Optimizing the Placement of Tap Positions

Enes Pasalic', Samir Hodzié¢! ™), Samed Bajri¢!, and Yongzhuang Wei?

1 University of Primorska, FAMNIT and IAM, Koper, Slovenia
enes.pasalic6@gmail.com, samir.hodzic@famnit.upr.si, samed.bajric@upr.si
2 Guilin University of Electronic Technology, Guilin, P.R. China,
and Also with the State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an 710071, People’s Republic of China
walker wei@msn.com

Abstract. Although there are many different approaches used in crypt-
analysis of nonlinear filter generators, the selection of tap positions in
connection to guess and determine cryptanalysis has not received enough
attention yet. In a recent article [18], it was shown that the so-called filter
state guessing attack (FSGA) introduced in [15], which applies to LFSR
based schemes that use (vectorial) Boolean filtering functions, performs
much better if the placement of tap positions is taken into account. In
this article, for a given LFSR of length L, we analyze the problem of
selecting n (where n < L) tap positions of the driving LFSR (used as
binary inputs to a filtering function) optimally so that the complexity of
FSGA like attacks is maximized. An algorithm which provides a subop-
timal solution to this problem is developed and it can be used for real-life
applications when the choice of tap positions is to be made.

Keywords: Stream ciphers - Filtering generator - Guess and determine
cryptanalysis - Filter state guessing attack + Tap positions

1 Introduction

Nonlinear filter generator is a typical representative of a hardware oriented design
in stream ciphers. It consists of a single linear feedback shift register (LFSR) and
a nonlinear function F : GF(2)" — GF(2)™ that processes a fixed subset of
n stages of the LFSR. This fixed subset of the LESR’s cells is usually called
the taps.

There are many cryptanalytic approaches that have been applied to non-
linear filter generators during the last two decades. These methods mainly use
the cryptographic weaknesses of the filtering function giving rise to Berlekamp-
Massey linear complexity attacks [10], linear distinguishing and inversion attacks
of Goli¢ [5-7], algebraic attacks [4], probabilistic algebraic attacks [2,17], and so
on. To protect a nonlinear filter generator against these attacks, the filtering
function should satisfy multiple cryptographic criteria that include high nonlin-
earity, high algebraic degree [14], high algebraic immunity (AI) [11], and many
others.

© Springer International Publishing Switzerland 2015
B. Ors and B. Preneel (Eds.): BalkanCryptSec 2014, LNCS 9024, pp. 15-30, 2015.
DOI: 10.1007/978-3-319-21356-9_2

16 E. Pasalic et al.

Apart from resisting the attacks using the properties of the filtering function,
a nonlinear filter generator should also have sufficient security margins against
other generic cryptanalytic methods, e.g. time-memory-data tradeoff attacks
[1,8,9], and guess and determine attacks. A classical guess and determine attack
is a method based on guessing some portion of the secret key (state bits) in order
to decrease the complexity of obtaining the remaining unknown key (state) bits.
Recently, a new guess and determine attack, named Filter State Guessing Attack
(FSGA), was introduced in [15]. The basic idea behind the FSGA is to perform
a guess and determine attack on the preimage space of the filtering function
F:GF(2)™ — GF(2)™. Since for uniformly distributed F there are 2"~ ™ such
preimages , for any observed m-bit output block the attacker may for each choice
of 2"~™ many possible inputs (over the whole set of sampling instances) set up
an overdefined system of linear equations in secret state bits. This attack turns
out to be successful only for relatively large m, more precisely for approximately
m>n/2.

In certain cases, the running time of the FSGA may be lower than the running
time of a classical algebraic attack (cf. [15]). In particular, a superior performance
of the FSGA over classical algebraic attacks was demonstrated in the case the
filtering function belongs to a class of vectorial Maiorana-McFarland functions
(see e.g. [3]). Notice that the tap positions of a nonlinear filter generator are of no
importance for the FSGA in [15]. More precisely, only one bit of the information
was considered to be known from the previous sampling points. The complexity
of the attack was significantly improved in [18], where the information from the
neighbouring taps, in the attack named GFSGA (Generalized FSGA), was used
for a further reduction of the preimage space. In particular, the attack complexity
of GFSGA is very sensitive to the tap placements, though no algorithm for their
choice was provided in [18]. The reader should however notice that there exist
other kind of attacks on nonlinear filtering generators such as e.g. decimation
attacks [12] and attacks that take the advantage of the normality of Boolean
functions [13] whose complexity does not depend on the choice of tap positions.

The main motivation for this work relies on the fact that even after more
than two decades of extensive research on the security and design of filtering
generators the selection of tap positions has not been rigorously treated yet. The
designers, well aware of the fact that a proper tap selection plays an important
role in the design, mainly use some standard (heuristic) design rationales such as
taking the differences between the positions to be prime numbers (if possible),
the taps are distributed over the whole LFSR etc. Intuitively, selecting the taps at
some consecutive positions of the LFSR should be avoided, and similarly placing
these taps at the positions used for the realization of the feedback connection
polynomial is not a good idea either. Another common criterion is to ensure that
a multiset of differences of the tap positions is mutually coprime. This means,
that for a given set of tap positions Z = {iy,4,...,4,} of an LFSR of length L
(thus 1 <y < iz < ... < i, < L) all the elements in the difference set formed
as D= {i; — i :4;,9 € Z,i; > 4;} are mutually coprime. In many situations, in
real-life applications, this condition turns out to be hard to satisfy. To the best
of our knowledge, no algorithm for determining an optimal tap placement, for
given n and L, has been provided so far.

Optimizing the Placement of Tap Positions 17

In this article, we firstly demonstrate some potentially misleading design
rationales from the security point of view and discuss the complexity issues
related to optimality. Indeed, for a standard size of an LFSR used in these
schemes, say L = 256, and a recommended number of inputs n > 16, any
exhaustive search over the set of (i) elements is clearly infeasible. Therefore, we
propose a suboptimal algorithm for this purpose, which at least when applied to
LFSRs of relatively short length performs optimally (giving the best choice over
all possibilities) . It is also shown that certain choices of tap positions in real-life
stream ciphers such as SOBER~t32 and SFINX could have been (slightly) further
optimized with respect to guess and determine cryptanalysis, in particular their
resistance to GFSGA would have been better.

The rest of the article is organized as follows. In Sect. 2, basic definitions
regarding Boolean functions and the mathematical formalism behind their use
with LFSRs is given. A brief overview of FSGA and GFSGA is given in Sect. 3.
Section4 discusses the relation between the complexity of the GFSGA attack
and the number of repeated equations used in the reduction of the preimage
space. Two versions of the algorithm for determining (sub)optimal tap positions
for a given n and L are presented in Sect. 5, and their application for the choice
of tap positions in SOBER-t32 and SFINX is discussed.

2 Preliminaries

A Boolean function is a mapping from GF(2)" to GF(2), where GF(2) denotes
the binary Galois field and GF(2)™ is an n-dimendional vector space spanned
over GF'(2). A function f : GF(2)" — GF(2) is commonly represented using its
associated algebraic normal form (ANF) as follows:

frzn) = 3 Mgz,

wEGF(2)"

where z; € GF(2), (i = 1,...,n), Ay € GF(2), u = (uy,...,un) € GF(2)".
A vectorial (multiple output) Boolean function F(z) is a mapping from GF(2)"
to GF(2)™, with (m > 1), which can also be regarded as a collection of m
Boolean functions, i.e., F(z) = (fi(z),..., fm(z)). Commonly, F(z) is chosen
to be uniformly distributed, that is, #{x € GF(2)"|F(z) = z} = 2"~™, for all
z € GF(2)™. Moreover, for any z = (21, ..., z;m) € GF(2)™, we denote the set of
preimage values by S, = {z € GF(2)" | F(x) = z}.

2.1 Nonlinear Filtering Generator

A filtering generator consists of a single LFSR of length L whose n fixed positions
(taps) are used as the inputs to a filtering function F : GF(2)" — GF(2)™ (also
represented as F'(z) = (f1(x), ..., fm(2))), thus outputting m > 1 keystream bits
at the time. A general description of a filter generator is as follows:

(21, 2m) = (J1(la(s")), -, fin (€n(s))),

18 E. Pasalic et al.

where s* = (sf,..., s} _,) is the secret state of the LFSR at time ¢, the notation
0,,(s") means that a subset of n bits of s* = (sf,...,s% ;) (at fixed positions)
is passed as the input to Boolean functions fi,..., fm, and 2¢,... 2! are the

corresponding output keystream bits.
Due to linearity of its feedback connection polynomial, at any ¢ > 0 we
have £,,(sf, ..., st 1) = (i(s),..., 9% (s)), where the linear functions ¢(s) =

Zf;ol a;jsj, (i =1,...,n), are unique linear combinations of the initial secret
state bits s” = (sg,...,s5_1), at time ¢t = 0. The LFSR is updated by computing
the update bit s;, (as a linear combination of sg,...,s;—1 determined by the

connection polynomial) and shifting its content to the left (while at the same
time outputting the bit sg), so that s* = (s1,...,sr). The binary coefficients

ai ; above can therefore be efficiently computed from the connection polynomial
of LFSR for all ¢ > 0.

3 Overview of FSGA and GFSGA

For self-completeness and due to the close relation with subsequent sections, we
briefly describe the main ideas behind FSGA and its extension GFSGA. For
both attacks there is no restriction on F : GF(2)" — GF(2)™, thus F satisfies
all the relevant criteria including a uniform distribution of its preimages.

3.1 FSGA Description

For every observation of the cipher output 2! = (2%,...,2!) at time ¢, there

1 Tm
are 2"~™ possible inputs ¢ € S.:. Moreover, for every guessed preimage z' =
(xf,...,2l) € S.¢, one obtains n linear equations in the secret state bits so, ...,
sp—1 through z! = Ef;ol aijsﬁ for 1 < i < n. The goal of the attacker is

to recover the initial state bits (sq,...,sp_1) after obtaining sufficiently many

keystream blocks z! = (2¢,..., 2!). If the attacker observes the outputs at the

rTm

time instances t1,...,%., so that nc > L, then with high probability each sys-

tem of nc linear equations is independent but only one system will provide a
consistent (correct) solution.

As there are 2("~™)¢ possibilities of choosing ¢ input tuples (2%, ..., z%), ...

(mtf, ...,zle), and for each such c-tuple a system of nc linear equations in L
variables is obtained. The complexity of solving a single overdefined system of
linear equations with L variables is about L? operations. Thus, the complexity

of the FSGA is about 2("~™°L? operations, where ¢ ~ [£].

)

3.2 GFSGA Description

The major difference to FSGA is that the GFSGA method efficiently utilizes
the tap positions of the underlying LFSR. Let the tap positions of the LFSR
be specified by the set Zp = {i1,42,...,0n}, 1 < i3 < i < ... <4, < L. If
at the time instance t;, we assume that the content of the LFSR at these tap

Optimizing the Placement of Tap Positions 19

positions is given by (sfi, .. ,sfi) = (a1,...,a,), then at t = ¢; + o we have
(sfii; . sfii‘;) = (ay,...,an), where cutting modulo L can be performed if
necessary. Notice that the state bits at positions i1 + o, ..., i, + o does not nec-

essarily intersect with Zy, thus if the intersection is an empty set no information
from the previous sampling can be used at the sampling instance t; + 0. How-
ever, we can always select o so that at least one bit of information is conveyed.
More formally, the observed outputs at ¢1,...,t., where t;, = t; + (i — 1)o and
1 <o < (in —i1), may give rise to identical linear equations since the equations
ohr = Zf;ol az,“jsj (where 1 <4 < n) may be shifted to ;" = Zf;ol afj’jsj, for
some 1 <i<lI<n,l<u<wv<ec

It is of importance to determine how many identical linear equations will be
obtained for all the sampling instances t1,...,t.. By introducing k = | =%,
and for Zy = {i1,42,...,i,} defining recursively:

Iy =ZoN{i1+o,ia+0,...,in + 0},
IQ:Ilu{Iom{i1+2U,i2+2J,...,in+20}},

: (1)
T =Tk U{Ioﬂ{il + ko, g +k‘0‘,...,in+k0'}}.

the analysis in [18] showed that the complexity of the GFSGA is closely related
to the parameter r; = #Z;, where : = 1,...,k.

Remark 1. For instance, the above notation means that for some i € Z; (and
therefore i € o) the state bit si*> was used in the previous sampling since it
was at the position i — o € Zj at time t;, where to = t; + 0. The idea is easily
generalized for #Z; = r;, where t = 2,... k.

The number of identical equations obtained in [18] is given as follows. If ¢ < k;,
then in total Zf;ll r; identical linear equations are obtained, whereas for ¢ > k
this number is Zle r; + (¢ — k — 1)rg. Note that in this case ry = rp4p1 = -+ =
r.—1 due to the definition of k, which simply guarantees that after k sampling
instances the maximum (and constant) number of repeated equations is attained.
Consequently, the time complexity of the attack for ¢ < k was estimated as,
Tégk = o(n=m) o(n—m=r1) o gn=m-re_n) » 3
omp.
— 2(n—m)c—zf;11 Ti L37 (2)
and similarly, if ¢ > k, the time complexity for ¢ > k was given by
>k _ —m—
Té‘imp_ — 2(n m) % 2(n m—ry) X ..
~ 2("—m—7’k) % Q(n—m—rk)x(c—k—l) % L3
— Q(H*m)cf(zl*’:l rit(e—k=1)ry) o 3 (3)

Remark 2. if n —m —r; < 0, for some ¢ € {1,...,k}, then the knowledge of
these r; bits allows the attacker to uniquely identify the exact preimage value

20 E. Pasalic et al.

form the set of 2"~™ possible preimages, i.e., we assume 2("~™~") = 1 when
n—m-—r; <0.

Table1 (cf. [18]) gives a complexity comparison of FSGA, GFSGA and CAA

(Classical algebraic Attack). The tap positions and the sampling difference o

are given below:

(1) {3,8,13,16,21,29,32,37,44,52,67,79,92,106, 111, 125,155}, o = 5, ¢ = 23.

(2) {2,7,17,25,27,31,48,58,61,73,82,91,103,115,123, 134,146, 156}, 0 = 3,
c = 20.

Table 1. Complexity comparison for different (n,m) and (K = 80, L = 160).

(n,m) | (17,6) (18, 7)
FSGA 2123 2121
CAA |27 27
GFSGA 253497 264.97

4 Complexity Versus the Number of Repeated Equations

The complexity of GFSGA, which is a generic attack for this particular encryp-
tion scheme, strongly depends on the choice of tap positions, see also [18]. There-
fore, our goal is to maximize this complexity which is certainly related to the
minimization of the parameters r; = #Z;, but not completely equivalent. Notice
that by optimizing the resistance of these schemes to GFSGA does not neces-
sarily imply the optimality of tap selections, though for the targeted filtering
generator we cannot see other reasonable approaches in the context of the guess
and determine cryptanalysis.

Let R denotes the number of repeated equations regardless of this number
being 32" r; for ¢ < k, or Zle ri + (¢ — k — D)rg for ¢ > k. From [18], it
somehow appears that an (sub)optimal choice of tap positions is the one that
minimizes the number of repeated equations R, which is a bit misleading as
illustrated by the following example.

Ezample 1. Let the tap positions be given by Zp = {1,5,13,25,41,65,77}, for
L =80, n =17, and m = 3. Computing the complexity Tcomyp. for all sampling
differences o = 1,2,3,...,76, one can verify that the best choice of ¢ for the
attacker is ¢ = 12, with the minimal complexity Tcomp. =~ 22397 and having
R = 177 as the number of repeated equations. However, the computation below

shows that for 0 = 4, R = 353 is maximum possible, but in that case Tcomp. ~
927.97

To see why o = 4 is not optimal for the attacker, we first compute r; = #I;,
I, = {5}, Zo = {5,13}, I3 = {5,13,25,77}, I, = {5,13,25,41, 77},
Is = {5,13,25,41,77}, Zg = {5,13,25,41,65, 77},
Z; ={5,13,25,41,65,77}, for j=17,8,...,6L

Optimizing the Placement of Tap Positions 21

The number of sampling points ¢, for k = L%J = 19, is determined from
the condition nc — (Zle ri+(c—k—1)rg) > L, i.e,, ¢ = 62 is the smallest
positive integer satisfying the condition. The terms 2(»~™~7) #£ 1 in (3), for
which r; < n —m so that the number of preimages is greater than one, only
appear for r1 =1 and o = 2, i.e.,
TC’omp. _ Q(n—m) % 2(n—m—r1) % 2(n—m—r2) % L3 ~ 227.97.

For j = 3,...,61, we have 2(®»~™~73) = 1, in accordance to Remark 2.

Similarly, for 0 = 12, which implies that & = 6, we obtain ¢ = 37 (where c¢ is
derived from nc — (Ele ri+ (¢c—k—1)rg) > L) and “only” R = 177 repeated
equations. The intersection sets in this case are given as,

I, = {13,25,77}, I, = {13,25,65,77}, I3 = {13,25,41,65, 77},
I, = {13,25,41,65,77}, for j=4,5,...,36.

The complexity computation in this case involves only r; = 3, i.e.,
TComp. — 2(”—771) X 2(7L—m—7"1) X LB ~ 223_97.
Notice that for j = 2,...,36, we have 2("=m=7) =1,

Remark 3. A lower complexity in the above example (for a larger number of
repeated equations) is entirely due to a low difference between n and m so that
many of the repeated equations could not be efficiently used since the preimages
could be identified uniquely even without using these equations.

More formally, if ¢’ gives the maximal possible value of R though the attack
complexity is not minimal, and ¢” gives the minimal attack complexity without
maximizing R, then it holds

Z (n—m—r;) < Z (n—m—r;) (4)

T]‘GHU// riGH(,/

where H,» = {r; < n —m : r;obtained by ¢’,i = 1,2,...,¢ — 1} and Hy» =
{r; <mn—m:r;obtained by ¢”,j = 1,2,...,c— 1}. In the above example, we
have Hyr = {r1,m2} = {1,2} with ¢/ = 4, and Hy» = {r1} = {3} with ¢” = 12,
for which (4) holds.

Another problem related to the approach of finding the intersection sets
given by (1) is that the information contained in R and the cardinalities r; alone
does not fully specifies the properties of the repeated equations. The equations
corresponding to the numbers in the sets Z; may be repeated and found in other
sets Z;, where ¢ # j, and even though they efliciently reduce the preimage space
they do not contribute to the rank of the systems of linear equations that need to
be solved. An alternative method of tracking the repeated equations, illustrated
in the example bellow, turns out to give a deeper insight to the problem of
selecting the tap positions optimally.

22 E. Pasalic et al.

Ezample 2. Let the tap positions be given by Zy = {l1,l2,13,l1, 15} = {1,4,8,
9,11}, L = 15, and the sampling distance 0 = 2. Let s = (s04(i—1)0,
814(i—1)os - - +» S144(i—1)o), denote the LFSR state over ¢ = 10 sampling instances
t; = (i—1)o, fori=1,2,...,10. Moreover, at these different sampling instances,
we represent the output bits of LFSR sg,s1,... via their indices in N, i.e.,
sp — (k+1) € N. For instance, in Table 2 the number 27 corresponds to the bit
s26 which becomes a part of the LFSR state s at position l5. The LFSR state
bits at tap positions Zy = {l1,l2,13,14, 15} are illustrated in Table 2.

Table 2. The LFSR state bits at given tap positions for o = 2.

States | [1 lo I3 In ls

sh so — 1 s3 — 4 s — 8 sgs — 9 S10 — 11
st? So — 3 s5 — 6 Sg — 10 | s10 — 11| 8512 — 13
sts sS4 — 5 s7 — 8 s11 — 12| 812 — 13| 514 — 15
st4 se — 7 sg — 10 |s13 — 14 |s14 — 15| 816 — 17
sts ss — 9 s11 — 12| 815 — 16| 816 — 17 | s18 — 19
sto s10 — 11 | 813 — 14| 517 — 18 | s18 — 19| 890 — 21
s'7 s12 — 13| 515 — 16 | 519 — 20 | 520 — 21 | 522 — 23
s's S14 — 15| 817 — 18| 591 — 22| S99 — 23| 594 — 25
sto S16 — 17| 819 — 20| 523 — 24 | s94 — 25| 806 — 27
gt1o S18 — 19| 891 — 22| 8595 — 26 | S96 — 27 | s28 — 29

Our goal is to determine when some equation (state bit) is repeated on the tap
positions Iy, ...,l4 at the sampling instances ¢;. Hence, we observe the repetition
of all consecutive tap positions /;1 — l;, then the differences [;12 —;, etc. Let
D be a set of all differences between consecutive tap positions, i.e.,

D ={dj|d; =141 —1;,5 =1,2,3,4} = {3,4,1,2}.

To consider all possible repetitions of the equations on all tap positions, we
design a scheme of all possible differences:

Table 3. The scheme of all possible differences for the set D.

Row\Columns | Col. 1 Col. 2 Col. 3 |Col. 4
Row 1 di do ds ds
Row 2 di + da do 4 d3 ds3 +dy

Row 3 di +d2 +ds dy +d3 +dy

Row 4 di +ds + ds + da

Optimizing the Placement of Tap Positions 23

Table 4. The scheme of all differences for D = {3,4,1, 2}.

Row\Columns | Col. 1 | Col. 2| Col. 3| Col. 4
Row 1 3 4 1 2
Row 2 7 5 3

Row 3 8 7

Row 4 10

In Table 3, Column 1 specifies the repetition of some equations at the tap posi-
tion [1, Column 2 gives the repetition of equations on I5, etc. Similarly, Row 1 takes
into account the consecutive repetitions from /; 1 to l;, Row 2 regards the repe-
tition from ;1o to l;, etc. In our example, by Table3, we have Assuming the
attacker starts the sampling with some step o, the total number of repeated
equations R is the sum of all equations which repeat on each of the tap positions
l;, where j =1,2,3,4.

Since Table3 can be designed for an arbitrary set D, #D = n — 1, the
repetition of the same equations can be tracked as follows. We are looking for
the first number in each column such that it is divisible by o, which implies that
we have the repetition of equations, otherwise there are no repetitions. Notice
that in Table4, in Column 1, ¢ { 3, which implies that there is no repetition of
equations from Iy at l;. Also, since 2 1 7, there is no repetition from I3 at I;.
However, 2 | 8, which implies that the equation(s) from I will appear on Iy after
% = 4 sampling instances (cf. Table 2 where 9 appears at I; when the content of
the LFSR is s!s). Thereafter, one equation from Iy appears at [; for every state
s'i, for i > 5. Further, the fact that 2 | 8 and 2 | 10 implies that 2 | dy = 2,
which means that we have a repetition from I5 to [; at every LFSR state s!,
1 > 2. Since Column 1 already contains this number 8 which is divisible by 2, all
the repeated equations from 5 to [; are already taken into account, and we do
not use numbefl 10 (Table4, Row 4) when calculating the number of repeated

4

equations. So, 5 is related to the repetitions of equations from I5 to I4. Hence,

the number of repeated equations R, for ¢ = 10, is calculated as follows.

1. On 4, there are (¢ — w) =10— % = 6 repeated equations.

2. On Iy, there are (¢ — %2) =10 — 2 = 8 repeated equations.

3. On [3, there are NO repeated equations, since we do not have the differences
divisible by ¢ = 2.

4. On ly, there are (¢ — %4) = 9 repeated equations.

In total, we have R = 6 + 8 + 0 + 9 = 23 repeated equations.

The analysis performed in the above example leads to the following result con-
cerning the number of repeated equations.

Proposition 1. Let Zy = {l1,12,...,1l,} be a set of tap positions, and let

Dz{li+1 —li‘iz 1,2,...,7’7,—1}:{d1,d2,...,dn_1}.

24 E. Pasalic et al.

The number of repeated equations is calculated as

R=Y (- 1Y), 5)
k=1

i=1

where o | Yy, dy for some m € N, i <m <n-—1 and éZZLidk <c—1.
Moreover, if 23" . dip > c, for some 1 <i<n—1, then (c— 23" dy) = 0.
This means that the repetition of the same equations (bits) starts to appear after
the LFSR state s'c.

Remark 4. The importance of the above proposition lies in a fact that the count-
ing method of repeated equations does not depend on the relation between the
number of sampling points ¢ and k (where k = |*»=*2]), i.e., it holds for both
c<kandc>k.

Notice that, in order to minimize the number of repeated equations, the terms
(c— 1>, de), i < m < n—1, should be minimized. Hence, we want to
avoid the divisibility by o in the scheme of differences as much as possible.
Moreover, for a given length L of LFSR, the differences between d; € D should
be maximized under the constraint Z;:ll d; < L — 1, which is also conditioned
by 1 <ly <ly <...<l, <L.In other words, the goal is to distribute the tap
positions over entire LFSR while at the same time keeping the divisibility by o
as low as possible. Clearly, if Zﬂ_ll di=L—1,thenly =1and [, = L.

1=

5 Two Algorithms Towards an Optimal Selection of Taps

It turns out that the problem of optimizing the choice of Z; is closely related to
the divisibility of the elements in the corresponding (multi)set of differences D
by an arbitrary o. Thus, instead of searching the set Z; directly, we focus on the
set of differences D. The construction of the set D is however out of reach to be
done exhaustively for moderately large L and n, and consequently we use some
heuristic techniques to specify D (sub)optimally.

In what follows, we present a method of constructing the set D which gives
a low number of repeated equations (confirmed by computer simulations) for
every 0. The set D is specified using some heuristic design rationales (see below)
and at the same time the differences d; are maximized.

Step A: Find the elements of the set D. To do this and avoid the divisibility
by o, the following pattern is applied.

1. Prime numbers are the most favourable to join the set D. Since higher values
of n dictate the repetitions of some elements in D, the repetition should be
kept on minimum with a general tendency to choose co-prime differences.
If some even numbers are taken, then the set D should contain just few of
them, because they can result in many common (high) factors in the rows of
Table 3.

Optimizing the Placement of Tap Positions 25

2. Maximize the differences d; under the constraint > deD d; <L —1.

Step B: Find the best ordering of the chosen differences, which basically means
that ordering of D is also important. This can be done using the following
algorithm with the complexity O(n!- K), where K corresponds to the complexity
of calculation Tcomyp. for all possible o.

INPUT: The set D and the numbers L, n = #D + 1 and m.

OUTPUT: The best ordering of the chosen differences, that is, an ordered set
D that maximizes the complexity of the attack.

STEP 1: Generate a list of all permutations of the elements in D;

STEP 2: For every permutation, find the minimal complexity for all steps o
from 1 to L;

STEP 3: Generate a list of all minimal complexities from Step 2;

STEP 4: Find the maximal value in the list of all minimal complexities;

STEP 5: Return the corresponding permutation of the maximal value.

Open Problem 1. Find an efficient algorithm, which returns the best ordering
of the set D without searching all permutations.

Remark 5. To measure the quality of a chosen set of differences D with respect
to the maximization of T omp. over all o, the computer simulations indicate that
an optimal ordering of the set D implies a small value of an optimal sampling
distance o. This is also a criterion that a set D is most likely chosen well (a sub-
optimal choice). The term “most likely” concerns the difficulties of capturing the
whole process of choosing the tap positions explicitly, due to a very complicated
relation between o, R, D and T¢omp. through the scheme of differences. When
choosing an output permutation (cf. Step 5 below), we always consider both o
and Tcomp. though o turns out to be a more stable indicator of the quality of a
chosen set D.

Note that, the above algorithm performs an exhaustive search over all permuta-
tions of the input set. For practical values of L, usually taken to be L = 256, the
time complexity of the above algorithm becomes practically infeasible already
for n > 10. To reduce its factorial time complexity, we modify the above algo-
rithm to process the subsets of the multiset D separately within the feasibility
constraints imposed on the cardinalities of these subsets.

STEP 1: Choose a set X by Step A, where #X < #D for which Step B is
feasible;

STEP 2: Find the best ordering of X using the algorithm in Step B for
Lx =1 +Zwiexxi < L and mx = L#X . %J,

STEP 3: Choose a set Y by Step A, where #Y < #D for which Step B is
feasible;

STEP 4: “Generate” a list of all permutations of the elements in Y;

26 E. Pasalic et al.

STEP 5: Find a permutation (Y},) from the above list such that for a fixed set
X, the new set Y, X obtained by joining X to Y, denoted by Y, X
(with the parameters Ly,x =1+ cx @i+ >, ¢y, ¥ < L and
my,x = |#YpX - -5]), allows a small optimal step o, in the sense
of Remark 5;

STEP 6: If such a permutation, resulting in a small value of o, does not exist
in Step 5, then back to Step 3 and choose another set Y

STEP 7: Update the set X « Y, X, and repeat the steps 3 - 5 by adjoining
new sets Y, until #Y,X =n — 1;

STEP 8: Return the set D = Y, X.

Remark 6. The parameters Lx and mx are derived by computer simulations,
where Lx essentially constrains the set X and myx keeps the proportionality
between the numbers m, #X and #D =n — 1.

An illustration of our modified version of the above algorithm is given in the
following example. Namely, for a rather practical choice of the parameters L,
n and m, the whole procedure of defining the set of differences that eventually
yields the tap positions is discussed. Some suboptimal choices of tap positions for
varying input parameters L, n, m along with the time complexity of the GFSGA
and the time complexity of applying our algorithms are given in Appendix (cf.
Tables 5 and 6).

Example 3. Let n = 17, m = 6, and F(z) : GF(2)'" — GF(2)°. Let L = 160
bits, the length of the secret key is K = 80 bits.

Let X = {5,13,7,26,11,17} be obtained using the algorithm in Step B
for Ly = 80, mx = 2. Let Y = {1,2,9,15,23}. Then, a permutation Y, =
{9,1,2,23,15}, i.e., the set

Y,X ={9,1,2,23,15,5,13,7,26,11,17},

where Ly,x = 130 and my,x = 4, gives that 0 = 1 is an optimal sam-
pling distance for the attacker. Since Ly,x < 160, then we choose the set
Z = {3,4,5,7,11}. Then, a permutation Z, = {5,11,4,3,7}, i.e., the set
Z,Y, X = {5,11,4,3,7,9,1,2,23,15,5,13,7,26,11,17}, where Lz y,x = L =
160 and MLy, x = M = 6 gives the optimal step o = 1 for the attacker. Then

we have
D =1{5,11,4,3,7,9,1,2,23,15,5,13,7,26,11,17},

and thus

Ty ={1,6,17,21, 24, 31,40, 41, 43, 66, 81, 86, 99, 106, 132,143, 160}.
Hence, o = 1 is optimal, with the minimal complexity Tcomp. = 28697
which is essentially an extremely good choice of tap positions (non-exhaustively
confirmed to be an optimal choice).

Optimizing the Placement of Tap Positions 27

In what follows, we apply the above algorithms to two well-known stream cipher
SOBER-t32 [16], [18] and SFINX [19].

SOBER-t32: An application of the GFSGA attack on unstuttered SOBER-
t32 was considered in [18]. The tap positions of SOBER-t32 are given by Z, =
{1,4,11,16,17} (corresponding to the reverse order of the taps 1 < s14, 4 < $13,
etc.) and the sampling distance used in [18] was o = 3. Due to the reverse order
of the bits s;, we consider the set D in reverse order , i.e. D = {1,5,7,3} instead
of {3,7,5,1}, since this ordering corresponds to our consideration of the LFSR
states presented in Table2. Regarding the set D, the set of all r; = #Z is
{1,1,2,2,3,3,4,4,4,4,...}, ie. 1y =1y =1, 79 =73 = 2, 14 =15 = 3 and
ry, = 4, k > 7. At each sampling point we derive 40 — 8 x r; linear equations
(cf. [18]). Therefore, the number of repeated equations is given by

40+32+324+24+24+16+164+8 x (c—7) +¢, (6)

which for ¢ = 47 gives R = 550 linear equations (6). Thus the complexity of the
attack can be estimated as

Tp = (17 x 32)3 x 235 x 22X27 5 92X19 5 92x11 » 939X3 _ (17 x 32)3 x 2266,

Since #D = 4, we can easily apply Step A and Step B, to come up with
the new set D* = {5,2,7,2}, and get the set {0,2,2,2,3,3,4,4,4,4,...} of all
r; = #ZIy. The inequality

404+40432+32+32+24+244+8X (¢—T7)+c¢>544
implies ¢ = 42, and R = 546 equations. The complexity is estimated as
Tp- = (17 x 32)3 x 22%35 5 23%27 5 92x19 5 934x3 _ (17 x 32)3 x 2291,

This means that our algorithm gives the tap selection with much better resistance
against GFSGA.

SFINX: The design details of SFINX can be found in [19]. The set of the tap
positions of SFINX is given as

To = {1,2,7,10,20,22,45,59, 75,99, 106, 135, 162, 194, 228, 245, 256,

and D = {1,5,3,10,2,23,14,16,24,7,29,27,32,34,17,11}. An optimal step of
the GFSGA attack on this set of tap positions, is ¢ = 2 which requires ¢ = 27
sampling points, resulting in R = 200 sampled equations for obtaining an overde-
fined system. The corresponding complexity in this case is Toomp. = 22°6. Note
that Z;il d; = 255 with optimal step ¢ = 2, which indicates that the set
of tap positions Zy of SFINX is chosen well. However, we can use the ele-
ments of the given set D and our algorithm to create the set of differences “by
parts”, in order to decrease the number of repeated equations R and increase
the complexity (slightly). Starting with the set X = {29,32,17,34,27,11}, and
permuting the set Y, = {2,23,14,16,24,7} for Ly,x = 237, we get the set

28 E. Pasalic et al.

Y, X = {2,23,14,7,16,24,29,32,17,34,27,11} with an optimal step ¢ = 8 for
the attack. Then, taking the set Z, = {1,5, 3,10}, we get the set D* = Z,Y, X
given as

D* ={1,5,3,10,2,23,14,7,16, 24, 29, 32,17, 34, 27, 11},

with the optimal steps o € {1,2} for the attack. The estimated complexity for
both optimal steps is Tcomp. = 22°7 with R = 167 repeated equations, thus only
a minor improvement has been achieved.

It would be of interest to consider the problem of optimizing the placement
of tap positions in case the GFSGA attack with a variable sampling step (o is
not fixed) is used, which is left for the extended version of this article.

Acknowledgments. Enes Pasalic was supported in part by the Slovenian Research
Agency research program (P3-0384) and research project (J1-6720). Samir Hodzi¢ was
supported in part by the Slovenian Research Agency (research program P3-0384 and
Young Researchers Grant). Yongzhuang Wei was supported in part by the Natural Sci-
ence Foundation of China (61100185,61201250), in part by the National Basic Research
Program of China (2013CB338002), in part by the project of Outstanding Young Teach-
ers’ Training in Higher Education Institutions of Guangxi.

Appendix

In Table 5 we give several instances for determining suboptimal tap positions of
LFSRs of different length. The following parameters are used:

— L is the length of LFSR;

— n and m are parameters related to vectorial Boolean function F : GF(2)" —
GF(2)™,;

— D is a set of differences between tap positions;

— cis the minimal number of observed outputs needed for an overdefined system

— R is the number of repeated equations for given ¢ outputs;

— o is an optimal step of the GFSGA attack;

— Tcomp. is the time complexity of GFSGA.

Table 5. Specifications of difference sets for LFSRs of different lengths.

L (n,m) D R & g TComp

80 |(7,2) | {5,13,7, 26,11, 17} 24 151 | 20997

120 (13,3) | {5, 7, 3, 13, 6, 11, 5, 11, 7, 13, 21, 17} 61 1432997

160 | (17,6) | {5,11,4,3,7,9,1,2,23,15,5, 13, 7, 26, 11, 17} 128171 | 28697

200 (21,7) | {3,7,9,13,18,7,9,1,2,9, 1,2, 23,15, 5,13, 7, 175|181 |2!08°
26, 11, 17}

256 | (27,9) | {5,9,13,4,7,19,3,7,9,13,18,7,9,1,2,9,1,2,227|18 |1 | 2!3°
23,15, 5, 13, 7, 26, 11, 17}

Optimizing the Placement of Tap Positions

29

Remark 7. From the difference sets D in Table5 we easily obtain the tap

positions.
Table 6. Time complexities for finding tap positions in Table 5.
L | (n,m) | Cardinality of parts | Complexity Times in sec
80 | (7,2) |no parts O(K - 6!) 135
120 | (13,3) | (6,6) O(K - 6!) 125+162=287
160 | (17,6) | (6,6,4) 2-0(K -6!)4+ O(K - 4!) 13741984-8.5=343.5
200 | (21,7) | (6,6,4,4) 2-0O(K-6!)4+2-O(K -4!) | 137496+7.749.5=250
256 | (27,9) | (6,6,4,4,6) 3-O(K-6!)+2-0O(K -4!)|250+369.3=619.3

Remark 8. Note that the time required to create some particular set of differ-
ences depends on the cardinality of parts. It means that the smaller cardinalities
implies the lower time complexity, though such an approach may provide the
solutions that are “far” from optimal. Table 6 presents the following:

— Cardinality of parts refers to the modified algorithm on Page 10, bottom.
For instance, (6,6,4) means that we take #X = 6 elements and finding its
optimal permutation requires 137 sec with our permutation algorithm. Then,
we take another #Y),, = 6 elements and determine its best order which fits to
the set X, which requires 198 seconds (modified algorithm). Finally, the same
procedure is applied to the set Y, X by adding Z, = 4 elements using again
our modified algorithm (requiring 8.5 sec). The resulting set of differences is
given as D = Z,Y, X.

Complexity refers to the complexity of the permutation algorithms Step B
and its modification used to construct the set D.

— The constant K regards the procedure described in the permutation algorithm

(Step B): creating the list, searching, etc.

References

1. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 1-13.
Springer, Heidelberg (2000)

2. Braeken, A., Preneel, B.: Probabilistic algebraic attacks. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 290-303. Springer,
Heidelberg (2005)

3. Carlet, C.: A larger class of cryptographic boolean functions via a study of the
Maiorana-McFarland construction. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol.
2442, pp. 549-564. Springer, Heidelberg (2002)

4. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Boneh, D. (ed.) Advances in Cryptology-EUROCRYPT 2003. LNCS, vol. 2656,
pp. 346-359. Springer, Heidelberg (2003)

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Pasalic et al.

Goli¢, J.D.: Intrinsic statistical weakness of keystream generators. In: Pieprzyk,
J., Safavi-Naini, R. (eds.) Advances in Cryptology-ASIACRYPT 1994. LNCS, vol.
917, pp. 91-103. Springer, Heidelberg (1995)

Goli¢, J.D.: On the security of nonlinear filter generators. In: Gollmann, D. (ed.)
Fast Software Encryption 1996. LNCS, vol. 1039, pp. 173-188. Springer, Heidelberg
(1996)

Golic, J.D., Clark, A., Dawson, E.: Generalized inversion attack on nonlinear filter
generators. IEEE Trans. Comput. 49(10), 1100-1109 (2000)

Hellman, M.: A cryptanalytic time-memory tradeoff. IEEE Trans. on Inform.
Theor. 26(4), 401-406 (1980)

Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353-372. Springer, Heidelberg
(2005)

Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform.
Theor. 15(1), 122-127 (1969)

Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474-491. Springer, Heidelberg (2004)

Mihaljevié¢, M.J., Fossorier, M.P.C., Imai, H.: A general formulation of algebraic
and fast correlation attacks based on dedicated sample decimation. In: Fossorier,
M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 203—
214. Springer, Heidelberg (2006)

Mihaljevié, M.J., Gangopadhyay, S., Paul, G., Imai, H.: Internal state recovery of
Grain-v1 employing normality order of the filter function. IET Inform. Secur. 6(2),
55-64 (2006)

Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92-98. Springer, Heidelberg
(1993)

Pasalic, E.: On guess and determine cryptanalysis of LFSR~based stream ciphers.
IEEE Trans. Inform. Theor. 55(7), 3398-3406 (2009)

Hawkes, P., Rose, G.: Primitive specification and supporting documentation for
SOBER-t16 submission to NESSIE. In: Proceedings of the First Open NESSIE
Workshop, KU-Leuven (2000)

Pasalic, E.: Probabilistic versus deterministic algebraic cryptanalysisa performance
comparison. IEEE Trans. Inform. Theor. 55(11), 2182-2191 (2009)

Wei, Y., Pasalic, E., Hu, Y.: Guess and determinate attacks on filter generators-
revisited. IEEE Trans. Inform. Theor. 58(4), 2530-2539 (2012)

Braeken, A., Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: SFINKS: A
Synchronous Stream Cipher for Restricted Hardware Environments. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/026 (2005)

2 Springer
http://www.springer.com/978-3-319-21355-2

Cryptography and Information Security in the Balkans
First International Conference, BalkanCryptSec 2014,
Istanbul, Turkey, October 16-17, 2014, Revised
Selected Papers

Ors, B.; Preneel, B, (Eds.)

2015, X, 251 p. 43 illus., Softcover

ISBM: 978-3-319-21 355-2

	Optimizing the Placement of Tap Positions
	1 Introduction
	2 Preliminaries
	2.1 Nonlinear Filtering Generator

	3 Overview of FSGA and GFSGA
	3.1 FSGA Description
	3.2 GFSGA Description

	4 Complexity Versus the Number of Repeated Equations
	5 Two Algorithms Towards an Optimal Selection of Taps
	References

