
Chapter 2
A Brief History of Secure Email

Though language is a universal human trait, written language has a much shorter
history with our species. It does seem clear from archaeological records that
humans have a fascination with symbols. Symbols acquire associated meanings
over time, but only those who are familiar with the context understand what those
meanings are. We know little about the meaning of the Neanderthal cave drawings
other than that they have something to do with animals that could be hunted with
primitive weapons.

Eventually symbols became a way of representing words, and written language
emerged. There is a paradox with the written word. It does not come naturally to us,
it must be taught separately from spoken language, which we seem to pick up
without instruction. Written language is mysterious to children, as it is to primitive
peoples.

Whence did the wondrous mystic art arise
Of painting speech, and speaking to the eyes?
That we by magic lines are taught,
How both to color and embody thought?

[Oft quoted historically, but source unknown]
At first, written language must have been secret in itself because so few people

knew how to read. As civilization spread, people relied more and more on the
written word for record keeping and communication across distance. Reading
became common enough that it was not private, but the need for privacy became if
anything, even more important. Roman military leaders are credited with the first
uses of encryption for communication privacy [16].

But cryptography did not catch on the way written language did, and there is
little evidence of its use as Europe endured the Dark Ages. Finally, in the 1200s,
along with the rise of trade and increased communication via letters, cryptography
found a permanent niche with the “flowering of modern diplomacy.” [16, pg. 108]
Since then, cryptology grown in importance, finally exploding into practical use on
the Internet starting in the 1990s.

Kahn [16], the Codebreakers, page 91: “… cryptology was acquiring a taint that
lingers even today—the conviction in the minds of many people that cryptology is a
black art, a form of occultism whose practitioner must, in William F. Friedman’s

© The Author(s) 2015
H. Orman, Encrypted Email,
SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-21344-6_2

9

apt phrase, “perforce commune daily with dark spirits to accomplish his feats of
mental jui-jitsu.”

At the dawn of time in the computer era, there was no email and there was no
Internet. There were few computers, and there were computer programs, and people
used the computers for different tasks, but there were no identifiable “users”. Sending
a message to another user made no sense if there was only one person at a time using
the computer. Yet, because computers were so expensive and so useful, by the
1960’s, there were a few computers capable of running software programs for several
simultaneous users. This efficiency created a more productive environment for
software development. These shared computers sprouted the seeds of email.

One early system was the time-sharing computer developed by System
Development Corporation [21]. As part of a demonstration, they arranged to use
three computers in three different cities. Their task was to demonstrate that data
could be copied from one computer to another using phone lines for communica-
tion. The three development teams needed work together, and they came up with
the idea of sending messages to each other. At first, they simply sent messages to
their computer operator when they needed administrative actions like “let my
program run for the next 10 min” and the operator might reply “ok, the program is
running now”. The messages in those days were printed on teletypes, and the
operator probably knew only which teletype would print the message, not which
person would read it. The developers added the capability of sending messages
from one teletype to another, and this might have been the first demonstration of
remote computer messaging.

As the number of computers grew, the number of users increased. The diversity
of work done on a single computer increased, and administrators wanted to know
who used the computer and individuals wanted to keep their data separated from the
data of others. Soon the time-sharing computers began assigning “usernames”. The
messaging idea quickly extended to user-to-user messages in which the sender was
identified by username preceding the message.

In technical terms, a message was a way to send keystrokes from one computer
terminal to another, but only if the intended user was at the terminal. So being
“logged in” meant sitting at sending and printing device like a teletype, or as
became more and more common, a cathode ray tube with text display.

Suppose the person you wanted to communicate with was not logged in? In that
case, the messaging software could create a file with the message in it, and when the
user did log in, the operating system would let him know that the message was
waiting for him. Oddly enough, the idea of attaching the sender’s name to the
message wasn’t always part of the messaging paradigm.

Despite the primitive nature of early messaging, it was useful enough to become
an expected attribute of an operating system. Almost as soon as the ARPANET (the
precursor to the Internet) was developed, messaging was extended to allow users on
different machines to send messages to one another. These early systems were
idiosyncratic with respect to the form of an email address, but they allowed people
on opposite sides of the country to plan where to go to dinner when developers
traveled to meet their colleagues at other facilities.

10 2 A Brief History of Secure Email

By the mid 1970’s most of the attributes of modern email systems were incor-
porated into software systems. The “@” form of addressing became universal, and
messages had subjects, senders, cc’s, and messages could be saved for later reading.

Very little of the information on early computers was private. If you were using a
time-sharing system you had to trust your colleagues not to pry or steal or destroy
your data. Even after systems like Multics and Unix added access control settings
for files and software, people understood that the system administrators had access
to all their data.

In 1973 Roger Shell added file encryption to the Multics operating system.
A user could choose a key, enter it into the encryption program, and have his file
encrypted with that key. The user could decrypt it if he entered the same key as he
had for encryption. The cipher was one designed by Shell, and its design was an
innovative one for that era, using data dependent rotations, among other things.
Multics had user-to-user messaging and email, but encryption was not extended to
those functions.

Strong protections for email were considered in the 1970s when an ARPA
project sought ways to use the early Internet for classified military messages. The
Military Messaging Experiment (MME) [17] defined a formal model of classifi-
cation labels built into an ARPANET message handling system running on the
BBN TENEX operating system. Although the MME did not envision or specify
software encryption, Austin Henderson of BBN, on his own initiative, added
symmetric encryption to the Hermes message handling system around 1974 [6].
Hermes was part of the normal TENEX system, and many people used it, not just
those who were part of MME. This was probably the first time that email was
encrypted. The Hermes system prompted the user for a text string to use as starting
material for a key, that text was scrambled to form an encryption key K; then
message was encrypted with key K. The resulting data was converted to an ascii
text format (blocks of 5 letters separated by spaces), and it was sent using the email
system. The recipient was prompted for the key, and the whole process was
reversed to reveal the plaintext.

Of course, key management had to be done on an ad hoc basis. Symmetric key
algorithms require that the sender and receiver share the same key, and it is difficult
for two parties to agree on a key without meeting in person or making a phone call.

Fortunately, the key management problem was on the cusp of a huge change.

The Public Key Era Begins

In 1976 a group of researchers developed the idea of public key cryptography [8]. It
was a brilliant discovery that established a demarcation point in the history of the
field. Before public key, when two parties needed to communicate, they had to have
some secure channel to let each other know what their cipher key would be. They
might meet in person and tell each other, or they might agree to use some common
information from a newspaper (for example, the closing value of the stock market

2 A Brief History of Secure Email 11

from the previous day), or they could establish a code, using either a code book or a
convention such as 4267 meaning “the 4th word from the top of page 267 in the
Merriam Webster dictionary of 1952.” Key distribution was the Achilles heel of
cryptography.

The astonishing contribution of public key cryptography was to let a person give
one key to everyone and say “use this key to encrypt messages to me”. With
symmetric key cryptography, this would be silly because the same key that encrypts
messages is the one that decrypts messages. Anyone who had the key could decrypt
any messages sent to you. But with public key cryptography, the encryption key is
not the decryption key. Only you know the decryption key corresponding to your
own encryption key, and only you can decrypt the messages sent to you.

Public key cryptography depends on finding a function that is easy to compute if
you know some extra information, but is very hard to compute otherwise. One
simple way to do this is with modular exponentiation of large numbers. The word
“modular” means using “clock arithmetic”. In the explanations of public key
methods, the notation “x mod n” means the remainder of “x” divided by “n”.
Mathematicians have long known that raising a number to a power using modular
arithmetic is an interesting operation. For example, if p is an odd prime number and
n is an integer, then there are numbers g that have the property that ad n range from
1 to p−1, the values of

gn mod p

are all the numbers from 1 to p − 1 in some order. Numbers like g are called
generators.

Another interesting property is the commutative property:

gað Þb¼ gab ¼ gb
� �a

mod p

This leads to the elegant Diffie-Hellman key exchange method. If Alice and Bob
and others have agreed to use a very large prime number p and a generating number
g as their secret scheme, then they can choose secret numbers and publish public
keys. Alice will tell people that her public key is the number gamod p and Bob will
tell people that his public key is the number gbmod p, but each of them keeps their
exponent as a secret. Then when Bob and Alice want to establish a secret number
between themselves, they can both calculate gab and use that as the basis for
enciphering their messages. No one else can calculate the secret exponents, even if
they know the public values, because the problem of going from gxmod p to x is
very difficult.

Shortly thereafter, a trio of MIT professors found a mathematical algorithm for
public key cryptography [27], and the RSA algorithm became one of the most
famous mathematical methods of computer science. The algorithm is simplicity
itself. Assuming that a message M is a number (in a computer, everything is a
number), then the encryption of M is the following calculation:

12 2 A Brief History of Secure Email

enc Mð Þ ¼ Memod n

where n is the product of two large primes and e is a number called the encryption
exponent. The number n and the exponent e are called the public key. For each e,
there is a corresponding secret number d that will decrypt a message. The
decryption exponent is the private key.

enc Mð Þð Þdmod n ¼ M

Not only does RSA enable public key encryption, it also has a flip side that serves
as an authentication signature. Reversing the designation of of “public” and “pri-
vate” for d and e, we obtain:

sign Mð Þ ¼ Mdmod n

The “encryption exponent” e will “encrypt” the signature and produce the ori-
ginal message, thus verifying that the message was signed by someone who knows
secret number d corresponding to the public number e. This is the technical of
“verification” in public key systems.

With these wonderful inventions, it seemed a small step to bring cryptography to
bear on its natural application in email, but in 1976 there wasn’t much interest. The
algorithms stressed the computing capabilities of CPUs at the time. Besides, for the
most part, people who used the Internet trusted one another, and they were much
more interested in promulgating information than in hiding it. This is one of the
conundrums that surrounds cryptography: the suspicion that it stirs up, “What are
you trying to hide?” In fact, there is very little evidence that Internet users wanted
secrecy. Schell’s file encryption for Multics [30] is one of the few early examples of
an operating system utility for cryptographic protection for data. Nonetheless,
interest in privacy and security was building steadily.

In 1980, Peter Deutsch at Bell Labs develop a user-to-user messaging system
that used a public key algorithm. He used Merkle’s knapsack method [24] for the
functions xsend and xget. If a user wanted to send an encrypted message to
another (say Alice wanted to send to Bob), then Alice would use xsend, and that
program would look in Bob’s home directory to see if he had a public key in a file
with a well-known name. The xsend program would take Bob’s public key and
use it to encrypt Alice’s message, and then the resulting data would be put into
Bob’s incoming message directory. When Bob wanted to read a message, he would
use the xget program, and that would use the private part of his key to decrypt the
file containing the message. As luck would have it, the knapsack algorithm was
flawed, and this early example of secure messaging sank from view.

Interest in cryptography was sparked by two events: the publication of the NIST
standard for commercial cryptography the DES cipher [5] (first proposed around
1975), and the aforementioned discovery of public key cryptography. During this
time, the Internet was becoming an essential resource for communication in the

The Public Key Era Begins 13

scientific community, and email systems grew from being an ad hoc collection of
simple messages into an IETF standard with many independent systems for han-
dling an ever-growing volume of messages.

By the mid 1980 s the US DoD was interested in building a secure network for
military use. The Secure Data Network System (SDNS) [25] contract was awarded
to several companies, including GTE. Ruth Nelson of the GTE’s Electronic
Defense Communications Division served as chair of the working group that
defined an end-to-end encryption architecture. Their specifications for network level
security were called SP3 and SP4, and they were supposed to be accompanied by a
messaging protocol that would have defined secure email. However, the project’s
first phase ended with secure messaging remaining undone. Nevertheless, the work
did provide means and impetus to explore the use of cryptography on the Internet at
a time when cryptography was becoming a controversial political subject, as the US
government was leery of letting the technology escape the country.

Applied cryptography on the Internet began with the Military Message
Experiment [17], followed by the Secure Data Network System. In parallel, the
telecommunications industry planned to be part of the networking industry. It
pursued this plan through the International Standards Organization (ISO), and also
through the International Telecommunications Union, a United Nations agency
specializing in communication and information technologies. The ITU’s consultive
committee (the CCITT, later named the ITU-T), the industry produced the X.400
and X.500 [29] standards for network messages and directory services. Their joint
ISO/ITU work was called the Open Systems Interconnections (OSI) protocols.
Security was part of the OSI work, and the standards for encrypted content, such as
network packets, were part of X.400. Those standards influenced subsequent work
and were adopted for the US Department of Defense information systems.
Ultimately, the DOD adopted a secure email system based on the X.400 work.
The X.500 specification dealt with directory services, and one of its goals was to
develop a directory structure specifically for public keys.

With the impetus of the SDNS contract, the IETF formed a Privacy Task Force
(later the Privacy and Security Research Group) that quickly focused on defining
standards for secure email. Their starting point was the X.400 and X.500 specifi-
cations. One of the questions they confronted was how to assign trust to a public
key. While X.400 at that time specified how to use cryptography for networking, it
did not yet address the problems of “interpersonal messages”—finding the private
key of the recipient, how to identify which keys belonged to which people, etc.
The X.500 directory services were meant to solve that problem, and part of the
X.500 specification covered exactly how to identify who owned a key.

The X.400 specification was published in 1984 as “The Red Book”, describing
secure networking over the OSI transport model, and four years later the X.500
services group produced a standard for representing public keys and their owners.
This was X.509, the certificate data structure that underlies today’s website security
and the S/MIME secure email standards. But in those early days of the Internet,
X.509 seemed more like a solution looking for a problem.

14 2 A Brief History of Secure Email

PKI: What’s Around a Name?

There is a fundamental philosophical schism that divides practitioners of authen-
tication. That disagreement is so deep that it split secure email development into
two camps.

It begins with an insight that an MIT undergraduate [19] had shortly after the RSA
public key algorithm was published. Public keys are a wonderful way to start secure
communication, but how can you find out what someone’s public key is? Two people
could send email to one another, each one showing a number that was their own
public key. But how would the recipient be sure that it was the right key? The key
might be sent by an imposter. How could you really entrust secret information to a key
that arrived out of the blue? Short of meeting in person to exchange the information,
could two people find a safe way to learn each other’s keys?

The insight into a solution could be found in the public keys themselves. If there
were a trustworthy person who could take on the task of having users validate their
identities, then that trustworthy person could use his own public key to sign the
binding between a person’s identity and public key. The public key of the trustworthy
person (or organization) could be one that was well-advertised on several reputable
public websites. The signed data objects would have a binding between an “identity”
(such as an ordinary name and/or an email address) and a public key. The signature of
the trustworthy entity would mean “The trustworthy entity says ‘this number is the
public key of bob@example.com’”. This simple method of authentication allowed
the public keys to be freed from public directories. The keys could be stored any-
where, and they could be fetched without the need for secure communication. The
signed objects, once retrieved, could be sent from person-to-person, stored on other
directory servers, and yet still be verified by anyone.

But what is a name? It could be a person’s ordinary legal name, an email address,
or a combination of name and an organization that person belongs to—a family, a
business, a school, or any number of other things. But in X.509, names identify
people who have a role in a legal entity of some kind. This kind of name structure
probably came into being because governments or government funded organizations
designed the OSI standards. Of course, even before that, the original funding for
secure messaging on the Internet came from the US Department of Defense. Their
funding for the Military Message Experiment sought to embed the DoD’s practice of
assigning classification levels to messages, something that was eventually modeled
on computer systems as the Bell-Lapadula model [3]. Besides strict ideas about
message classification, the military has longstanding notions of where people belong
in a hierarchy. Each member of the military is assigned to an organization within a
command hierarchy, and every person has a rank within their organization. Most
governments and businesses also have hierarchies, but they are often less strict about
their exact memberships and how people and organizations get assigned. Outside of
these formal organizations, people have even less formal designations such as friend,
cousin, colleague, neighbor. The Internet brought another degree of “fuzzy” rela-
tionship to the table: people who never met in person but corresponded through

PKI: What’s Around a Name? 15

Internet email lists, bulletin boards, etc. These Internet associates might never know
each other’s “true names”, yet they would be familiar with their opinions, prefer-
ences, and style of speech.

The X.509 system specified a way of describing a person’s identity and place in
a hierarchy. Along with that identifying information, there could be a public key for
communicating with them confidentially. In a hierarchical organization, there must
be some entity that it is responsible for identifying its members, and that is where
public keys found yet another role. If each organization had a public key for
signatures, then each person’s directory information could be signed by the orga-
nization they belonged to. Furthermore, each organization’s key could be published
and signed by the organization above it in the hierarchy. At the very top of the
hierarchy, one organization, the “root” would be the ultimate trusted authority.

The hierarchical structure fit naturally into governmental and corporate organi-
zational charts. This attractiveness led to an expectation that public key technology
could be an easy add-on to existing email systems. Looking up an email address
and looking up a public key should be tied together into one, simple operation. That
fact that this would be simple is embodied in the set of public key management
operations that has come to be known as “Public Key Infrastructure” or PKI [1].

There was another aspect of certificate hierarchies that appealed to many people
but repelled others. For most purposes we expect to know the “real” identity of an
Internet correspondent. There is, after all, a real person sending the email, or at least
an identifiable organization. For many purposes, though, the real identity is not
important, and we are happy to accept a pseudonym as a reasonable identity. The
practice is, of course, well established for publishing. The IETF’s Privacy Task Force
became the Privacy and Security Research Group (PSRG), and the members par-
ticipated in discussions about what identity services to provide for secure email. Two
camps emerged. One favored the idea that all identities had to be vouched for by some
identifiable organization, and all organizations must be part of a hierarchy. Only a few
organizations could be trusted to be “roots” of certificate hierarchies. Indeed, some
people felt that the very idea of obscured identities was objectionable. Another camp
recognized a need for anonymity in political discussion, and for them, the hierarchy
structure looked suspiciously like de facto government controls on identity.

Secure Email Begins to Emerge

Privacy Enhanced Mail (PEM) Standardization, Part I

The PSRG moved towards defining its version of secure email [18]. The design
team chose the hierarchical X.509 certificate structure as the basis for representing
the binding between an identity and a public key. Not everyone was happy with the
X.509 decision. Besides the argument over naming hierarchies, licensing issues
dogged the requisite public key technology.

16 2 A Brief History of Secure Email

From about 1984 through 1992, the PSRG worked on defining secure email.
Their work eventually was named “Privacy Enhanced Mail” (PEM). The X.400
messaging standards were the starting point for design, even though those standards
were concerned with network packet and stream communication, not email.

The main technical problems to be solved by PEM were:

• to carry encrypted messages over the Internet’s normal email protocol, SMTP,
without changing any of the servers that forwarded email messages between
sites

• use public key methods to ensure that only the intended recipient could read the
message

• use public key methods to assure the authenticity of email messages
• ensure that any modifications to the message could be detected by the receiver
• facilitate the transmission of public keys

The first documents covering secure email on the Internet were issued in 1987 by
the Privacy Task Force. The document was revised in subsequent years. The first
version did not mention certificates, but from 1988 onward certificates were
required.

PEM needed to introduce new email headers for naming the sender and receiver.
Ordinary “From:” and “To:” headers do not carry enough information to unam-
biguously determine the public keys, so PEM added their own headers, encapsu-
lated within the PEM message itself. PEM users could send entire certificates chains
in the “X-Sender-ID” field, thus solving one of the nagging problems of public key
management: how to find the keys. There were no universal directory services on
the Internet, and the best way of bootstrapping the keys was to send them in email
messages. This was supposed to be a temporary measure while people waiting for
directory services. At the time, directory services were widely anticipated, and there
were many efforts to build them based on the X.500 specifications or related work
in the IETF. Yet even today, the only universal directory service is the Domain
Name System (DNS).

PEM headers also carried the information about the public key algorithm, the
message digest function, and the symmetric encryption algorithm. The system was
“crypto agile” in that it did not have fixed algorithms built into the protocol.
Instead, it anticipated that advances in cryptography would lead to changes or
variety in algorithms.

To achieve these goals, PEM defined three kinds of secure messages—
MIC-CLEAR, MIC, and PRIVATE. “MIC” stood for “message integrity check”.
MIC-CLEAR was a message that could be read without special software, but it also
contained a public key signature tying the sender’s identity to the message; MIC, on
the other hand, had a more robust message representation encoding that was less
susceptible to in-transit modifications that would cause the signature verification to
fail. PRIVATE messages were encrypted with the public key of the recipient and
then encoded into 80 character lines of ascii characters.There were ultimately four
documents that defined PEM

Secure Email Begins to Emerge 17

RFC 1421
Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures

1993–
02

RFC 1422
Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management

1993–
02

RFC 1423
Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and
Identifiers

1993–
02

RFC 1424
Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and
Related Services

1993–
02

Beyond these 4 documents, there were also 3 that defined modification detection
algorithms: MD2, MD4, and MD5 [28]. Each method had been designed by Ron
Rivest, and they reflected different balances between security and speed. None of
these are considered secure today, but they were state of the art at the time.

Trusted Information Systems, a small security company in Glenwood, Maryland,
developed software that implemented PEM. It ran on PCs and was integrated into
the MH email system on Unix. The PEM software issued certificates for a list of
users who were enrolled by an administrator, and the certificates were delivered to
the users via an initial request message and reply.

The PEM designers deliberately restricted PEM to using only one public key
method (RSA), one symmetric cipher (DES, in 3 “modes”), and two hash methods
(MD2 and MD5). This made PEM consistent with the IETF’s bias towards sim-
plicity in implementation. That simplicity can foster faster validation of the methods
by quickly getting independently developed software implementations into the
hands of users. Arguably, it also minimizes the possibility of errors in implemen-
tations, thus giving greater assurance of security. Further, simple designs are easier
to analyze for security problems.

It is interesting to note that even at this early date, the algorithm identifiers in
PEM data headers were ASN.1 encoded.

The first implementation of PEM had only a single root key for the Internet
Policy Registration Authority, and that key was built into the email client software
so that all users could validate certificate chains starting from the root. Each user
had a public key certificate; that certificate was attached to any signed message.
Two users had to exchange signed email messages in order to learn each other’s
keys. Once they had done that, they could then send encrypted email. There was no
central directory with public keys.

A major advocate for public key cryptography in the mid 1990’s was the RSA
corporation, the holder of the key patents for implementing the technology. They
brought out a secure email product. The company at first worked with the IETF to
define a standard for secure email, but then embarked on its own path to define the
Public Key Cryptography Standards (PKCS). This left PEM in limbo.

18 2 A Brief History of Secure Email

From Out of Nowhere, Pretty Good Privacy (PGP)

In the meantime, political activist and software engineer Phil Zimmerman was one
of many people frustrated by the slow pace of email security technology.
Zimmerman wanted to facilitate encrypted email, and he wanted to show that it was
not rocket science. In the late 1980’s, he took the bull by the horns and wrote his
own email security application. Taking a dig at the high assurance requirements of
the IETF and the PKI requirements, he named his system Pretty Good Privacy. PGP
was not derived from the PEM specifications or the X.400 precursors—it was
Zimmerman’s own design and implementation.

PGP was announced via a USENET group, and once it came onto the scene it
become the common man’s privacy solution. Although Zimmerman said that it was
“an educational tool”, it was fully functional open source software that could be
used immediately. PEM, on the other hand, was used at only two companies, and
there were no plans to commercialize it.

PGP had one major simplification over PEM that was a key point in rapid
adoption. The PGP software protected messages with encryption and modification
detection, but in a major departure from the IETF standards, it did not use certif-
icates to represent public keys, and it did not use a hierarchy of trust. Zimmerman’s
simplifying idea was that users could develop trust in public keys through what we
today call “social networking” and forgo the complication of certificate authorities
and certificate hierarchies. In another departure from the IETF’s philosophy of
authentication, Zimmerman took pains to make the point that the trust was placed in
the key itself, not any external notion of “identity”. Pseudonyms for anonymous
communication were an explicit goal of PGP.

PGP users could generate a public key immediately from the software distribution
and begin using it. The public keys were represented in a simple block of data that
could be sent in an email message to another user. Zimmerman encouraged people to
put their keys on public servers established for that purpose, and MIT helped out by
providing one. Although the system had seemed to have no authentication assur-
ances, it provided a way to create a “web of trust”. People could create ad hoc
certificates just by signing someone else’s key. If Alice convinced Bob that her public
key was really one that she controlled, then he could sign her key and put that signed
information onto a public server. Carol and Dave might do the same for Alice’s key.
Then if Ethan were looking for Alice’s key, he might see that Carol’s key had signed
it. If Ethan already trusted Carol and her key, then Carol’s signature on Alice’s key
might convince Ethan to trust Alice’s key. Thus the web of trust (which coincided
temporally with the “world wide web”) began to grow.

One point of contention between PEM and PGP was the privacy of the user’s
identities. One of Zimmerman’s design tenets was to avoid adding any unnecessary
information about the email addresses or names of the correspondents in the
secured part of the message. Although the unprotected Internet email headers give a
lot of information about those identities, Zimmerman wanted to make sure that PGP
separated the notions of Internet email identity from PGP identities and keys. If Bob

From Out of Nowhere, Pretty Good Privacy (PGP) 19

wanted to use his oddly named email account “alice@example.com” to receive
PGP email protected by a key for “bob@example.com”, that was fine, and the PGP
sending software would not put “bob@example.com” into any unencrypted part of
the email.

Having produced PGP as his “proof of concept” for email privacy, Zimmerman
felt that his software code base was sufficient for widespread adoption, and he was
not interested in producing an IETF standards document. Nonetheless, he was no
enemy of the IETF, and he urged the PEM designers to adopt some of his most
important design principles. As he presciently wrote in 1991 on the PEM
Development mailing list, urging developers to avoid adding unnecessary identi-
fying information into the plaintext parts of messages:

One of the many reasons PEM is such a useful contribution to the body
politic is that without it, the Government can routinely scan the
burgeoning flow of email traffic, with far less human effort and far
less visibility than they could do with paper mail. With traffic
analysis alone, surveillance of political activists and who they
associate with can yield useful political intelligence.

During the next several years, PGP became very popular around the world,
especially because of Zimmerman’s defiance of pressure from the US government
to restrict distribution of his software.

The four PEM specifications were final in 1993, but by then PGP was fast
becoming the de facto standard for Internet email. At the same time, the IETF’s
specifications for email messages had changed to allow complex documents to be
transmitted, and PEM needed to align itself with the new world of MIME.
Complicating things even more was a rift in the The RSA Corporation had been an
active participant in the PEM design group through their employee Burt Kalisky,
they were about to separate from the IETF and pursue secure email standards
through a different industry consortium.

Privacy Enhanced Mail (PEM), Part II: The Tangled Tale
of Standardization

PEM did not specify any particular cryptographic methods, but the naming scheme
had identifiers for DES, RSA, and MD2 and MD5 as their only examples of
symmetric encryption, public key encrypt/signing, and hashing, respectively.
The PEM architecture constituted the first definition of a complete, secure email
system. As with any pioneer, it encountered numerous problems. The full solution
to secure email standardization would not come for several years after the PEM
specifications were complete, but the PEM experience was invaluable for moti-
vating the work.

There were two kinds of signing, one that left the text of the message untouched
and readable without special software, another that required PEM software to

20 2 A Brief History of Secure Email

decode it. This allowed people to send signed email to non-PEM users without
worrying about whether or not they had PEM software installed. A side effect of the
transmission was to transmit the public key certificate to the recipient, thus boot-
strapping secure communication.

PEM also supported sending encrypted email to multiple recipients. Each reci-
pient got an encrypted copy of the symmetric encryption key in the encoded
message structure.

The information about who was sending the message, and who it was destined
for is information carried in ordinary email headers, but with public key technology,
the name is not as important as the key. PEM had its own internal headers that
defined the “IDs” of the sender and receivers. Those IDs could be public key
identifiers or email names.

PEM was designed to work seamlessly over existing email services, so it needed
a way to encode binary data, like signatures or encrypted data, into the ascii
character set that Internet email used. The binary data used octets (or bytes) of 8 bits
each, but the ascii character set used fewer than half of the 256 possible octet
values. The encoding scheme that was chosen was a “3-to-4” map that would take 3
binary octets (24 bits), break them into 4 groups of six bits each, and then map each
six bit quantity to a unique ascii character. Long before PEM, a similar method was
employed in the Unix utility “uuencode”. This is a form of radix-64 encoding, and
PEM’s variant on it, named “base64”, turned out to be a lasting legacy of PEM,
though all other details have faded away. Yet PEM was important as the motivator
for much needed revisions to what would become known as Public Key
Infrastructure (PKI).

Users of PEM needed to let their correspondents know about their public keys,
and for this purpose PEM used public key certificates as defined in the ITU-T
specification X.509. In these early days of public key technology, the PEM
designers envisioned only one hierarchy with a single authority at the root—the
Internet Policy Registration Authority(IPRA). The second level authorities would
reflect different “policies”, such as a state government that certified state agencies
and cities, or a business directory service that certified non-profit corporations, or an
entity that specified acceptable personal identifications (driver’s licenses or pass-
ports, etc.) for “persona” identificaton. The certificate authorities were at the third
level and below, down to the individual users. Further, the X.509 system for names
of certificate authorities assumed a parallel hierarchy (e.g. california.fresno.
department-publicworks.northwest-office). As various organizations tried to adopt
PEM, the strict rules for certificates became a major impediment. In the real world,
businesses merge, government agencies split and reorganized, and names change.

PEM had a second specification entirely devoted to key management. RFC1422
covered a PEM message type for a “Certificate Revocation List” (CRL). These were
intended to be a stopgap measure until widespread adoption of the X.509 services
occurred. In the meantime, PEM’s CRL message was a simple and reliable method
for distributing the CRLs to end-users.

X.509 certificates were too difficult to use for large PEM deployments. The
second level authorities’ policies were difficult to learn or explain, the naming

From Out of Nowhere, Pretty Good Privacy (PGP) 21

scheme was unwieldy, CA certificates had no syntactic distinguisher from end user
certificates, the revocation scheme did not scale, and the top-down signing scheme
had policy and management implications that needed to be addressed by putting
more information into the certificates. Administrators found that they needed more
information about certificate authorities in order to understand if they were trust-
worthy. The hierarchy sometimes needed to be shortened by allowing a CA in one
branch of a hierarchy to sign the certificate for a CA in a different branch. After a
brief attempt to fix things by adding two new fields and calling it “X.509 version
2”, the standardization groups retrenched. By 1998 they had developed a major
rework of certificates with more fields, more flexible naming, formal definitions of
CRLs, cross-signing, and a flexible system for adding new fields through formal
extension fields. The X.509 version 3 certificate has proved an enduring legacy of
the PEM experience.

One interesting point about X.509v3 today is that it is a standard defined by the
ITU-T but separately defined by the IETF. The IETF defines the requirements for
certificates used on the Internet for such things as email, secure communication
channels, and website security, but these are consistent with the more general
ITU-T definition. Nonetheless, in the interests of stability, the IETF publishes its
own complete definition of Internet certificates. One standard, two heads!

PEM and MIME

But no sooner had the specs been finished than the task force discovered that they
had a problem. While they had been working on secure email, other groups in the
IETF had been defining a more general way of sending complex data. People
needed to send photos, audio data, and even video, and the IETF had defined a way
to send arbitrary data, even disparate kinds of data, in a single email message. This
was the MIME standard, and it is what enables today’s email attachments.

Encryption turns meaningful data into meaningless data, and that data is not
something that humans can read. Email is geared towards a small character set, and
the Internet email protocol, RFC822 and its successors, cannot transmit binary data.
From this it follows that the data must be encoded into a smaller character set. PEM
had solved this problem with “base64” encoding that packed 3 bytes of binary data
in 4 bytes of ascii data. Yet this brought up another problem—how would the email
handler for the recipient know that the message was encrypted? Email had already
faced similar problems, and the usual solution was to add some extra information to
the beginning of email. A line might be as simple as:

-----BEGIN PRIVACY-ENHANCED MESSAGE-----

Though this seemed logical, it ran into a variety of problems. Email software
sometimes tried to be helpful and slightly adjust details of the message formatting,
add ing or deleting a whitespace character here or there, and changing the character
to indicate end of line, etc. This did not usually change the readability of normal

22 2 A Brief History of Secure Email

email, but it played havoc with encrypted email and signed email. Cryptographic
techniques would not work unless it could rely on software built to standards that
guaranteed that headers could not be added and removed willy-nilly.

Encrypted email is not the only kind of binary data that people exchange, and a
different part of the IETF had been working on this problem in the context of
multimedia data. The MIME extensions to email were far along, and PEM was out
of step with MIME conventions. In fact, MIME is what makes email attachments
possible. We can send photos, music, compressed files, complex documents, and all
manner of data in email attachments, and we expect it to work without a glitch.
What the PEM group faced was the fact that all email clients would soon be
supporting MIME, but they were not certain that they would support PEM, espe-
cially if its format was unrelated to MIME.

MIME Security Object Security Services (MOSS)

In 1994 the PEM working group decided that they needed to integrate their work
with a major addition to Internet email, the Multipurpose Internet Mail Extension
(MIME). MIME was becoming the accepted way to encode binary data files in email
messages, but PEM’s methods worked only for simple text messages. Moreover, a
great benefit of MIME was that it could describe separate message parts within a
single email message. As a result, MIME was an obvious and convenient mechanism
for encoding “privacy enhancements”. A marriage was in order.

Up until then, PEM used its own special markers to delineate secure email
content:

-----BEGIN PRIVACY-ENHANCED MESSAGE-----

and

-----END PRIVACY-ENHANCED MESSAGE-----

with the expectation (or hope) that email software would not alter the content
between the two markers. This simplistic method would not survive into the era of
multipart messages with special encodings for binary contents.

A new IETF working group for PEM+MIME was formed, and it defined
extensions to MIME for security enhancements based on PEM. This group defined
the the standards for MIME Object Security Services (MOSS). MOSS used headers
at the start of a message to announce that the message had internal MIME parts with
security enhancements. Each security-enhanced MIME part was of either type
“signed” or “encrypted”. Each enhanced part had two subparts. One subpart was the
cryptographic control information about either the signature or the encryption, and
the other subpart was either the data to which the signature applied or the encrypted
data. MOSS also addressed some of the aspects of key management by defining
special MIME parts for requesting and sending public keys.

PEM and MIME 23

The MOSS designers sought to harmonize their work with a different secure
email system, PGP. In doing so, they compromised on the tenet of PEM that
mandated X.509 certificates and names. MOSS enlarged the identifier space to
allow email names, the “distinguished name” in a certificate, or any arbitrary
character string. This last form of ID opened the door to PGP key digests.

All in all, MOSS was a great improvement to PEM. Security enhancements
could be extended to individual message parts using the MIME standards, which
were already becoming popular. The victory was hollow, though, because by the
time MOSS was published in 1995, it was already destined for the scrapheap.

During the time that the PEM was evolving to MOSS, the RSA corporation was
working on its own version of secure email. Their interests were wider than the
PEM working group’s charter. RSA was interested in algorithm-independent cod-
ing of cryptographic parameters, secure representation of different kinds of public
keys, extensions of X.509 certificates, certificate management, etc. They decided to
work with an industry consortium instead of the IETF.

PKI, PKCS, and S/MIME

The whole subject of public keys, including all the representation and management
utilities, comes under the umbrella term Public Key Infrastructure (PKI).
Certificates are covered by the X.509 standard, and all the rest is covered by a group
of standards that were originally called Public Key Cryptographic Standards
(PKCS). They have a complicated history.

Apart from the indicators in an email message to denote that the message had
encrypted content, there were a number of other issues that needed to be settled
before certificiate-based email protections could reach the level of being
well-defined and broadly useful. There were major issues to be dealt with con-
cerning the definition and representation of a certificate, the meaning of terms
within a certificate, the representation of keys, names, and signatures, requesting
signatures for new certificates, dealing with keys that were unneeded or compro-
mised, securely transferring private keys, etc. The standardization work on these
issues bounced around among various groups before settling out into the current
situation of cooperative bifurcation between the ITU-T and the IETF.

While the ITU-T remains the authority onX.509 certificates, Internet infrastructure
providers rely on the IETF’s X.509 version 3 specification. That specification is fully
compatible with the ITU-T’s definitions, but the IETF maintains its own documents
that detail how certificates are represented and used for Internet purposes. The IETF
documents also specifiy how Certificate Revocation Lists are represented.

The IETF has developed its own syntax for representing cryptographic data, CMS.
That syntax is used for S/MIME data: key identifiers, algorithm identifiers, parame-
ters, etc. The IETF also has its own format for bundling up keys for secure transfer.

The Public Key Cryptography Standards (PKCS) have a complicated history
intertwined with many different organizations. PKCS started as an independent,

24 2 A Brief History of Secure Email

non-IETF activity, just as the PEM and MOSS standards were being finalized.
PKCS were supposed to define the cryptographic representations of data that are
essential for interoperable secure email.

The responsibility for PKCS drifted between organizations for several years.
During the 1990 s, the RSA corporation and the consortium that it aggregated
developed the first set of PKCS specifications. These standards developed more
detail and scope for the public key cryptography and data representations than the
IETF groups had covered.

Over the years there have come to be 15 different parts to PKCS. Some of them
were abandoned, some were brought to fruition, some continue to be developed.
The original industry consortium left the work of completing the standards to the
Open Systems Interconnection group within the CCITT (which became ITU-T). In
1995 the IETF, with cooperation from NIST, created the “Public Key
Infrastructure X.509 (PKIX)” working group to develop refinements (profiles) of
the ITU-T PKCS so that Internet services for email and website security and
infrastructure security could be built on them. Moreover, the PKIX group saw the
need to develop new services, particularly online services, for certificate manage-
ment and Internet transport. Over time, the “profiles” became independent stan-
dards, usually compatible with the ITU-T, but not bound by them.

The PKCS#11 standard is currently under active development under the auspices
of the OASIS consortium (https://www.oasis-open.org/).

A summary of PKCS parts (from the OASIS website):

• PKCS #1: mechanisms for encrypting and signing data using the RSA public
key cryptosystem. This became the IETF’s RFC 3447, issued in 2003.

• PKCS #3: a Diffie-Hellman key agreement protocol.
• PKCS #5: a method for encrypting a string with a secret key derived from a

password. This became RFC 2898.
• PKCS #6: certificate extensions; phased out in favor of version 3 of X.509.
• PKCS #7: a general syntax for messages that include cryptographic enhance-

ments such as digital signatures and encryption. This was absorbed into
S/MIME and its multitude of documents.

• PKCS #8: a format for private key information. This became RFC 5208, a short
description of the format for representing private keys and protected with
symmetric encryption.

• PKCS #9: selected attribute types for use in the other PKCS standards.
Published as an informational RFC (i.e., not part of other IETF standards).

• PKCS #10: syntax for certification requests. Published as an informational RFC
(i.e., not part of other IETF standards).

• PKCS #11: a technology-independent programming interface, called Cryptoki,
for cryptographic devices such as smart cards and PCMCIA cards. Currently
under development by OASIS.

• PKCS #12: a portable format for storing or transporting a user’s private keys,
certificates, miscellaneous secrets, etc. In 2014, this standard was transferred
from the RSA Corporation to the IETF, becoming RFC 7292. It builds on

PKI, PKCS, and S/MIME 25

https://www.oasis-open.org/

PKCS#8 and greatly extends it. [The “p12” file format has been used for
bundling key for transporting to email and web clients for some time.]

• PKCS #13: mechanisms for encrypting and signing data using Elliptic Curve
Cryptography. Apparently abandoned.

• PKCS #14: pseudo-random number generation. Abandoned.
• PKCS #15: a complement to PKCS #11 giving a standard for the format of

cryptographic credentials stored on cryptographic tokens. Standardized by the
International Organization for Standardization as ISO/IEC 7816-15:2004

The PKCS#12 standard became the IETF’s “Personal Information Exchange”
standard for encoding and protecting public/private key pairs when they are moved
from one device to another. PKCS#7 survives in the signature attachment filename
“smime.p7 s”. A few of the other PKCS sections live on as the basis for RFC’s on
specialized methods of working with hardware devices. The OASIS organization
continues work on some of the PKCS subsections.

A certificate is, at its heart, simple to describe: a public key, the identity of the
owner, the signer’s key, and the signer’s signature over those three crucial ele-
ments. Yet, the work of obtaining a stable definition has been spread over three
decades. The PKIX group published “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile” in 1999. The final version was published in 2008. It
turns out that using and managing certificates is fraught with complexity, and that
complexity has become embodied in the certificate definition.

The original X.509 specification from the X.500 Directory Services specification
covered the basic requirements for transmitting, identifying, and authenticating
public keys within a certification hierarchy. As security administrators gained
experience from trying to use the architecture for large numbers of users and with
non-trivial hierarchy depths, they felt that it would be helpful to have more
information to facilitate management functions.

A second version of X.509 added two more fields, but the response from
administrators was that they needed still more. As the standardization groups
worked to find consensus on a small number of fields, they came to realize that the
diversity of opinions on how to establish the trustworthiness of certificiate issuer
was going to rely on more fields. Some of those fields would be using data that
might be unique to only a section of the hierarchy. Version 3 of the standard was
forged to satisfy diverse needs by adding the “extension” capability, leaving the
original fields as required, adding new fields, and allowing an unlimited number of
new fields in the certificate extensions.

The Cryptographic Message Syntax, CMS

The syntax for representations of cryptographic messages was covered in the
seventh of the PKCS series, and it was taken under the wing of yet another IETF
working group—“networks”. The CMS standard [15] is based on a formal

26 2 A Brief History of Secure Email

definition of the syntax elements for representing algorithms, algorithm parameters,
encrypted data, nonces, etc. That syntax and its representation in terms of bytes and
bits became the basis for representing data in certificates and secure email
attachments.

The things that go into cryptographic syntax are usually different for each
algorithm. The following show how public keys are defined in CMS. The first data
structure defines the generic data structure for a public key, and it has an identifier at
the beginning signifying that it is an RSA public key type, there are optional
parameters, and there is a bit that determines the purpose of the key. The second
data structure defines the public key elements (the modulus and the exponent), and
the third data structure defines the meaningful names of the usage bits.

 pk-rsa-pss PUBLIC-KEY ::= {
 IDENTIFIER id-RSASSA-PSS
 KEY RSAPublicKey
 PARAMS TYPE RSASSA-PSS-params ARE optional
 CERT-KEY-USAGE { }
 }

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
 }

 KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1), -- recent editions of X.509 have
 -- renamed this bit to contentCommitment
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6),
 encipherOnly (7),
 decipherOnly (8) }

Whereas previous security standards had used their own conventions for rep-
resenting the names of algorithms (e.g. “RSA” or “DES”), and their own methods
for designating a symmetric key or a public key, CMS presented a uniform method
for representing all things cryptographic. This meant that developers needed only
one software library to read and write cryptographic information for use with any
almost any IETF standard.

The underlying lexicographic representation of CMS elements is an abstract
notation called ASN.1. ASN.1 describes numbers, strings, object identifiers, time,
etc. The actual representation of ASN.1 in bytes is described by its oft maligned
Binary Encoding Rules (BER). BER has several ways to represent numbers and
strings, and even the same value can be represented in more than one way.

The Cryptographic Message Syntax, CMS 27

This thwarts the precision demanded by cryptographic algorithms. Therefore X.509
and CMS use a subset of BER call the Distinguished Encoding Representation
(DER). A frequent complaint about BER/DER is that its binary data representation
is complicated, and as a result, the CMS data structures cannot be parsed by casual
examination of the byte strings.

S/MIME, Secure/Multipurpose Internet Mail Extensions

Another product of the PKCS industry working group was a set of extensions to the
IETF MIME protocol. The extensions were simply a set of additional headers
indicating that a message part had cryptographic enhancements. These could be
encryption or signing or a certificate management function. The body of a protected
MIME part was encoded in a format that was the subject of another PKCS work
topic denoted as PKCS#7. In 1998, the consortium documented this work in an
IETF document as “S/MIME version 2”. The document is careful to note that it is
not an IETF standard, but it has historic interest. The successor protocol, S/MIME
version 3, became in IETF standard in 1998. This was a mere five years after MIME
itself was published as a standard.

The IETF’s S/MIME working group produced the standards that are the final
word on adding certificate-based cryptography to MIME objects. The group needed
to pick up from where PEM and MOSS had left off, extending their work with new
MIME headers and adding a much more flexible cryptographic representation
structure. The working group did a prodigious amount of work in achieving its
purpose and extending it. Over its lifetime, the group produced 50 documents
covering everything from using X.509v3 certificates to use of Identity-Based
Encryption [4], and to avoidance of “small subgroup attacks.”

It is important to note that MIME is used for more than just email, and S/MIME
can be applied to any MIME object. HTTP can transfer MIME objects, and
S/MIME headers are often useful on files that have been signed or encrypted.

Despite, or because of, its simplicity and resemblance to earlier ways of
attaching security headers, S/MIME succeeded in becoming widely used. From its
first version in 1999 until its most recent revision in 2010, it has kept up-to-date on
cryptographic algorithms.

S/MIME defines one new MIME “media” type to indicate that there are security
enhancements in the data that follows: application/pkcs7-mime. That media type
can be followed by a parameter indicating that the data is encrypted:
“smime-type = enveloped-data” or “smime-type = signed-data”.

There is a second way to represent signed data, one that largely transparent to
those who do not use secure email readers, making it the most commonly used
security enhancement. This is the “detached signature” which fits into the MIME

28 2 A Brief History of Secure Email

multipart scheme very nicely with the addition of the Content-Type value
“multipart/signed”:

Content-Type: multipart/signed;
protocol="application/pkcs7-signature"; micalg=sha1

In the example above, the MIME part precedes two subparts, one with the
message content, which can be any kind of MIME part, and the second with the
smime-type of “signed-data”.

Most people who receive these multipart signed messages are only aware of the
signature part because it appears as an attachment with the filename “smime.p7s”.
The S/MIME signature on the message is encoded in that attachment, as are the
sender’s certificates.

The signature hash algorithm, in the example above, is the “micalg” (message
integrity algorithm) SHA1. It may seem strange to see the algorithm mentioned in
the header, but implementors like to have it revealed before they do any further
cryptographic processing. They can apply the algorithm to the preceding MIME
part immediately, and then the hash value is ready to compare against whatever is
encoded in the signature.

The reader might wonder, where’s the cryptography? After all, the headers are
merely signals that cryptography is happening somewhere, but where are the
details? All the cryptographic details about algorithms and lengths and sizes are in
the data following the S/MIME headers, encoded in the Crypographic Message
Syntax. S/MIME adds a few data types of its own to CMS, and those, in combi-
nation with the additional MIME types, constitute S/MIME.

The file extensions in S/MIME headers are a holdover from the original PKCS
specifications, and they serve an advisory role today, because the CMS payload
supercedes its function. The “p7s” extension indicates a signature, “p7m” is
enveloped data (signed and/or encrypted), “p7z” is compressed data, and “p7c”
means that certificates are the only payload.

In earlier versions of S/MIME, there was some support for certificate manage-
ment, but today’s S/MIME leaves most of the work to the protocols designed
specifically for that purpose by the PKIX working group. S/MIME does carry
certificates as part of a signed message, encoded in the CMS data that is the
signature. This supports the “exchange signed messages once; encrypt thereafter”
model of person-to-person certificate bootstrapping.

Two IETF Request for Comments (RFC) make up S/MIME version 2: RFC
2311 (http://www.ietf.org/rfc/rfc2311.txt), which established the standard for
messages, and RFC 2312 (http://www.ietf.org/rfc/rfc2312.txt), which established
the standard for certificate handling. Together, these RFCs provided the first
Internet standards-based framework that vendors could follow to deliver interop-
erable message security solutions.

S/MIME, Secure/Multipurpose Internet Mail Extensions 29

http://www.ietf.org/rfc/rfc2311.txt
http://www.ietf.org/rfc/rfc2312.txt

After all the different attempts to define security headers for email, it is strange
that S/MIME is not completely transparent. The answer to the question of “what is an
S/MIME message” is best answered from one of its defining documents [26]:

Because S/MIME takes into account interoperation in non-MIME
environments, several different mechanisms are employed to carry the
type information, and it becomes a bit difficult to identify S/MIME
messages. The following table lists criteria for determining whether
or not a message is an S/MIME message. A message is considered an
S/MIME message if it matches any of the criteria listed below.

The file suffix in the table below comes from the "name" parameter in
the Content-Type header field, or the "filename" parameter on the
Content-Disposition header field. These parameters that give the
file suffix are not listed below as part of the parameter section.

Media type: application/pkcs7-mime
parameters: any
file suffix: any

Media type: multipart/signed
parameters: protocol="application/pkcs7-signature"
file suffix: any

Media type: application/octet-stream
parameters: any
file suffix: p7m, p7s, p7c, p7z

An example of a message encrypted and encoded as an S/MIME message (from
RFC 5751):

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6
7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H
f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
0GhIGfHfQbnj756YT64V

Understanding S/MIME in enough detail to implement it means conquering
ASN.1, DER, CMS, X.509v3 certificates, base64 encoding, RSA and DSA public
key algorithms and their key encodings, the representation of a public key signa-
ture, the SHA1 and SHA2 hash algorithms, the AES symmetric cipher and its
encoding, the 3DES symmetric cipher and its encoding, representing the public key
encryption of a symmetric cipher key, and the S/MIME headers for email.

30 2 A Brief History of Secure Email

OpenPGP: PGP as an IETF Standard

A completely independent concept for secure email took a more direct line from
initial concept to its embodiment today as an IETF standard with open source and
commercial implementations.

As noted previously, PGP gained immediate popularity, and Zimmerman spoke
out as an advocate of privacy technology for the masses. In 1994, with the help of
an international team of collaborators, PGP 2.0 hit the streets, and Zimmerman
found himself embroiled in legal issues arising from the US government’s export
limits on cryptography and patent infringement claims related to his use of the RSA
public key algorithm. As Zimmerman worked with a team of lawyers to resolve
these problems, PGP gained traction as the solution to the private communication
needs of Internet users.

PGP 3.0 came out in 1996, and it was a major rework of the system. It added
ciphers that avoided patent issues, and it was designed as a software library for
developers instead of being simply an “app”.

Shortly afterward, the IETF undertook the task of standardizing PGP. The PGP
team felt this was necessary to ensure that PGP could be both a commercial product
and a freely available application. The IETF working group used “OpenPGP” as their
name for the encrypted email system. In sharp contrast to the S/MIME and PKIX
documents, OpenPGP is a compact and complete specification for encrypted email.

• RFC 1991 PGP Message Exchange Formats, August 1996. This documented the
PGP 2.x implementations that were by then in use around the world.

• RFC 2015 MIME Security with Pretty Good Privacy (PGP), October 1996.
The MIME headers for PGP messages were defined here, much as PEM had
done with MOSS. It was a simple scheme that allowed PGP to be easily
encapsulated with headers indicating encryption or signature or key content.

• RFC 2440 OpenPGP Message Format (obsolete), November 1998. This docu-
mented the design of the PGP 3.0 system (aka PGP 5.0).

• RFC 3156 MIME Security with OpenPGP, August 2001. This defines the same
MIME headers as in RFC 2015, but it extends them with parameters for more
algorithms than PGP supported in the 1990 s.

• RFC 4880 OpenPGP Message Format, November 2007. This replaced RFC
2440; the changes were largely editorial and did not affect interoperability.
The doubling of the RFC number from the 1998 version is an amusing footnote
on PGP’s standardization.

PGP never saw the need for S/MIME. Instead, the designers opted for a scheme
more akin to the PEM MOSS headers. The MIME encoding for OpenPGP is
simple. An encrypted message has this information in the email message header:

Content-Type: multipart/encrypted; boundary=xxx;
protocol="application/pgp-encrypted"

The message will have two internal MIME parts. One simply repeats the
encryption information:

OpenPGP: PGP as an IETF Standard 31

Content-Type: application/pgp-encrypted

and the other has the encrypted, encoded data with a header for arbitrary encoded
data followed by PGP’s internal header:

Content-Type: application/octet-stream

-----BEGIN PGP MESSAGE-----

...

A signed message is equally simple. The main message header signals the
signature data, and names the algorithm that assures data integrity:

The signed message has two MIME parts, one with the actual message, and a
second part with the PGP signature preceded by the header:

Content-Type: application/pgp-signature

A third header type signals that a PGP key block follows:

Content-Type: application/pgp-keys

PGP, like PEM and S/MIME, uses radix-64 encoding to turn binary data into
ascii characters that the email transfer protocol can deal with. PGP uses a slightly
different character set and calls the result “ascii armor” (asc). PGP’s internal “PGP
MESSAGE” delimiters enclose ascii armored data.

The choice of supported ciphers for PGP has always included more variety than
the IETF embraced. In its early days, PGP favored ciphers developed outside the
United States. OpenPGP today recognizes Blowfish, Twofish, CAST5, AES, and
3DES as symmetric ciphers. The Camellia cipher was added in 2004.

OpenPGP recognizes RSA, ElGamal, and DSA as its public key methods. In
2012 the definitions for elliptic curve cryptography were added. The PGP imple-
mentation in the GNU Privacy Guard (GPG) software supports elliptic curves as of
release 2.1.

The number of pages of standards devoted to describing OpenPGP is far less
than that devoted to S/MIME. The two systems had radically different evolutions
from concept to running code, but they are really nothing more than two variants of
the same core idea: public key cryptography protecting the secrecy of symmetric
cipher keys, and encrypted data embedded in Internet email.

Content-Type: multipart/signed; boundary=yyy; micalg=pgp-md5;
protocol="application/pgp-signature"

32 2 A Brief History of Secure Email

http://www.springer.com/978-3-319-21343-9

	2 A Brief History of Secure Email
	The Public Key Era Begins
	PKI: What's Around a Name?
	Secure Email Begins to Emerge
	Privacy Enhanced Mail (PEM) Standardization, Part I

	From Out of Nowhere, Pretty Good Privacy (PGP)
	Privacy Enhanced Mail (PEM), Part II: The Tangled Tale of Standardization

	PEM and MIME
	MIME Security Object Security Services (MOSS)
	PKI, PKCS, and S/MIME
	The Cryptographic Message Syntax, CMS
	S/MIME, Secure/Multipurpose Internet Mail Extensions
	OpenPGP: PGP as an IETF Standard

