
Chapter 2
Fixed Effect and Random Effects Meta-Analysis

In this chapter we describe the two main methods of meta-analysis, fixed effect
model and random effects model, and how to perform the analysis in R. For both
models the inverse variance method is introduced for estimation. The pros and cons
of these methods in various contexts have been debated at length in the literature
[9, 28, 29, 41], without any conclusive resolution. Here, we briefly describe each
model, and how it is estimated in the R package meta [33, 34].1

An estimated treatment effect and its variance from each study are sufficient to
apply the inverse variance method. Therefore, this method is sometimes called the
generic inverse variance method. For the random effects model, various methods to
estimate the between-study variance, the Hartung–Knapp adjustment and prediction
intervals are briefly described.

We also show how to use R to generate forest plots. Along the way, we will show
how the tabular and graphical summaries usually included in Cochrane reviews can
be generated in R. We give examples using both base R and functions provided
by our R package meta. The various methods of meta-analysis are best illustrated
using base R; furthermore some basic R knowledge is gained from working with
fundamental R functions. The R code using functions from the R package meta
shows how routine manipulations and calculations can be automated. In practice a
meta-analyst would like to do the analyses using the more sophisticated functions in
the R package meta. Accordingly, readers not interested in the mathematical details
could run over the examples using base R functions.

We will use a continuous outcome to introduce both fixed effect and ran-
dom effects model. Accordingly, we start by describing the two most common
effect measures for continuous outcomes, mean difference and standardised mean

1If you did not already install R package meta do so using R command install.
packages("meta").
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22 2 Fixed Effect and Random Effects Meta-Analysis

difference. In Sect. 2.6, the generic inverse variance method is applied in meta-
analyses with survival outcome, cross-over trials and adjusted estimates from
regression models.

2.1 Effect Measures for Continuous Outcomes

Meta-analysis typically focuses on comparing two interventions, which we refer
to as experimental and control. When the response is continuous (i.e. quantitative)
typically the mean, standard deviation and sample size are reported for each group.
Let O�ek; s2ek; nek and O�ck; s2ck; nck denote the observed mean, standard deviation and
sample size for study k, k D 1; : : : ;K (see Table 2.1).

We consider two different types of effect measures for continuous outcomes:
mean difference and standardised mean difference. The mean difference is typically
used when all studies report the outcome on the same scale. On the other hand,
the standardised mean difference can be used when studies measure the outcome on
different scales, e.g. different depression scales like the Hamilton Depression Rating
Scale or the Hospital Anxiety and Depression Scale.

2.1.1 Mean Difference

For study k, the estimated mean difference is

O�k D O�ek � O�ck; (2.1)

Table 2.1 Variable names in R datasets for meta-analyses of continuous responses

Variable name Notation Description

author First author of study

year Year study published (if available)

Ne ne Number of patients in the experimental (i.e. active) treatment arm

Me O�e Mean response in the experimental treatment arm

Se se Standard deviation of the response in the experimental treatment arm

Nc nc Number of patients in the control (often equivalent to placebo) arm

Mc O�c Mean response in the control arm

Sc sc Standard deviation of the response in the control arm



2.1 Effect Measures for Continuous Outcomes 23

with variance estimate2

cVar . O�k/ D s2ek

nek
C s2ck

nck
: (2.2)

An approximate two-sided .1� ˛/ confidence interval for the mean difference is
given by

. O�ek � O�ck/ ˙ z1� ˛
2

s

s2ek

nek
C s2ck

nck
(2.3)

with z1� ˛
2

denoting the 1 � ˛
2

quantile of the standard normal distribution. For the
usual 95 % confidence interval, z1� 0:05

2
D z0:975 D 1:96, i.e. the 97.5 % point of the

standard normal distribution.

Example 2.1 We return to the meta-analysis by Spooner et al. [37] comparing
Nedocromil sodium with placebo for preventing exercise-induced bronchoconstric-
tion which we already used in Chap. 1. Outcome of interest is the maximum fall
in the forced expiratory volume in 1 second (FEV1) over the course of follow-up,
expressed as a percentage. Accordingly, all studies report the same outcome and the
use of the mean difference is warranted.

The raw data consist of eight variables with headings in Table 2.1. Code to read
in the data, together with the data, are shown in Fig. 1.2. From the data we see that
the meta-analysis contains 17 studies, with sample sizes ranging between 16 (Shaw
1985; DeBenedictis 1995) and 48 (Novembre 1994f).

For each study (labelled by first author and date) mean values, standard devi-
ations and sample sizes are given in Fig. 1.2. Thus for study 1 (Boner 1988)
the estimated mean difference is 13:54 � 20:77 D �7:23 and for study 2 (Boner
1989) it is 15:70 � 22:70 D �7:00 (see Fig. 1.4). Accordingly, the maximum fall
in FEV1 is on average about 7 % in Boner 1988 and Boner 1989. For study 1
(Boner 1988) the 95 % confidence interval (2.3) is

.13:54� 20:77/ ˙ 1:96

r

13:852

13
C 21:462

13
giving .�21:11; 6:65/:

We can use base R to calculate mean difference and 95 % confidence interval for
the Boner 1988 trial (assuming that the file dataset01.csv is in the current
working directory; see Sect. 1.2 for details):

> # 1. Read in the data
> data1 <- read.csv("dataset01.csv", as.is=TRUE)
> # 2. Calculate mean difference and its standard error for

2Note we could use a pooled estimate of the sample variance, but this assumes that the response
variance is the same in the two groups which will not be true in general.
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> # study 1 (Boner 1988) of dataset data1:
> MD <- with(data1[1,], Me - Mc)
> seMD <- with(data1[1,], sqrt(Seˆ2/Ne + Scˆ2/Nc))
> # 3. Print mean difference and limits of 95% confidence
> # interval using round function to show only two digits:
> round(c(MD, MD + c(-1,1) * qnorm(1-(0.05/2)) * seMD), 2)
[1] -7.23 -21.11 6.65

The values for mean difference, lower and upper limit of the 95 % confidence
interval are identical to those calculated manually.

We can also use the metacont function from R package meta to calculate mean
difference and confidence interval:

> with(data1[1, ],
+ print(metacont(Ne, Me, Se, Nc, Mc, Sc),
+ digits=2))

MD 95%-CI z p-value
-7.23 [-21.11; 6.65] -1.02 0.3074

Details:
- Inverse variance method

We get the same result by using the metacont function with argument
sm="MD" (i.e. summary measure is the Mean Difference) as this is the default
setting.

Note, the printout states that the inverse variance method has been used which
strictly speaking refers to the method of meta-analysis, i.e. a setting with at least two
studies. For a single study this simply means that Eqs. (2.1)–(2.3) have been used in
the calculation of the mean difference and its confidence interval.

Instead of using the with function, a more convenient way is to use the
metacont function with arguments data and subset.

> print(metacont(Ne, Me, Se, Nc, Mc, Sc,
+ data=data1, subset=1), digits=2)

MD 95%-CI z p-value
-7.23 [-21.11; 6.65] -1.02 0.3074
*** Output truncated ***

In addition to mean difference and its 95 % confidence interval, the metacont
function reports z-score and p-value for the test of an overall treatment effect. These
quantities can be calculated using base R functions pnorm and abs as follows:

> zscore <- MD/seMD
> round(c(zscore, 2*pnorm(abs(zscore), lower.tail=FALSE
[1] -1.0206 0.3074

When calling metacont we are matching up the first argument n.e of the
metacont function with the variable Ne of the Boner 1988 trial; and similarly
for the other arguments. In order to access the data of the Boner 1988 trial we use
the argument subset=1 which selects the first row of the dataset data1. A more
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general way to select the Boner 1988 trial which is not relying on the order of
the dataset is subset=(author=="Boner"&year=="1988").3

The argument subset can also be used to exclude some studies, e.g.,
subset=-2 selects all but the second trial, subset=author!="Boner"
excludes all trials from the author Boner, and subset=!(author=="Boner"
&year=="1988") excludes the Boner 1988 trial.4 ut

2.1.2 Standardised Mean Difference

In the bronchoconstriction meta-analysis used in Example 2.1 all studies measured
the outcome of interest on the same scale, so an overall effect can be estimated
directly by pooling the mean differences in the individual studies. However, in many
settings different studies use different outcome scales, e.g. different depression
scales or quality of life scales. In such cases we cannot pool the effect estimates
(mean differences) directly. Instead, we calculate a dimensionless effect measure
from every study and use this for pooling. A very popular dimensionless effect
measure is the standardised mean difference which is the study’s mean difference
divided by a standard deviation based either on a single treatment group or both
treatment groups.

There are a number of formulae in the literature for calculating a standardised
mean difference and its variance; see Chapter 16 of Cooper and Hedges [3] for a
summary. The metacont function from R package meta uses the same estimator
as RevMan 5 [40], i.e. a version of the standardised mean difference which is called
Hedges’s g [15, 16] based on the pooled sample variance. This standardised mean
difference for study k is calculated as:

Ogk D
�

1 � 3

4 nk � 9
� O�ek � O�ck
q

�

.nek � 1/s2ek C .nck � 1/s2ck

�

=.nk � 2/

(2.4)

where nk D nek C nck and the factor 1 � 3=.4 nk � 9/ corrects for the bias in
the estimated standard error. To calculate a confidence interval for Ogk, we need its
variance; again following RevMan 5 this is calculated as [18, page 80, equation (8)]

cVar .Ogk/ D nk

nek � nck
C Og2k
2.nk � 3:94/

: (2.5)

3The parentheses are not mandatory to select Boner 1988; we use them only to make the R code
more accessible.
4The parentheses are mandatory to exclude Boner 1988 using the variables author and year.
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Once Ogk and cVar .Ogk/ are calculated a two-sided (1�˛) confidence interval can be
calculated by

Ogk ˙ z1� ˛
2

S.E. .Ogk/ (2.6)

with standard error S.E. .Ogk/ D
q

cVar .Ogk/ and z1� ˛
2

denoting the 1 � ˛
2

quantile of
the standard normal distribution.

Example 2.2 Furukawa et al. [10] carried out a systematic review comparing low
dosage tricyclic antidepressants with placebo for the treatment of depression. They
reported the effect on presence/absence of depression and on depression severity.
Here we focus on the latter outcome. Unfortunately, different studies used different
scores to measure depression severity, e.g. 19 studies used some version of the
Hamilton Depression Rating Scale and five studies used the Montgomery-Åsberg
Depression Rating Scale. Accordingly, it is not possible to pool the estimated effects
directly.

Figure 2.1 reads in and views the data assuming that the file dataset02.csv
is in the current working directory; see Sect. 1.2 for details. The large differences
in means (columns Me, Mc) and standard deviations (columns Se, Sc) within the
experimental and control arms are typical of what occurs when different studies use
different outcome measures.

For each study (labelled by first author) mean values, standard deviations and
sample sizes are given in Fig. 2.1. For study 1 (Blashki), the standardised mean
difference with its 95 % confidence interval can be calculated using formulae (2.4)
to (2.6) in the following way:

Og1 D
�

1 � 3

4 .13C 18/� 9

�

6:4 � 11:4
p

.12 � 5:42 C 17 � 9:62/=.13C 18 � 2/
D �0:60:

Further

cVar .Og1/ D 13C 18

13 � 18 C �0:602
2 .13C 18 � 3:94/ D 0:1391305

and thus

S.E. .Og1/ D p
0:1391305 D 0:373002:

The 95 % confidence interval is

�0:6 ˙ 1:96 � 0:373002; i.e. .�1:33; 0:13/:
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> # 1. Read in the data:
> data2 <- read.csv("dataset02.csv")
> # 2. As usual, to view an object, type its name:
> data2

author Ne Me Se Nc Mc Sc
1 Blashki(75%150) 13 6.40 5.40 18 11.40 9.60
2 Hormazabal(86) 17 11.00 8.20 16 19.00 8.20
3 Jacobson(75-100) 10 17.50 8.80 6 23.00 8.80
4 Jenkins(75) 7 12.30 9.90 7 20.00 10.50
5 Lecrubier(100) 73 15.70 10.60 73 18.70 10.60
6 Murphy(100) 26 8.50 11.00 28 14.50 11.00
7 Nandi(97) 17 25.50 24.00 10 53.20 11.20
8 Petracca(100) 11 6.20 7.60 10 10.00 7.60
9 Philipp(100) 105 -8.10 3.90 46 -8.50 5.20
10 Rampello(100) 22 13.40 2.30 19 19.70 1.30
11 Reifler(83) 13 12.50 7.60 15 12.50 7.60
12 Rickels(70) 29 1.99 0.77 39 2.54 0.77
13 Robertson(75) 13 11.00 8.20 13 15.00 8.20
14 Rouillon(98) 78 15.80 6.80 71 17.10 7.20
15 Tan(70) 23 -8.50 8.60 23 -8.30 6.00
16 Tetreault(50-100) 11 51.90 18.50 11 74.30 18.50
17 Thompson(75) 11 8.00 8.10 18 10.00 9.70
> # 3. Calculate total sample sizes
> summary(data2$Ne+data2$Nc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.00 26.00 31.00 53.06 54.00 151.00

Fig. 2.1 Data from meta analysis by Furukawa et al. [10]. See Table 2.1 for details on the variables
in dataset data2

We can calculate the standardised mean difference, its standard error and 95 %
confidence interval for study 1 (Blashki) using base R:

> # 1. Calculate standardised mean difference (SMD) and
> # its standard error (seSMD) for study 1 (Blashki) of
> # dataset data2:
> N <- with(data2[1,], Ne + Nc)
> SMD <- with(data2[1,],
+ (1 - 3/(4 * N - 9)) * (Me - Mc) /
+ sqrt(((Ne - 1) * Seˆ2 + (Nc - 1) * Scˆ2)/(N - 2)))
> seSMD <- with(data2[1,],
+ sqrt(N/(Ne * Nc) + SMDˆ2/(2 * (N - 3.94))))
> # 2. Print standardised mean difference and limits of 95% CI
> # interval using round function to show only two digits:
> round(c(SMD, SMD + c(-1,1) * qnorm(1-(0.05/2)) * seSMD), 2)
[1] -0.60 -1.33 0.13
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We get the same result by using the metacont function with argument
sm="SMD" (Standardised Mean Difference):

> print(metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2, subset=1), digits=2)

SMD 95%-CI z p-value
-0.6 [-1.33; 0.13] -1.61 0.1083

Details:
- Inverse variance method

Once the standardised mean difference and its variance have been calculated
using the formulae (2.4) and (2.5), the calculations for both fixed effect and random
effects meta-analyses follow exactly as described in the next section. ut

2.2 Fixed Effect Model

The fixed effect model assumes that the estimated effects from the component
studies in a meta-analysis come from a single homogeneous population. In order
to calculate an overall estimate, we therefore average the estimates from each study,
allowing for the fact that some estimates are more precise than others (having come
from larger studies).

More formally, let k D 1; : : : ;K index study, O�k denote the intervention effect
estimate from study k, and � denote the intervention effect in the population, which
we wish to estimate. Denote by O�2k the sample estimate of Var . O�k/.

The fixed effect model is

O�k D � C �k�k; �k
i.i.d.� N.0; 1/: (2.7)

We now consider the fixed effect estimate of � , denoted by O�F. Given estimates
. O�k; O�k/; k D 1; : : : ;K; the maximum-likelihood estimate under model (2.7) is

O�F D

K
P

kD1
O�k= O�2k

K
P

kD1
1= O�2k

D

K
P

kD1
wk

O�k

K
P

kD1
wk

: (2.8)

Accordingly, O�F is a weighted average of the individual effect estimates O�k with
weights wk D 1= O�2k . Therefore, this method is called the inverse variance method.

The variance of O�F is estimated by

cVar . O�F/ D 1

K
P

kD1
wk

: (2.9)
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A (1 � ˛) confidence interval for O�F can be calculated by

O�F ˙ z1� ˛
2

S.E. . O�F/ (2.10)

with standard error S.E. . O�F/ D
q

cVar . O�F/ and z1� ˛
2

denoting the 1 � ˛
2

quantile
of the standard normal distribution. A corresponding test for an overall treatment

effect can be constructed using O�F

.

S.E. . O�F/ as test statistic.

Example 2.3 The fixed effect estimate O�F and its 95 % confidence interval for the
bronchoconstriction meta-analysis are given in Fig. 1.4; here we show how O�F can
be calculated using R. Recall Eqs. (2.1) and (2.2) which give the mean difference O�k

and its variance estimate cVar . O�k/. The fixed effect estimate O�F and its variance can
be calculated using the following quantities:

O�k D O�k

O�2k D cVar . O�k/:

The fixed effect estimate and its variance can be calculated using base R code:

> # 1. Calculate mean difference, variance and weights
> MD <- with(data1, Me - Mc)
> varMD <- with(data1, Seˆ2/Ne + Scˆ2/Nc)
> weight <- 1/varMD
> # 2. Calculate the inverse variance estimator
> round(weighted.mean(MD, weight), 4)
[1] -15.514
> # 3. Calculate the variance
> round(1/sum(weight), 4)
[1] 1.4126

Note, the standard weighted.mean function is used to calculate O�F.
The meta-analysis can be conducted much easier using the metacont function

which yields identical results:

> mc1 <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ data=data1,
+ studlab=paste(author, year))
> round(c(mc1$TE.fixed, mc1$seTE.fixedˆ2), 4)
[1] -15.5140 1.4126

We select mc1$TE.fixed, i.e. the Treatment Estimate in the fixed effect
model, and its standard error mc1$seTE.fixed from the meta-analysis object
mc1. We can use the command str(mc1) to print the whole structure of the meta-
analysis object mc1 and look at the help page of the metacont function which
describes the individual elements of mc1.

A complete printout for the meta-analysis is given in Fig. 2.2. The first thing the
output gives is a table whose rows are the component studies in the meta-analysis.
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MD 95%-CI %W(fixed) %W(random)
Boner 1988 -7.2 [-21.1; 6.7] 2.82 3.08
Boner 1989 -7.0 [-16.2; 2.2] 6.38 6.58
Chudry 1987 -18.4 [-28.8; -8.0] 5.01 5.29
Comis 1993 -16.8 [-27.8; -5.8] 4.50 4.78
DeBenedictis 1994a -13.0 [-22.8; -3.2] 5.68 5.93
DeBenedictis 1994b -16.6 [-35.8; 2.6] 1.47 1.64
DeBenedictis 1995 -13.9 [-27.6; -0.2] 2.87 3.13
Debelic 1986 -18.2 [-30.7; -5.8] 3.52 3.80
Henriksen 1988 -29.7 [-41.6; -17.8] 3.83 4.11
Konig 1987 -14.2 [-25.0; -3.4] 4.65 4.93
Morton 1992 -22.5 [-33.5; -11.5] 4.48 4.76
Novembre 1994f -13.0 [-19.5; -6.6] 12.98 12.15
Novembre 1994s -15.1 [-23.8; -6.4] 7.14 7.28
Oseid 1995 -14.8 [-23.7; -5.9] 6.82 6.99
Roberts 1985 -20.0 [-36.9; -3.1] 1.90 2.10
Shaw 1985 -24.2 [-33.2; -15.1] 6.67 6.85
Todaro 1993 -13.4 [-18.7; -8.1] 19.29 16.58

Number of studies combined: k=17

MD 95%-CI z p-value
Fixed effect model -15.5 [-17.8; -13.2] -13.1 < 0.0001
Random effects model -15.6 [-18.1; -13.2] -12.3 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 2.4374; H = 1.05 [1; 1.35]; Iˆ2 = 8.9% [0%; 45.3%]

Test of heterogeneity:
Q d.f. p-value

17.57 16 0.3496

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Fig. 2.2 Output from meta-analysis of the bronchoconstriction meta-analysis [37]. The output
starts with a table of the included studies. For each study, the mean difference (MD) with 95 %
confidence interval is given, along with weights used for fixed effect and random effects model.
There are 17 studies in the example. Next, the results of fixed effect and random effects model are
presented with 95 % confidence intervals, z statistic and p-value. Heterogeneity is quantified by the
estimated between-study variance �2, H and I2, see Sects. 2.3 and 2.4, and tested using Cochran’s
Q statistic, see Eq. (2.12). There is not much heterogeneity present in this example. The output
ends with details of the methods used, e.g. how �2 was estimated, see Sect. 2.3.1

This table is also shown in Fig. 1.4 on the right side of the forest plot. The columnMD
is the mean difference of the response (maximum change in FEV1 as a percentage)
between the Nedocromil sodium and placebo group. Next comes a 95 % confidence
interval for this difference, calculated based on (2.3). The next two columns are the
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weights given to the study under the fixed effect (%W(fixed)) and random effects
model (%W(random)).

The weight of study 1 (Boner 1988) in the fixed effect meta-analysis is given
by the inverse of the variance (2.2) which can be calculated as

1

��

13:852

13
C 21:462

13

�

D 1=50:18108 D 0:01992783:

The percentage weight of study 1 (Boner 1988) in the fixed effect meta-
analysis reported in Figs. 1.4 and 2.2 is

100 � w1
P17

iD1 wi

D 100 � 0:01992783
0:7079028

D 2:82%:

We could also use R to calculate these values:

> mc1$w.fixed[1]
[1] 0.01992783
> sum(mc1$w.fixed)
[1] 0.7079028
> round(100*mc1$w.fixed[1] / sum(mc1$w.fixed), 2)
[1] 2.82

After reporting the number of studies combined in meta-analysis, fixed effect
estimate O�F; random effects estimate O�R (see Sect. 2.3) and their 95 % confidence
intervals, z and p-values are given in Fig. 2.2. Next come the measures for
heterogeneity and a test for heterogeneity (see Sect. 2.4). Finally a note indicates
that the “Inverse variance method” has been used. This is in fact the only method
for continuous data; but with binary data (see Chap. 3) we shall see there are other
alternatives.

A forest plot is shown in Fig. 2.3 which has been produced by the R command

> forest(mc1, comb.random=FALSE, xlab=
+ "Difference in mean response (intervention - control)
+ units: maximum % fall in FEV1",
+ xlim=c(-50,10), xlab.pos=-20, smlab.pos=-20)

Note the use of the xlab option to label the x-axis, and in particular how a line
break in the input text creates a line break in the axis label on the graph. The option
xlim=c(-50,10) is used to specify that the limits of the x-axis are between �50
and 10. The options xlab.pos and smlab.pos specify the centre of the label
on x-axis and the summary measure at the top of the figure; otherwise these texts
would be centred around 0.

Note, the meta-analysis could have also been done using the metagen function
which is the primary function in R package meta to conduct a meta-analysis based
on the generic inverse variance method.

> # 1. Apply generic inverse variance method
> mc1.gen <- metagen(mc1$TE, mc1$seTE, sm="MD")
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Study

Fixed effect model
Heterogeneity: I−squared=8.9%, tau−squared=2.437, p=0.3496

Boner 1988
Boner 1989
Chudry 1987
Comis 1993
DeBenedictis 1994a
DeBenedictis 1994b
DeBenedictis 1995
Debelic 1986
Henriksen 1988
Konig 1987
Morton 1992
Novembre 1994f
Novembre 1994s
Oseid 1995
Roberts 1985
Shaw 1985
Todaro 1993

Total

240

 13
 20
 12
 12
 17
  8
 13
 12
 12
 12
 16
 24
 19
 20
  9
  8
 13

Mean

13.54
15.70
21.30
14.50
14.40
14.80
15.70
29.83
17.50
12.00
15.83
15.42
11.00
14.10
18.90
10.27
10.10

SD

13.85
13.10
13.10
12.20
11.10
18.60
16.80
15.95
13.10
14.60
13.43
 8.35
12.40
 9.50
17.70
 7.02
 8.90

Experimental
Total

240

 13
 20
 12
 12
 17
  8

 13
 12
 12
 12
 16
 24
 19
 20
  9
  8

 13

Mean

20.77
22.70
39.70
31.30
27.40
31.40
29.60
48.08
47.20
26.20
38.36
28.46
26.10
28.90
38.90
34.43
23.50

SD

21.46
16.47
12.90
15.10
17.30
20.60
18.90
15.08
16.47
12.30
18.01
13.84
14.90
18.00
18.90
10.96
 4.00

Control

−50 −40 −30 −20 −10 0 10

Mean difference

Difference in mean response (intervention − control)
units: maximum % fall in FEV1

MD

−15.51

 −7.23
 −7.00

−18.40
−16.80
−13.00
−16.60
−13.90
−18.25
−29.70
−14.20
−22.53
−13.04
−15.10
−14.80
−20.00
−24.16
−13.40

95%−CI

[−17.84; −13.18]

[−21.11;   6.65]
[−16.22;   2.22]

[−28.80;  −8.00]
[−27.78;  −5.82]
[−22.77;  −3.23]
[−35.83;   2.63]

[−27.65;  −0.15]
[−30.67;  −5.83]

[−41.61; −17.79]
[−25.00;  −3.40]

[−33.54; −11.52]
[−19.51;  −6.57]
[−23.82;  −6.38]
[−23.72;  −5.88]
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Fig. 2.3 Forest plot for the bronchoconstriction meta-analysis [37]. For details, see text

> # 2. Same result
> mc1.gen <- metagen(TE, seTE, data=mc1, sm="MD")
> # 3. Print results for fixed effect and random effects method
> c(mc1$TE.fixed, mc1$TE.random)
[1] -15.51403 -15.64357
> c(mc1.gen$TE.fixed, mc1.gen$TE.random)
[1] -15.51403 -15.64357

In steps 1 and 2, the generic inverse variance method is applied using the
metagen function; we use the list elements mc1$TE (treatment effect) and
mc1$seTE (standard error) as inputs to the metagen function. Output of resulting
objectmc1.gen is identical to results using the metacont function as exemplified
in step 3 for the fixed effect and random effects estimates. Applying the metagen
function in this way seems rather artificial, however, as we will see in Sect. 2.6 this
function can be used to conduct a meta-analysis for other outcomes. ut

Following RevMan 5, the following quantities are used to estimate the standard-
ised mean difference in the fixed effect model:

O�k D Ogk

O�2k D cVar .Ogk/

with Ogk and cVar .Ogk/ defined in (2.4) and (2.5). These quantities are utilised in
formulae (2.8)–(2.10) to calculate the fixed effect estimate of the standardised mean
difference.
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Example 2.4 For the standardised mean difference, we can calculate the fixed effect
estimate and its variance using base R:

> # 1. Calculate standardised mean difference,
> # variance and weights
> N <- with(data2, Ne + Nc)
> SMD <- with(data2,
+ (1 - 3/(4 * N - 9)) * (Me - Mc)/
+ sqrt(((Ne - 1) * Seˆ2 + (Nc - 1) * Scˆ2)/(N - 2)))
> varSMD <- with(data2,
+ N/(Ne * Nc) + SMDˆ2/(2 * (N - 3.94)))
> weight <- 1/varSMD
> # 2. Calculate the inverse variance estimator
> round(weighted.mean(SMD, weight), 4)
[1] -0.3915
> # 3. Calculate the variance
> round(1/sum(weight), 4)
[1] 0.0049

Again, the meta-analysis can be conducted using the metacont function:

> mc2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2)
> round(c(mc2$TE.fixed, mc2$seTE.fixedˆ2), 4)
[1] -0.3915 0.0049

A complete summary for the meta-analysis is given in Fig. 2.4. ut

> print(summary(mc2), digits=2)
Number of studies combined: k=17

SMD 95%-CI z p-value
Fixed effect model -0.39 [-0.53; -0.25] -5.61 < 0.0001
Random effects model -0.59 [-0.87; -0.30] -4.04 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.2309; H = 1.91 [1.5; 2.43]; Iˆ2 = 72.5% [55.4%; 83.1%]

Test of heterogeneity:
Q d.f. p-value

58.27 16 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Fig. 2.4 Output from meta-analysis of the tricyclic antidepressants for depression [10]. The output
is organised similar to Fig. 2.2, except that information on individual studies is omitted by using
the summary.meta function
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2.3 Random Effects Model

The random effects model seeks to account for the fact that the study effect estimates
O�k are often more variable than assumed in the fixed effect model. Under the random
effects model,

O�k D � C uk C �k�k; �k
i.i.d.� N.0; 1/I uk

i.i.d.� N.0; �2/; (2.11)

where the u’s and �’s are independent. Comparing with (2.7) shows the random
effects model has the fixed effect model as a special case when �2 D 0: A key
assumption of the random effects model is that the uk we see in our data are not
intrinsically associated with study kI if study k was rerun, the new uk would be an
independent draw from N.0; �2/: This is known as the exchangeability assumption.
If we accept this assumption then, compared with the fixed effect model, calculating
an overall effect estimate will pay greater attention to the effect estimates from
the smaller studies. This difference with the fixed effect model lies at the heart
of discussions about whether the random effects model is appropriate. A number
of authors have argued that, as small studies are more susceptible to bias, the fixed
effect estimate is (almost) always preferable [11, 30].

Under the random effects model there are a number of options for estimating
� , Var . O�/ and �2. Maximum-likelihood is attractive, but the resulting variance
estimates are biased downwards if the number of studies is small. This has led to
the widespread use of the method of moments estimate proposed by DerSimonian
and Laird [7], which has the attraction that it can be readily calculated when the
response is discrete, when maximum-likelihood estimation is less straightforward.

Again, the default settings in the metacont function are the same as those in
RevMan 5. Define

Q D
K
X

kD1
wk. O�k � O�F/

2 (2.12)

the weighted sum of squares about the fixed effect estimate with wk D 1= O�2k . This
is usually referred to as either the homogeneity test statistic or the heterogeneity
statistic [18, p. 266, 290]. Next define

S D
K
X

kD1
wk �

K
P

kD1
w2k

K
P

kD1
wk

:

If Q < .K � 1/; then O�2 is set to 0 and the random effects estimate O�R is set equal
to the fixed effect estimate O�F: Otherwise, the DerSimonian–Laird estimator of the
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between-study variance is defined as

O�2 D Q � .K � 1/
S

and the random effects estimate and its variance are given by

O�R D

K
P

kD1
w�

k
O�k

K
P

kD1
w�

k

(2.13)

cVar . O�R/ D 1

K
P

kD1
w�

k

: (2.14)

with weights w�
k D 1=. O�2k C O�2/. The random effects estimator O�R is a weighted

average of the individual effect estimates O�k with weights 1=. O�2k C O�2/. Accordingly,
this method is often called “Inverse variance method”, too.

A (1�˛) confidence interval for O�R can be calculated by

O�R ˙ z1� ˛
2

S.E. . O�R/ (2.15)

with standard error S.E. . O�R/ D
q

cVar . O�R/ and z1� ˛
2

denoting the 1 � ˛
2

quantile
of the standard normal distribution. A corresponding test for an overall treatment

effect can be constructed using O�R

.

S.E. . O�R/ as test statistic.

Note, formulae (2.13)–(2.15) are used for the standardised mean difference, too.
The method used to estimate the between-study variance �2 may have a large

impact on the weighting of studies. Several method to estimate �2 besides the
DerSimonian–Laird method have been published in the literature. These methods
will be described in the next Sect. 2.3.1.

Example 2.5 The result for the random effects model fitted to the bronchoconstric-
tion dataset is given in Fig. 2.2. The weight of study 1 (Boner 1988) is

100 � w�
1

PK
iD1 w�

i

D 100 � 0:019005
0:6179183

D 3:08:

The random effects estimate is very similar to the fixed effect estimate ( O�F D
�15:5, O�R D �15:6); likewise confidence interval limits are similar. ut
Example 2.6 For the depression meta-analysis fixed effect and random effects
estimates are rather different ( O�F D �0:39, O�R D �0:59), see Fig. 2.4. Furthermore,
the confidence interval for the random effects model is much wider. Nevertheless,
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both models show a highly statistically significant beneficial effect of tricyclic
antidepressants on depression severity. ut

2.3.1 Estimation of Between-Study Variance

The following methods to estimate the between-study variance �2 are available in
the metagen and other functions of R package meta (argument method.tau):

• DerSimonian–Laird estimator [7] (method.tau="DL") (default)
• Paule–Mandel estimator [27] (method.tau="PM")
• Restricted maximum-likelihood estimator [43] (method.tau="REML")
• Maximum-likelihood estimator [43] (method.tau="ML")
• Hunter–Schmidt estimator [22, 43] (method.tau="HS")
• Sidik–Jonkman estimator [35] (method.tau="SJ")
• Hedges estimator [17] (method.tau="HE")
• Empirical Bayes estimator [39] (method.tau="EB").

The DerSimonian–Laird estimator is by far the most popular method, especially
in medical research. For example, the DerSimonian–Laird estimator is the only
method available in RevMan 5 [40]. Accordingly, this method is the default in R
package meta.

The properties of these estimators have been evaluated in Monte Carlo sim-
ulations [36, 43] as well as analytically [43]. Results of these evaluations are
inconsistent, recommending the restricted maximum-likelihood estimator [43] and
Sidik–Jonkman or Empirical Bayes estimator [36], respectively.

As a technical note, with exception of the DerSimonian–Laird and the Paule–
Mandel methods the rma.uni function of R package metafor is called internally
in the metagen function. Thus, it is a good idea to install R package metafor to
make all estimation methods available.5 Further details on the various methods are
provided in the help page of the rma.uni function.

Example 2.7 A forest plot with results for the various estimates of �2 in the bron-
choconstriction dataset is shown in Fig. 2.5.6 Results are similar for DerSimonian–
Laird, restricted maximum-likelihood and empirical Bayes estimator. Whereas the
Sidik–Jonkman estimator is surprisingly large, other estimators (i.e. Paule–Mandel,
maximum-likelihood, Hunter–Schmidt and Hedges) are rather small. The very large
estimate of �2 from the Sidik–Jonkman method cautions against relying exclusively
on this approach. ut

5R command: install.packages("metafor").
6R code to create the forest plot is given in the web-appendix.
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Method

Fixed−effect model 

Random−effect model
DerSimonian−Laird
Paule−Mandel
Restricted maximum−likelihood
Maximum−likelihood
Hunter−Schmidt
Sidik−Jonkman
Hedges
Empirical Bayes

Between−study
heterogeneity

0

2.44
0

2.52
0.06
0.81

15.75
0

2.48

−20 −18 −16 −14 −12

MD

−15.51

−15.64
−15.51
−15.65
−15.52
−15.56
−15.96
−15.51
−15.65

95%−CI

[−17.84; −13.18]

[−18.14; −13.15]
[−17.84; −13.18]
[−18.15; −13.15]
[−17.85; −13.18]
[−17.95; −13.18]
[−19.10; −12.81]
[−17.84; −13.18]
[−18.14; −13.15]

Fig. 2.5 Forest plot for the bronchoconstriction meta-analysis [37] comparing estimation methods
for between-study heterogeneity �2

2.3.2 Hartung–Knapp Adjustment

Hartung and Knapp [14, 25] introduced a new meta-analysis method based on a
refined variance estimator in the random effects model. It has been argued in a recent
publication in the Annals of Internal Medicine that the Hartung–Knapp method is
preferred over the DerSimonian–Laird method [4].

Instead of using the variance estimate given in Eq. (2.14), Hartung and Knapp
propose to use the following variance estimator for O�R:

cVar HK. O�R/ D 1

K � 1
K
X

kD1

w�
k

w�
� O�k � O�R

�2

(2.16)

with weights w�
k as given in Eq. (2.14) and w� D PK

kD1 w�
k .

Hartung [13] showed that

O�R � �

S.E. HK. O�R/

with standard error S.E. HK. O�R/ D
q

cVar HK. O�R/ follows a t-distribution with K � 1

degrees of freedom.
Accordingly, a (1�˛) confidence interval for O�R based on the Hartung–Knapp

method can be calculated by

O�R ˙ tK�1I1� ˛
2

S.E. HK. O�R/ (2.17)
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with tK�1I1� ˛
2

denoting the 1 � ˛
2

quantile of the t-distribution with K � 1 degrees
of freedom. A corresponding test for an overall treatment effect can be constructed

using O�R

.

S.E. HK. O�R/ as test statistic.

It has been shown in simulations [25] that a test based on the Hartung–Knapp
modification holds the prespecified significance level much better than tests based
on S.E. . O�F/ and S.E. . O�R/.

Example 2.8 Results of fixed effect and random effects model to evaluate the use
of tricyclic antidepressants for depression [10] are reported in Fig. 2.4.

We can either use the metacont function to conduct the Hartung–Knapp
adjustment

> mc2.hk <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2, comb.fixed=FALSE,
+ hakn=TRUE)

or the metagen function

> mc2.hk <- metagen(TE, seTE, data=mc2, comb.fixed=FALSE,
+ hakn=TRUE)

We print the summary of the meta-analysis in the usual way.

> print(summary(mc2.hk), digits=2)
Number of studies combined: k=17

95%-CI t p-value
Random effects model -0.59 [-0.95; -0.22] -3.4 0.0036

Quantifying heterogeneity:
tauˆ2 = 0.2309; H = 1.91 [1.5; 2.43]; Iˆ2 = 72.5% [55.4%; 83.1%]

Test of heterogeneity:
Q d.f. p-value

58.27 16 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2
- Hartung-Knapp adjustment for random effects model

Use of the Hartung–Knapp method yields a much wider 95 % confidence interval
as compared to the classic random effects model (see Fig. 2.4): Œ�0:95I �0:22�
versus Œ�0:87I �0:30�. Furthermore, using the test for an overall treatment effect is
based on a t-distribution with K � 1 degrees of freedom. Accordingly, the p-value is
much larger (p D 0:0036) as compared to the p-value of the classic random effects
method (p < 0:0001, see Fig. 2.4). Nonetheless, the test for an overall treatment
effect is still highly significant. ut
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2.3.3 Prediction Intervals

The confidence interval for the random effects estimator O�R given by Eq. (2.15)
describes the uncertainty in the estimation of the mean treatment effect. However,
in order to calculate a prediction interval [21] for the treatment effect in a future
study from the random effects model (2.11), we need to take into account not
only uncertainty in estimating the mean treatment effect but also the between-study
variance �2:

Such a (1� ˛) prediction interval can be calculated as

O�R ˙ tK�2;1� ˛
2

q

cVar . O�R/C O�2; (2.18)

where we include the estimate of � in the variance, and tK�2;1� ˛
2

denotes the 1 � ˛
2

quantile of the t-distribution with K � 2 degrees of freedom.

Example 2.9 In the R package meta a prediction interval can be printed in
several ways. We can use the argument prediction=TRUE in the creation of
a meta-analysis object using the metacont function.7 Or, we can specify the
prediction argument in a summary, forest or print command. In the
following R code we use the prediction argument in the summary.meta
command.

> print(summary(mc1, prediction=TRUE), digits=2)
Number of studies combined: k=17

MD 95%-CI z p-value
Fixed effect model -15.51 [-17.84; -13.18] -13.05 < 0.0001
Random effects model -15.64 [-18.14; -13.15] -12.30 < 0.0001
Prediction interval [-19.94; -11.35]
*** Output truncated ***

The result for the prediction interval is printed just below the results for the two
meta-analysis methods. Note that the point estimate, i.e. the random effects estimate
O�R, is not reported for a prediction interval. In the bronchoconstriction meta-analysis
the prediction interval is .�19:94;�11:35/: Therefore, in a new study we expect an
average treatment effect of more than 11 %.

A forest plot showing a prediction interval can be easily generated using the
following command:

> forest(mc1, prediction=TRUE, col.predict="black")

This is shown in Fig. 2.6. The prediction interval is shown as a bar below the two
diamonds for the meta-analysis results. We changed the colour of the bar to black;
by default, a red bar would be printed. ut

7We did not do this in the creation of R object mc1.
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Study

Fixed effect model
Random effects model

Heterogeneity: I−squared=8.9%, tau−squared=2.437, p=0.3496
Prediction interval

Boner 1988
Boner 1989
Chudry 1987
Comis 1993
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Shaw 1985
Todaro 1993
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 13
 20
 12
 12
 17
  8
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 12
 12
 12
 16
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 19
 20
  9
  8

 13
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15.70
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15.83
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SD

21.46
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10.96
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Fig. 2.6 Forest plot for the bronchoconstriction meta-analysis [37] showing a prediction interval
which was generated using argument prediction=TRUE in the forest.meta command

2.4 Tests and Measures of Heterogeneity

There are a number of heterogeneity measures in the literature [19, 32]. The most
commonly used measures are calculated by the metacont function, and we now
briefly describe them. More details on these measures are given in Sect. 4.2.

The first, Q, defined in (2.12), is the weighted sum of squares about the fixed
effect estimate O�F. Large values of Q indicate greater heterogeneity between the
individual studies in a meta-analysis, and greater values of the between-study
heterogeneity �2. Under the null hypothesis that �2 D 0;

Q � �2K�1;

and this can be used to calculate a p-value against this null hypothesis.
Two related statistics [20] are commonly quoted:

H2 D Q

K � 1
(2.19)

I2 D
	

.H2 � 1/=H2 if Q > .K � 1/
0 otherwise

(2.20)

Under the null hypothesis that �2 D 0; Q has mean K � 1; so H2 has mean 1;
again large values of H2 indicate greater heterogeneity. I2 is a scaled version of H2;

lying between 0 and 1 (or 0 % and 100 %). Again, large values are consistent with
heterogeneity, although for given �2; values of I2 will increase as the sample sizes
of the component trials increase [32].
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Example 2.10 For the bronchoconstriction meta-analysis, estimates of the measures
of heterogeneity (�2 D 2:44, H D 1:05 Œ1I 1:35�, I2 D 8:9% Œ0%I 45:3%�) and the
test for heterogeneity (Q D 17:57, p-value D 0:35) are given in Fig. 2.2. All these
quantities indicate that not much statistical heterogeneity is present. Accordingly,
as both fixed effect and random effects are similar and show very strong evidence
of an effect, and there is no evidence of heterogeneity, we conclude there is strong
evidence Nedocromil sodium ameliorates post-exercise bronchoconstriction. ut
Example 2.11 For the depression meta-analysis, estimates of the measures of
heterogeneity (�2 D 0:23, H D 1:91 Œ1:5I 2:43�, I2 D 72:5% Œ55:4%I 83:1%�)
and the test for heterogeneity (Q D 58:27, p-value < 0:0001) can be found
in Fig. 2.4. All these quantities indicate that very large statistical heterogeneity
is present. Despite this very large statistical heterogeneity both fixed effect and
random effects meta-analysis show a statistically significant beneficial effect of
tricyclic antidepressants. Furthermore, only 1 of 17 trials shows a detrimental effect
of tricyclic antidepressants. Accordingly, we conclude there is strong evidence for
a beneficial effect of tricyclic antidepressants; however, the size of the effect is
unclear. ut

2.5 Subgroup Analysis

From time to time we need to work with subgroups of studies in a meta-analysis.
The various R commands for meta-analysis in the R package meta support a
byvar option, i.e. conduct a subgroup analysis by a variable, which makes this
straightforward. We now illustrate its use. More technical details on subgroup
analyses are provided in Sect. 4.3.

Example 2.12 Poole and Black [31] report a meta-analysis of mucolytic agents
versus placebo for patients with chronic bronchitis and/or chronic obstructive
pulmonary disease. The outcome is the mean number of acute exacerbations per
month. Acute exacerbation is defined as an increase in cough and in the volume
and/or purulence of sputum. As all studies report a mean number of exacerbations,
we can work with mean differences, rather than standardised mean differences. R
code to read in the data is given in Fig. 2.7. Notice that studies 5 and 12 (Jackson
1984, Grillage 1985) have zero standard errors.

We do a meta-analysis of the chronic bronchitis data using the following R
command:

> mc3 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year))
Warning message:
In metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, :

Studies with non-positive values for sd.e or sd.c get no weight
in meta-analysis.
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> # 1. Read in the data:
> data3 <- read.csv("dataset03.csv")
> # 2. As usual, to view an object, type its name:
> data3

author year Ne Me Se Nc Mc Sc duration
1 Bontognali 1991 30 0.70 3.76 30 1.27 4.58 <= 3 months
2 Castiglioni 1986 311 0.10 0.21 302 0.20 0.29 <= 3 months
3 Cremonini 1986 21 0.25 0.23 20 0.71 0.29 <= 3 months
4 Grassi 1994 42 0.16 0.29 41 0.45 0.43 <= 3 months
5 Jackson 1984 61 0.11 0.00 60 0.13 0.00 <= 3 months
6 Allegra 1996 223 0.07 0.11 218 0.11 0.14 > 3 months
7 Babolini 1980 254 0.13 0.18 241 0.33 0.27 > 3 months
8 Boman 1983 98 0.20 0.27 105 0.32 0.30 > 3 months
9 Borgia 1981 10 0.05 0.08 9 0.15 0.17 > 3 months
10 Decramer 2005 256 0.10 0.11 267 0.11 0.16 > 3 months
11 Grassi 1976 35 0.14 0.15 34 0.27 0.21 > 3 months
12 Grillage 1985 54 0.10 0.00 55 0.12 0.00 > 3 months
13 Hansen 1994 59 0.11 0.15 70 0.16 0.19 > 3 months
14 Malerba 2004 115 0.06 0.08 119 0.07 0.08 > 3 months
15 McGavin 1985 72 0.42 0.34 76 0.52 0.35 > 3 months
16 Meister 1986 90 0.15 0.15 91 0.20 0.19 > 3 months
17 Meister 1999 122 0.06 0.15 124 0.10 0.15 > 3 months
18 Moretti 2004 63 0.12 0.14 61 0.17 0.17 > 3 months
19 Nowak 1999 147 0.03 0.06 148 0.06 0.12 > 3 months
20 Olivieri 1987 110 0.18 0.31 104 0.33 0.41 > 3 months
21 Parr 1987 243 0.18 0.21 210 0.21 0.21 > 3 months
22 Pela 1999 83 0.17 0.18 80 0.29 0.32 > 3 months
23 Rasmussen 1988 44 0.13 0.21 47 0.14 0.19 > 3 months

Fig. 2.7 Reading in data from meta-analysis of mucolytic agents versus placebo for patients with
chronic bronchitis and/or chronic obstructive pulmonary disease [31]

A warning has been printed for studies with zero weights. We can verify that
these are the Jackson 1984 and Grillage 1985 trials:

> mc3$studlab[mc3$w.fixed==0]
[1] "Jackson 1984" "Grillage 1985"

The result of the meta-analysis is given by

> print(summary(mc3), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -0.05 [-0.05; -0.04] -10.06 < 0.0001
Random effects model -0.08 [-0.11; -0.05] -5.82 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0027; H = 2.63 [2.19; 3.15]; Iˆ2 = 85.5% [79.1%; 89.9%]

Test of heterogeneity:
Q d.f. p-value

138.08 20 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2
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The results indicate significant between-study heterogeneity (Q D 138, p <

0:0001) with I2 D 85:5%: Looking at the data (Fig. 2.7), subgroup information is
available for study duration: studies whose duration was greater or less than three
months.

A subgroup analysis can be done by using argument byvar in the original call
of the metacont function:

> mc3s <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ byvar=duration, print.byvar=FALSE)

Another more convenient way is to update the original meta-analysis by using
the update.meta function from R package meta:8

> mc3s <- update(mc3, byvar=duration, print.byvar=FALSE)

The update.meta function is a wrapper function for the metacont function
as well as other R functions discussed in the following chapters. Using the
update.meta function we only have to specify arguments that should be changed
as all other arguments are kept fixed. Note, in order for the update.meta
function to work the data used in the original function call has to be part of R
object mc3. This is—by default—the case as argument keepdata is equal to
TRUE. Applying the update.meta function to an R object that was created with
argument keepdata=FALSE would result in a descriptive warning message.

Results of a meta-analysis with subgroups are given by the following R com-
mand.

> print(summary(mc3s), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -0.05 [-0.05; -0.04] -10.06 < 0.0001
Random effects model -0.08 [-0.11; -0.05] -5.82 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0027; H = 2.63 [2.19; 3.15]; Iˆ2 = 85.5% [79.1%; 89.9%]

Test of heterogeneity:
Q d.f. p-value

138.08 20 < 0.0001

Results for subgroups (fixed effect model):
k MD 95%-CI Q tauˆ2 Iˆ2

<= 3 months 4 -0.13 [-0.17; -0.09] 22.43 0.035 86.6%
> 3 months 17 -0.04 [-0.05; -0.03] 94.92 0.002 83.1%

Test for subgroup differences (fixed effect model):
Q d.f. p-value

8R function update is a generic function like print or summary.
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Between groups 20.73 1 < 0.0001
Within groups 117.35 19 < 0.0001

Results for subgroups (random effects model):
k MD 95%-CI Q tauˆ2 Iˆ2

<= 3 months 4 -0.28 [-0.50; -0.05] 22.43 0.035 86.6%
> 3 months 17 -0.06 [-0.09; -0.04] 94.92 0.002 83.1%

Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 3.41 1 0.0647

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

The results for the fixed effect model show that between-group heterogeneity
is highly statistically significant (Q D 20:73 on 1 degrees of freedom) as well as
within-group heterogeneity (Q D 117:35, 19 degrees of freedom). Further, the
fixed effect estimates (�0:13, short duration; �0:04, long duration) are not that
different. While short duration studies seem to have far fewer patients, the effect
appears similar; study duration does not appear to be the source of the high degree
of heterogeneity in these data. This observation is supported by the results for
the random effects model (between-study heterogeneity: Q D3.41, 1 degrees of
freedom).

A forest plot with subgroups for length of duration, which is shown in Fig. 2.8,
can be produced using the following R command.

> forest(mc3s, xlim=c(-0.5, 0.2),
+ xlab="Difference in mean number of acute exacerbations

per month")

The argument subset which has been used before to select a single study can
also be used to conduct a meta-analysis of a subgroup of studies, e.g. for studies
with short study duration:

> print(metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ subset=duration=="<= 3 months",
+ studlab=paste(author, year)),
+ digits=2)

*** Output truncated ***
Number of studies combined: k=4

MD 95%-CI z p-value
Fixed effect model -0.13 [-0.17; -0.09] -6.78 < 0.0001
Random effects model -0.28 [-0.50; -0.05] -2.43 0.0153
*** Output truncated ***

Or alternatively using the update.meta function:

> print(update(mc3, subset=duration=="<= 3 months"),
+ digits=2)
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Study

Fixed effect model
Random effects model
Heterogeneity: I−squared=85.5%, tau−squared=0.0027, p<0.0001

<= 3 months

> 3 months 

Fixed effect model

Fixed effect model

Random effects model

Random effects model

Heterogeneity: I−squared=86.6%, tau−squared=0.035, p<0.0001

Heterogeneity: I−squared=83.1%, tau−squared=0.002, p<0.0001

Bontognali 1991
Castiglioni 1986
Cremonini 1986
Grassi 1994
Jackson 1984

Allegra 1996
Babolini 1980
Boman 1983
Borgia 1981
Decramer 2005
Grassi 1976
Grillage 1985
Hansen 1994
Malerba 2004
McGavin 1985
Meister 1986
Meister 1999
Moretti 2004
Nowak 1999
Olivieri 1987
Parr 1987
Pela 1999
Rasmussen 1988

Total

2543

 465

2078

  30
 311
  21
  42
  61

 223
 254
  98
  10
 256
  35
  54
  59
 115
  72
  90
 122
  63
 147
 110
 243
  83
  44

Mean

0.70
0.10
0.25
0.16
0.11

0.07
0.13
0.20
0.05
0.10
0.14
0.10
0.11
0.06
0.42
0.15
0.06
0.12
0.03
0.18
0.18
0.17
0.13

SD

3.76
0.21
0.23
0.29
0.00

0.11
0.18
0.27
0.08
0.11
0.15
0.00
0.15
0.08
0.34
0.15
0.15
0.14
0.06
0.31
0.21
0.18
0.21

Experimental
Total

2512

 453

2059

  30
 302
  20
  41
  60

 218
 241
 105
   9

 267
  34
  55
  70
 119
  76
  91
 124
  61
 148
 104
 210
  80
  47

Mean

1.27
0.20
0.71
0.45
0.13

0.11
0.33
0.32
0.15
0.11
0.27
0.12
0.16
0.07
0.52
0.20
0.10
0.17
0.06
0.33
0.21
0.29
0.14

SD

4.58
0.29
0.29
0.43
0.00

0.14
0.27
0.30
0.17
0.16
0.21
0.00
0.19
0.08
0.35
0.19
0.15
0.17
0.12
0.41
0.21
0.32
0.19

Control

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2

Mean difference

Difference in mean number of acute exacerbations per month

MD

−0.05
−0.08

−0.13

−0.04

−0.28

−0.06

−0.57
−0.10
−0.46
−0.29
−0.02

−0.04
−0.20
−0.12
−0.10
−0.01
−0.13
−0.02
−0.05
−0.01
−0.10
−0.05
−0.04
−0.05
−0.03
−0.15
−0.03
−0.12
−0.01

95%−CI

[−0.05; −0.04]
[−0.11; −0.05]

[−0.17; −0.09]

[−0.05; −0.03]

[−0.50; −0.05]

[−0.09; −0.04]

[−2.69;  1.55]
[−0.14; −0.06]
[−0.62; −0.30]
[−0.45; −0.13]

[−0.06; −0.02]
[−0.24; −0.16]
[−0.20; −0.04]
[−0.22;  0.02]
[−0.03;  0.01]

[−0.22; −0.04]

[−0.11;  0.01]
[−0.03;  0.01]
[−0.21;  0.01]
[−0.10;  0.00]
[−0.08;  0.00]
[−0.10;  0.00]

[−0.05; −0.01]
[−0.25; −0.05]
[−0.07;  0.01]

[−0.20; −0.04]
[−0.09;  0.07]

W(fixed)

100%
−−

 5.5%

94.5%

−−

−−

 0.0%
 4.9%
 0.3%
 0.3%
 0.0%

14.2%
 4.8%
 1.3%
 0.5%

14.3%
 1.1%
 0.0%
 2.3%

18.7%
 0.6%
 3.2%
 5.6%
 2.6%

16.8%
 0.8%
 5.2%
 1.2%
 1.2%

W(random)

−−
100%

−−

−−

10.3%

89.7%

 0.0%
 6.2%
 2.1%
 2.1%
 0.0%

 6.7%
 6.1%
 4.5%
 3.0%
 6.7%
 4.2%
 0.0%
 5.4%
 6.8%
 3.3%
 5.7%
 6.3%
 5.5%
 6.8%
 3.7%
 6.2%
 4.4%
 4.3%

Fig. 2.8 Subgroup analysis for mucolytic agents data [31]

*** Output truncated ***
MD 95%-CI z p-value

Fixed effect model -0.13 [-0.17; -0.09] -6.78 < 0.0001
Random effects model -0.28 [-0.50; -0.05] -2.43 0.0153
*** Output truncated ***

These are exactly the same treatment estimates and confidence intervals for fixed
effect and random effects model, respectively, in studies with short duration as
shown in the upper part of Fig. 2.8. ut

2.6 Meta-Analysis of Other Outcomes

In this section, the application of the generic inverse variance method to other
outcomes will be described. All examples use the metagen function to conduct
the meta-analysis. Other functions are available in R package meta for specific
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outcomes:

• metacor function for meta-analysis of correlations,
• metainc function for meta-analysis of incidence rate ratios,
• metaprop function for meta-analysis of single proportions.

The first two R functions are not covered in this book and the metaprop
function is only briefly used in Chap. 9 to calculate confidence intervals for
sensitivities and specificities. The corresponding help pages of these functions give
further details on these methods as well as a couple of examples.

2.6.1 Meta-Analysis with Survival Outcomes

Statistical methods for binary data are described in detail in Chap. 3. Very often not
only the information that an event occurred but also when the event happened is of
central interest. This type of data is called time-to-event or survival data if the event
of interest is death. Time to an event is a continuous quantity, however, in contrast
to the examples with continuous outcomes used so far time to an event can typically
not be observed for all participants as the maximum follow-up time is limited in a
study. Patients where the event of interest did not occur during the follow-up period
are called censored observations. Censoring is a distinguishing feature of time-
to-event data. Another important aspect of time-to-event data, not covered in this
book, are competing events, e.g. time to either cardiovascular or non-cardiovascular
death. In this situation only the time to death either due to a cardiovascular or non-
cardiovascular reason can be observed. Specific statistical methods for survival data
have been developed [2, 24] and should be used in the analysis.

In survival analysis the hazard function, i.e. a function describing the instanta-
neous risk of dying given survival up to a specific timepoint, plays a central role. To
compare two treatments the hazard ratio, i.e. a ratio of hazard functions, is typically
used. The interpretation of a hazard ratio is similar to a risk ratio which is introduced
in Sect. 3.1.2.

A meta-analysis with survival time outcomes is typically based on the hazard
ratio as measure of treatment effect [26]. Accordingly, the logarithm of the hazard
ratio and its standard error are the basic quantities utilised in meta-analysis.
As hazard ratio and corresponding standard error are not always reported in
publications, several methods exist to derive these quantities, e.g. from published
survival curves [26, 42].

The generic inverse variance method can be used straightforward with log hazard
ratio O�k and its standard error S.E. . O�k/, for study k, k D 1; : : : ;K.

Using these quantities, all methods described in Sects. 2.2 and 2.3 can be used
for meta-analysis. In the following example we consider the most basic case, i.e.
fixed effect and random effects meta-analysis using the DerSimonian–Laird method
to estimate the between-study variance �2.



2.6 Meta-Analysis of Other Outcomes 47

> # 1. Read in the data
> data4 <- read.csv("dataset04.csv")
> # 2. Print data
> data4

author year Ne Nc logHR selogHR
1 FCG on CLL 1996 53 52 -0.5920 0.3450
2 Leporrier 2001 341 597 -0.0791 0.0787
3 Rai 2000 195 200 -0.2370 0.1440
4 Robak 2000 133 117 0.1630 0.3120

Fig. 2.9 Data from meta-analysis of single-agent purine analogues for the treatment of chronic
lymphocytic leukaemia [38]

Example 2.13 Steurer et al. [38] conducted a Cochrane review to evaluate the
effect of single-agent purine analogues for the treatment of chronic lymphocytic
leukaemia. Data for the main outcome overall survival are reported in Fig. 2.9.
Columns logHR and selogHR correspond to the log hazard ratio and its standard
error.

The following R command can be used to conduct a meta-analysis using the
generic inverse variance method.

> mg1 <- metagen(logHR, selogHR,
+ studlab=paste(author, year), data=data4,
+ sm="HR")

Specifying argument sm="HR", it is assumed that hazard ratios are entered
on the log scale. If hazard ratios instead of log hazard ratios are available in
a dataset, the base log function can be used to transform the hazard ratio, e.g.
metagen(log(HR), ...). Regardless of the input of hazard ratios or log
hazard ratios, the metagen function expects that the standard error from the log
hazard ratio and not the standard error of the hazard ratio is provided as input for
argument seTE. Note, sample sizes given in columns Ne and Nc in Fig. 2.9 are not
utilised in the calculations.

As usual we can print the results of the meta-analysis.

> print(mg1, digits=2)
HR 95%-CI %W(fixed) %W(random)

FCG on CLL 1996 0.55 [0.28; 1.09] 3.68 5.85
Leporrier 2001 0.92 [0.79; 1.08] 70.70 59.76
Rai 2000 0.79 [0.59; 1.05] 21.12 27.32
Robak 2000 1.18 [0.64; 2.17] 4.50 7.08

Number of studies combined: k=4

HR 95%-CI z p-value
Fixed effect model 0.89 [0.78; 1.01] -1.82 0.0688
Random effects model 0.87 [0.74; 1.03] -1.58 0.1142

Quantifying heterogeneity:
tauˆ2 = 0.0061; H = 1.1 [1; 2.81]; Iˆ2 = 17.2% [0%; 87.3%]



48 2 Fixed Effect and Random Effects Meta-Analysis

Test of heterogeneity:
Q d.f. p-value

3.62 3 0.3049

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

These results correspond to those reported in [38]. ut

2.6.2 Meta-Analysis of Cross-Over Trials

Until now methods have been described to conduct a meta-analysis of trials
comparing two parallel treatment groups. Cross-over trials are another popular
design to compare treatments [23]. In a cross-over trial each participant serves as
his/her own control. Accordingly, between-patient variation is removed from the
treatment comparison resulting in a smaller number of patients to achieve the same
statistical power. A typical setting for a cross-over trial is chronic but stable diseases,
i.e. a patient neither gets cured nor does the condition (dramatically) worsen over
time.

In a simple cross-over design, a patient is randomly assigned to treatment
sequence AB or BA, i.e. either receiving treatment A first and “cross-over” to
treatment B or vice versa. Typically, the first and second treatment period are
separated by a so-called washout period such that the effect of the treatment effect
in the first treatment period is not carried over to the second treatment period. In
principle, longer sequences of two treatments A and B are possible, e.g. ABBA.
Note, the first period of a cross-over trial is equivalent to a parallel group study
design.

Statistical methods for meta-analysis of cross-over trials and the combination
of parallel group and cross-over trials have been described in a series of papers in
Statistics in Medicine [5, 6, 8]. For the meta-analysis of cross-over trials with a
continuous outcome the generic inverse variance method can be used [5].

Example 2.14 Curtin et al. [5, Table 2] report the results of 12 parallel group and 21
cross-over trials to evaluate the effect of potassium supplementation on the reduction
of systolic and diastolic blood pressure. Here, we only look at the 21 cross-over trials
and diastolic blood pressure as outcome of interest.

Mean difference in diastolic blood pressure (column mean) and its standard
error (SE) as well as the within-patient correlation (corr) are given in Fig. 2.10.
Correlations are not utilised in the meta-analysis, however, the values give some
indication on the gain in precision by using a cross-over design. All correlations are
above zero and ranging from 0.29 to 0.88. Accordingly, using a cross-over design
results in a gain in precision in all trials.
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> # 1. Read in the data
> data5 <- read.csv("dataset05.csv")
> # 2. Print data
> data5

author year N mean SE corr
1 Skrabal et al. 1981a 20 -4.5 2.1 0.49
2 Skrabal et al. 1981b 20 -0.5 1.7 0.54
3 MacGregor et al. 1982 23 -4.0 1.9 0.41
4 Khaw and Thom 1982 20 -2.4 1.1 0.83
5 Richards et al. 1984 12 -1.0 3.4 0.50
6 Smith et al. 1985 20 0.0 1.9 0.50
7 Kaplan et al. 1985 16 -5.8 1.6 0.65
8 Zoccali et al. 1985 23 -3.0 3.0 0.50
9 Matlou et al. 1986 36 -3.0 1.5 0.61
10 Barden et al. 1986 44 -1.5 1.4 0.44
11 Poulter and Sever 1986 19 2.0 2.2 0.36
12 Grobbee et al. 1987 40 -0.3 1.5 0.61
13 Krishna et al. 1989 10 -8.0 2.2 0.48
14 Mullen and O’Connor 1990a 24 3.0 2.0 0.50
15 Mullen and O’Connor 1990b 24 1.4 2.0 0.50
16 Patki et al. 1990 37 -13.1 0.7 0.53
17 Valdes et al. 1991 24 -3.0 2.0 0.50
18 Barden et al. 1991 39 -0.6 0.6 0.88
19 Overlack et al. 1991 12 3.0 2.0 0.50
20 Smith et al. 1992 22 -1.7 2.5 0.29
21 Fotherby and Potter 1992 18 -6.0 2.5 0.81

Fig. 2.10 Data from meta-analysis of potassium supplementation for blood pressure reduction [5]

The following R code can be used for the meta-analysis of these cross-over trials

> mg2 <- metagen(mean, SE, studlab=paste(author, year),
+ data=data5, sm="MD")

which yields the results

> print(summary(mg2), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -3.71 [-4.32; -3.11] -12.03 < 0.0001
Random effects model -2.38 [-4.76; -0.01] -1.96 0.0495

Quantifying heterogeneity:
tauˆ2 = 27.03; H = 3.66 [3.14; 4.25]; Iˆ2 = 92.5% [89.9%; 94.5%]

Test of heterogeneity:
Q d.f. p-value

267.24 20 < 0.0001
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Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Both fixed effect and random effects model show a statistically significant
reduction in diastolic blood pressure for potassium supplementation. Due to the very
large between-study heterogeneity the confidence interval for the random effects
estimate is much wider than the confidence interval for the fixed effect estimate.
Accordingly, the p-value for the random effects model is much larger.

Results for the fixed effect model have also been reported in [5, Table 3] and are
almost identical. ut

2.6.3 Meta-Analysis of Adjusted Treatment Effects

Another application of the generic inverse variance method is a meta-analysis of
adjusted treatment effects, e.g. adjusted log odds ratios from a logistic regression
model [1] or log hazard ratios from a Cox regression model [24].

Example 2.15 Greenland and Longnecker [12] describe a method to combine trend
estimates from summarised dose–response data. A meta-analysis of 16 case–control
studies evaluating the impact of alcohol consumption on breast cancer risk was used
as an illustrative example (see [12, Table 3]).

Data for these studies are given in Fig. 2.11. For meta-analysis the adjusted log
risk ratio (column b) and its standard error (SE) are utilised. In order to report results
as log risk ratios like the authors [12] we use argument backtransf=FALSE.

> # 1. Read in the data
> data6 <- read.csv("dataset06.csv")
> # 2. Print data
> data6

author year b SE
1 Hiatt and Bawol 1984 0.004340 0.00247
2 Hiatt et al. 1988 0.010900 0.00410
3 Willett t al. 1987 0.028400 0.00564
4 Schatzkin et al. 1987 0.118000 0.04760
5 Harvey et al. 1987 0.012100 0.00429
6 Rosenberg et al. 1982 0.087000 0.02320
7 Webster et al. 1983 0.003110 0.00373
8 Paganini-Hill and Ross 1983 0.000000 0.00940
9 Byers and Funch 1982 0.005970 0.00658
10 Rohan and McMichael 1988 0.047900 0.02050
11 Talamini et al. 1984 0.038900 0.00768
12 O’Connell et al. 1987 0.203000 0.09460
13 Harris and Wynder 1988 -0.006730 0.00419
14 Le et al. 1984 0.011100 0.00481
15 La Vecchia et al. 1985 0.014800 0.00635
16 Begg et al. 1983 -0.000787 0.00867

Fig. 2.11 Data from meta-analysis evaluating impact of alcohol consumption on breast cancer risk
[12]
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> mg3 <- metagen(b, SE, studlab=paste(author, year),
+ data=data6, sm="RR", backtransf=FALSE)

The results for the meta-analysis are as follows.

> summary(mg3)
Number of studies combined: k=16

logRR 95%-CI z p-value
Fixed effect model 0.0082 [0.0056; 0.0108] 6.2409 < 0.0001
Random effects model 0.0131 [0.0062; 0.0199] 3.7298 0.0002

Quantifying heterogeneity:
tauˆ2 = 0.0001; H = 2.24 [1.78; 2.82]; Iˆ2 = 80.1% [68.5%; 87.4%]

Test of heterogeneity:
Q d.f. p-value

75.31 15 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

As we used argument backtransf=FALSE, treatment estimates are reported
on the log scale (see logRR in the printout). Results for the fixed effect model are
identical to those reported in [12]. ut

2.7 Summary

In this chapter the generic inverse variance method and its application in meta-
analysis has been described in detail using continuous outcomes. Both fixed effect
and random effects methods have been introduced. We have shown how typical data
can be used with the metacont and metagen function, respectively, and how the
results of a meta-analysis can be printed and plotted.

We also discussed various methods for estimating the between-study variance �2

and the Hartung–Knapp adjustment has been described as an alternative method to
the classic random effects method. Furthermore, we have illustrated the use of the
byvar option, which makes subgroup analysis straightforward. More details on
tests for subgroup differences are provided in Sect. 4.3.

Lastly, the generic inverse variance method has been used in very different
settings (survival outcomes, cross-over trials, adjusted treatment effects) indicating
the wide applicability of the method.

In the next chapter, we describe the analogue of these analyses for binary data.
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