
Chapter 2
Perturbative Construction of Models
of Algebraic Quantum Field Theory

Klaus Fredenhagen and Katarzyna Rejzner

Abstract The construction of models of algebraic quantum field theory by renor-
malized perturbation theory is reviewed.

2.1 Introduction

The axiomatic framework ofAQFTallows for a qualitative description of a large class
of phenomena occurring in particle physics and some parts of solid state physics. It
does not, however, yield quantitative predictions, and there is a widespread impres-
sion that one has to abandon the formalism ofAQFT if onewants tomake real contact
with experiments. Actually, as explained in Chap.1, up to now no single model of
an interacting AQFT in 4d Minkowski space has been constructed.

But what are the alternatives? Standard textbooks on QFT either start from canon-
ical quantization of free field theory on Fock space and try to construct the interacting
theory in the interaction picture, or they use the path integral formalism. The canon-
ical approach ends up in the Gell-Mann Low formula for the vacuum expectation
values of time ordered products of fields,

ω0(T ϕ(x1) . . . ϕ(xn)) = 〈Ω, T ϕ0(x1) . . . ϕ0(xn)e
i
�

∫
LI (x)d4xΩ〉

〈Ω, T e
i
�

∫
LI (x)d4xΩ〉

, (2.1)

where ϕ0 is the free field treated as an operator valued distribution on the Fock space,
LI is the interaction density treated as aWick polynomial of ϕ0 andΩ is the vacuum
vector of the free theory. The time ordering symbol T means that the products have
to be performed after ordering of the factors according to their time arguments.
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The path integral approach reinterprets the Gell-Mann Low formula as an integral
over all classical field configurations φ

ω0(T ϕ(x1) · · ·ϕ(xn)) = Z−1
∫

φ(x1) · · ·φ(xn)e
i
�

∫
L(x)d4x Dφ (2.2)

where now L is the full classical Lagrangian, Z is a normalization factor, and Dφ is
thought of as the Lebesgue integral over field space.

Both versions are only heuristic, and it required the hard and ingenious work of
several generations of physicists to turn these formal expressions into unambiguous
computations. The state of the art is that one can create a formal power series in �

where every term iswell defined, up to some remaining infrared problems originating
from the integral over Minkowski space in the exponent. The great success of QFT
relies on the fact that already the first few terms of this series yield a good and often
even excellent agreement with experimental data.

The path integral approach has the advantage that it is formally similar to probabil-
ity theory. Actually, by passing to imaginary time (Wick rotation), one can interpret
the vacuum expectation values of time ordered products of fields as correlation func-
tions of a probability distribution (euclidean QFT). In particular, counter-intuitive
properties of quantum physics as e.g., entanglement do not occur. Moreover, the
momentumspace integrals in the evaluation of Feynmandiagrams have better conver-
gence properties. Finally, due to the Osterwalder-Schrader theorem , a Wick rotation
back to real time is possible under very general conditions.

The disadvantage of the path integral approach is that the noncommutative product
of operators, which is crucial for the structure of quantum physics, appears only
indirectly in terms of different boundary values of analytic functions. In the canonical
approach, the operator product is given from the beginning, but there the definition
of the time ordered product is problematic. First of all, it is not well defined as a
product of operators, since, by the existence of a deterministic time evolution, fields
at a given time can be expressed in terms of fields at an earlier time, and thus the time
ordering prescription is ambiguous. One may instead define time ordered products
T A(t1) · · · A(tn) of an operator valued function of time t �→ A(t) as a symmetric
operator valued function of n time variables such that

T A(t1) · · · A(tn) = A(t1) · · · A(tn) if t1 ≥ · · · ≥ tn . (2.3)

This, however, does not work since the quantum fields are distributions, and the
time ordering prescription would amount to multiplying them with a discontinuous
function.

But there is a way out, as first observed by Stückelberg, further elaborated by
Bogoliubov and collaborators and finally worked out by Epstein and Glaser (causal
perturbation theory). Namely, one may define the time ordered product of n fields as
an operator valued distribution which is already known for non-coinciding points.
Due to the UV divergences of QFT, the extension to coinciding points is ambiguous,
but the crucial observation is that this ambiguity is the same ambiguity which occurs
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in the removal of infinities in approaches where the theory is regularized by the
introduction of a momentum cutoff, and where the theory without cutoff has to be
fixed by renormalization conditions.

Originally, the insertion of a test function g into the interactionLagrangian, instead
of integrating it over all spacetime, was considered to be an intermediate step, and
in the last step one aimed at the limit where g tends to 1 (adiabatic limit). In this
limit one then finds vacuum expectation values of operator products of time ordered
products of interacting fields, and using the Wightman reconstruction theorem , one
obtains interacting fields as operator valued distributions on some “Hilbert space”,
of course only in the sense of formal power series. But as first observed in [32] and
rediscovered in [8] the algebra of observables associated to some bounded region can
be already constructed if one chooses a test function g which is equal to 1 on some
slightly larger region. Actually, the full Haag-Kastler net of the interacting theory can
be obtained in this way. Thus causal perturbation theory provides a direct way for a
construction of the algebra of observables. Hence by replacing the condition that the
local algebras have to be unital C*-algebras by the condition that they are isomorphic
to unital *-algebras of formal power series of operators on a dense invariant subspace
of some Hilbert space, one obtains a huge class of models, in particular the models
used in elementary particle physics.

On this level, structural properties of the local net can be analyzed, but the powerful
structural results on C*- and von Neumann algebras are not available. Nevertheless,
one can derive interesting results, as e.g., the validity of the time-slice axiom [11],
the existence of operator expansions [27] and an algebraic version of the Callan-
Symanzik equation [9].

In order to reach numerical predictions, one needs in the next step a construction
of states. States are here defined as linear maps from the algebra to the formal power
series over C, and the positivity condition on states now means that the expectation
value of A∗A is the absolute square of another power series. The construction of states
can be done via the adiabatic limit as described above; this is theway the vacuum state
is constructed in [18]. As observed by Steinmann [43], this method does not work
for the construction of KMS states. The reason is that the analog of the Gell-Mann
Low formula does not hold at nonzero temperature, due to the different asymptotic
time behavior of free and interacting systems at nonzero temperature. But here a
structural result helps: namely, the time-slice axiom allows to treat only the theory
within a short time interval, and the asymptotic behavior in time does not matter
for the existence of states. What matters is the decay of correlations in spacelike
directions which is exponentially fast for massive theories.

Up to now we considered the so-called on shell formalism , due to the fact that we
constructed the operators on Fock space, thereby imposing the validity of the Klein
Gordon equation for the free field. It turned out, however, to bemore useful to replace
Fock space operators by functionals of classical field configurations which are not
restricted to thosewhich satisfy the field equation.On the space of functionals one can
then introduce several operations: the pointwise (classical) product, the involution
by complex conjugation, the Peierls bracket (as a covariant version of a Poisson
bracket on the space of functionals), the non-commutative, associative �-product in
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the sense of deformation quantization and the time ordered product. It is the latter
which is relevant for inducing the interaction and which requires renormalization.
The other operations can be directly defined. This is trivial for the pointwise product
and for the involution. The Peierls bracket is obtained by considering the linearized
Euler-Lagrange operator, which e.g., for the ϕ4-theory looks like

E ′(ϕ) = �+ m2 + λ

2
ϕ2 (2.4)

where the last term acts as a multiplication operator.We consider only theories where
the linearized Euler-Lagrange operator is normally hyperbolic and hence has unique
retarded and advanced propagators ΔR/A(ϕ). The Peierls bracket is then defined by

{F, G}(ϕ) =
〈
δF

δϕ
(ϕ),Δ(ϕ)

δG

δϕ
(ϕ)

〉

(2.5)

where Δ = ΔR −ΔA and δ
δϕ

is the functional derivative (defined as the directional
derivative). In free theories, E ′ and then also the propagators do not depend on ϕ.
One then can define the �-product (in the sense of formal power series in �) by

(F � G)(ϕ) = e
i�
2

〈
δ
δϕ

,Δ δ
δϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ. (2.6)

The time-ordered product is defined by a similar formula

(F ·T G) = e
�

〈
δ
δϕ

,ΔD δ
δϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ (2.7)

with the Dirac propagator ΔD = 1
2 (Δ

R +ΔA).
Note that there is a crucial difference between the time ordered product and the

other products. Namely, the ideal generated by the field equation with respect to
the pointwise product is also an ideal with respect to the Poisson bracket and the
�-product, but not with respect to the time ordered product. This is actually a nec-
essary condition which allows to use the time ordered product for introducing an
interaction. Let V be the interaction. We then define the interacting observables by

RV (F) = (eV
T )�−1 � (eV

T ·T F). (2.8)

Here eT means the exponential series where powers are computed via the time
ordered product. For an evaluation functional Φx (ϕ) = ϕ(x), the corresponding
interacting field x → RV (Φx ) satisfies the equation

E ′RV (Φx ) = E ′Φx + RV

(
δV

δϕ(x)

)

(2.9)
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which may be interpreted as the field equation with interaction V , when evaluated
on some ϕ which satisfies the free field equation.

The rough description of the formalism has to be made precise in the following
sense: One has to specify the functionals which are allowed, and one has to check
whether this class contains the relevant ones. As it stands we need functionals whose
functional derivatives are test functions in order that all operations are well defined.
But we will see that by changing the products to equivalent ones, which corresponds
to Wick ordering in the Fock space framework one can extend the Peierls bracket
and the �-product to a rather large class of functionals, which contains in particular
the local functionals that appear as terms in the Lagrangian, and is stable under these
operations. The definition of time ordered products is more involved and there are
different possibilities, corresponding to the choice of renormalization conditions.

The plan of the paper is as follows: we will first outline the functional analytic
tools which are needed for the operations. We then define the Peierls bracket and
the �-product on a class of functionals called microcausal. Thereafter we come to
the problem to define the time ordered products. Here we first develop the general
formalism and show that it leads to a construction of local nets. We review some
structural properties of these nets, in particular their behavior under renormalization
group transformations. Finally, we outline a possible construction of states.

2.2 Functional Derivatives, Wave Front Sets, and All That

Our approach to quantum field theory is based, in this respect similar to the path
integral approach, on functionals of classical field configurations. But there, at least in
its euclidean version, themeasure theoretic aspects of the space of field configurations
are of central importance; in our case, due to the frequent use of functional derivatives,
the properties of the space of field configurations as a differentialmanifold are crucial.

For definiteness we concentrate on the case of a scalar field and fix an oriented,
time-oriented globally hyperbolic spacetime M . There we consider the space of real
valued smooth functions as the space of field configurations,

E = C∞(M, R). (2.10)

We model it as a differentiable manifold over the space of compactly supported
smooth functions

D = C∞c (M, R) (2.11)

where charts are defined as maps

ϕ +D→ D, ϕ +−→ϕ �→ −→ϕ ,with ϕ ∈ E . (2.12)

Clearly, E has the structure of an affine manifold. A similar affine structure can be
introduced also for other fields, as e.g., gauge theories or gravity.
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We will model observables as functionals on E and we allow only functionals
which depend on the field configuration inside some compact region. This includes
in particular the polynomial functionals

F(ϕ) =
n∑

k=1

∫
ϕ(x1) · · ·ϕ(xk) fk(x1, . . . , xk) (2.13)

with symmetrical distributional densities fk with compact support. More generally,
we consider functionals, for which all functional derivatives F (n) exist and are con-
tinuous. We recall after [24] (see [37] for a review) that a functional derivative of a
functional is defined as

〈F (1)(ϕ),−→ϕ 〉 := d

dλ
F(ϕ + λ−→ϕ )

∣
∣
λ=0 (2.14)

and a functional is differentiable if the derivative exists for allϕ ∈ E . It is continuously
differentiable if the map E ×D → C, (ϕ,−→ϕ ) �→ 〈F (1)(ϕ),−→ϕ 〉 is continuous. If E
is taken with its natural Fréchet topology, this implies that F (1)(ϕ) is a compactly
supported distributional density. Higher derivatives are obtained by iterating this
definition, i.e.

F (n)(ϕ)(−→ϕ 1, . . . ,
−→ϕ n) := d

dλ
F (n−1)(ϕ + λ−→ϕ n)(

−→ϕ 1, . . . ,
−→ϕ n−1)

∣
∣
λ=0, (2.15)

andwe find that the F (n)(ϕ)’s are symmetric compactly supported distributional den-
sities with support contained in K n , for some compact set K ⊂ M . There remains,
however, the problem that the propagators have singularities, and therefore the con-
tractions with the distributional densities occurring as functional derivatives are not
always well defined. The restriction to functionals whose functional derivatives are
smooth densities, on the other side, would exclude almost all local functionals, i.e.,
functionals of the form

F(ϕ) =
∫

f ( jx (ϕ)), (2.16)

where jx (ϕ) = (x, ϕ(x), ∂ϕ(x), . . .) is the jet prolongation of ϕ and f is a density-
valued function on the jet bundle. For these functionals, the derivatives are supported
on the thin diagonal

Dn = {(x1, . . . , xn) ∈ Mn, x1 = · · · = xn} (2.17)

and thus smooth for n > 1 only when they vanish.
The singularities of distributions can be analyzed using the concept of the wave

front set. On the Minkowski spacetime, this concept arises in the study of the decay
properties of the Fourier transform of the given distribution multiplied by some test
function. A pair of a spacetime point x and a nonzero momentum k is an element of
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the wave front set of a given distribution t if, for any test function f with f (x) �= 0
and some open cone around k, the Fourier transform of f t does not decay fast (i.e.,
faster than any power) inside the cone. The notion of the WF set can be generalized
to an arbitrary smooth manifold M , and it is defined as a subset of T ∗M .

As the first example we will consider the Dirac δ distribution on R. Since
〈 f δ, eik•〉 = f (0), where eik•(x) = eikx , it follows that for any choice of f with
f (x) �= 0 the Fourier transform of f t does not decay fast in any direction and hence
the wave front set of δ is

WF(δ) = {(0, k), k �= 0}. (2.18)

Another important example, also on R, is the distribution f �→ limε↓0
∫ f (x)

x+iε dx .
Note that its Fourier transform is

lim
ε↓0

∫
f (x)

x + iε
eikx dx = −i

∫ ∞

k
f̂ (k′)dk′. (2.19)

and
∫∞

k f̂ (k′)dk′ decays strongly as k →∞, while for k →−∞ we obtain

lim
k→−∞

∫ ∞

k
f̂ (k′)dk′ = 2π f (0). (2.20)

We can now conclude that

WF(lim
ε↓0(x + iε)−1) = {(0, k), k < 0}. (2.21)

For more information on wave front sets see [26] or Chap.4 of [3]. UsingWF sets
we can formulate a sufficient condition for a pointwise product of distributions to be
well defined. Let t and s be distributions on M . The Whitney sum (i.e., pointwise
sum) of their wave front sets is defined by

WF(t)+WF(s) = {(x, k + k′)|(x, k) ∈WF(t), (x, k′) ∈WF(s)} (2.22)

If this set does not intersect the zero section of T ∗M, thenwe can define the pointwise
product ts as

〈ts, f g〉 = 1

(2π)n

∫
t̂ f (k)ŝg(−k)dk, (2.23)

where f, g ∈ D are chosen with sufficiently small support. To see that the integral
above converges, note that if k �= 0, then either t̂ f is fast-decaying in a conical
neighborhood around k or ŝg is fast-decaying in a conical neighborhood around−k,
while the other factor is polynomially bounded.

Beside the criterion for multiplying distributions, WF sets provide also a charac-
terization of the propagation of singularities. Let P be a partial differential operator
and σP its principal symbol. We can interpret σP as a function on the cotangent
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bundle T ∗M , which carries a structure of a symplectic manifold. With the use of
the canonical symplectic form, 1-forms on T ∗M can be canonically identified with
vector fields. Let X P be the vector field (called the Hamiltonian vector field) corre-
sponding to the 1-form dσP . In coordinates it is given by

X P =
n∑

i=1

∂σP

∂k j

∂

∂x j
− ∂σP

∂x j

∂

∂k j
.

Let (x j (t), k j (t)) be a curve that fulfills the system of equations (Hamilton’s equa-
tions):

dx j

dt
= ∂σP

∂k j
,

dk j

dt
= −∂σP

∂x j
.

We call a solution (x j (t), k j (t)) of the above equations an integral curve of X P

and the bicharacteristic flow is defined as the set of all such solutions. Along this
flow dσP

dt = X P (σP ) = 0, so σP is conserved under the bicharacteristic flow. We
are now ready to state the theorem on the propagation of singularities: the wave
front set of a solution u of the equation Pu = f with f smooth is a union of
orbits of the Hamiltonian flow X P on the set of characteristics charP = {(x, k) ∈
T ∗M |σ(P)(x, k) = 0} of P .

For hyperbolic differential operators on globally hyperbolic spacetimes, the char-
acteristics is the light cone, and the principal symbol is the metric on the cotangent
bundle. For such operators the wave front set of solutions is therefore a union of null
geodesics γ together with their cotangent vectors k = g(γ̇ , ·).

2.3 The Peierls Bracket and the �-product

As outlined in the Introduction, we start our construction of a pAQFT model from
the classical theory. To this end, we equip the space of functionals on the configura-
tion space with a Poisson structure provided with the so called Peierls bracket. This
bracket, introduced in [38], is the off-shell extension of the canonical bracket of clas-
sical mechanics, which is defined only on the space ES of solutions to the equations
of motion. To see how this works, we will start in a setting which resembles closely
classical mechanics and then show the relation with the Peierls method on a concrete
example.
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2.3.1 Canonical Formalism and the Approach of Peierls

Let us start with the free scalar field with the field equation

Pϕ = 0, (2.24)

where P = � + m2 is the Klein-Gordon operator . For this equation the retarded
and advanced Green’s functions exist. We also know that for every f ∈ E whose
support is past and future compact, Δ f is a solution to (2.24). Conversely, every
smooth solution of the Klein Gordon equation is of the form Δ f for some f ∈ E
with future and past compact support.

Without loss of generality, the spacetime can be assumed to be of the form M =
R×Σ with Cauchy surfaces {t} ×Σ , t ∈ R. The space of Cauchy data Σ � x �→
(ϕ(t, x), ϕ̇(t, x)) on the surface {t} ×Σ is

C = {(φ,ψ) ∈ E(Σ)× E(Σ)},

where E(Σ)
.= C∞(Σ, R). This space is isomorphic to ES , the space of smooth

solutions to (2.24).
As in classicalmechanics, equations ofmotion can be derived from the least action

principle. Elements of C play the role of generalized coordinates and generalized
velocities, while a smooth trajectory t �→ φ(t), t ∈ R is a function which assigns to
an instant of time t a function φ(t) ∈ E(Σ) such that trajectories φ are in one to one
correspondence with field configurations ϕ : (t, x) → φ(t)(x), i.e., elements of E .

The Lagrangian L associates to every compact region K ⊂ Σ a functional L K

on C, typically given in terms of a Lagrangian density L,

L K (φ,ψ) =
∫

K
L(φ(x),∇φ(x), ψ(x))dσ(x),

and the action is, for every compact K ⊂ Σ and every finite time interval I , a
function on the space of trajectories defined by

SI×K (φ) =
∫

I
L K (φ(t), φ̇(t))dt =

∫

I

(∫

K
L(ϕ(t, x),∇xϕ(t, x), ϕ̇(t, x))dσt (x)

)

dt.

(2.25)

Solutions are configurations for which, for all compact K and I , SI×K is stationary
under variations δφ with support in the interior of I × K . If e.g., L is the Lagrangian
density of the free scalar field, then the least action principle yields (2.24) as the
equation of motion.

Now let F, G be two functions on the space of trajectories which depend only
on the restriction of the trajectory to [t1, t2] × K for some compact K ⊂ Σ and
t1 < t2. Let ES be the space of solutions for an action S, and let rλG : ES → ES+λG

be the map which associates to a solution for S a solution for S+ λG such that both
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solutions coincide for t < t1 (rλG is called the retarded Møller map) . Following the
idea of Peierls, we consider the change of F under the change of the action and set,
for a solution φ ∈ ES ,

DG F(φ) = d

dλ
|λ=0F(rλG(φ)).

Similarly, we introduce the advanced Møller map aλF : ES → ES+λF where the
solutions coincide for t > t2, and set

DF G(φ) = d

dλ
|λ=0G(aλF (φ)).

The Peierls bracket of G and F is now defined by

{G, F}Pei .= DG F − DF G. (2.26)

The advantage of the Peierls bracket is the fact that it is defined covariantly, directly
in the Lagrangian formalism. As it stands, the Peierls bracket of two functionals is
only defined on solutions, and one has to prove that it depends only on the restriction
of the functionals to the space of solutions. In order to show that it satisfies the
Jacobi identity, one has to extend it to a neighborhood of the space of solutions. It is,
however, possible and also convenient to extend it to a Poisson bracket on functions
of arbitrary configurations E (not only of solutions ES). We will now derive another
formula for the Peierls bracket (formula (2.5) from the Introduction), which makes
use of retarded and advanced Green’s functions for normally hyperbolic operators.
Next we will show that, restricted to the solution space, (2.5) is equivalent to the
canonical bracket.

2.3.2 The Generalized Lagrangian Formalism

Before we continue, there is one small modification to the classical Lagrangian
formalism, which we have to perform in order to make the quantization simpler. In
formula (2.25), we have smeared the Lagrangian densityL(x, t)with a characteristic
function of a certain compact region. Such sharp cut-offs would introduce additional
divergences in the quantum theory, which we wish to avoid. Therefore, we replace
the characteristic function by a smooth function that is equal to 1 on a sufficiently
large region. Actually, it is convenient to consider all possible cutoffs and define the
generalized Lagrangian as a map L fromD to the space Floc of local functionals on
E . We require that

L( f + g + h) = L( f + g)− L(g)+ L(g + h),

for f, g, h ∈ D and supp f ∩ supp h = ∅. We also want
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supp (L( f )) ⊆ supp ( f ),

where the support of a smooth functional F ∈ C∞(E, C) is defined as

supp F
.= {x ∈ M |∀ neighborhoods U of x ∃ϕ,ψ ∈ E, supp ψ ⊂ U, (2.27)

such that F(ϕ + ψ) �= F(ϕ)}.

The action is an equivalence class of Lagrangians, where L1 ∼ L2 if

supp (L1 − L2)( f ) ⊂ supp d f. (2.28)

The Euler-Lagrange derivative is a map S′ : E → D′ defined as

〈S′(ϕ), h〉 = 〈L( f )(1)(ϕ), h〉, (2.29)

with f ≡ 1 on supp h. Note that S′ ∈ Γ (T ∗E). The field equation is now the
condition that

S′(ϕ) = 0, (2.30)

which coincides with the condition obtained from the variation of (2.25). We model
observables as multilocal functionals on E (i.e., products of local functionals). The
maps F , G considered in the previous section are examples of such functionals. The
space of multilocal functionals on the space of solutions to (2.30) is given by the
quotient F/F0, where F0 denotes the space of multilocal functionals that vanish
on ES .

The second variational derivative of the action is defined by

〈S′′(ϕ), h1 ⊗ h2〉 .= 〈L(2)( f )(ϕ), h1 ⊗ h2〉,

where f ≡ 1 on supp h1 and supp h2. S′′ defined in such a way is symmetric two
tensor on the affine manifold E (equipped with the smooth structure induced by
τW ) and, for each ϕ, it induces an operator from D to D′. Moreover, since L( f ) is
local, the second derivative has support on the diagonal, so S′′(ϕ) can be evaluated
on smooth functions h1, h2, where only one of them is required to be compactly
supported. This way we obtain an operator (the so called linearized Euler-Lagrange
operator) E ′[S](ϕ) : E → D′.

We want to show now that the original formula of Peierls (2.26) is equivalent
to (2.5), if E ′[S](ϕ) is a normally hyperbolic operator. Let G ∈ Floc be a local
functional. We are interested in the flow (Φλ) on E which deforms solutions of
the original field equation S′(ϕ) = 0 to those of the perturbed equation S′(ϕ) +
λG(1)(ϕ) = 0. Let Φ0(ϕ) = ϕ and

d

dλ

(
S′(Φλ(ϕ))+ G(1)(Φλ(ϕ))

)∣∣
∣
λ=0 = 0. (2.31)
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The vector field ϕ �→ X (ϕ) = d
dλ

Φλ(ϕ)|λ=0 satisfies the equation

〈E ′[S](ϕ), X (ϕ)〉 + G(1)(ϕ) = 0. (2.32)

Let ΔR/A
S (ϕ) be the retarded/advanced Green’s function of the normally hyperbolic

operator E ′[S](ϕ) and let ΔS(ϕ) = ΔR
S (ϕ) − ΔA

S (ϕ) be the causal propagator. We
obtain now two distinguished solutions to the Eq. (2.32),

X R/A(ϕ) = 〈ΔR/A
S (ϕ), G(1)(ϕ)〉. (2.33)

Note that X R(ϕ) = (DGΦ)(ϕ), whereΦ is the evaluation functionalΦx (ϕ)
.= ϕ(x).

The difference X = X R − X A defines a vector field X ∈ Γ (TE) and it follows that

{G, F}Pei(ϕ)
.= DG F(ϕ)− DF G(ϕ) = 〈F (1)(ϕ),Δ

R/A
S (ϕ)G(1)(ϕ)〉.

Now we prove the equivalence between (2.5) and the canonical bracket. We fix a
Cauchy surface {t} ×Σ . Note that, given Cauchy data (φ,ψ) ∈ C, we can write the
unique solution ϕ corresponding to these Cauchy data as

ϕ(x) = β(φ,ψ)(x) ≡
∫

Σ

(

ΔS(x; t, y)ψ(y)− ∂

∂t
ΔS(x; t, y)φ(y)

)

dσt (y).

(2.34)
Canonical momenta are obtained as distributional densities by

〈π(φ,ψ), h〉 .= d

dλ
L K (φ,ψ + λh)|λ=0

We assume that for the Lagrangians of interest π is always smooth. The phase space
is then

P = E(Σ)× Ed(Σ), (2.35)

where Ed(Σ) is the space of smooth densities. The tangent space T(φ,ψ)P of P at
some point (φ,ψ) consists of the compactly supported elements ( f, g) ∈ P . The
phase space has the canonical symplectic form

σ(φ,ψ)(( f1, f2), (g1, g2)) =
∫

Σ

( f1g2 − f2g1).

Note that E(Σ) × Ed(Σ) ⊂ E(Σ) × D′(Σ) ∼= T ∗(E(Σ)), so (P, σ ) is indeed
the analog of the phase space in classical mechanics.

For simplicity we consider an action S induced by a Lagrangian L which depends
on φ̇ only through the kinetic term 1

2 φ̇
2, henceπ(y)

.= φ̇(y)dσt (y). Letα : (φ, π) �→
(φ, φ̇) and β̃

.= β ◦α : P → ES . We can now prove the equivalence of the canonical
and the Peierls bracket. Let F, G ∈ F . Using (2.34) we obtain
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{F ◦ β̃, G ◦ β̃}can =
∫

Σ

(〈
δF

δϕ
◦ β̃,

δβ̃

δφ(x)

〉〈
δG

δϕ
◦ β̃,

δβ̃

δπ(x)

〉

−
〈

δF

δϕ
◦ β̃,

δβ̃

δπ(x)

〉〈
δG

δϕ
◦ β̃,

δβ̃

δφ(x)

〉)

=
〈
Θ, F(1) ◦ β̃ ⊗ G(1) ◦ β̃

〉
,

where Θ is given by

Θ(z′, z) =
∫

Σ

(
Δ̇S(z′; t, x)ΔS(z; t, x)− Δ̇S(z; t, x)ΔS(z′; t, x)

)
dσ(x).

From general properties of the causal propagator ΔS (the generalization of (2.34) to
distributional Cauchy data) it follows that the convolution Θ above is equal to ΔS .
Hence, on the solution space ES ,

{F ◦ β̃, G ◦ β̃}can = {F, G}Pei ◦ β̃.

2.3.3 Example: The Poisson Bracket of the ϕ4 Interaction

In this section, following [21], we give another argument for the equivalence of the
Peierls and the canonical bracket on the example of the ϕ4 interaction. Consider the
generalized Lagrangian

L( f )(ϕ) =
∫

M

(
1

2
∇μϕ∇μϕ − m2

2
ϕ2 − λ

4!ϕ
4
)

f dμ,

where dμ is the invariant measure on M , induced by the metric. Then S′(ϕ) =
− ((�+ m2)ϕ + λ

3!ϕ
3
)
and E ′[S](ϕ) is the linear operator

−
(

�+ m2 + λ

2
ϕ2
)

(2.36)

(the last term is to be understood as a multiplication operator). The Peierls bracket is

{Φx , Φy}Pei = ΔS(Φ)(x, y), (2.37)

where Φx , Φy are evaluation functionals on E and x �→ ΔS(ϕ)(x, y) is a solution
(at ϕ) of the linearized equation of motion with the initial conditions

ΔS(ϕ)(y0, x; y0, y) = 0,
∂

∂x0
ΔS(ϕ)(y0, x; y) = δ(x, y). (2.38)

This coincides with the Poisson bracket in the canonical formalism. Namely, let
ϕ ∈ ES , then
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0 =
{
(�+ m2)Φx + λ

3!Φ
3
x , Φy

}

can
= (�+ m2 + λ

2
Φ2

x )
{
Φx , Φy

}

can
. (2.39)

In the first step we used the fact that ϕ is a solution of the equations of motion and
in the second step we used the fact that the canonical bracket is a derivation in both
arguments. We can see from the equation above that the canonical Poisson bracket
satisfies the linearized field equation with the same initial conditions as the Peierls
bracket. The uniqueness of solutions to these linearized equations implies that in fact
{Φx , Φy}can = {Φx , Φy}Pei, on ES . This clearly extends to general functionals since
{F, G}Pei =

〈{Φx , Φy}Pei, F (1) ⊗ G(1)
〉
, and similarly for {., .}can.

2.3.4 Geometrical Structures in Classical Theory

The Peierls bracket, from now on denoted by {., .}S , introduces a symplectic structure
on the space F/F0 of on-shell multilocal functionals on ES . We can find a nice
geometrical interpretation for this space using some basic notions of symplectic
geometry. Let us assume that S is quadratic, so the equations of motion are of the
form S′(ϕ) = Pϕ = 0 for some normally hyperbolic differential operator P . The
space of solutions ES is a vector space and hence an infinite dimensional manifold1

with a tangent space TES = ES × ES and cotangent space T ∗ES = ES × E ′S . If F, G
are multilocal functionals on ES , then their first functional derivatives are smooth, so

F (1)(ϕ), G(1)(ϕ) ∈ E ′S ∩ (D/{u ∈ D|〈u, ϕ〉 = 0,∀ϕ ∈ ES})

for allϕ ∈ ES , i.e.ϕ ∈ kerP . Since P is a normally hyperbolic operator, one can show
(see for example [21] for the proof in a more general setting) that {u ∈ D|〈u, ϕ〉 =
0,∀ϕ ∈ ES} ∼= PD, so functional derivatives of multilocal functionals are one forms
in Γ (ES ×D/PD) ⊂ Γ (T ∗ES).

The causal propagator ΔS induces a Poisson structure on F , which is also well
defined on the quotient F/F0, as F0 is a Poisson ideal with respect to this structure.
We can also useΔS to map one-forms inΓ (ES×D/PD) ⊂ Γ (T ∗ES) to one-vectors
in Γ (ES × ES,sc) ⊂ Γ (TES), where “sc” indicates spacelike-compact support. To
see how it works, note that ΔS induces an operator D → E and kerΔS = PD, so
ΔS is well defined on equivalence classes in D/PD. To show that ΔS is invertible
on this space, it remains to show that it is surjective. We recall here the standard
argument, which can also be found in [21]. Let f be a solution with a spacelike-
compact support,χ ∈ E , andΣ1,Σ2 beCauchy surfaces such thatΣ1∩ J+(Σ2) = ∅.

1There is another natural way to introduce a smooth manifold structure on ES . We define the atlas
where charts are given by maps ϕ+D→ ES,sc, ϕ+−→ϕ �→ ΔS

−→ϕ , with ϕ ∈ ES , where ES,sc is the
space of solutions with compactly supported Cauchy data. We have ΔS : D→ ES,sc and we equip
ES,sc with the final topology with respect to all curves of the form λ �→ ϕ + ΔS(−→ϕ (λ)), where
λ �→ −→ϕ (λ) is a smooth curve in D. This gives ES the structure of an affine manifold in the sense
of convenient calculus [35].
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Assume χ(x) = 0 for x ∈ J−(Σ1) and χ(x) = 1 for x ∈ J+(Σ2). Then Pχ f = 0
outside of the time slice bounded by Σ1 and Σ2 (χ = const. there) which implies
that Pχ f has compact support. Hence,

ΔS Pχ f = ΔR
S Pχ f +ΔA

S P(1− χ) f = f.

We can now assign to a form F (1), the vector 〈ΔS F (1), .〉. On ES,sc we have the
natural symplectic structure σ1:

σ1( f, g) =
∫

Σ

( f ∧ ∗dg − ∗d f ∧ g) =
∫

Σ

( f (∂ng)− (∂n f )g)dvolΣ,

where ∂n is the normal derivative on Σ (∂n f = nμ∂μ f , nμξμ = 0 for ξ ∈ T Σ ,
nμnμ = 1). Obviously, σ1 extends to a constant 2-form on ES . The relation between
the 2-form σ1 and the “bi-vector field”2 ΔS is given by (see for example [46] for a
proof based on the ideas of [12])

σ1(ΔS F (1), ξ) = 〈F (1), ξ 〉,

where ξ ∈ Γ (ES × ES,sc). In this sense we can think of ΔS as the “inverse” of the
symplectic structure σ1. Setting ξ = ΔSG(1) for G ∈ F , we obtain

σ1(ΔS F (1), ΔSG(1)) = 〈F (1), ΔSG(1)〉.

If S is not quadratic, the situation is more complicated, since S′ induces non-
linear equations of motion. It turns out that for many classes of physically interesting
systems solutions of S′(ϕ) = 0 develop singularities after a finite time, despite
starting from smooth Cauchy data. Therefore the space of globally smooth solutions
ES might be very small and it does not necessarily capture all the interesting features
of the theory.Moreover, in general it is not clear if ES can be equippedwith amanifold
structure in the sense of infinite dimensional differential geometry (see for example
[2] for the results on the space of solutions of Einstein’s equations). A more general
structure like a stratified space might be necessary.

For non-linear equations of motion it is therefore more convenient to replace the
space of functionals on the space of solutions with the quotient FS := F/{〈S′, X〉,
X ∈ V}, where V ⊂ Γ (TE) is the space of vector fields that are derivations ofF and
the duality denoted by 〈., .〉 is the contraction of a 1-form S′ ∈ Γ (T ∗E(M)) with a
vector field X . We say that we take the quotient of F by the ideal generated by the
equations of motion. If the equations of motion are linear and normally hyperbolic,
this ideal coincides with F0, so FS is exactly the space of multilocal functionals on
ES . In general, our point of view is more in line with the quantum theory and it avoids

2Since ΔS is a bi-distribution rather than a smooth function, the map ϕ �→ ΔS doesn’t induce an
actual bi-vector field on E , but belongs to a suitable completion of Γ (Λ2TE).
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complications related to characterization of the geometrical structure of ES . It is also
close in spirit to the way one studies varieties in algebraic geometry.

2.3.5 Deformation Quantization

Deformation quantization is a method to construct quantum theories from the clas-
sical ones by deforming the commutative product on the space F of functionals to a
non-commutative product � on F[[�]] (the space of formal power series in �.

F � G =
∞∑

n=0
�

n Bn(F, G), (2.40)

and we require that

B0(F, G) = F · G,

B1(F, G)− B1(G, F) = i�{F, G},

where (F · G)(ϕ) = F(ϕ)G(ϕ) is the pointwise product of functionals, {., .} is the
Peierls bracket and the second condition is a realization of the idea that in the quan-
tum theory one “replaces canonical brackets with commutators”. The existence of
higher order terms is necessary to avoid the Groenewald-van Hove no-go theorem.
This result, established first for finite dimensional phase spaces, states that a Dirac
type quantization prescription is not possible in the strict sense [23, 31]. More con-
cretely (see [45]), consider the Lie algebra h spanned by the canonical coordinate
and momenta functions q1, . . . , q N , p1, . . . , pN and 1, equipped with the canoni-
cal Poisson bracket {., .}can. This is a Lie subalgebra of g .= (Pol(T ∗RN ), {., .}can)
(polynomials on the phase space). The Groenewald-van Hove Theorem states that
there exists no faithful irreducible representation of h by operators on a dense domain
of some Hilbert space which can be extended to a representation of g, so there is no
quantization map Q from g to the space of operators on some Hilbert spaceH, such
that

[Q( f ), Q(g)] = i�Q({ f, g}).

Deformation quantization [4, 5] provides a way out since it weakens the above
condition to

[Q( f ), Q(g)] = Q([ f, g]�) = i�Q({ f, g})+O(�2).

In field theory, as we have seen in the previous section, the space of functions on
the N -dimensional phase space is replaced by F , the space of multilocal functionals
on E , which is now infinite dimensional. The Poisson structure is provided by the
Peierls bracket, definedwith the use of the causal propagatorΔS . In the simplest case,
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when S is quadratic, one can construct the �-product using a Moyal-type formula.
To avoid the functional analytic problems, for the moment we consider only regular
functionals Freg, i.e., those for which F (n)(ϕ) is a smooth compactly supported
section for all n ∈ N, ϕ ∈ E . On Freg[[�]] we can now define

(F � G)(ϕ)
.=
∞∑

n=0

�
n

n! 〈F
(n)(ϕ),

( i
2ΔS
)⊗n

G(n)(ϕ)〉, (2.41)

which can be formally written as e
i�
2

〈
ΔS , δ2

δϕδϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ .
Let us consider the example of a free scalar field and regular functionals of the

form

F f (ϕ) =
∫

M
f (x)ϕ(x)dμ(x) ≡

∫
f ϕdμ, where f ∈ D.

We can now define W( f )
.= exp(i F f ) and check that

〈(W( f ))(1)(ϕ), h〉 = d

dλ
(W( f )(ϕ + λh)) |λ=0 = d

dλ
ei
∫

f (ϕ+λh)dμ
∣
∣
λ=0

=
(

i
∫

f h dμg

)

W( f )(ϕ).

and thus

〈(W( f ))(n)(ϕ), h⊗n〉 =
(

i
∫

f h dμg

)n

W( f )(ϕ).

Inserting this into the �-product formula, we find,

W( f ) � W( f̃ ) =
∞∑

n=0

(
i�

2

)n (−1)n

n!
(∫

ΔS(x, y) f̃ (y) f (x)dμg(x)dμg(y)

)n
W( f + f̃ )

= e− i�
2 ΔS( f, f̃ )W( f + f̃ ), (2.42)

which reproduces the Weyl relations.
Having the interacting theory in mind, we will need to extend the star product

to functionals more singular than the elements of Freg, including, in particular, the
non-linear local functionals. To understand possible obstructions to this extension
we have to analyze the singularity structure ofΔS . Using the theorem of propagation
of singularities (see Sect. 2.2), we find that [39]

WF (ΔS) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k′)},



48 K. Fredenhagen and K. Rejzner

where Ṫ denotes the tangent bundle minus the zero section and (x, k) ∼ (x ′, k′)
means that there exists a lighlike geodesic connecting x and x ′, to which k is co-
tangent and k′ is a parallel transport of k. We observe that the WF set of ΔS is
composed of two parts: one with k ∈ (V+)x and another with k ∈ (V−)x , where
V± is (the dual of) the closed future/past lightcone This observation allows one
to decompose ΔS into two distributions with WF sets corresponding to these two
components. Such a decomposition is a local version of the decomposition according
to positive and negative energies [39]. definition of this space, let us give some
motivation first. Therefore we can split ΔS into

i
2ΔS = Δ+S − H,

where the WF set of Δ+S is

WF (Δ+S ) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k′), k ∈ (V+)x }, (2.43)

and we also require that ΔS = 2Im(Δ+S ) and that Δ+S is a distributional bisolution
to the field equation and is of positive type (i.e. 〈Δ+S , f̄ ⊗ f 〉 ≥ 0). On Minkowski
space one could choose Δ+S as the Wightman 2-point-function. On general globally
hyperbolic spacetimes such a decomposition always exists but is not unique. If H
and H ′ correspond to two such choices of decomposition, then H − H ′ is a smooth
symmetric bisolution to the field equations.

We can now replace i
2ΔS with Δ+S in (2.41) and the new product, denoted by �H

can be extended fromFreg toFμc defined as the space of functionals with functional
derivatives satisfying

WF (F (n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E, (2.44)

where Ξn is an open cone defined as

Ξn
.= T ∗Mn \ {(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n
+ ∪ V

n
−)(x1,...,xn)},

(2.45)

where (V±)x is the closed future/past lightcone understood as a conic subset of T ∗x M.
On Freg the two star products � and �H are isomorphic structures and the inter-

twining map is given by

αH
.= e

�

2 〈H, δ2

δϕ2
〉
, (2.46)

so that
F �H G = αH

(
(α−1H F) � (α−1H G)

)
, F, G ∈ Freg. (2.47)

In the language of formal deformation quantization one says that products � and
�H are related by a gauge transformation, so they provide the same deformation
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quantization. In general a gauge transformation between star products is given by
F �→ F +∑

�≥1 �
n Dn( f ), where each Dn is a differential operator. In our case,

Dn = 1
n!
〈
1
2 (H − H ′), δ2

δϕ2

〉n
.

Physically, the transition between � and �H corresponds to normal ordering, so
introducing the �H -product is just an algebraic version of Wick’s theorem. As stated
before, the codomain of αH : Freg → Freg can be “completed” (with the use of
the Hörmander topology [15, 26]) to the larger space Fμc and we can also build
a corresponding (sequential) completion α−1H (Fμc) of the domain. This amounts
to extending Freg with all elements of the form limn→∞ α−1H (Fn), where (Fn) is a
convergent sequence in Fμc. The quantum algebra A of the free theory is defined
as the space of families FH , labeled by possible choices of H , where FH ∈ AH

.=
(Fμc[[�]], �H ) fulfill the relations

FH ′ = αH ′−H FH ,

and the product is
(F � G)H = FH �H G H .

We can summarize the relations between the algebraic structures we have introduced
so far by means of the following diagram:

(Freg, �)
αH−−−−→ (Freg, �H )

dense

⏐
⏐
�∩ dense

⏐
⏐
�∩

A
α−1H←−−−− (Fμc, �H )

A family of coherent states on A is obtained by the prescription

ωH,ϕ(F)
.= αH (F)(ϕ) = FH (ϕ),

where ϕ ∈ ES . This makes sense since FH is a functional in Fμc, so evaluation at a
field configuration ϕ is well defined.

As an example we can consider the free scalar field with the generalized
Lagrangian

L0( f )(ϕ) = 1

2

∫

M

(∂μϕ∂μϕ − m2ϕ2) f dμ. (2.48)

Let us define Ã as the subalgebra of A generated by the Weyl generators W( f )
.=

exp(i F f ). Since

〈

H,
δ2

δϕ2

〉 (

i
∫

f ϕdμ

)n

= − n!
(n − 2)!H( f, f )

(

i
∫

f ϕdμ

)n−2
,
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we conclude that 〈

H,
δ2

δϕ2

〉

(W( f )) = −H( f, f )W( f )

so
αH (W( f )) = e−

�

2 H( f, f )W( f ).

We can now consider a state obtained be evaluation at ϕ = 0. We see that

ωH,0 (W( f )) = e−
�

2 H( f, f ),

so H plays the role of the covariance of the state ωH,0.
Going on-shell corresponds to taking the quotient of Ã by the ideal Ã0 generated

by the elements
W((�+ m2) f )− 1, f ∈ D. (2.49)

Note that S′0(ϕ) = (� + m2)ϕ, and using partial integration, we can conclude that
F(�+m2) f (ϕ) = ∫ S′0(ϕ) f dμ = 〈S′0, f 〉, so taking the quotient by Ã0 implements

the free field dynamics.We denote Ã/Ã0 by ÃS0 , and we see thatωH,0 is well defined
on ÃS0 , as H is a bisolution for the operator P = �+ m2.

2.3.6 Interpretation in Terms of Kähler Geometry

There is an elegant geometrical interpretation of the structures introduced in the
previous section. Analogous to Kähler geometry, H plays the role of the Riemannian
metric on Y ≡ D/PD and the 2-point function Δ+S = i

2ΔS + H is a Hermitian
2-form on Y .

The pair (H,ΔS) induces an anti-involution J on Y (i.e. J 2 = −1) and if Δ+S
is a 2-point function of a quasi-free pure Hadamard state, the triple (H,ΔS, J ) is a
Kähler structure on Y . To see how this come about, let us recall some well known
results (see for example [1, 13] for proofs). Let YC denote the complexification of
Y . If ΔC

S and HC are canonical extensions of ΔS and H to YC, then the following
are equivalent:

1. HC + i
2Δ

C
S ≥ 0 on YC,

2. |〈 f1,ΔS f2〉| ≤ 2〈 f1, H f1〉1/2〈 f2, H f2〉1/2, f1, f2 ∈ Y .

We can complete Y with the product (., .)H
.= 〈., H.〉 to a real Hilbert space H and

the inequality 2 implies that ΔS is a bilinear form on H with norm less or equal 2.
Therefore, there exists an operator A ∈ B(H) with ||A|| ≤ 1 such that

〈 f1,ΔS f2〉 = 2( f1, A f2)H
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If A has a trivial kernel, then we can just construct the polar decomposition A =
−J |A| and J satisfies J 2 = −1, so we can use it to equip Y with an almost-complex
structure. More generally, following the proof of theorem 17.12 of [13], we can
define Ysg

.= ker A and Yreg
.= Y⊥sg. We set Areg

.= A �Yreg and construct the
polar decomposition Areg = −Jreg|Areg|. If the dimension of Ysg is even or infinite
(which is the case in the situation we are interested in), then there exist an orthogonal
anti-involution Jsg on Ysg and we set J = Jreg ⊕ Jsg.

Note that J induces also an almost complex structure on ES,sc if we set jΔS f
.=

ΔS J f , where f ∈ Y . We define the holomorphic and anti-holomorphic subspaces
of YC as

Z .= {( f − i J f )| f ∈ Y},
Z .= {( f + i J f )| f ∈ Y},

respectively. Projections onto these subspaces are given by 1Z = 1
2 (1 − i JC) and

1Z = 1
2 (1+ i JC)

The CCR algebra corresponding to (Y,ΔS) is just the algebra ÃS0 introduced at
the end of the previous section. Note that ωH,0 is a state on ÃS with covariance H .
This state is pure if and only if the triple (H,ΔS, J ) is a Kähler structure on Y , i.e.
all three structures are compatible and ΔS ◦ J = 2H . We can now decompose Δ+S
in the holomorphic basis. A straightforward computation shows that

〈1Z f1,Δ
+
S (1Z f2)〉 = 〈 f1,Δ

+
S f2〉,

where f1, f2 ∈ YC and remaining components vanish, so in the holomorphic basis
Δ+S is represented by (

0 0
Δ+S 0

)

,

so it acts only on the holomorphic part of the first argument and the anti-holomorphic
part of the second argument.

2.4 Time Ordered Products, and the Perturbative
Construction of Local Nets

In the previous section we were concerned only with the quantization of free theories
(quadratic actions). Given an arbitrary action S we first split S = S0 + SI , where S0
is quadratic. We already know how to quantize the classical model defined by S0, so
now is the time to introduce the interaction. We will do it in this section, following
the ideas of [6, 7, 18, 25, 41, 44], but before we start, we give a heuristic argument
justifying our construction. The idea is to use the analogy with the interaction picture
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of quantum mechanics. Let H0 be the Hamiltonian operator of the free theory and
let Ht,I = −

∫
K :LI (0, x): dσt be the interaction Hamiltonian, where : LI : is the

normal-orderedLagrangian density, constructed from the classical quantityLI and K
is some compact subset of Σ (as explained in Sect. 2.3.1). The rigorous “smoothed-
out” version of the Hamiltonian quantization will be given in Sect. 2.6.

We would like to use the Dyson formula and define the time evolution operator
as a time ordered exponential, i.e.

U (t, s) = eit H0e−i(t−s)(H0+HI )e−is H0

= 1+
∞∑

n=1

in

n!
∫

([s,t]×R3)n
T (:LI (x1): . . . :LI (xn):)d4n x,

where
x �→ LI (x) = ei H0x0 :LI (0, x): e−i H0x0

is an operator-valued function and T denotes time-ordering. Heuristically, one could
use the unitary map defined above to obtain interacting fields as

ϕI (x) = U (x0, s)−1ϕ(x)U (x0, s) = U (t, s)−1U (t, x0)ϕ(x)U (x0, s), (2.50)

where s < x0 < t .
There are, however, serious problems with this heuristic formula. Firstly, typical

Lagrangian densities, e.g. :LI (x): = :ϕ(x)4:, can not be restricted to Σ0 as operator
valued distributions. This is the source of the so called UV problem. Moreover, as
mentioned before, having the sharp cutoff function in the Lagrangian and Hamil-
tonian (like in (2.25)) leads to additional divergences (Stückelberg divergences).
Finally there is the adiabatic limit problem related to the fact that the integral over x
does not exist. Last but not least, the overall sum might not converge.

2.4.1 Causal Perturbation Theory

Some of these problems mentioned in the introduction can be easily dealt with by a
slight modification of the above ansatz. For example, we avoid the Stückelberg diver-
gences by replacing the sharp cutoffs with smooth test functions. The UV problem
is solved by using causal perturbation theory in the sense of Epstein and Glaser [18].
In this method one switches the interaction on only in a compact region of spacetime
and then takes the adiabatic limit (understood as a certain inductive limit) on the
level of interacting observable algebras. These modifications of the Dyson formula
ansatz lead to the definition of the formal S-matrix:
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S(g) = 1+
∞∑

n=1

in

n!
∫

g(x1) · · · g(xn)T (:LI (x1): . . . :LI (xn):),

where g is a test density. In order to make this formula well defined, we need to make
sense of the time-ordered products of :LI (xi ):. This will be done by Epstein-Glaser
renormalization. Finally, the formula (2.50) has to be reinterpreted as a definition of
a distribution, rather than a function. Hence, for a test density f we obtain

∫
f (x)ϕI (x) = S(g)−1

∞∑

n=0

in

n!
∫

f (x)g(x1) · · · g(xn)T ϕ(x)LI (x1) · · ·LI (xn)

= d

dλ
|λ=0S(g)−1S(g, λ f ),

where S(g, f ) is the formal S-matrix with the Lagrangian density gLI + f ϕ. This
is the so called Bogoliubov’s formula [7].

We are now left with the problem of defining the time-ordered products on Wick-
ordered quantities :LI (x):. We have already mentioned in Sect. 2.3.5 that the normal
ordering corresponds to passing between the star product �H onAH and � onA. Note
that elements of AH are functionals on ES , so we can identify classical quantities
in Floc with quantum ones by means of T H

1 : Floc → AH defined by T H
1 = id.

Composing with α−1H we obtain a map T1 : F → A, T1 .= α−1H ◦ T H
1 which maps

“classical” to “quantum”. This map is interpreted as the normal ordering and we can
now make an identification

:F : .= T1F, F ∈ Floc .

In the context of local covariance—see Chap.4, this choice of normal ordering is
not the most optimal one. This is because a family of Hadamard states cannot be
chosen in a covariant way (i.e. compatible with embedding of globally hyperbolic
spectimes), but a family of Hadamard parametrices can. The latter are bi-solutions
of the linearized equations of motion only up to smooth terms. It is, therefore, more
appropriate to define the normal ordering by a prescription where only the singular
part of H is subtracted from the correlation function of two fields, as opposed to the
prescription where one subtracts the full H . Concretely, we set T H

1 = αw so T1 =
α−1H−w, where w is the smooth part of the Hadamard 2-point function (see [21, 34] for
a recent review). More precisely, this has to be understood as limN→∞ α−1H−wN

F for
F ∈ Floc and this limit makes sense, because the series converges after finitely many
steps. The function wN appearing in this prescription is 2N + 1 times continuously
differentiable and it appears in the 2-point function as Δ+S = W sing

N + wN . The

singular part W sing
N is of the form “ u

σ
+ v ln σ”, with σ(x, y) denoting the square

of the length of the geodesic connecting x and y and with geometrical determined
smooth functions u and v. For a more precise definition of what is the Hadamard
form for of a 2-point function, see for example [34] or a recent review [21].

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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More concretely, for a density of the form

Φ A,n( f )(ϕ)
.=
∫

f (x)
dn

dλn
A(x)(ϕ)

∣
∣
λ=0d4x,

where A(x)(ϕ) = eλp(∇)ϕ(x) (here p is a polynomial in covariant derivatives) we
define

:Φ A,n :( f ) ≡ T1(Φ A,n( f ))
.= α−1H

∫
f

dn

dλn
AH
∣
∣
λ=0d4x,

where
AH (x) = e

1
2 p(∇)⊗p(∇)wN (x,x) A(x),

Unfortunately, the modifications which we have done so far do not render the
time-ordered products well defined. Heuristically, we would like the time-ordered
product of two functionals to be (2.7), i.e.

(F ·T G) = e
�

〈
δ
δϕ

,ΔD
S0

δ
δϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ,

where ΔD
S0

.= 1
2 (Δ

R
S0
+ΔA

S0
) is the Dirac propagator. This makes sense if both F and

G are regular functionals (i.e. elements of Freg). This indeed provides the correct
notion of time-ordering, since

F ·T G =
{

F � G if suppG ≺ supp F,

G � F if supp F ≺ suppG,
(2.51)

where the relation “≺” means “not later than” i.e. there exists a Cauchy surface
which separates suppG and supp F and in the first case supp F is in the future of
this surface and in the second case it’s in the past.

The time ordered product defined by (2.7) is associative, commutative and iso-
morphic to the point-wise product by means of

F ·T G = T
(
T −1F · T −1G

)
, (2.52)

where

T = e
i�〈ΔD

S0
, δ2

δϕ2
〉

(2.53)

or more precisely

(T F)(ϕ)
.=
∞∑

n=0

�
n

n!
〈
(iΔD

S0)
⊗n, F (2n)(ϕ)

〉
.
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The linear operatorT defined above is sometimes called the “time-ordering operator”
and it is interpreted as a map which goes from the “classical” to the “quantum”, i.e.

(Freg, ·)
classical

T−→ (Areg, �, ·T )

quantum
,

where Areg ⊂ A is the range of T . Note that on the quantum side we have two
products. Using the time-ordered product we can express the formal S-matrix S :
Freg[[�]] → Freg[[�]] as the time ordered exponential:

S(V )
.= eiV/�

T = T
(
eT

−1iV/�
)
. (2.54)

According to our interpretation of T ,S is a map on the “quantum” algebraA to itself.
Interacting fields are obtained by means of the Bogoliubov formula, which reads

RV (F) = −i�
d

dλ

(
S(V )�−1 � S(V + λF)

) ∣∣
λ=0

=
(

eiV/�
T

)�−1
�
(

eiV/�
T ·T F

)
. (2.55)

We interpret RV (F) as the interacting quantity corresponding to F . We can also
define the interacting star product as

F �V G
.= R−1V (RV F � RV G) .

The interacting theory is given in terms of the algebra (Freg, �V ) and RV acts as
the intertwining map between the free quantum theory and the interacting quantum
theory, i.e.

(Freg, ·)
classical

T−→ (Areg, �, ·T )

free
quantum

R−1V−−→ (Areg, �V )

interacting
quantum

. (2.56)

All these formulas make sense if we restrict ourselves to regular functionals. This
is, however, not satisfactory for our purposes, since typical interactions are local and
non-linear, hence not regular. In the first attempt we could try to pass to a different
star product, which amounts to replacing ΔS0 by Δ+S0 and ΔD

S0
by the Feynman

propagator ΔF
S0
= iΔD

S0
+ H , so our diagram gets modified to

(Freg, ·)
classical

T H−−→ (Areg, �H , ·T H )
α−1H−−→ (Areg, �, ·T )

free
quantum

R−1V−−→ (Areg, �V )

interacting
quantum

,

where T H .= e
i�〈ΔF

S0
, δ2

δψ2 〉, so T = α−1H ◦ T H . This modification of the formalism,
however, doesn’t solve the problem yet. To extend our formalism to arbitrary local
functionals, we need to perform the renormalization. The difficulty which we have
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to face is the fact that the WF set of ΔF
S0

at 0 is like the WF set of the Dirac delta

and therefore the tensor powers ofΔF
S0
cannot be contracted with derivatives of local

functionals.
However, there is a way to extend T H to local functionals. First we extent T H to

Floc by setting T H = T H
1 . We discuss here only the Minkowski spacetime situation,

so we can set T H
1 = id. The subspace T H (Floc) ⊂ A will be denoted by AH

loc. Let
us define the n-th order time-ordered product as

T H
n (F1, . . . , Fn)

.= F1·TH · · · ·TH Fn,

whenever it exists. It is well defined for F1, . . . , Fn ∈ Floc with pairwise disjoint
supports and we will denote this domain of definition by (Floc)

⊗n
pds. Moreover

T H
n (F1, . . . , Fn) = T H

k (F1, . . . , Fk)�HT H
n−k(Fk+1, . . . , Fn), (T1)

if the supports supp Fi , i = 1, . . . , k of the first k entries do not intersect the past
of the supports supp Fj , j = k + 1, . . . , n of the last n − k entries. This property is
called the causal factorisation property . We will take it as an axiom that we want
to impose while extending time-ordered products to arbitrary local arguments. The
other axioms include

(T 2) Starting element: T H
0 = 1, T H

1 = id,
(T 3) Symmetry: EachT H

n is symmetric (graded symmetric if Fermions are present).
(T 4) ϕ-Locality : T H

n (F1, . . . , Fn), as a functional on E , depends on ϕ only via the
functional derivatives of F1, . . . , Fn .

In the seminal paper [18], Epstein and Glaser have shown that such a family of maps
exists and non-uniqueness in defining T H

n ’s is fully absorbed into adding multilinear
maps Zn : A⊗n

loc → Aloc, i.e.

T̃ H
n(F1, . . . , Fn) = T H

n (F1, . . . , Fn)+ Zn(F1, . . . , Fn),

where {T H
n }n∈N and {T̃ H

n}n∈N are two choice of time-ordered products that coincide
up to order n − 1. The renormalized S-matrix is now defined by

S(V ) =
∞∑

n=0
1
n!Tn(V, . . . , V ) =

∞∑

n=0
1
n!α

−1
H ◦ T H

n (αH V, . . . , αHV ) .

The causal factorisation property for time ordered products implies that the S-matrix
satisfies Bogoliubov’s factorization relation

S(V1 + V2 + V3) = S(V1 + V2)S(V2)
−1S(V2 + V3) (2.57)

if the support of V1 does not intersect the past of the support of V3.
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We can also define the renormalizedmapT : F → A byT .=⊕n α−1H ◦T H
n ◦m−1,

where m−1 : F → S•F (0)
loc is the inverse of the multiplication, as defined in [20]

and F (0)
loc is the space of local functionals that vanish at 0. The renormalized time

ordered product ·T is now a binary operation defined on the domain DT
.= T (F).

Analogously to the diagram (2.56), we obtain now

(F , ·)
classical

T−→ (A, �, ·T )
free

quantum

R−1V−−→ (A, �V )
interacting
quantum

, (2.58)

with the caveat that ·T is well defined on DT ⊂ A.
We will now discuss in detail the ambiguity arising in defining Tn’s. In physics

this is known as the renormalization ambiguity. To understand it better and to relate it
with the notion of the renormalization group, we first define a map Z : Aloc[[�]] →
Aloc[[�]] by summing up all the Zn’s relating two chosen prescriptions to define the
time-ordered products. For any two choices of Tn’s the corresponding map Z has
the following properties:

(Z 1) Z(0) = 0,
(Z 2) Z(1)(0) = id,
(Z 3) Z = id+O(�),
(Z 4) Z(F + G + H) = Z(F + G)+ Z(G + H)− Z(G), if supp F ∩ supp G,
(Z 5) δZ

δϕ
= 0.

The group of formal diffeomorphisms of Aloc[[�]] that fulfill (Z 1)–(Z 5) is called
the Stückelberg-Petermann renormalization group R. There is a relation between the
formal S-matrices and elements of R provided by the main theorem of renormal-
ization [15, 16]. It states that for two S-matrices S and Ŝ, built from time ordered
products satisfying the axioms (T 1)–(T 3), there exists Z ∈ R such that

Ŝ = S ◦ Z, (2.59)

where Z ∈ R and conversely, if S is an S-matrix satisfying the axioms (T 1)–(T 4)
and Z ∈ R then also Ŝ fulfills the axioms.

2.4.2 Methods for Explicit Construction of Time-Ordered
Products

The proof of existence of time-ordered products with properties (T 1)–(T 4) given
in [18] is rather abstract and relies on an inductive argument. For practical purposes
an existence result is not sufficient and one would like to obtain some explicit for-
mulas for Tn’s. In this section we will review results which show that the problem
of constructing time-ordered products reduces to extending certain distributions.



58 K. Fredenhagen and K. Rejzner

Subsequently, we will give some concrete computational prescriptions for construct-
ing such extensions.

We start with an example. Let F = 1
2

∫
ϕ2 f dμ, G = 1

2

∫
ϕ2gdμ, f, g ∈ D. If

supp g ∩ supp f = ∅, then the time ordered product ·T of F and G is given by

T2(F, G)(ϕ)

= (F ·T G)(ϕ) = F(ϕ)G(ϕ)+ i�
∫

ϕ(x)ϕ(y) f (x)g(y)ΔF
S0(x, y)dμ(x)dμ(y)

− �
2

2

∫
ΔF

S0(x, y)2 f (x)g(y)dμ(x)dμ(y).

In the least term of the expression abovewe have a pointwise product of a distribution
with itself. This could potentially cause problems. If x �= y, then if (x, k) and (y,−k′)
belong to the wave front set , then k,−k′ are cotangent to a null geodesics connecting
x and y. Moreover, k is future directed if x is in the future of y and past directed
otherwise, so the sum of two such covectors doesn’t vanish. Hence, the condition
on the multiplicability of distributions presented in Sect. 2.2 implies that (ΔF

S0
)2 as

a distribution is well defined on the complement of the diagonal {(x, x)|x ∈ M}.
Let us now consider what happens on the diagonal. There, the only restriction is
k = −k′, hence the sum of WF (ΔF

S0
) with itself contains the zero section of the

cotangent bundle at the diagonal. The problem of defining T H
2 (F, G) reduces now

to the problem of extension of ΔF
S0

to a distribution defined everywhere.
This generalizes, and the construction of T H

n ’s reduces to extending numerical
distributions defined everywhere outside certain subdiagonals in Mn . The construc-
tion proceeds recursively and, having constructed the time-ordered products of order
k < n, at order n one is left with the problem of extending a distribution defined
everywhere outside the thin diagonal of Mn . On Minkowski spacetime, exploiting
the translational symmetry of M, this reduces to extending a numerical distribution
defined everywhere outside 0. One way of constructing explicitly such distributional
extensions relies on the so called splitting method (see for example [40]). Here we
will take a different approach, based on the notion of Steinmann’s scaling degree
[41]. Here is the definition:

Definition 2.4.1 Let U ⊂ R
n be a scale invariant open subset (i.e. λU = U for

λ > 0), and let t ∈ D′(U ) be a distribution on U . Let tλ(x) = t (λx) be the scaled
distribution. The scaling degree sd of t is

sd t = inf{δ ∈ R| lim
λ→0

λδtλ = 0}. (2.60)

The degree of divergence, another important concept used often in the literature, is
defined as:

div(t)
.= sd(t)− n .
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The crucial result which allows us to construct time-ordered products is stated in the
following theorem:

Theorem 2.4.2 Let t ∈ D(Rn \ {0}) with scaling degree sd t < ∞. Then there
exists an extension of t to an everywhere defined distribution with the same scaling
degree. The extension is unique up to the addition of a derivative P(∂)δ of the delta
function, where P is a polynomial with degree bounded by div(t) (hence vanishes
for sd t < n).

In the example presented at the beginning of this subsection, the scaling degree of
(ΔF

S0
)2 in 4 dimensions is 4, so the extension exists and is unique up to the addition

of a multiple of the delta function.
The result above allows in principle to extend all the numerical distributions we

need for the construction of time-ordered products. However, the computations can
in general get very complicated, so it is convenient to formulate the combinatorics
underlying our construction in terms of Feynman graphs. In the pAQFT framework,
these are not fundamental objects, but instead they are derived (together with the
corresponding Feynman rules) from time-ordered products.

Time-ordered productsT H
n should bemaps fromF⊗n

loc toFμc[[�]] and, as indicated
in the previous section, they are obtained by extending non-renormalized expressions
that are originally defined only on (Floc)

⊗n
pds. Let us consider F ≡ F1 ⊗ · · · ⊗ Fn ∈

(Floc)
⊗n
pds with the corresponding Wick-ordered quantities are elements ofAloc given

by A1
.= T F1, . . . , An

.= T Fn ∈ Floc. Note that F induces a map from En to R

by F(ϕ1, ..., ϕ2) = F1(ϕ1) · · · Fn(ϕn). When we talk about functionals on E we will
denote the variable by ϕ and for functionals on En we take an n-tuple (ϕ1, ..., ϕn).

Let us denote Di j
.= i�〈ΔF

S0
, δ2

δϕi δϕ j
〉 and D

.= i�〈ΔF
S0

, δ2

δϕ2 〉. The Leibniz rule for
differentiation can be formulated as

δ

δϕ
◦ mn = mn ◦ (

n∑

i=1

δ

δϕi
), (2.61)

wheremn is the pointwisemultiplication of n arguments, or in otherwords, a pullback
through the diagonal map E → En , ϕ �→ (ϕ, . . . , ϕ). The Leibniz rule implies that
the non-renormalized expression for T H satisfies

T H ◦ mn = e
D
2 ◦ mn = mn ◦ e

∑
i< j Di j+∑i

1
2 Dii ,

Hence

F1 ·T H · · · ·T H Fn = e
D
2 ◦ mn(e

− 1
2 D11 F1, . . . , e−

1
2 Dnn Fn)

= mn ◦ e
∑

i< j Di j (F1, . . . Fn) ≡ mn ◦ Tn(F1, . . . Fn) .
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We can now use an identity

e
∑

i< j Di j =
∏

i< j

∞∑

li j=0

D
li j
i j

li j ! (2.62)

to express time ordered products in terms of graphs. Let Gn be the set of all graphs
with vertex set V (Γ ) = {1, . . . n} and li j the number of lines e ∈ E(Γ ) connecting
the vertices i and j . We set li j = l j i for i > j and lii = 0. If e connects i and j we
set ∂e := {i, j}. Then

Tn =
∑

Γ ∈Gn

TΓ , (2.63)

where

TΓ = 1

Sym(Γ )
〈tΓ , δΓ 〉, (2.64)

with

δΓ = δ2 |E(Γ )|
∏

i∈V (Γ )

∏
e:i∈∂e δϕi (xe,i )

and
tΓ =

∏

e∈E(Γ )

�ΔF (xe,i , i ∈ ∂e) (2.65)

The, so called, symmetry factor Sym is the number of possible permutations of
lines joining the same two vertices, Sym(Γ ) = ∏i< j li j !. Note that TΓ is a map

from (Floc)
⊗V
pds to C∞(E |V |, R)[[�]], where ⊗V means that the factors in the tensor

product are numbered by vertices and to a vertex v ∈ V (Γ )we assign the variable ϕv.
The renormalization problem is now the problem to extend Tn’s to maps on (Floc)

⊗n

and this can be achieved by extending all the maps TΓ and using formula (2.63).
First we note that functional derivatives of local functionals are of the form

F (l)(ϕ)(x1, . . . , xl) =
∫ N∑

j=1
g j [ϕ](y)p j (∂x1, . . . , ∂xl )

l∏

i=1
δ(y − xi )dμ(y),

(2.66)

where N ∈ N, p j ’s are polynomials in partial derivatives and g j [ϕ] are ϕ-dependent
test functions. The representation above is not unique, since some of the partial
derivatives ∂xi can be replaced with ∂y and applied to g j [ϕ]. Another representation
of F (l)(ϕ) is obtained by performing the integral above and using the centre of mass
and relative coordinates:

F (l)(ϕ)(x1, . . . , xl) =
∑

β

fβ [ϕ](z)∂βδ(x rel) (2.67)
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where β ∈ N
4(l−1)
0 , test functions fβ [ϕ](x) ∈ D are now ϕ-dependent functions of

the center of mass coordinate z = (x1+· · ·+ xk)/k and x rel = (x1− z, . . . , xk − z)
denotes the relative coordinates.

Using (2.66) we see that the functional differential operator δΓ applied to
F ∈ F⊗n

loc yields, at any n-tuple of field configurations (ϕ1, . . . , ϕn), a compactly
supported distribution in the variables xe,i , i ∈ ∂e, e ∈ E(Γ ) with support on the
partial diagonal ΔΓ = {xe,i = x f,i , i ∈ ∂e ∩ ∂ f, e, f ∈ E(Γ )} ⊂ M

2|E(Γ )| and
with a wavefront set perpendicular to T ΔΓ . Note that the partial diagonal ΔΓ can
be parametrized using the center of mass coordinates

zv
.= 1

valence(v)

∑

e|v∈∂e

xe,v,

assigned to each vertex. The remaining relative coordinates are x rele,v = xe,v − zv,
where v ∈ V (Γ ), e ∈ E(Γ ) and v ∈ ∂e. Obviously, we have

∑
e|v∈∂e x rele,v = 0 for

all v ∈ V (Γ ). In this parametrization δΓ F can be written as a finite sum

δΓ F =
∑

finite

f β∂βδrel,

where β ∈ N
4|V (Γ )|
0 , each f β(ϕ1, ..., ϕn) is a test function on ΔΓ and δrel is the

Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0), where g is
a function of (x rele,v, v ∈ V (Γ ), e ∈ E(Γ )).

We can simplify our notation even further. Let YΓ denote the vector space spanned
by derivatives of the Dirac delta distributions ∂βδrel, where β ∈ N

4|V (Γ )|
0 . Obviously,

YΓ is graded by |β|. Let D(ΔΓ , YΓ ) denote the graded space of test functions on
ΔΓ with values in YΓ . With this notation we have δΓ F ∈ D(ΔΓ , YΓ ) and if F ∈
(Floc)

⊗n
pds, then δΓ F is supported on ΔΓ \DIAG, where DIAG is the large diagonal:

DIAG = {z ∈ ΔΓ | ∃v, w ∈ V (Γ ), v �= w : zv = zw} .

We can now write (2.64) in the form

1

Sym(Γ )
〈tΓ , δΓ 〉 =

∑

finite

〈 f β∂βδrel, tΓ 〉

where tΓ is now written in terms of centre of mass and relative coordinates. To see
that this expression iswell defined, note that we canmove all the partial derivatives ∂β

to tΓ by formal partial integration. Then the contraction with δrel is just the pullback
through the diagonal map map ρΓ : ΔΓ → M

2|E(Γ )| by

(ρΓ (z))e,v = zv if v ∈ ∂e .
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From the wavefront set properties of ΔF
S0
, we deduce that the pullback ρ∗Γ of each

tβΓ
.= ∂β tΓ is a well defined distribution on ΔΓ \DIAG, so (2.64) makes sense if

F ∈ (Floc)
⊗n
pds, as expected. We conclude that tΓ ∈ D′(ΔΓ \DIAG, YΓ ), where the

duality between tΓ and a test function f =∑finite f β∂βδ is given by

〈tΓ , f 〉 .=
∑

β

〈tβΓ , fβ〉 .

The renormalization problem now reduces to finding the extensions of tβΓ , so that

tβΓ gets extended to an element of D′(ΔΓ , YΓ ). The solution to this problem is
obtained by using the inductive procedure of Epstein and Glaser. The induction
step works as follows: if tΓ ′ is known for all graphs Γ ′ with fewer vertices than
Γ , then tΓ can be uniquely defined for all disconnected, all connected one particle
reducible and all one particle irreducible one vertex reducible graphs. Graphs which
are irreducible and donot contain any non-trivial irreducible subgraphs are calledEG-
primitive. For the remaining graphs , called EG-irreducible, tΓ is defined uniquely
on all f ∈ D(ΔΓ , YΓ ) of the form above where fβ vanishes together with all its
derivatives of order ≤ ωΓ + |β| on the thin diagonal of ΔΓ . Here

ωΓ = (d − 2)|E(Γ )| − d(|V (Γ )| − 1)

is the degree of divergence of the graphΓ .Wedenote this subspace byDωΓ (ΔΓ , YΓ ).
Graphswhich are irreducible and do not contain any non-trivial irreducible subgraphs
are called EG-primitive. Renormalization amounts to project a generic f to this
subspace by a translation invariant projection WΓ : D(ΔΓ , YΓ ) → DωΓ (ΔΓ , YΓ ).
Different renormalization schemes differ by different choices of the projections WΓ

(see [17] for details).
OnMinkowski spacetimewe have further simplifications. By exploiting the trans-

lation invariance we find that, at each step of the recursive construction of time-
ordered products, the renormalization problem reduces to the problem of extension
of some distribution defined everywhere outside the origin, so this is what we will
focus on now.

For concrete computations it is convenient to construct these extensions with the
use of regularization. Let us first define the notion of a regularization of a distribution.
Let t̃ ∈ D′(Rd \ {0}), d ∈ N, be a distribution with degree of divergence ω, and by
t̄ ∈ D′ω(Rd)we denote the unique extension of t̃ with the same degree of divergence.
A family of distributions {tζ }ζ∈Ω\{0}, tζ ∈ D′(Rd), with Ω ⊂ C a neighborhood of
the origin, is called a regularization of t̃ , if

∀g ∈ Dλ(R
d) : lim

ζ→0
〈tζ , g〉 = 〈t̄, g〉 . (2.68)
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We say that the regularization {tζ } is called analytic, if for all functions f ∈ D(Rn)

the map
Ω \ {0} � ζ �→ 〈tζ , f 〉 (2.69)

is analytic with a pole of finite order at the origin. The regularization {tζ } is called
finite, if the limit limζ→0〈tζ , f 〉 ∈ C exists ∀ f ∈ D(Rd).

For a finite regularization the limit limζ→0 tζ is, as expected, a solution t of the
extension (renormalization) problem. Given a regularization {tζ } of t , it follows from
(2.68) that for any projection W : D→ Dω

〈t̄, W f 〉 = lim
ζ→0

〈tζ , W f 〉 ∀ f ∈ D(Rn) . (2.70)

It was shown in [16] that any extension t ∈ D′(Rd) of t̃ with the same scaling degree
is of the form 〈t, f 〉 = 〈t̄, W f 〉 with some W -projection of the form

W f := f −
∑

|α|≤λ

f (α)(0) wα, (2.71)

where wα ∈ D(Rd) such that for all multiindices β ∈ N
d
0 with |β| ≤ ω we have

∂βwα(0) = δ
β
α , |α| ≤ ω Hence

〈t̄, W f 〉 = lim
ζ→0

⎡

⎣〈tζ , f 〉 −
∑

|α|≤sd(t)−n

〈tζ , wα〉 f (α)(0)

⎤

⎦ . (2.72)

In general, we cannot split the limit on the right hand side into twowell defined terms.
However, if the regularization {tζ , ζ ∈ Ω \ {0}} is analytic, then we can expand each
term into a Laurent series around ζ = 0, and because the overall limit is finite, the
principal parts (pp) of these two Laurent series must be the same. This means that the
principal part of any analytic regularization {tζ } of a distribution t ∈ D′(Rd \ {0}) is
a local distribution of order sd(t)− d. Following [17], we can now give a definition
of the minimal subtraction in the EG framework.

Definition 2.4.3 (Minimal Subtraction) The regular part (rp = 1− pp) of any ana-
lytic regularization {tζ } of a distribution t̃ ∈ D′(Rd \ {0}) defines by

〈tMS, f 〉 := lim
ζ→0

rp(〈tζ , f 〉) (2.73)

an extension of t̃ with the same scaling degree, sd(tMS) = sd(t̃). The extension tMS

defined by (2.73) is called the “minimal subtraction”.
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2.4.3 Interacting Theories

Let us now discuss the problem of constructing interacting nets of observables. We
start from a space Dn of functions f : M → R

n with compact support. We assume
that we have unitaries S( f ), f ∈ Dn with S(0) = 1, which generate a *-subalgebra
Ã of A and satisfy for f, g, h ∈ D Bogoliubov’s factorization relation

S( f + g + h) = S( f + g)S(g)−1S(g + h)

if the past J− of supp h does not intersect supp f (or, equivalently, if the future
J+ of supp f does not intersect supp h). We can obtain these as formal S-matrices
S( f )

.= S(V ( f )), discussed in the previous section (see property (2.57)), for a

generalized Lagrangian V ( f ) = αH

(∑n
j=1
∫

A j (x) f j (x)dμ(x)
)
, where f ∈ Dn

and each A j (x) is a local function ϕ ∈ E . Typically A′j are polynomial and they
represent Lagrangian densities of various interaction terms that one can add to the
free action S0.

We also assume that the translation group of Minkowski space acts by automor-
phisms αx on Ã such that

αx (S( f )) = S( fx ), fx (y) = f (y − x).

Obviously, this is also satisfied for the S-matrices discussed so far. Under these
general assumptions, we define local algebras A(O), O ⊂ M, as the *-subalgebras
ofA generated by S( f ), supp f ⊂ O and obtain a translation covariant Haag-Kastler
net on Minkowski space. To justify this claim, we will now check that all the axioms
are satisfied.

Isotony and Covariance are obvious, and Locality follows from the fact that for
functions f, g with spacelike separated supports

supp f ∩ J±(supp g) = ∅ (2.74)

and hence
S( f )S(g) = S( f + g) = S(g)S( f ). (2.75)

The crucial observation is now that the map f �→ S( f ) induces a large family
of objects that satisfy Bogoliubov’s factorisation relation, which are labeled by test
functions g ∈ Dn , namely the relative S-matrices

f �→ Sg( f ) = S(g)−1S(g + f ).

We can choose A0(x) = LI (x) to be the Lagrangian density of the interaction
term. Then, for g = (g0, 0, . . . , 0), we obtain V (g) = ∫ LI g0dμ ≡ L I (g0), where
g0 ∈ D. Note that S(g+λ f ) = S(αH (LI (g0)+λ

∑
j

∫
A j f j dμ)), so the derivative

of S with respect to λ is just the retarded field RLI (g0)(V ( f )). Let us now prove that
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the causal factorisation property indeed holds for Sg( f ). Let f, h ∈ Dn such that
supp f does not intersect J−(supp h). Let g, g′ ∈ Dn . Then

Sg( f + g′ + h) = S(g)−1S( f + (g + g′)+ h)

= S(g)−1S( f + (g + g′))S(g + g′)−1S((g + g′)+ h)

= Sg( f + g′)Sg(g′)−1 S(g)−1S(g)
︸ ︷︷ ︸

=1
Sg(g′ + h). �

We consider Sg( f ) as the retarded observable S( f ) under the influence of
the interaction L I (g0). The Haag-Kastler net Ag of the interacting theory is then
defined by the local algebras Ag(O) which are generated by the relative S-matrices
Sg( f ), supp f ⊂ O. These can indeed be interpreted as retarded observables, as
Sg( f ) depends only on the behavior of g in the past of supp f . More precisely,
supp (g − g′) ∩ J−(supp f ) = ∅ implies

Sg( f ) = S(g)−1S((g − g′)+ g′ + f )

= S(g)−1S((g − g′)+ g′)S(g′)−1S(g′ + f ) = Sg′( f ).

The second observation is that Sg( f ) depends on the behavior of g outside of the
future of supp f via a (formal) unitary transformation which does not depend on f .
Namely, supp (g − g′) ∩ J+(supp f ) = ∅ implies

Sg( f ) = S(g)−1S( f + g′ + (g − g′))

= S(g)−1S( f + g′)S(g′)−1S(g′ + (g − g′))

= S(g)−1S(g′)S(g′)−1S( f + g′)Sg′(g − g′)

= AdSg′(g − g′)−1(Sg′( f )).

Hence the structure of local algebras depends only locally on the interaction. This
allows to perform the adiabatic limit directly on the level of local algebras.

In the next step we want to remove the restriction to interactions with compact
support. Let G : M → R

n be smooth and O be bounded. Set

[G]O = {g ∈ Dn|g ≡ G on a neighborhood of J+(O) ∩ J−(O)}.

We consider the Ã-valued maps

SG,O( f ) : [G]O � g �→ Sg( f ) ∈ Ã.

The local algebraAG(O) is defined tobe the algebra generatedby SG,O( f ), supp f ⊂
O. Note that the evaluation maps
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γgG : SG,O( f )→ Sg( f )

extend to isomorphisms of AG(O) and Ag(O) for every g ∈ [G]O.
The local net is now defined by the embeddings iO2O1 for O1 ⊂ O2

iO2O1 : SG,O1( f ) �→ SG,O2( f )

for f ∈ Dn with supp f ⊂ O1. Let AG be the inductive limit with embeddings

iO : AG(O)→ AG

and we set
SG( f ) = iO(SG,O( f )).

We are now ready to prove a crucial theorem about the net O �→ AG(O).

Theorem 2.4.4 Let G be translation invariant. Then the net becomes translation
covariant by setting

αG
x (SG( f )) = SG( fx ).

Proof Wehave to prove thatαG
x extends to an isomorphism fromAG(O)→ AG(O+

x). LetO1 ⊃ O∪O− x and g ∈ [G]O1 . Then g, gx ∈ [G]O and gx = g+hx++hx−
with supp hx± ∩ J∓(O) = ∅. By causal factorization

αG
x = γ−1gG ◦ AdUg(x) ◦ αx ◦ γgG

with Ug(x) = Sg(hx−). �

2.5 Time-Slice Axiom, Operator Product Expansions,
and the Renormalization Group

We have seen that, starting from a free QFT and a definition of a time ordered
product satisfying the axioms of Sect. 2.4.3 we can construct a local net (in the sense
of formal power series) satisfying the Haag-Kastler axioms of Isotony, Locality and
Covariance. In this section we want to analyze the net in more detail.

First we investigate whether the net satisfies the time-slice axiom . This can be
done for the case that the net is defined on a generic Lorentzian globally hyperbolic
spacetime M . It is known since a long time [22] that the free theory generated by
linear functionals, modulo the ideal of the free field equation, satisfies this axiom, and
by using the techniques ofmicrolocal analysis, this result can be extended to the netA
generated by elements of the form α−1H F , where F ∈ Fμc is a microcausal functional
[11, 29]. In Chilian and Fredenhagen [11] it was shown that this implies that also the
netAG introduced in the previous section satisfies the axiom. The argument relies on
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the fact that the algebra of the interacting theory associated to some bounded region
can be constructed as a subalgebra of the free theory for a slightly larger region, and
vice versa.

The problem is that these subalgebras are fixed only up to unitary equivalence, so
one has in addition to show that these unitary transformations can be appropriately
fixed. We use the fact that the relative S-matrices Sg( f ) are well defined also for
test functions g with non-compact support provided the support is past compact, i.e.
supp g ∩ J−(x) is compact for all x ∈ M .

Let Σ be a Cauchy surface of M and N a neighborhood of Σ . Let O ⊂ M be
relatively compact.We choose a Cauchy surfaceΣ− such thatO∪N ⊂ J+(Σ−) and
a smooth function χ with past compact support such that supp (1− χ) ⊂ J−(Σ−).
We want to prove that AGχ (O) ⊂ AGχ (N ).

By construction of the interacting theory we see immediately that AGχ (O) ⊂
A(M) holds. Due to the time slice property of the free theory, A(M) = A(N ′)
for each neighborhood N ′ of Σ . We now construct within the algebra AGχ (N ) an
algebra which is isomorphic toA(N ′) for a sufficiently small Σ ⊂ N ′ ⊂ N . For this
purpose we choose another smooth function χ ′ with support contained in J+(N ) and
with supp (1− χ ′) ⊂ J−(N ′). Let now supp f ⊂ N ′. Then the unitaries

SG(χ−χ ′)( f ) = SGχ (g′)−1SGχ (g′ + f ), with g′ ≡ Gχ ′ on J−(supp f ), supp g′ ⊂ N ,

(2.76)
generate an algebra isomorphic to A(N ′) within AGχ (N ). The map

α : S( f ) → SG(χ−χ ′)( f ) = Ad(S(g − g′))−1(S( f )) (2.77)

with g ≡ Gχ on J−(supp f ∪ supp g′) extends to an injective homomorphism from
A(M) into AGχ (N ). Since AGχ (N ) ⊂ A(M), α is an endomorphism of A(M). We
show that it is even an automorphism. For this purpose we construct the inverse of
α. By exploiting the time slice property of the free theory, we can restrict ourselves
to elements S( f ) with supp f ⊂ J−(Σ0). On these elements we have

α−1(S( f )) = Ad(S(g − g′))(S( f )) = S(g − g′ + f )S(g − g′)−1 (2.78)

where g − g′ ≡ G(χ − χ ′) on J+(supp f ). We conclude that AGχ (N ) = A(M).
This proves the claim.

Another general property of the interacting net is the existence of an operator
product expansion [27]. In the case of the product of two fields A and B it is an
expansion

A(x)B(y) ∼
∑

k

Ck
AB(x, y)ϕk(x) (2.79)

with distributions Ck
AB and a basis of local fields ϕk , ordered with respect to the

scaling dimension. This is an asymptotic expansion in the sense that after evaluation
in a state coming from a Hadamard state of the free field, the difference between the
right hand side of the relation and the left hand side, truncated at some k, tends to
zero as x → y, with an order depending on k.
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The third property we look at is the behavior of the theory at different scales. In the
standard formalism of QFT, one formulates this as a property of vacuum expectation
values of products or time ordered products of fields, or one uses the concept of
the so-called effective action. In this formulation one has to have control over the
existence and uniqueness of the vacuum state. In the algebraic approach one can
instead derive a relation between local nets. Namely given a local net O �→ A1(O)

one obtains another net by scaling the regions,

Aλ(O) = A1(λO). (2.80)

If the net depends on some parameters (m, g), one can compensate the scaling by
changing the parameters. One obtains the algebraic Callan-Symanzik equation [15]

A
m,g
λ

∼= A
m(λ),g(λ)
1 (2.81)

The “running” of the parameters is as usual determined by the renormalization group
equation which follows from the behavior of the time ordered product under scaling.

2.6 Hamiltonian Formalism for Quantum Field Theory,
and the Construction of States

Up to now we remained in the realm of algebras. There we could study several struc-
tural properties of the theory. In order to get more detailed predictions of the theory
one has to evaluate the algebra in specific states. A class of states on the local algebras
can be obtained in terms of the states of the free theory by embedding the interacting
theory into the free one, but this is highly ambiguous and gives no direct interpreta-
tion of the states. Conceptually, one does not need more, since the interpretation can
be done in terms of the expectation values of observables. In practice, however, one
would prefer to have states with an a priori interpretation as e.g. the vacuum state.
The standard way to compute it is the evaluation of the product or the time ordered
product of interacting fields with an interaction L I (g0) =

∫
LI (x)g0(x)dμ(x) in the

vacuum state of the free theory and performing the adiabatic limit g0 → 1. This limit
is well behaved in massive theories, but exists also for a suitable sequence (g0)n → 1
in certain massless theories such as massless ϕ4 or QED. In the case of time ordered
products one just reproduces the standard formulas in terms of Feynman such graphs;
in the case of operator products one has to use Steinmann’s sector graphs [42]. The
adiabatic limit in this form, however, does not always exist, in particular not for states
with nonzero temperature.

A more direct way of constructing states with specific properties could be imag-
ined in a Hamiltonian formalism, as well known from nonrelativistic quantum
mechanics. The difficulty is that the interaction Hamiltonian for a local QFT is very
singular so that perturbation theory for selfadjoint operators cannot be used. There
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are two independent reasons for the singular character of perturbations in QFT. The
first is translation symmetry. InMinkowski space this leads toHaag’s theorem, which
states that the ground state of the interacting theory cannot be represented by a vec-
tor in the Fock space of the free theory. If one takes this into account by restricting
the interaction to a finitely extended spatial region, one can indeed apply the per-
turbation theory of selfadjoint operators in certain superrenormalizable models in
2 dimensions. One can then construct ground states and consider their limit if the
cutoff is removed. In 4 dimensions, however, the local interaction densities are too
singular, so that also the spatially restricted interaction is not an operator.

The Hamiltonian formalism relies on a split of spacetime into the product of a
Cauchy surface and the time axis, and all the observables of the theory are constructed
in terms of their initial values on this surface, which are supposed to be independent
of the interaction. But from renormalization theory it is well known that in general
one has to expect modifications of the canonical structure; moreover, even for free
fields, the restriction to a Cauchy surface is singular for all nonlinear local fields.

Instead we use the fact that for generic perturbative QFT’s the time-slice axiom
holds. Moreover, as we saw from the discussion of the proof of this fact, the free and
the interacting algebra of a time slice can be identified. This suggests to compare
their time evolutions. Both are automorphism groups acting on the same algebra, and
they differ by a cocycle. In case of a spatial cutoff of the interaction, the cocycle is
implemented by a unitary cocycle within the algebra, whose generator is an integral
over an operator valued functionwhichmaybe interpreted as a regularized interaction
Hamiltonian density HI (x).

As in Sect. 2.4.3 we consider the space Dn of test functions and the algebra
generated by S( f ) = S(α−1H (

∑
i

∫
Ai f i dμ)). We also assume that A0 = LI is the

interaction Lagrangian density. The time slice property proven in Sect. 2.5 induces
isomorphisms between the free and the interacting algebras. Let χ be a smooth
function of time t with χ(t) = 1 for t > −ε and χ(t) = 0 for t ≤ −2ε. Then
supp ((t, x) �→ G(t, x)χ(t)) is past compact. We now define a map from AG to A
by

γχ(SG( f )) = SGχ ( f ), supp f ⊂ (−ε, ε)× R
3.

Due to the time slice property this map extends to an isomorphism. Moreover, it only
slightly changes the kinematical localization at t = 0. LetOr = {(t, x)||t |+|x| < r}.
Then

γχ(AG(Or )) ⊂ A(Or+4ε) ⊂ γχ(AG(Or+8ε)).

Let G be constant, let αG,χ
x = γχ ◦αG

x ◦γχ−1 be the translations of the interacting

theory mapped to the free theory, and consider the cocycle β
G,χ
x = α

G,χ
x ◦ α−x . We

find β
G,χ

(0,x) = id and, for f with supp f ⊂ Or and small t ,

β
G,χ

(t,0)(S( f )) = AdShχ (h(χt − χ))(S( f ))

where h is time independent, has compact spatial support and h ≡ G on Or+4ε.
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Proposition 2.6.1 The unitaries U hχ
t = Shχ (h(χt −χ)) fulfill the cocycle equation

U hχ
t+s = U hχ

t αt (U
hχ
s )

Proof For sufficiently large u (depending on s, t) we have

Shχ (h(χt − χ))αt (Shχ (h(χs − χ))

= Sh(χ−χu)(h(χt − χ))αt (Sh(χ−χu−t )(h(χs − χ))

= Sh(χ−χu)(h(χt − χ))Sh(χt−χu)(h(χt+s − χt ))

= S(h(χ − χu))−1S(h(χt − χu))S(h(χt − χu))−1S(h(χt+s − χu))

= Sh(χ−χu)(h(χt+s − χ)) = Shχ (h(χt+s − χ)). �

We conclude that the unitary cocycle U hχ
t describes the interacting time evolution

(with spatial cutoff h) in the interaction picture.Due to the finite speed of propagation,
it coincides with the full time evolution for small t .

We now consider a time translation covariant representation (H, π, U0) and
assume that the map D � f → π(S( f )) is strongly continuous. Then the cocy-
cle U hχ

t is strongly continuous, and

t �→ Uhχ (t) = U hχ
t U0(t) (2.82)

is a strongly continuous 1-parameter group with selfadjoint generater Hhχ which
describes the dynamics of the interacting system with spatial cutoff.

In caseπ is irreducible, onemay now determine the spectrum of Hhχ and interpret
it as the energy spectrumof the interacting theorywith spatial cutoff (up to an additive
constant). One may also look for a ground state and consider the limit of removal of
the cutoff.

If π is a representation induced by a KMS state, and Ω0 is the corresponding
cyclic vector in the representation space, one knows by Connes’ cocycle theorem
that there exists a weight whose modular automorphims are the time translations of

the interacting theory. If Ω0 is in the domain of e−
β
2 Hhχ , then this weight is bounded

and induced by the vector

Ωhχ = e−
β
2 Hhχ Ω0. (2.83)

If the cocycle is strongly differentiable on a dense domain, the interaction Hamil-
tonian can be defined as the generator of the cocycle. We obtain [19]

H hχ
I = �

d

idt
U hχ

t = � S(hχ)−1 d

idt
S(hχt ) = RV (hχ)(V (hχ̇)),

where in the last stepwe have usedBogoliubov’s formula (2.55) for interacting fields.
In the limit ε → 0, χ̇ tends to the δ-function and we obtain the usual interaction
picture.
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We illustrate the method on the example of an interaction with external sources.
We start with the CCR algebra ÃS0 of the free scalar field introduced at the end of
Sect. 2.3.5. The formal S-matrix is

S( f ) = S(F f ) = ei F f /�e−
i
2�
〈 f,ΔD f 〉,

where F f (ϕ) = ∫ ϕ f dμ. One can verify it by direct computation (using the forumlas
for time-ordered product given in Sect. 2.4.2) or, indirectly, by the verification of the
causal factorization property (T1). Namely, we have

S( f + g)−1S( f + g + h) (2.84)

= ei Fh/� exp
i

�
(〈 f + g,ΔD( f + g)〉−〈 f + g+h,ΔD( f + g+h)〉+〈 f + g,Δh〉)

= eiϕ(h) exp
i

2�
(−〈h,ΔDh〉 − 〈 f + g, (2ΔD −Δ︸ ︷︷ ︸

=ΔA

)h〉),

= S(g)−1S(g + h)e
i
2�
〈 f,ΔAh〉

hence if supp f ∩ J−(supp h) = ∅ then by the support property of the advanced
propagator

〈 f,ΔAh〉 = 0

and the factorization holds.
We find the interaction Hamiltonian (h time independent)

H hχ
I = −ϕ(hχ̇ )− const.

Due to the smearing in time, this operator remains meaningful also for a pointlike
source (h ∼ δ(x)).

In general, for the free theory we obtain the usual Fock space Hamiltonian H0,
and the Hamiltonian of the interacting theory with spatial cutoff is the sum of the
free Hamiltonian and the interaction term,

H = H0 +
∫

h(x)HI (x)d3x. (2.85)

In this framework, one can now apply the standard perturbative constructions of
ground states and KMS states. In [19, 36] it was shown that in massive theories
ground states and KMS states for positive temperatures exist. Some aspects of this
formalism involving thermal mass were further developped in [14] in conjunction
with the principle of perturbative agreement [30]. It is hoped that this regularized
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Hamiltonian picture will allow to close the conceptual gap between the standard
formalism in nonrelativistic quantum mechanics and quantum statistical mechanics
and the formalism of relativistic QFT.

2.7 Conclusions

We have seen that the concepts of AQFT can be used in renormalized perturbative
QFT and yield Haag-Kastler nets (in the sense of algebras of formal power series)
for generic models of QFT. Due to its axiomatic formulation all possible renormal-
ization methods are covered, and one has an a priori characterization of the class
of renormalized theories associated to a classical Lagrangian, independent of any
regularization scheme. For practical purposes, it is nevertheless often appropriate
to introduce a regularization, and in particular analytic regularization schemes such
as dimensional or analytic renormalization are useful, for computation but also for
specifying a theory in its class (e.g. by minimal subtraction), see [17]. One may also
incorporate the ideas of the renormalization flow equation in the sense of Polchinski
and made rigorous in [33] . This is exposed in [15]. In these notes we restricted
ourselves to scalar field theories. The generalization to other types of field theory
have been discussed in several papers; fermionic theories can be treated essentially
in the same way, and gauge theories can be treated after adding auxiliary fields
(ghosts etc.) and constructing the time ordered products such that BRST symmetry
is respected [15, 20, 27]. Even gravity can be included where however the concept
of local algebras of observables has to be properly adapted [10].
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