating its running time, the central measure of the
efficiency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-
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ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance I is
simply a function of k (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem Q is FPT then it admits a kernel-
ization algorithm.

Proof. Since Q is FPT, there is an algorithm A deciding if (I, k) ∈ Q in time
f(k) · |I|c for some computable function f and a constant c. We obtain a ker-
nelization algorithm for Q as follows. Given an input (I, k), the kernelization
algorithm runs A on (I, k), for at most |I|c+1 steps. If it terminates with an
answer, use that answer to return either that (I, k) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|c+1 steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|c+1 steps, we have that f(k) · |I|c > |I|c+1, and
thus |I| < f(k). Consequently, we have |I| + k ≤ f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. 	


Lemma 2.2 implies that a decidable problem admits a kernel if and only
if it is fixed-parameter tractable. Thus, in a sense, kernelization can be
another way of defining fixed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-specific data reduction rules often
achieve quadratic (g(k) = O(k2)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = kO(1)). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter 9, we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for Vertex Cover and
Feedback Arc Set in Tournaments (FAST) based on a few natural
reduction rules.
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2.2.1 Vertex Cover

Let G be a graph and S ⊆ V (G). The set S is called a vertex cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G − S contains no edges and thus V (G) \ S is an independent set. In
the Vertex Cover problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The first reduction rule is based on the following simple observation. For
a given instance (G, k) of Vertex Cover, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G− v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k + 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least k+ 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G− v, k − 1).

Observe that exhaustive application of reductions VC.1 and VC.2 completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules VC.1,
VC.2 is applicable to G, then |V (G)| ≤ k2 + k and |E(G)| ≤ k2.

Proof. Because we cannot apply Reductions VC.1 anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of
G − S should be adjacent to some vertex from S. Since we cannot apply
Reductions VC.2, every vertex of G has degree at most k. It follows that



22 2 Kernelization

|V (G − S)| ≤ k|S| and hence |V (G)| ≤ (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |V (G)| ≤ (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G has more than k2 edges, this is
again a no-instance. 	


Lemma 2.3 allows us to claim the final reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions VC.1
and VC.2 are not applicable to (G, k). If k < 0 and G has more than k2 + k
vertices, or more than k2 edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. Vertex Cover admits a kernel with O(k2) vertices and
O(k2) edges.

2.2.2 Feedback Arc Set in Tournaments

In this section we discuss a kernel for the Feedback Arc Set in Tourna-

ments problem. A tournament is a directed graph T such that for every pair
of vertices u, v ∈ V (T ), exactly one of (u, v) or (v, u) is a directed edge (also
often called an arc) of T . A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then E(G) is a
transitive relation). In the Feedback Arc Set in Tournaments problem
we are given a tournament T and a nonnegative integer k. The objective is
to decide whether T has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of “reversing edges”.
We start with the following well-known result about topological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u, v), we
have u < v.

We leave the proof of Lemma 2.5 as an exercise; see Exercise 2.1. Given
a directed graph G and a subset F ⊆ E(G) of edges, we define G� F to be
the directed graph obtained from G by reversing all the edges of F . That is,
if rev(F ) = {(u, v) : (v, u) ∈ F}, then for G � F the vertex set is V (G)
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and the edge set E(G � F ) = (E(G) ∪ rev(F )) \ F . Lemma 2.5 implies the
following.

Observation 2.6. Let G be a directed graph and let F be a subset of edges
of G. If G� F is a directed acyclic graph then F is a feedback arc set of G.

The following lemma shows that, in some sense, the opposite direction
of the statement in Observation 2.6 is also true. However, the minimality
condition in Lemma 2.7 is essential, see Exercise 2.2.

Lemma 2.7. Let G be a directed graph and F be a subset of E(G). Then
F is an inclusion-wise minimal feedback arc set of G if and only if F is an
inclusion-wise minimal set of edges such that G � F is an acyclic directed
graph.

Proof. We first prove the forward direction of the lemma. Let F be an
inclusion-wise minimal feedback arc set of G. Assume to the contrary that
G�F has a directed cycle C. Then C cannot contain only edges of E(G)\F , as
that would contradict the fact that F is a feedback arc set. Let f1, f2, · · · , f�
be the edges of C ∩ rev(F ) in the order of their appearance on the cycle C,
and let ei ∈ F be the edge fi reversed. Since F is inclusion-wise minimal,
for every ei, there exists a directed cycle Ci in G such that F ∩ Ci = {ei}.
Now consider the following closed walk W in G: we follow the cycle C, but
whenever we are to traverse an edge fi ∈ rev(F ) (which is not present in
G), we instead traverse the path Ci − ei. By definition, W is a closed walk
in G and, furthermore, note that W does not contain any edge of F . This
contradicts the fact that F is a feedback arc set of G.

The minimality follows from Observation 2.6. That is, every set of edges
F such that G�F is acyclic is also a feedback arc set of G, and thus, if F is
not a minimal set such that G� F is acyclic, then it will contradict the fact
that F is a minimal feedback arc set.

For the other direction, let F be an inclusion-wise minimal set of edges
such that G � F is an acyclic directed graph. By Observation 2.6, F is a
feedback arc set of G. Moreover, F is an inclusion-wise minimal feedback arc
set, because if a proper subset F ′ of F is an inclusion-wise minimal feedback
arc set of G, then by the already proved implication of the lemma, G�F ′ is
an acyclic directed graph, a contradiction with the minimality of F . 	

We are ready to give a kernel for Feedback Arc Set in Tournaments.

Theorem 2.8. Feedback Arc Set in Tournaments admits a kernel with
at most k2 + 2k vertices.

Proof. Lemma 2.7 implies that a tournament T has a feedback arc set of
size at most k if and only if it can be turned into an acyclic tournament by
reversing directions of at most k edges. We will use this characterization for
the kernel.

In what follows by a triangle we mean a directed cycle of length three. We
give two simple reduction rules.
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Reduction FAST.1. If an edge e is contained in at least k + 1 triangles,
then reverse e and reduce k by 1.

Reduction FAST.2. If a vertex v is not contained in any triangle, then
delete v from T .

The rules follow similar guidelines as in the case of Vertex Cover. In
Reduction FAST.1, we greedily take into a solution an edge that partic-
ipates in k+ 1 otherwise disjoint forbidden structures (here, triangles).
In Reduction FAST.2, we discard vertices that do not participate in any
forbidden structure, and should be irrelevant to the problem.

However, a formal proof of the safeness of Reduction FAST.2 is not
immediate: we need to verify that deleting v and its incident edges does
not make make a yes-instance out of a no-instance.

Note that after applying any of the two rules, the resulting graph is again
a tournament. The first rule is safe because if we do not reverse e, we have
to reverse at least one edge from each of k+1 triangles containing e. Thus e
belongs to every feedback arc set of size at most k.

Let us now prove the safeness of the second rule. Let X = N+(v) be the
set of heads of directed edges with tail v and let Y = N−(v) be the set of
tails of directed edges with head v. Because T is a tournament, X and Y is a
partition of V (T )\{v}. Since v is not a part of any triangle in T , we have that
there is no edge from X to Y (with head in Y and tail in X). Consequently,
for any feedback arc set A1 of tournament T [X] and any feedback arc set
A2 of tournament T [Y ], the set A1 ∪ A2 is a feedback arc set of T . As the
reverse implication is trivial (for any feedback arc set A in T , A∩E(T [X]) is
a feedback arc set of T [X], and A ∩ E(T [Y ]) is a feedback arc set of T [Y ]),
we have that (T, k) is a yes-instance if and only if (T − v, k) is.

Finally, we show that every reduced yes-instance T , an instance on which
none of the presented reduction rules are applicable, has at most k(k + 2)
vertices. Let A be a feedback arc set of a reduced instance T of size at most
k. For every edge e ∈ A, aside from the two endpoints of e, there are at most
k vertices that are in triangles containing e — otherwise we would be able
to apply Reduction FAST.1. Since every triangle in T contains an edge of A
and every vertex of T is in a triangle, we have that T has at most k(k + 2)
vertices.

Thus, given (T, k) we apply our reduction rules exhaustively and obtain
an equivalent instance (T ′, k′). If T ′ has more than k′2+k′ vertices, then the
algorithm returns that (T, k) is a no-instance, otherwise we get the desired
kernel. This completes the proof of the theorem. 	
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2.2.3 Edge Clique Cover

Not all FPT problems admit polynomial kernels. In the Edge Clique

Cover problem, we are given a graph G and a nonnegative integer k, and
the goal is to decide whether the edges of G can be covered by at most
k cliques. In this section we give an exponential kernel for Edge Clique

Cover. In Theorem 14.20 of Section *14.3.3, we remark that this simple
kernel is essentially optimal.

Let us recall the reader that we use N(v) = {u : uv ∈ E(G)} to denote
the neighborhood of vertex v in G, and N [v] = N(v) ∪ {v} to denote the
closed neighborhood of v. We apply the following data reduction rules in the
given order (i.e., we always use the lowest-numbered rule that modifies the
instance).

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an isolated edge uv (a connected component
that is just an edge), delete it and decrease k by 1. The new instance is
(G− {u, v}, k − 1).

Reduction ECC.3. If there is an edge uv whose endpoints have exactly the
same closed neighborhood, that is, N [u] = N [v], then delete v. The new
instance is (G− v, k).

The crux of the presented kernel for Edge Clique Cover is an obser-
vation that two true twins (vertices u and v with N [u] = N [v]) can be
treated in exactly the same way in some optimum solution, and hence
we can reduce them. Meanwhile, the vertices that are contained in ex-
actly the same set of cliques in a feasible solution have to be true twins.
This observation bounds the size of the kernel.

The safeness of the first two reductions is trivial, while the safeness of
Reduction ECC.3 follows from the observation that a solution in G − v can
be extended to a solution in G by adding v to all the cliques containing u
(see Exercise 2.3).

Theorem 2.9. Edge Clique Cover admits a kernel with at most 2k ver-
tices.

Proof. We start with the following claim.

Claim. If (G, k) is a reduced yes-instance, on which none of the presented
reduction rules can be applied, then |V (G)| ≤ 2k.

Proof. Let C1, . . . , Ck be an edge clique cover of G. We claim that G has at
most 2k vertices. Targeting a contradiction, let us assume that G has more
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than 2k vertices. We assign to each vertex v ∈ V (G) a binary vector bv of
length k, where bit i, 1 ≤ i ≤ k, is set to 1 if and only if v is contained in clique
Ci. Since there are only 2k possible vectors, there must be u �= v ∈ V (G)
with bu = bv. If bu and bv are zero vectors, the first rule applies; otherwise,
u and v are contained in the same cliques. This means that u and v are
adjacent and have the same neighborhood; thus either Reduction ECC.2 or
Reduction ECC.3 applies. Hence, if G has more than 2k vertices, at least one
of the reduction rules can be applied to it, which is a contradiction to the
initial assumption that G is reduced. This completes the proof of the claim.

	

The kernelization algorithm works as follows. Given an instance (G, k), it
applies Reductions ECC.1, ECC.2, and ECC.3 exhaustively. If the resulting
graph has more than 2k vertices the kernelization algorithm outputs that the
input instance is a no-instance, else it outputs the reduced instance. 	


2.3 Crown decomposition

Crown decomposition is a general kernelization technique that can be used
to obtain kernels for many problems. The technique is based on the classical
matching theorems of Kőnig and Hall.

Recall that for disjoint vertex subsets U,W of a graph G, a matching M
is called a matching of U into W if every edge of M connects a vertex of U
and a vertex of W and, moreover, every vertex of U is an endpoint of some
edge of M . In this situation, we also say that M saturates U .

Definition 2.10 (Crown decomposition). A crown decomposition of a
graph G is a partitioning of V (G) into three parts C, H and R, such that

1. C is nonempty.
2. C is an independent set.
3. There are no edges between vertices of C and R. That is, H separates C

and R.
4. Let E′ be the set of edges between vertices of C and H. Then E′ contains

a matching of size |H|. In other words, G contains a matching of H into
C.

The set C can be seen as a crown put on head H of the remaining part R, see
Fig. 2.1. Note that the fact that E′ contains a matching of size |H| implies
that there is a matching of H into C. This is a matching in the subgraph G′,
with the vertex set C ∪H and the edge set E′, saturating all the vertices of
H.

For finding a crown decomposition in polynomial time, we use the following
well known structural and algorithmic results. The first is a mini-max theorem
due to Kőnig.
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R

H

C

Fig. 2.1: Example of a crown decomposition. Set C is an independent set, H
separates C and R, and there is a matching of H into C

Theorem 2.11 (Kőnig’s theorem, [303]). In every undirected bipartite
graph the size of a maximum matching is equal to the size of a minimum
vertex cover.

Let us recall that a matching saturates a set of vertices S when every
vertex in S is incident to an edge in the matching. The second classic result
states that in bipartite graphs, a trivial necessary condition for the existence
of a matching is also sufficient.

Theorem 2.12 (Hall’s theorem, [256]). Let G be an undirected bipartite
graph with bipartition (V1, V2). The graph G has a matching saturating V1 if
and only if for all X ⊆ V1, we have |N(X)| ≥ |X|.

The following theorem is due to Hopcroft and Karp [268]. The proof of
the (nonstandard) second claim of the theorem is deferred to Exercise 2.21.

Theorem 2.13 (Hopcroft-Karp algorithm, [268]). Let G be an undi-
rected bipartite graph with bipartition V1 and V2, on n vertices and m edges.
Then we can find a maximum matching as well as a minimum vertex cover
of G in time O(m

√
n). Furthermore, in time O(m

√
n) either we can find a

matching saturating V1 or an inclusion-wise minimal set X ⊆ V1 such that
|N(X)| < |X|.

The following lemma is the basis for kernelization algorithms using crown
decomposition.

Lemma 2.14 (Crown lemma). Let G be a graph without isolated vertices
and with at least 3k + 1 vertices. There is a polynomial-time algorithm that
either

• finds a matching of size k + 1 in G; or
• finds a crown decomposition of G.

Proof. We first find an inclusion-maximal matching M in G. This can be
done by a greedy algorithm. If the size of M is k + 1, then we are done.
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Hence, we assume that |M | ≤ k, and let VM be the endpoints of M . We have
|VM | ≤ 2k. Because M is a maximal matching, the remaining set of vertices
I = V (G) \ VM is an independent set.

Consider the bipartite graph GI,VM
formed by edges of G between VM

and I. We compute a minimum-sized vertex cover X and a maximum sized
matching M ′ of the bipartite graph GI,VM

in polynomial time using Theo-
rem 2.13. We can assume that |M ′| ≤ k, for otherwise we are done. Since
|X| = |M ′| by Kőnig’s theorem (Theorem 2.11), we infer that |X| ≤ k.

If no vertex of X is in VM , then X ⊆ I. We claim that X = I. For
a contradiction assume that there is a vertex w ∈ I \X. Because G has no
isolated vertices there is an edge, say wz, incident to w in GI,VM

. Since GI,VM

is bipartite, we have that z ∈ VM . However, X is a vertex cover of GI,VM

such that X ∩ VM = ∅, which implies that w ∈ X. This is contrary to our
assumption that w /∈ X, thus proving that X = I. But then |I| ≤ |X| ≤ k,
and G has at most

|I|+ |VM | ≤ k + 2k = 3k

vertices, which is a contradiction.
Hence, X∩VM �= ∅. We obtain a crown decomposition (C,H,R) as follows.

Since |X| = |M ′|, every edge of the matching M ′ has exactly one endpoint
in X. Let M∗ denote the subset of M ′ such that every edge from M∗ has
exactly one endpoint in X ∩ VM and let VM∗ denote the set of endpoints of
edges in M∗. We define head H = X ∩ VM = X ∩ VM∗ , crown C = VM∗ ∩ I,
and the remaining part R = V (G) \ (C ∪H) = V (G) \ VM∗ . In other words,
H is the set of endpoints of edges of M∗ that are present in VM and C is
the set of endpoints of edges of M∗ that are present in I. Obviously, C is
an independent set and by construction, M∗ is a matching of H into C.
Furthermore, since X is a vertex cover of GI,VM

, every vertex of C can be
adjacent only to vertices of H and thus H separates C and R. This completes
the proof. 	


The crown lemma gives a relatively strong structural property of graphs
with a small vertex cover (equivalently, a small maximum matching). If
in a studied problem the parameter upper bounds the size of a vertex
cover (maximum matching), then there is a big chance that the struc-
tural insight given by the crown lemma would help in developing a small
kernel — quite often with number of vertices bounded linearly in the
parameter.

We demonstrate the application of crown decompositions on kernelization
for Vertex Cover and Maximum Satisfiability.
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2.3.1 Vertex Cover

Consider a Vertex Cover instance (G, k). By an exhaustive application of
Reduction VC.1, we may assume that G has no isolated vertices. If |V (G)| >
3k, we may apply the crown lemma to the graph G and integer k, obtaining
either a matching of size k+1, or a crown decomposition V (G) = C ∪H ∪R.
In the first case, the algorithm concludes that (G, k) is a no-instance.

In the latter case, let M be a matching of H into C. Observe that the
matching M witnesses that, for every vertex cover X of the graph G, X
contains at least |M | = |H| vertices of H ∪ C to cover the edges of M . On
the other hand, the set H covers all edges of G that are incident to H ∪ C.
Consequently, there exists a minimum vertex cover of G that contains H, and
we may reduce (G, k) to (G−H, k−|H|). Note that in the instance (G−H, k−
|H|), the vertices of C are isolated and will be reduced by Reduction VC.1.

As the crown lemma promises us that H �= ∅, we can always reduce the
graph as long as |V (G)| > 3k. Thus, we obtain the following.

Theorem 2.15. Vertex Cover admits a kernel with at most 3k vertices.

2.3.2 Maximum Satisfiability

For a second application of the crown decomposition, we look at the following
parameterized version of Maximum Satisfiability. Given a CNF formula
F , and a nonnegative integer k, decide whether F has a truth assignment
satisfying at least k clauses.

Theorem 2.16. Maximum Satisfiability admits a kernel with at most k
variables and 2k clauses.

Proof. Let ϕ be a CNF formula with n variables and m clauses. Let ψ be an
arbitrary assignment to the variables and let ¬ψ be the assignment obtained
by complementing the assignment of ψ. That is, if ψ assigns δ ∈ {�,⊥} to
some variable x then ¬ψ assigns ¬δ to x. Observe that either ψ or ¬ψ satisfies
at least m/2 clauses, since every clause is satisfied by ψ or ¬ψ (or by both).
This means that, if m ≥ 2k, then (ϕ, k) is a yes-instance. In what follows we
give a kernel with n < k variables.

Let Gϕ be the variable-clause incidence graph of ϕ. That is, Gϕ is a bi-
partite graph with bipartition (X,Y ), where X is the set of the variables of
ϕ and Y is the set of clauses of ϕ. In Gϕ there is an edge between a variable
x ∈ X and a clause c ∈ Y if and only if either x, or its negation, is in c. If
there is a matching of X into Y in Gϕ, then there is a truth assignment sat-
isfying at least |X| clauses: we can set each variable in X in such a way that
the clause matched to it becomes satisfied. Thus at least |X| clauses are sat-
isfied. Hence, in this case, if k ≤ |X|, then (ϕ, k) is a yes-instance. Otherwise,
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k > |X| = n, and we get the desired kernel. We now show that, if ϕ has at
least n ≥ k variables, then we can, in polynomial time, either reduce ϕ to an
equivalent smaller instance, or find an assignment to the variables satisfying
at least k clauses (and conclude that we are dealing with a yes-instance).

Suppose ϕ has at least k variables. Using Hall’s theorem and a polynomial-
time algorithm computing a maximum-size matching (Theorems 2.12 and 2.13),
we can in polynomial time find either a matching of X into Y or an inclusion-
wise minimal set C ⊆ X such that |N(C)| < |C|. As discussed in the previous
paragraph, if we found a matching, then the instance is a yes-instance and
we are done. So suppose we found a set C as described. Let H be N(C) and
R = V (Gϕ)\(C∪H). Clearly, N(C) ⊆ H, there are no edges between vertices
of C and R and G[C] is an independent set. Select an arbitrary x ∈ C. We
have that there is a matching of C \{x} into H since |N(C ′)| ≥ |C ′| for every
C ′ ⊆ C \ {x}. Since |C| > |H|, we have that the matching from C \ {x} to H
is in fact a matching of H into C. Hence (C,H,R) is a crown decomposition
of Gϕ.

We prove that all clauses in H are satisfied in every assignment satisfying
the maximum number of clauses. Indeed, consider any assignment ψ that does
not satisfy all clauses in H. Fix any variable x ∈ C. For every variable y in
C \{x} set the value of y so that the clause in H matched to y is satisfied. Let
ψ′ be the new assignment obtained from ψ in this manner. Since N(C) ⊆ H
and ψ′ satisfies all clauses in H, more clauses are satisfied by ψ′ than by ψ.
Hence ψ cannot be an assignment satisfying the maximum number of clauses.

The argument above shows that (ϕ, k) is a yes-instance to Maximum Sat-

isfiability if and only if (ϕ \H, k − |H|) is. This gives rise to the following
simple reduction.

Reduction MSat.1. Let (ϕ, k) and H be as above. Then remove H from ϕ
and decrease k by |H|. That is, (ϕ \H, k − |H|) is the new instance.

Repeated applications of Reduction MSat.1 and the arguments described
above give the desired kernel. This completes the proof of the theorem. 	


2.4 Expansion lemma

In the previous subsection, we described crown decomposition techniques
based on the classical Hall’s theorem. In this section, we introduce a powerful
variation of Hall’s theorem, which is called the expansion lemma. This lemma
captures a certain property of neighborhood sets in graphs and can be used
to obtain polynomial kernels for many graph problems. We apply this result
to get an O(k2) kernel for Feedback Vertex Set in Chapter 9.

A q-star, q ≥ 1, is a graph with q+1 vertices, one vertex of degree q, called
the center, and all other vertices of degree 1 adjacent to the center. Let G be
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a bipartite graph with vertex bipartition (A,B). For a positive integer q, a
set of edges M ⊆ E(G) is called by a q-expansion of A into B if

• every vertex of A is incident to exactly q edges of M ;
• M saturates exactly q|A| vertices in B.

Let us emphasize that a q-expansion saturates all vertices of A. Also, for
every u, v ∈ A, u �= v, the set of vertices Eu adjacent to u by edges of M does
not intersect the set of vertices Ev adjacent to v via edges of M , see Fig. 2.2.
Thus every vertex v ∈ A could be thought of as the center of a star with
its q leaves in B, with all these |A| stars being vertex-disjoint. Furthermore,
a collection of these stars is also a family of q edge-disjoint matchings, each
saturating A.

A

B

Fig. 2.2: Set A has a 2-expansion into B

Let us recall that, by Hall’s theorem (Theorem 2.12), a bipartite graph with
bipartition (A,B) has a matching of A into B if and only if |N(X)| ≥ |X|
for all X ⊆ A. The following lemma is an extension of this result.

Lemma 2.17. Let G be a bipartite graph with bipartition (A,B). Then there
is a q-expansion from A into B if and only if |N(X)| ≥ q|X| for every X ⊆ A.
Furthermore, if there is no q-expansion from A into B, then a set X ⊆ A
with |N(X)| < q|X| can be found in polynomial time.

Proof. If A has a q-expansion into B, then trivially |N(X)| ≥ q|X| for every
X ⊆ A.

For the opposite direction, we construct a new bipartite graph G′ with
bipartition (A′, B) from G by adding (q − 1) copies of all the vertices in A.
For every vertex v ∈ A all copies of v have the same neighborhood in B as v.
We would like to prove that there is a matching M from A′ into B in G′. If we
prove this, then by identifying the endpoints of M corresponding to the copies
of vertices from A, we obtain a q-expansion in G. It suffices to check that
the assumptions of Hall’s theorem are satisfied in G′. Assume otherwise, that
there is a set X ⊆ A′ such that |NG′(X)| < |X|. Without loss of generality,
we can assume that if X contains some copy of a vertex v, then it contains
all the copies of v, since including all the remaining copies increases |X| but
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does not change |NG′(X)|. Hence, the set X in A′ naturally corresponds to
the set XA of size |X|/q in A, the set of vertices whose copies are in X. But
then |NG(XA)| = |NG′(X)| < |X| = q|XA|, which is a contradiction. Hence
A′ has a matching into B and thus A has a q-expansion into B.

For the algorithmic claim, note that, if there is no q-expansion from A
into B, then we can use Theorem 2.13 to find a set X ⊆ A′ such that
|NG′(X)| < |X|, and the corresponding set XA satisfies |NG(XA)| < q|XA|.

	


Finally, we are ready to prove a lemma analogous to Lemma 2.14.

Lemma 2.18. (Expansion lemma) Let q ≥ 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A,B) such that

(i) |B| ≥ q|A|, and
(ii) there are no isolated vertices in B.

Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that

• there is a q-expansion of X into Y , and
• no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size
of G.

Note that the sets X, Y and V (G) \ (X ∪ Y ) form a crown decomposition
of G with a stronger property — every vertex of X is not only matched into
Y , but there is a q-expansion of X into Y . We proceed with the proof of
expansion lemma.

Proof. We proceed recursively, at every step decreasing the cardinality of A.
When |A| = 1, the claim holds trivially by taking X = A and Y = B.

We apply Lemma 2.17 to G. If A has a q-expansion into B, then we
are done as we may again take X = A and Y = B. Otherwise, we can in
polynomial time find a (nonempty) set Z ⊆ A such that |N(Z)| < q|Z|. We
construct the graph G′ by removing Z and N(Z) from G. We claim that G′

satisfies the assumptions of the lemma. Indeed, because we removed less than
q times more vertices from B than from A, we have that (i) holds for G′.
Moreover, every vertex from B \ N(Z) has no neighbor in Z, and thus (ii)
also holds for G′. Note that Z �= A, because otherwise N(A) = B (there are
no isolated vertices in B) and |B| ≥ q|A|. Hence, we recurse on the graph G′

with bipartition (A \ Z,B \N(Z)), obtaining nonempty sets X ⊆ A \ Z and
Y ⊆ B \ N(Z) such that there is a q-expansion of X into Y and such that
NG′(Y ) ⊆ X. Because Y ⊆ B \ N(Z), we have that no vertex in Y has a
neighbor in Z. Hence, NG′(Y ) = NG(Y ) ⊆ X and the pair (X,Y ) satisfies
all the required properties. 	
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The expansion lemma is useful when the matching saturating the head
part H in the crown lemma turns out to be not sufficient for a reduction,
and we would like to have a few vertices of the crown C matched to
a single vertex of the head H. For example, this is the case for the
Feedback Vertex Set kernel presented in Section 9.1, where we need
the case q = 2.

2.5 Kernels based on linear programming

In this section we design a 2k-vertex kernel for Vertex Cover exploiting
the solution to a linear programming formulation of Vertex Cover.

Many combinatorial problems can be expressed in the language of Inte-

ger Linear Programming (ILP). In an Integer Linear Programming

instance, we are given a set of integer-valued variables, a set of linear inequal-
ities (called constraints) and a linear cost function. The goal is to find an (in-
teger) evaluation of the variables that satisfies all constraints, and minimizes
or maximizes the value of the cost function.

Let us give an example on how to encode a Vertex Cover instance (G, k)
as an Integer Linear Programming instance. We introduce n = |V (G)|
variables, one variable xv for each vertex v ∈ V (G). Setting variable xv to 1
means that v is in the vertex cover, while setting xv to 0 means that v is not
in the vertex cover. To ensure that every edge is covered, we can introduce
constraints xu+xv ≥ 1 for every edge uv ∈ E(G). The size of the vertex cover
is given by

∑
v∈V (G) xv. In the end, we obtain the following ILP formulation:

minimize
∑

v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G),
0 ≤ xv ≤ 1 for every v ∈ V (G),
xv ∈ Z for every v ∈ V (G).

(2.1)

Clearly, the optimal value of (2.1) is at most k if and only if G has a vertex
cover of size at most k.

As we have just seen, Integer Linear Programming is at least as hard
as Vertex Cover, so we do not expect it to be polynomial-time solvable. In
fact, it is relatively easy to express many NP-hard problems in the language of
Integer Linear Programming. In Section 6.2 we discuss FPT algorithms
for Integer Linear Programming and their application in proving fixed-
parameter tractability of other problems.

Here, we proceed in a different way: we relax the integrality requirement
of Integer Linear Programming, which is the main source of the hard-
ness of this problem, to obtain Linear Programming. That is, in Linear
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Programming the instance looks exactly the same as in Integer Linear

Programming, but the variables are allowed to take arbitrary real values,
instead of just integers.

In the case of Vertex Cover, we relax (2.1) by dropping the constraint
xv ∈ Z for every v ∈ V (G). In other words, we obtain the following Linear

Programming instance. For a graph G, we call this relaxation LPVC(G).

minimize
∑

v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G),
0 ≤ xv ≤ 1 for every v ∈ V (G).

(2.2)

Note that constraints xv ≤ 1 can be omitted because every optimal solu-
tion of LPVC(G) satisfies these constraints.

Observe that in LPVC(G), a variable xv can take fractional values in the
interval [0, 1], which corresponds to taking “part of the vertex v” into a vertex
cover. Consider an example of G being a triangle. A minimum vertex cover
of a triangle is of size 2, whereas in LPVC(G) we can take xv = 1

2 for every
v ∈ V (G), obtaining a feasible solution of cost 3

2 . Thus, LPVC(G) does not
express exactly the Vertex Cover problem on graph G, but its optimum
solution can still be useful to learn something about minimum vertex covers
in G.

The main source of utility of Linear Programming comes from the
fact that Linear Programming can be solved in polynomial time, even in
some general cases where there are exponentially many constraints, accessed
through an oracle. For this reason, Linear Programming has found abun-
dant applications in approximation algorithms (for more on this topic, we
refer to the book of Vazirani [427]). In this section, we use LP to design a
small kernel for Vertex Cover. In Section 3.4, we will use LPVC(G) to
obtain an FPT branching algorithm for Vertex Cover.

Let us now have a closer look at the relaxation LPVC(G). Fix an optimal
solution (xv)v∈V (G) of LPVC(G). In this solution the variables corresponding
to vertices of G take values in the interval [0, 1]. We partition V (G) according
to these values into three sets as follows.

• V0 = {v ∈ V (G) : xv < 1
2},

• V 1
2
= {v ∈ V (G) : xv = 1

2},
• V1 = {v ∈ V (G) : xv > 1

2}.

Theorem 2.19 (Nemhauser-Trotter theorem). There is a minimum
vertex cover S of G such that

V1 ⊆ S ⊆ V1 ∪ V 1
2
.

Proof. Let S∗ ⊆ V (G) be a minimum vertex cover of G. Define

S = (S∗ \ V0) ∪ V1.
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By the constraints of (2.2), every vertex of V0 can have a neighbor only in
V1 and thus S is also a vertex cover of G. Moreover, V1 ⊆ S ⊆ V1 ∪ V 1

2
. It

suffices to show that S is a minimum vertex cover. Assume the contrary, i.e.,
|S| > |S∗|. Since |S| = |S∗| − |V0 ∩ S∗|+ |V1 \ S∗| we infer that

|V0 ∩ S∗| < |V1 \ S∗|. (2.3)

Let us define
ε = min{|xv − 1

2 | : v ∈ V0 ∪ V1}.
We decrease the fractional values of vertices from V1 \ S∗ by ε and increase
the values of vertices from V0 ∩ S∗ by ε. In other words, we define a vector
(yv)v∈V (G) as

yv =

⎧⎨⎩
xv − ε if v ∈ V1 \ S∗,
xv + ε if v ∈ V0 ∩ S∗,
xv otherwise.

Note that ε > 0, because otherwise V0 = V1 = ∅, a contradiction with (2.3).
This, together with (2.3), implies that∑

v∈V (G)

yv <
∑

v∈V (G)

xv. (2.4)

Now we show that (yv)v∈V (G) is a feasible solution, i.e., it satisfies the con-
straints of LPVC(G). Since (xv)v∈V (G) is a feasible solution, by the defi-
nition of ε we get 0 ≤ yv ≤ 1 for every v ∈ V (G). Consider an arbitrary
edge uv ∈ E(G). If none of the endpoints of uv belong to V1 \ S∗, then both
yu ≥ xu and yv ≥ xv, so yu + yv ≥ xu + xv ≥ 1. Otherwise, by symmetry we
can assume that u ∈ V1 \ S∗, and hence yu = xu − ε. Because S∗ is a vertex
cover, we have that v ∈ S∗. If v ∈ V0 ∩ S∗, then

yu + yv = xu − ε+ xv + ε = xu + xv ≥ 1.

Otherwise, v ∈ (V 1
2
∪ V1)∩ S∗. Then yv ≥ xv ≥ 1

2 . Note also that xu − ε ≥ 1
2

by the definition of ε. It follows that

yu + yv = xu − ε+ yv ≥ 1

2
+

1

2
= 1.

Thus (yv)v∈V (G) is a feasible solution of LPVC(G) and hence (2.4) contra-
dicts the optimality of (xv)v∈V (G). 	


Theorem 2.19 allows us to use the following reduction rule.

Reduction VC.4. Let (xv)v∈V (G) be an optimum solution to LPVC(G) in
a Vertex Cover instance (G, k) and let V0, V1 and V 1

2
be defined as above.

If
∑

v∈V (G) xv > k, then conclude that we are dealing with a no-instance.
Otherwise, greedily take into the vertex cover the vertices of V1. That is,
delete all vertices of V0 ∪ V1, and decrease k by |V1|.
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Let us now formally verify the safeness of Reduction VC.4.

Lemma 2.20. Reduction VC.4 is safe.

Proof. Clearly, if (G, k) is a yes-instance, then an optimum solution to
LPVC(G) is of cost at most k. This proves the correctness of the step if
we conclude that (G, k) is a no-instance.

Let G′ = G−(V0∪V1) = G[V 1
2
] and k′ = k−|V1|. We claim that (G, k) is a

yes-instance of Vertex Cover if and only if (G′, k′) is. By Theorem 2.19, we
know that G has a vertex cover S of size at most k such that V1 ⊆ S ⊆ V1∪V 1

2
.

Then S′ = S ∩ V 1
2

is a vertex cover in G′ and the size of S′ is at most
k − |V1| = k′.

For the opposite direction, let S′ be a vertex cover in G′. For every solution
of LPVC(G), every edge with an endpoint from V0 should have an endpoint
in V1. Hence, S = S′ ∪ V1 is a vertex cover in G and the size of this vertex
cover is at most k′ + |V1| = k. 	


Reduction VC.4 leads to the following kernel for Vertex Cover.

Theorem 2.21. Vertex Cover admits a kernel with at most 2k vertices.

Proof. Let (G, k) be an instance of Vertex Cover. We solve LPVC(G)
in polynomial time, and apply Reduction VC.4 to the obtained solution
(xv)v∈V (G), either concluding that we are dealing with a no-instance or ob-
taining an instance (G′, k′). Lemma 2.20 guarantees the safeness of the re-
duction. For the size bound, observe that

|V (G′)| = |V 1
2
| =

∑
v∈V 1

2

2xv ≤ 2
∑

v∈V (G)

xv ≤ 2k.

	


While it is possible to solve linear programs in polynomial time, usually
such solutions are less efficient than combinatorial algorithms. The specific
structure of the LP-relaxation of the vertex cover problem (2.2) allows us to
solve it by reducing to the problem of finding a maximum-size matching in a
bipartite graph.

Lemma 2.22. For a graph G with n vertices and m edges, the optimal
(fractional) solution to the linear program LPVC(G) can be found in time
O(m

√
n).

Proof. We reduce the problem of solving LPVC(G) to a problem of finding
a minimum-size vertex cover in the following bipartite graph H. Its vertex
set consists of two copies V1 and V2 of the vertex set of G. Thus, every
vertex v ∈ V (G) has two copies v1 ∈ V1 and v2 ∈ V2 in H. For every edge
uv ∈ E(H), we have edges u1v2 and v1u2 in H.
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Using the Hopcroft-Karp algorithm (Theorem 2.13), we can find a mini-
mum vertex cover S of H in time O(m

√
n). We define a vector (xv)v∈V (G)

as follows: if both vertices v1 and v2 are in S, then xv = 1. If exactly one of
the vertices v1 and v2 is in S, we put xv = 1

2 . We put xv = 0 if none of the
vertices v1 and v2 are in S. Thus∑

v∈V (G)

xv =
|S|
2
.

Since S is a vertex cover in H, we have that for every edge uv ∈ E(G) at
least two vertices from {u1, u2, v1, v2} should be in S. Thus xu + xv ≥ 1 and
vector (xv)v∈V (G) satisfies the constraints of LPVC(G).

To show that (xv)v∈V (G) is an optimal solution of LPVC(G), we argue
as follows. Let (yv)v∈V (G) be an optimal solution of LPVC(G). For every
vertex vi, i ∈ {1, 2}, of H, we assign the weight w(vi) = yv. This weight
assignment is a fractional vertex cover of H, i.e., for every edge v1u2 ∈ E(H),
w(v1) +w(u2) ≥ 1. We have that∑

v∈V (G)

yv =
1

2

∑
v∈V (G)

(w(v1) +w(v2)).

On the other hand, the value
∑

v∈V (H) w(v) of any fractional solution of
LPVC(H) is at least the size of a maximum matching M in H. A reader
familiar with linear programming can see that this follows from weak duality;
we also ask you to verify this fact in Exercise 2.24.

By Kőnig’s theorem (Theorem 2.11), |M | = |S|. Hence∑
v∈V (G)

yv =
1

2

∑
v∈V (G)

(w(v1) +w(v2)) =
1

2

∑
v∈V (H)

w(v) ≥ |S|
2

=
∑

v∈V (G)

xv.

Thus (xv)v∈V (G) is an optimal solution of LPVC(G). 	


We immediately obtain the following.

Corollary 2.23. For a graph G with n vertices and m edges, the kernel of
Theorem 2.21 can be found in time O(m

√
n).

The following proposition is another interesting consequence of the proof
of Lemma 2.22.

Proposition 2.24. Let G be a graph on n vertices and m edges. Then
LPVC(G) has a half-integral optimal solution, i.e., all variables have values
in the set {0, 1

2 , 1}. Furthermore, we can find a half-integral optimal solution
in time O(m

√
n).
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In short, we have proved properties of LPVC(G). There exists a half-
integral optimal solution (xv)v∈V (G) to LPVC(G), and it can be found
efficiently. We can look at this solution as a partition of V (G) into
parts V0, V 1

2
, and V1 with the following message: greedily take V1 into a

solution, do not take any vertex of V0 into a solution, and in V 1
2
, we do

not know what to do and that is the hard part of the problem. However,
as an optimum solution pays 1

2 for every vertex of V 1
2
, the hard part —

the kernel of the problem — cannot have more than 2k vertices.

2.6 Sunflower lemma

In this section we introduce a classical result of Erdős and Rado and show
some of its applications in kernelization. In the literature it is known as the
sunflower lemma or as the Erdős-Rado lemma. We first define the terminology
used in the statement of the lemma. A sunflower with k petals and a core Y
is a collection of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i �= j; the sets
Si \Y are petals and we require none of them to be empty. Note that a family
of pairwise disjoint sets is a sunflower (with an empty core).
Theorem 2.25 (Sunflower lemma). Let A be a family of sets (without
duplicates) over a universe U , such that each set in A has cardinality exactly
d. If |A| > d!(k − 1)d, then A contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in |A|, |U |, and k.

Proof. We prove the theorem by induction on d. For d = 1, i.e., for a family
of singletons, the statement trivially holds. Let d ≥ 2 and let A be a family
of sets of cardinality at most d over a universe U such that |A| > d!(k − 1)d.

Let G = {S1, . . . , S�} ⊆ A be an inclusion-wise maximal family of pairwise
disjoint sets in A. If � ≥ k then G is a sunflower with at least k petals. Thus
we assume that � < k. Let S =

⋃�
i=1 Si. Then |S| ≤ d(k − 1). Because G is

maximal, every set A ∈ A intersects at least one set from G, i.e., A ∩ S �= ∅.
Therefore, there is an element u ∈ U contained in at least

|A|
|S| >

d!(k − 1)d

d(k − 1)
= (d− 1)!(k − 1)d−1

sets from A. We take all sets of A containing such an element u, and construct
a family A′ of sets of cardinality d−1 by removing from each set the element
u. Because |A′| > (d−1)!(k−1)d−1, by the induction hypothesis, A′ contains
a sunflower {S′

1, . . . , S
′
k} with k petals. Then {S′

1 ∪ {u}, . . . , S′
k ∪ {u}} is a

sunflower in A with k petals.
The proof can be easily transformed into a polynomial-time algorithm, as

follows. Greedily select a maximal set of pairwise disjoint sets. If the size
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of this set is at least k, then return this set. Otherwise, find an element
u contained in the maximum number of sets in A, and call the algorithm
recursively on sets of cardinality d − 1, obtained from deleting u from the
sets containing u. 	


2.6.1 d-Hitting Set

As an application of the sunflower lemma, we give a kernel for d-Hitting

Set. In this problem, we are given a family A of sets over a universe U , where
each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there is a subset H ⊆ U of size at most k such
that H contains at least one element from each set in A.

Theorem 2.26. d-Hitting Set admits a kernel with at most d!kd sets and
at most d!kd · d2 elements.

Proof. The crucial observation is that if A contains a sunflower

S = {S1, . . . , Sk+1}

of cardinality k + 1, then every hitting set H of A of cardinality at most k
intersects the core Y of the sunflower S. Indeed, if H does not intersect Y ,
it should intersect each of the k + 1 disjoint petals Si \ Y . This leads to the
following reduction rule.

Reduction HS.1. Let (U,A, k) be an instance of d-Hitting Set and as-
sume that A contains a sunflower S = {S1, . . . , Sk+1} of cardinality k + 1
with core Y . Then return (U ′,A′, k), where A′ = (A \ S) ∪ {Y } is obtained
from A by deleting all sets {S1, . . . , Sk+1} and by adding a new set Y and
U ′ =

⋃
X∈A′ X.

Note that when deleting sets we do not delete the elements contained in
these sets but only those which do not belong to any set. Then the instances
(U,A, k) and (U ′,A′, k) are equivalent, i.e. (U,A) contains a hitting set of
size k if and only if (U,A′) does.

The kernelization algorithm is as follows. If for some d′ ∈ {1, . . . , d} the
number of sets in A of size exactly d′ is more than d′!kd

′
, then the kerneliza-

tion algorithm applies the sunflower lemma to find a sunflower of size k + 1,
and applies Reduction HS.1 on this sunflower. It applies this procedure ex-
haustively, and obtains a new family of sets A′ of size at most d!kd · d. If
∅ ∈ A′ (that is, at some point a sunflower with an empty core has been
discovered), then the algorithm concludes that there is no hitting set of size
at most k and returns that the given instance is a no-instance. Otherwise,
every set contains at most d elements, and thus the number of elements in
the kernel is at most d!kd · d2. 	




40 2 Kernelization

Exercises

2.1 (�). Prove Lemma 2.5: A digraph is acyclic if and only if it is possible to order its
vertices in such a way such that for every arc (u, v), we have u < v.

2.2 (�). Give an example of a feedback arc set F in a tournament G, such that G�F is
not acyclic.

2.3 (�). Show that Reductions ECC.1, ECC.2, and ECC.3 are safe.

2.4 (�). In the Point Line Cover problem, we are given a set of n points in the plane
and an integer k, and the goal is to check if there exists a set of k lines on the plane that
contain all the input points. Show a kernel for this problem with O(k2) points.

2.5. A graph G is a cluster graph if every connected component of G is a clique. In the
Cluster Editing problem, we are given as input a graph G and an integer k, and the
objective is to check whether one can edit (add or delete) at most k edges in G to obtain a
cluster graph. That is, we look for a set F ⊆

(
V (G)

2

)
of size at most k, such that the graph

(V (G), (E(G) \ F ) ∪ (F \ E(G))) is a cluster graph.

1. Show that a graph G is a cluster graph if and only if it does not have an induced path
on three vertices (sequence of three vertices u, v, w such that uv and vw are edges and
uw /∈ E(G)).

2. Show a kernel for Cluster Editing with O(k2) vertices.

2.6. In the Set Splitting problem, we are given a family of sets F over a universe U and
a positive integer k, and the goal is to test whether there exists a coloring of U with two
colors such that at least k sets in F are nonmonochromatic (that is, they contain vertices
of both colors). Show that the problem admits a kernel with at most 2k sets and O(k2)
universe size.

2.7. In the Minimum Maximal Matching problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a maximal
matching in G on at most k edges. Obtain a polynomial kernel for the problem (parame-
terized by k).

2.8. In the Min-Ones-2-SAT problem, we are given a 2-CNF formula φ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for φ with at
most k variables set to true. Show that Min-Ones-2-SAT admits a polynomial kernel.

2.9. In the d-Bounded-Degree Deletion problem, we are given an undirected graph G

and a positive integer k, and the task is to find at most k vertices whose removal decreases
the maximum vertex degree of the graph to at most d. Obtain a kernel of size polynomial
in k and d for the problem. (Observe that Vertex Cover is the case of d = 0.)

2.10. Show a kernel with O(k2) vertices for the following problem: given a graph G and
an integer k, check if G contains a subgraph with exactly k edges, whose vertices are all
of odd degree in the subgraph.

2.11. A set of vertices D in an undirected graph G is called a dominating set if N [D] =
V (G). In the Dominating Set problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether there exists a dominating set of size at most
k. Show that Dominating Set admits a polynomial kernel on graphs where the length of
the shortest cycle is at least 5. (What would you do with vertices with degree more than
k? Note that unlike for the Vertex Cover problem, you cannot delete a vertex once you
pick it in the solution.)
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2.12. Show that Feedback Vertex Set admits a kernel with O(k) vertices on undirected
regular graphs.

2.13. We say that an n-vertex digraph is well-spread if every vertex has indegree at least√
n. Show that Directed Feedback Arc Set, restricted to well-spread digraphs, is FPT

by obtaining a polynomial kernel for this problem. Does the problem remain FPT if we
replace the lower bound on indegree by any monotonically increasing function of n (like
logn or log log logn)? Does the assertion hold if we replace indegree with outdegree? What
about Directed Feedback Vertex Set?

2.14. In the Connected Vertex Cover problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a vertex cover
C of G such that |C| ≤ k and G[C] is connected.

1. Explain where the kernelization procedure described in Theorem 2.4 for Vertex

Cover breaks down for the Connected Vertex Cover problem.
2. Show that the problem admits a kernel with at most 2k +O(k2) vertices.
3. Show that if the input graph G does not contain a cycle of length 4 as a subgraph,

then the problem admits a kernel with at most O(k2) vertices.

2.15 ( ). Extend the argument of the previous exercise to show that, for every fixed
d ≥ 2, Connected Vertex Cover admits a kernel of size O(kd) if restricted to graphs
that do not contain the biclique Kd,d as a subgraph.

2.16 ( ). A graph G is chordal if it contains no induced cycles of length more than 3, that
is, every cycle of length at least 4 has a chord. In the Chordal Completion problem, we
are given an undirected graph G and a positive integer k, and the objective is to decide
whether we can add at most k edges to G so that it becomes a chordal graph. Obtain a
polynomial kernel for Chordal Completion (parameterized by k).

2.17 ( ). In the Edge Disjoint Cycle Packing problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether G has k pairwise
edge disjoint cycles. Obtain a polynomial kernel for Edge Disjoint Cycle Packing

(parameterized by k).

2.18 ( ). A bisection of a graph G with an even number of vertices is a partition of V (G)
into V1 and V2 such that |V1| = |V2|. The size of (V1, V2) is the number of edges with one
endpoint in V1 and the other in V2. In the Maximum Bisection problem, we are given
an undirected graph G with an even number of vertices and a positive integer k, and the
objective is to test whether there exists a bisection of size at least k.

1. Show that every graph with m edges has a bisection of size at least �m
2
	. Use this to

show that Maximum Bisection admits a kernel with 2k edges.
2. Consider the following “above guarantee" variant of Maximum Bisection, where we

are given an undirected graph G and a positive integer k, but the objective is to test
whether there exists a bisection of size at least �m

2
	+k. Show that the problem admits

a kernel with O(k2) vertices and O(k3) edges.

2.19 (�). Byteland, a country of area exactly n square miles, has been divided by the
government into n regions, each of area exactly one square mile. Meanwhile, the army of
Byteland divided its area into n military zones, each of area again exactly one square mile.
Show that one can build n airports in Byteland, such that each region and each military
zone contains one airport.

2.20. A magician and his assistant are performing the following magic trick. A volunteer
from the audience picks five cards from a standard deck of 52 cards and then passes the
deck to the assistant. The assistant shows to the magician, one by one in some order, four
cards from the chosen set of five cards. Then, the magician guesses the remaining fifth
card. Show that this magic trick can be performed without any help of magic.
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2.21. Prove the second claim of Theorem 2.13.

2.22. In the Dual-Coloring problem, we are given an undirected graph G on n vertices
and a positive integer k, and the objective is to test whether there exists a proper coloring
of G with at most n− k colors. Obtain a kernel with O(k) vertices for this problem using
crown decomposition.

2.23 ( ). In the Max-Internal Spanning Tree problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether there exists a spanning
tree with at least k internal vertices. Obtain a kernel with O(k) vertices for Max-Internal

Spanning Tree.

2.24 (�). Let G be an undirected graph, let (xv)v∈V (G) be any feasible solution to
LPVC(G), and let M be a matching in G. Prove that |M | ≤

∑
v∈V (G) xv .

2.25 ( ). Let G be a graph and let (xv)v∈V (G) be an optimum solution to LPVC(G)
(not necessarily a half-integral one). Define a vector (yv)v∈V (G) as follows:

yv =

⎧⎪⎨
⎪⎩
0 if xv < 1

2
1
2

if xv = 1
2

1 if xv > 1
2
.

Show that (yv)v∈V (G) is also an optimum solution to LPVC(G).

2.26 ( ). In the Min-Ones-2-SAT, we are given a CNF formula, where every clause has
exactly two literals, and an integer k, and the goal is to check if there exists a satisfying
assignment of the input formula with at most k variables set to true. Show a kernel for
this problem with at most 2k variables.

2.27 (�). Consider a restriction of d-Hitting Set, called Ed-Hitting Set, where we
require every set in the input family A to be of size exactly d. Show that this problem
is not easier than the original d-Hitting Set problem, by showing how to transform a
d-Hitting Set instance into an equivalent Ed-Hitting Set instance without changing
the number of sets.

2.28. Show a kernel with at most f(d)kd sets (for some computable function f) for the
Ed-Hitting Set problem, defined in the previous exercise.

2.29. In the d-Set Packing problem, we are given a family A of sets over a universe
U , where each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there are sets S1, . . . , Sk ∈ A that are pairwise disjoint.
Use the sunflower lemma to obtain a kernel for d-Set Packing with f(d)kd sets, for some
computable function d.

2.30. Consider a restriction of d-Set Packing, called Ed-Set Packing, where we require
every set in the input family A to be of size exactly d. Show that this problem is not easier
than the original d-Set Packing problem, by showing how to transform a d-Set Packing

instance into an equivalent Ed-Set Packing instance without changing the number of sets.

2.31. A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set. In the Vertex Disjoint Paths problem, we are given an undirected
graph G and k pairs of vertices (si, ti), i ∈ {1, . . . , k}, and the objective is to decide whether
there exists paths Pi joining si to ti such that these paths are pairwise vertex disjoint.
Show that Vertex Disjoint Paths admits a polynomial kernel on split graphs (when
parameterized by k).
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2.32. Consider now the Vertex Disjoint Paths problem, defined in the previous exercise,
restricted, for a fixed integer d ≥ 3, to a class of graphs that does not contain a d-vertex
path as an induced subgraph. Show that in this class the Vertex Disjoint Paths problem
admits a kernel with O(kd−1) vertices and edges.

2.33. In the Cluster Vertex Deletion problem, we are given as input a graph G and
a positive integer k, and the objective is to check whether there exists a set S ⊆ V (G) of
size at most k such that G − S is a cluster graph. Show a kernel for Cluster Vertex

Deletion with O(k3) vertices.

2.34. An undirected graph G is called perfect if for every induced subgraph H of G, the
size of the largest clique in H is same as the chromatic number of H. In the Odd Cycle

Transversal problem, we are given an undirected graph G and a positive integer k,
and the objective is to find at most k vertices whose removal makes the resulting graph
bipartite. Obtain a kernel with O(k2) vertices for Odd Cycle Transversal on perfect
graphs.

2.35. In the Split Vertex Deletion problem, we are given an undirected graph G and
a positive integer k and the objective is to test whether there exists a set S ⊆ V (G) of size
at most k such that G− S is a split graph (see Exercise 2.31 for the definition).

1. Show that a graph is split if and only if it has no induced subgraph isomorphic to
one of the following three graphs: a cycle on four or five vertices, or a pair of disjoint
edges.

2. Give a kernel with O(k5) vertices for Split Vertex Deletion.

2.36 ( ). In the Split Edge Deletion problem, we are given an undirected graph G
and a positive integer k, and the objective is to test whether G can be transformed into
a split graph by deleting at most k edges. Obtain a polynomial kernel for this problem
(parameterized by k).

2.37 ( ). In the Ramsey problem, we are given as input a graph G and an integer k, and
the objective is to test whether there exists in G an independent set or a clique of size at
least k. Show that Ramsey is FPT.

2.38 ( ). A directed graph D is called oriented if there is no directed cycle of length at
most 2. Show that the problem of testing whether an oriented digraph contains an induced
directed acyclic subgraph on at least k vertices is FPT.

Hints

2.4 Consider the following reduction rule: if there exists a line that contains more than k
input points, delete the points on this line and decrease k by 1.

2.5 Consider the following natural reduction rules:

1. delete a vertex that is not a part of any P3 (induced path on three vertices);
2. if an edge uv is contained in at least k + 1 different P3s, then delete uv;
3. if a non-edge uv is contained in at least k + 1 different P3s, then add uv.

Show that, after exhaustive application of these rules, a yes-instance has O(k2) vertices.

2.6 First, observe that one can discard any set in F that is of size at most 1. Second,
observe that if every set in F is of size at least 2, then a random coloring of U has at least
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|F|/2 nonmonochromatic sets on average, and an instance with |F| ≥ 2k is a yes-instance.
Moreover, observe that if we are dealing with a yes-instance and F ∈ F is of size at least
2k, then we can always tweak the solution coloring to color F nonmonochromatically: fix
two differently colored vertices for k− 1 nonmonochromatic sets in the solution, and color
some two uncolored vertices of F with different colors. Use this observation to design a
reduction rule that handles large sets in F .

2.7 Observe that the endpoints of the matching in question form a vertex cover of the
input graph. In particular, every vertex of degree larger than 2k needs to be an endpoint
of a solution matching. Let X be the set of these large-degree vertices. Argue, similarly as
in the case of O(k2) kernel for Vertex Cover, that in a yes-instance, G \X has only few
edges. Design a reduction rule to reduce the number of isolated vertices of G \X.

2.8 Proceed similarly as in the O(k2) kernel for Vertex Cover.

2.9 Proceed similarly as in the case of Vertex Cover. Argue that the vertices of degree
larger than d + k need to be included in the solution. Moreover, observe that you may
delete isolated vertices, as well as edges connecting two vertices of degree at most d. Argue
that, if no rule is applicable, then a yes-instance is of size bounded polynomially in d+ k.

2.10 The important observation is that a matching of size k is a good subgraph. Hence,
we may restrict ourselves to the case where we are additionally given a vertex cover X of
the input graph of size at most 2k. Moreover, assume that X is inclusion-wise minimal. To
conclude, prove that, if a vertex v ∈ X has at least k neighbors in V (G) \X, then (G, k)
is a yes-instance.

2.11 The main observation is that, since there is no 3-cycle nor 4-cycle in the graph, if
x, y ∈ N(v), then only v can dominate both x and y at once. In particular, every vertex of
degree larger than k needs to be included in the solution.

However, you cannot easily delete such a vertex. Instead, mark it as “obligatory” and
mark its neighbors as “dominated”. Note now that you can delete a “dominated” vertex,
as long as it has no unmarked neighbor and its deletion does not drop the degree of an
“obligatory” vertex to k.

Prove that, in a yes-instance, if no rule is applicable, then the size is bounded polyno-
mially in k. To this end, show that

1. any vertex can dominate at most k unmarked vertices, and, consequently, there are
at most k2 unmarked vertices;

2. there are at most k “obligatory” vertices;
3. every remaining “dominated” vertex can be charged to one unmarked or obligatory

vertex in a manner that each unmarked or obligatory vertex is charged at most k+ 1
times.

2.12 Let (G, k) be a Feedback Vertex Set instance and assume G is d-regular. If d ≤ 2,
then solve (G, k) in polynomial time. Otherwise, observe that G has dn/2 edges and, if
(G, k) is a yes-instance and X is a feedback vertex set of G of size at most k, then at most
dk edges of G are incident to X and G − X contains less than n − k edges (since it is a
forest). Consequently, dn/2 ≤ dk + n− k, which gives n = O(k) for d ≥ 3.

2.13 Show, using greedy arguments, that if every vertex in a digraph G has indegree at
least d, then G contains d pairwise edge-disjoint cycles.

For the vertex-deletion variant, design a simple reduction that boosts up the indegree
of every vertex without actually changing anything in the solution space.

2.14 Let X be the set of vertices of G of degree larger than k. Clearly, any connected
vertex cover of G of size at most k needs to contain X. Moreover, as in the case of Vertex

Cover, in a yes-instance there are only O(k2) edges in G−X. However, we cannot easily
discard the isolated vertices of G−X, as they may be used to make the solution connected.
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To obtain an exponential kernel, note that in a yes-instance, |X| ≤ k, and if we have
two vertices u, v that are isolated in G − X, and NG(u) = NG(v) (note that NG(u) ⊆ X
for every u that is isolated in G − X), then we need only one of the vertices u, v in a
Connected Vertex Cover solution. Hence, in a kernel, we need to keep:

1. G[X], and all edges and non-isolated vertices of G−X;
2. for every x ∈ X, some k + 1 neighbors of x;
3. for every Y ⊆ X, one vertex u that is isolated in G − X and NG(u) = Y (if there

exists any such vertex).

For the last part of the exercise, note that in the presence of this assumption, no two
vertices of X share more than one neighbor and, consequently, there are only O(|X|2) sets
Y ⊆ X for which there exist u /∈ X with NG(u) = Y .

2.15 We repeat the argument of the previous exercise, and bound the number of sets
Y ⊆ X for which we need to keep a vertex u ∈ V (G) \ X with NG(u) = Y . First, there
are O(d|X|d−1) sets Y of size smaller than d. Second, charge every set Y of size at least d
to one of its subset of size d. Since G does not contain Kd,d as a subgraph, every subset X

of size d is charged less than d times. Consequently, there are at most (d− 1)
(|X|

d

)
vertices

u ∈ V (G) \X such that NG(u) ⊆ X and |NG(u)| ≥ d.

2.16 The main observation is as follows: an induced cycle of length � needs exactly �− 3
edges to become chordal. In particular, if a graph contains an induced cycle of length
larger than k + 3, then the input instance is a no-instance, as we need more than k edges
to triangulate the cycle in question.

First, prove the safeness of the following two reduction rules:

1. Delete any vertex that is not contained in any induced cycle in G.
2. A vertex x is a friend of a non-edge uv, if u, x, v are three consecutive vertices of some

induced cycle in G. If uv /∈ E(G) has more than 2k friends, then add the edge uv and
decrease k by one.

Second, consider the following procedure. Initiate A to be the vertex set of any inclusion-
wise maximal family of pairwise vertex-disjoint induced cycles of length at most 4 in G.
Then, as long as there exists an induced cycle of length at most 4 in G that contains two
consecutive vertices in V (G) \ A, move these two vertices to A. Show, using a charging
argument, that, in a yes-instance, the size of A remains O(k). Conclude that the size of a
reduced yes-instance is bounded polynomially in k.

2.17 Design reduction rules that remove vertices of degree at most 2 (you may obtain a
multigraph in the process). Prove that every n-vertex multigraph of minimum degree at
least 3 has a cycle of length O(logn). Use this to show a greedy argument that an n-vertex
multigraph of minimum degree 3 has Ω(nε) pairwise edge-disjoint cycles for some ε > 0.

2.18 Consider the following argument. Let |V (G)| = 2n and pair the vertices of G arbi-
trarily: V (G) = {x1, y1, x2, y2, . . . , xn, yn}. Consider the bisection (V1, V2) where, in each
pair (xi, yi), one vertex goes to V1 and the other goes to V2, where the decision is made
uniformly at random and independently of other pairs. Prove that, in expectation, the ob-
tained bisection is of size at least (m+ �)/2, where � is the number of pairs (xi, yi) where
xiyi ∈ E(G).

Use the arguments in the previous paragraph to show not only the first point of the
exercise, but also that the input instance is a yes-instance if it admits a matching of size
2k. If this is not the case, then let X be the set of endpoints of a maximal matching in G;
note that |X| ≤ 4k.

First, using a variation of the argument of the first paragraph, prove that, if there exists
x ∈ X that has at least 2k neighbors and at least 2k non-neighbors outside X, then the
input instance is a yes-instance. Second, show that in the absence of such a vertex, all but
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O(k2) vertices of V (G) \ X have exactly the same neighborhood in X, and design a way
to reduce them.

2.19 Construct the following bipartite graph: on one side there are regions of Byteland, on
the second side there are military zones, and a region R is adjacent to a zone Z if R∩Z �= ∅.
Show that this graph satisfies the condition of Hall’s theorem and, consequently, contains
a perfect matching.

2.20 Consider the following bipartite graph: on one side there are all
(
52
5

)
sets of five cards

(possibly chosen by the volunteer), and on the other side there are all 52 · 51 · 50 · 49 tuples
of pairwise different four cards (possibly shown by the assistant). A set S is adjacent to a
tuple T if all cards of T belong to S. Using Hall’s theorem, show that this graph admits a
matching saturating the side with all sets of five cards. This matching induces a strategy
for the assistant and the magician.

We now show a relatively simple explicit strategy, so that you can impress your friends
and perform this trick at some party. In every set of five cards, there are two cards of the
same color, say a and b. Moreover, as there are 13 cards of the same color, the cards a and
b differ by at most 6, that is, a+ i = b or b+ i = a for some 1 ≤ i ≤ 6, assuming some cyclic
order on the cards of the same color. Without loss of generality, assume a + i = b. The
assistant first shows the card a to the magician. Then, using the remaining three cards, and
some fixed total order on the whole deck of cards, the assistant shows the integer i (there
are 3! = 6 permutations of remaining three cards). Consequently, the magician knows the
card b by knowing its color (the same as the first card show by the assistant) and the value
of the card a and the number i.

2.21 Let M be a maximum matching, which you can find using the Hopcroft-Karp algo-
rithm (the first part of Theorem 2.13). If M saturates V1, then we are done. Otherwise,
pick any v ∈ V1 \V (M) (i.e., a vertex v ∈ V1 that is not an endpoint of an edge of M) and
consider all vertices of G that are reachable from v using alternating paths. (A path P is
alternating if every second edge of P belongs to M .) Show that all vertices from V1 that
are reachable from v using alternating paths form an inclusion-wise minimal set X with
|N(X)| < |X|.

2.22 Apply the crown lemma to Ḡ, the edge complement of G (Ḡ has vertex set V (G)
and uv ∈ E(Ḡ) if and only if uv /∈ E(G)) and the parameter k−1. If it returns a matching
M0 of size k, then note that one can color the endpoints of each edge of M0 with the same
color, obtaining a coloring of G with n−k colors. Otherwise, design a way to greedily color
the head and the crown of the obtained crown decomposition.

2.23 Your main tool is the following variation of the crown lemma: if V (G) is sufficiently
large, then you can find either a matching of size k+1, or a crown decomposition V (G) =
C ∪H ∪R, such that G[H ∪C] admits a spanning tree where all vertices of H and |H| − 1

vertices of C are of degree at least two. Prove it, and use it for the problem in question.

2.24 Observe that for every uv ∈ M we have xu + xv ≥ 1 and, moreover, all these
inequalities for all edges of M contain different variables. In other words,∑

v∈V (G)

w(xv) ≥
∑

v∈V (M)

w(xv) =
∑

vu∈M

(w(xv) +w(xu)) ≥
∑

vu∈M

1 = |M |.

2.25 Let Vδ = {v ∈ V (G) : 0 < xv < 1
2
} and V1−δ = {v ∈ V (G) : 1

2
< xv < 1}.

For sufficiently small ε > 0, consider two operations: first, an operation of adding ε to all
variables xv for v ∈ Vδ and subtracting ε from xv for v ∈ V1−δ , and second, an operation of
adding ε to all variables xv for v ∈ V1−δ and subtracting ε from xv for v ∈ Vδ . Show that
both these operations lead to feasible solutions to LPVC(G), as long as ε is small enough.
Conclude that |Vδ | = |V1−δ |, and that both operations lead to other optimal solutions
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to LPVC(G). Finally, observe that, by repeatedly applying the second operation, one can
empty sets Vδ and V1−δ , and reach the vector (yv)v∈V (G).

2.26 First, design natural reduction rules that enforce the following: for every variable x

in the input formula ϕ, there exists a truth assignment satisfying ϕ that sets x to false,
and a truth assignment satisfying ϕ that sets x to true. In other words, whenever a value
of some variable is fixed in any satisfying assignment, fix this value and propagate it in the
formula.

Then, consider the following closure of the formula ϕ: for every two-literal clause C that
is satisfied in every truth assignment satisfying ϕ, add C to ϕ. Note that testing whether
C is such a clause can be done in polynomial time: force two literals in C to be false and
check if ϕ remains satisfiable. Moreover, observe that the sets of satisfying assignments for
ϕ and ϕ′ are equal.

Let ϕ′ be the closure of ϕ. Consider the following auxiliary graph H: V (H) is the set of
variables of ϕ′, and xy ∈ E(H) iff the clause x∨y belongs to ϕ′. Clearly, if we take any truth
assignment ψ satisfying ϕ, then ψ−1(�) is a vertex cover of H. A somewhat surprising fact
is that a partial converse is true: for every inclusion-wise minimal vertex cover X of H,
the assignment ψ defined as ψ(x) = � if and only if x ∈ X satisfies ϕ′ (equivalently, ϕ).
Note that such a claim would solve the exercise: we can apply the LP-based kernelization
algorithm to Vertex Cover instance (H, k), and translate the reductions it makes back
to the formula ϕ.

Below we prove the aforementioned claim in full detail. We encourage you to try to
prove it on your own before reading.

Let X be a minimal vertex cover of H, and let ψ be defined as above. Take any clause
C in ϕ′ and consider three cases. If C = x ∨ y, then xy ∈ E(H), and, consequently, either
x or y belongs to X. It follows from the definition of ψ that ψ(x) = � or ψ(y) = �, and
ψ satisfies C.

In the second case, C = x ∨ ¬y. For a contradiction, assume that ψ does not satisfy
C and, consequently, x /∈ X and y ∈ X. Since X is a minimal vertex cover, there exists
z ∈ NH(y) such that z /∈ X and the clause C′ = y ∨ z belongs to ϕ′. If z = x, then any
satisfying assignment to ϕ′ sets y to true, a contradiction to our first preprocessing step.
Otherwise, the presence of C and C′ implies that in any assignment ψ′ satisfying ϕ′ we
have ψ′(x) = � or ψ′(z) = �. Thus, x ∨ z is a clause of ϕ′, and xz ∈ E(H). However,
neither x nor z belongs to X, a contradiction.

In the last case, C = ¬x∨¬y and, again, we assume that ψ does not satisfy C, that is,
x, y ∈ X. Since X is a minimal vertex cover, there exist s ∈ NH(x), t ∈ NH(y) such that
s, t /∈ X. It follows from the definition of H that the clauses Cx = x ∨ s and Cy = y ∨ t
are present in ϕ′. If s = t, then the clauses C, Cx and Cy imply that t is set to true in
any truth assignment satisfying ϕ′, a contradiction to our first preprocessing step. If s �= t,
then observe that the clauses C, Cx and Cy imply that either s or t is set to true in any
truth assignment satisfying ϕ′ and, consequently, s ∨ t is a clause of ϕ′ and st ∈ E(H).
However, s, t /∈ X, a contradiction.

2.27 If ∅ ∈ A, then conclude that we are dealing with a no-instance. Otherwise, for every
set X ∈ A of size |X| < d, create d− |X| new elements and add them to X.

2.28 There are two ways different ways to solve this exercise. First, you can treat the
input instance as a d-Hitting Set instance, proceed as in Section 2.6.1, and at the end
apply the solution of Exercise 2.27 to the obtained kernel, in order to get an Ed-Hitting

Set instance.
In a second approach, try to find a sunflower with k + 2 sets, instead of k + 1 as in

Section 2.6.1. If a sunflower is found, then discard one of the sets: the remaining k+1 sets
still ensure that the core needs to be hit in any solution of size at most k.
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2.29 Show that in a (dk + 2)-sunflower, one set can be discarded without changing the
answer to the problem.

2.30 Proceed as in Exercise 2.27: pad every set X ∈ A with d−|X| newly created elements.

2.31 Show that, in a split graph, every path can be shortened to a path on at most
four vertices. Thus, for every 1 ≤ i ≤ k, we have a family Fi of vertex sets of possible
paths between si and ti, and this family is of size O(n4). Interpret the problem as a d-Set

Packing instance for some constant d and family F =
⋃k

i=1 Fi. Run the kernelization
algorithm from the previous exercise, and discard all vertices that are not contained in any
set in the obtained kernel.

2.32 Show that, in a graph excluding a d-vertex path as an induced subgraph, every
path in a solution can shortened to a path on at most d − 1 vertices. Proceed then as in
Exercise 2.31.

2.33 Let A be a family of all vertex sets of a P3 (induced path on three vertices) in G. In
this manner, Cluster Vertex Deletion becomes a 3-Hitting Set problem on family
A, as we need to hit all induced P3s in G. Reduce A, but not exactly as in the d-Hitting

Set case: repeatedly find a k + 2 sunflower and delete one of its elements from A. Show
that this reduction is safe for Cluster Vertex Deletion. Moreover, show that, if A′
is the family after the reduction is exhaustively applied, then (G[

⋃
A′], k) is the desired

kernel.

2.34 Use the following observation: a perfect graph is bipartite if and only if it does not
contain a triangle. Thus, the problem reduces to hitting all triangles in the input graph,
which is a 3-Hitting Set instance.

2.35 Proceed as in the case of Cluster Vertex Deletion: interpret a Split Vertex

Deletion instance as a 5-Hitting Set instance.

2.36 Let {C4, C5, 2K2} be the set of forbidden induced subgraphs for split graphs. That
is, a graph is a split graph if it contains none of these three graphs as an induced subgraph.

You may need (some of) the following reduction rules. (Note that the safeness of some
of them is not so easy.)

1. The “standard” sunflower-like: if more than k forbidden induced subgraphs share a
single edge (and otherwise are pairwise edge-disjoint), delete the edge in question.

2. The irrelevant vertex rule: if a vertex is not part of any forbidden induced subgraph,
then delete the vertex in question. (Safeness is not obvious here!)

3. If two adjacent edges uv and uw are contained in more than k induced C4s, then
delete uv and uw, and replace them with edges va and wb, where a and b are new
degree-1 vertices.

4. If two adjacent edges uv and uw are contained in more than k pairwise edge-disjoint
induced C5s, then delete uv and uw, and decrease k by 2.

5. If the edges v1v2, v2v3 and v3v4 are contained in more than k induced C5s, delete
v2v3 and decrease k by 1.

2.37 By induction, show that every graph on at least 4k vertices has either a clique or
an independent set on k vertices. Observe that this implies a kernel of exponential size for
the problem.

2.38 Show that every tournament on n vertices has a transitive subtournament on O(logn)
vertices. Then, use this fact to show that every oriented directed graph on n vertices has an
induced directed acyclic subgraph on logn vertices. Finally, obtain an exponential kernel
for the considered problem.
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