
Chapter 2
Polyols and Polyurethanes from Vegetable
Oils and Their Derivatives

Abstract Vegetable oils and their derivatives have been widely used for the pro-
duction of various polymers including polyols and polyurethanes. Vegetable oil
derivatives, such as fatty acids, fatty acid esters, and crude glycerol, can be obtained
via hydrolysis or transesterification of vegetable oils. Polyols and polyurethanes
with properties comparable to those of petroleum-based analogs have been prepared
from vegetable oils and their derivatives for various applications such as foams,
coatings, adhesives, etc. This chapter reviews the structures and compositions of
vegetable oils and their derivatives, synthetic methods of producing polyols from
vegetable oils and their derivatives, properties of these polyols, and performance
and applications of the resulting polyurethanes.

Keywords Bio-based polyols � Polyurethanes � Vegetable oils � Fatty acids �
Fatty acid esters � Crude glycerol

2.1 Introduction

Vegetable oils are triglycerides, also known as triacylglycerols, which are triesters
of glycerol and different fatty acids (Fig. 2.1). Depending on the origin and type of
fatty acids in vegetable oils, the fatty acid side chains contain carbon numbers
ranging from 8 to 24 and carbon-carbon double bond numbers from 0 to 5 [1],
leading to high variability of vegetable oil compositions. As shown in Fig. 2.2, most
vegetable oils consist of five major fatty acids: palmitic (C16:0), stearic (C18:0),
oleic (C18:1), linoleic (C18:2), and linolenic acid (C18:3), in which for the (Cm:n)
designation, Cm indicates the number of carbon atoms and n indicates the number
of double bonds [1, 2]. According to the USDA-FAS (United State Department of
Agriculture, Foreign Agricultural Service) [3], the annual world production of
vegetable oils has been steadily increasing from around 148.8 MMT (million metric
tons) in 2010/2011 to 170.9 MMT in 2013/2014. Palm, soybean, rapeseed, and
sunflower seed are four predominant types of vegetable oil feedstocks, accounting
for approximately 86 % of the global production of vegetable oils [3]. Figure 2.3
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illustrates the 2013/2014 global annual production distributions of these major
vegetable oils, and Table 2.1 shows the typical fatty acid profiles of vegetable oils.

Fatty acids, fatty acid esters, and glycerol are three different derivatives from
vegetable oils. Fatty acids and fatty acid esters are usually produced by hydrolysis
and transesterification of vegetable oils with water and alcohol, respectively.
Scheme 2.1 shows schematic routes for the production of fatty acids and fatty acid
esters from vegetable oils. Fatty acid methyl esters (i.e., biodiesel) are one type of
important fatty acid ester and are obtained commercially by the transesterification
of vegetable oils with methanol under the catalysis of sodium hydroxide or
potassium hydroxide. Crude glycerol is a byproduct of the biodiesel production
process. It is estimated that approximately 1 kg of crude glycerol is generated for
every 10 kg biodiesel produced [5]. Compared to glycerol, crude glycerol has a
significantly different composition and contains multiple impurities such as meth-
anol, water, fatty acids, fatty acid methyl esters, soap, and glycerides [6]. The rapid
growth in the production of biodiesel worldwide has generated large volumes of
crude glycerol. Due to the high cost of refining it, especially for small- or
medium-sized biodiesel producers [7], there has been extensive interest in the
development of feasible biological or chemical approaches for converting low-value
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Fig. 2.1 Schematic representation of triglyceride structure of vegetable oils
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Fig. 2.2 Chemical structures of five major fatty acids found in vegetable oils
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Fig. 2.3 Global annual production distributions (2013/2014) of palm oil, soybean oil, rapeseed
oil, and sunflowerseed oil [3]

Table 2.1 Typical fatty acid profiles of major vegetable oils [1, 4]

Vegetable oils Fatty acid profiles (wt%)

C16:0 C18:0 C18:1 C18:2 C18:3

Palm oil 44.0 4.5 39.2 10.1 0.4

Soybean oil 11.3 3.4 23.1 55.8 6.4

Rapeseed oil 4.0 2.0 56.0 26.0 10.0

Sunflowerseed oil 5.9 (3.8)a 4.4 (4.1) 19 (78.4) 67.5 (11.3) 2.9 (trace)
aValues in parenthesis are for high-oleic sunflowerseed oil
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crude glycerol (approximately $0.1/kg [5]) to value-added products, including
polyols and polyurethanes (PUs) [8–12].

Natural vegetable oils, with the exception of castor and lesquerella oils, do not
contain hydroxyl groups. When used as feedstocks for polyol production, vegetable
oils are often chemically modified to introduce hydroxyl groups into their struc-
tures. Carbon-carbon double bonds and ester linkages are two major functional
moieties present in structures of vegetable oils. Almost all synthetic routes for
vegetable oil-based polyol production, including epoxidation followed by oxirane
ring-opening, hydroformylation followed by hydrogenation, ozonolysis, thiol-ene
coupling, transesterification, and amidation, start from one of these two functional
moieties. Fatty acid esters and fatty acids have functional moieties similar to
vegetable oils, such as carbon-carbon double bonds and ester linkages/carboxyl
groups. The methods used for producing vegetable oil-based polyols can also be
used to produce polyols from fatty acid esters or fatty acids. Besides these methods,
other methods, such as dimerization of fatty acids and hydrosilylation of fatty acid
esters, have been developed to functionalize fatty acids or fatty acid esters for
polyol synthesis. The presence of multiple reactive components in crude glycerol
allows for esterification and transesterification by which polyols can be produced
for PU applications. This chapter mainly focuses on the methods commonly used
for the preparation of polyols from vegetable oils and their derivatives such as fatty
acids, fatty acid esters, and crude glycerol. The polyol properties and their derived
PUs are also discussed.
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2.2 Vegetable Oil-Based Polyols and Polyurethanes

There are five different methods typically used to produce polyols from vegetable
oils. These processes and the characteristics of the derived polyols and PUs are
discussed in the following sections.

2.2.1 Epoxidation and Oxirane Ring-Opening Pathway

Epoxidation has been one of the most commonly used methods for the function-
alization of carbon-carbon double bonds [13]. The epoxidation of vegetable oils can
be conducted either in bulk or in solution with preformed or in situ prepared
peracids, i.e. an active oxygen provider, under either homogenous or heterogeneous
catalysis [14]. The epoxidation is usually conducted at a temperature between 30
and 80 °C for a reaction time of 10–20 h, depending on the types of feedstocks and
ratios of reactants involved in the reaction. Under optimized conditions, conversion
yields higher than 90 % can be achieved [15–17]. The undesirable side reactions of
oxirane ring-opening during epoxidation can be largely minimized by conducting
the reaction in a solution and at low temperature as well as under acidic ion
exchange resin or lipase catalysis [14, 15, 18–21]. Polyols are produced from
epoxidized vegetable oil by oxirane ring-opening reactions using a broad range of
active hydrogen containing compounds such as alcohols, inorganic and organic
acids, amines, water, and hydrogen [13, 19, 22–26]. A schematic representation of
the production of polyols from vegetable oils by epoxidation followed by oxirane
ring-opening is shown in Scheme 2.2. Usually, the epoxidation and ring-opening
reactions are conducted in two separate steps, although a one-step process com-
bining epoxidiation and ring-opening reactions has been reported [27–29].

The properties of polyols produced by epoxidation and subsequent oxirane
ring-opening depend on several production variables including feedstock charac-
teristics and the types of ring-opening agents. Vegetable oils with a higher degree of
unsaturation produce polyols with higher hydroxyl functionalities, resulting in PUs
with higher crosslinking density and higher tensile strength [30]. Oxirane
ring-opening agents are divided into three major categories: (a) Alcohols. When
monoalcohols are used for ring-opening, each epoxy moiety only generates one
secondary hydroxyl group, which are much less reactive than primary hydroxyl
groups [31]. Methanol is the common choice of monoalcohols for ring-opening due
to its low cost, low molecular weight, and low boiling point [1]. In order to produce
polyols with higher functionalities and with primary hydroxyl groups, diols such as
1,2-propanediol and ethylene glycol have also been used for oxirane ring-opening
reactions [22, 25]. However, the produced polyols tend to possess high viscosities
due to their increased hydroxyl numbers. (b) Acids. Carboxylic acids such as
formic and acetic acids have been used for ring-opening of epoxidized vegetable
oils to produce polyester polyols, which have been shown to have potential for
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anti-wear applications [13, 26, 27]. Inorganic acids such as HCl, HBr, and H3PO4

have also been reported as ring-opening agents [23, 32]. Due to the incompatibility
between inorganic acids and epoxidized vegetable oils, polar organic solvents such
as acetone and t-butyl alcohol are typically added into the reactor to facilitate
reactions. There are some drawbacks associated with the polyols from oxirane
ring-opening reactions of epoxidized vegetable oils by inorganic acids. Polyols
produced from oxirane ring-opening by HCl and HBr are waxes at room temper-
ature [23], while those produced by H3PO4 contain significant fractions of oligo-
mers because of the oligomerizations that occur between oxirane groups [32].
(c) Hydrogen. Polyols from ring-opening of epoxidized vegetable oils by hydrogen
under Raney nickel catalysis are grease at room temperature, which has limited
their applications in preparing PUs [23]. Table 2.2 lists properties of polyols pro-
duced from epoxidized soybean oil using different oxirane ring-opening agents.

Simultaneous oxirane ring-opening and transesterification [16] of epoxidized
canola oil was achieved by using a strong acid catalyst (e.g., sulfuric acid) and
excess amounts of diols (e.g., 1,2-propanediol or 1,3-propanediol). Because
transesterification effectively removed the glycerol backbone from polyols, the
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Table 2.2 Properties of polyols produced from epoxidized soybean oil using different oxirane
ring-opening agents

Ring-opening
agents

Polyol properties References

Hydroxyl
number
(mg
KOH/g)

Hydroxyl
group
type

Acid
number
(mg
KOH/g)

fn
c Viscosity

(Pa.s)
Molecular
weight
(g/mol)

Methanol 199 Secondary –
b 3.7 12

(25 °C)d
1053 [23]

180 Secondary – – 0.6 (45 °
C)

– [22]

148–174 Secondary – 2.6–
3.2

– 1001–1025a [25]

1,2-Ethanediol 253 Primary,
secondary

– – 1
(45 °C)

– [22]

187–226 Primary,
secondary

– 3.4–
4.2

– 1005–1038a [25]

1,2-Propanediol 289 Primary,
secondary

– – 1
(45 °C)

– [22]

211–237 Primary,
secondary

– 3.8–
4.6

– 1010–1084a [25]

Lactic acid 210a Secondary – 4.2 – 1120 [19]

171a Secondary 3.6 5.3 47e 1738a [26]

Glycolic acid 203a Primary,
secondary

2.6 4.9 221e 1352a [26]

Acetic acid 188a Secondary 1.8 4.3 55e 1281a [26]

Formic acid 104–162 Secondary 1.8–2.5 1.9–
3.2

3–10
(30 °C)

1027–1086 [27]

Linoleic acid 76–112 Secondary 4–25 – 1.4–2.8
(22 °C)

– [24]

Ricinoleic acid 152–163 Secondary 5–16 – 7.7–9.4
(22 °C)

– [24]

Hydrochloric
acid

197 Secondary – 3.8 Greasef 1071 [23]

Hydrobromic
acid

182 Secondary – 4.1 Greasef 1274 [23]

Phosphoric acid 153–253 Secondary 1.4–48 12.8–
17.5a

3.2–5.3 3870–4700 [32]

Hydrogen 212–225 Secondary – 3.5–
3.8

Greasef 938–947 [23, 34]

aCalculated values
bNot reported
cFunctionality
dTesting temperature
eTesting temperature not reported
fAt room temperature
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produced polyols had lower molecular weights (ca. 433 g/mol) and viscosities
(about 3 Pa.s), and higher hydroxyl numbers (about 270 and 320 mg KOH/g) than
polyols obtained by oxirane ring-opening alone [16]. In a more recent study,
polyols with similar properties have also been produced from epoxidized soybean
oil through simultaneous ring-opening and amidation reactions [33].

Epoxidized polyols (polyols derived from epoxidation and subsequent oxirane
ring-opening) have been used for the preparation of many PU products such as
resins, foams, and coatings. By controlling factors such as vegetable oil composi-
tion, ring-opening agent, and degree of epoxidation, polyols and PUs with varying
properties have been produced. A close relationship between the properties of
epoxidized polyols from vegetable oils and their derived PUs has been observed:
the higher the hydroxyl number and functionality of the polyol, the higher the
crosslinking density, the Tg, and the tensile strength of the PUs [25, 30, 35].
Halogenated (e.g., chlorinated and brominated) PUs possessed higher mechanical
properties, higher Tg, and lower linear thermal expansion coefficients than
non-halogenated ones (e.g., methoxylated and hydrogenated PUs), which could be
attributed to their stronger intermolecular attractions, higher crosslinking densities,
and lower free volumes resulted from large halogen atoms; however, compared to
non-halogenated PUs, halogenated ones showed lower thermal stability and higher
initial weight loss as a result of the dissociation of bromine or chlorine [36]. The
effects of the structural heterogeneity of vegetable oils on the properties of epox-
idized polyols and PUs were evaluated by preparing polyols from soybean oil with
different hydroxyl numbers via partial hydrogenation of epoxy rings [34]. The
negative effects of structural heterogeneity on PU properties were found to be more
pronounced for PUs with lower crosslinking densities produced from polyols with
lower hydroxyl numbers. In addition, the properties of PUs can be manipulated by
the NCO/OH ratio. In one typical study, PU networks ranging from elastomeric to
glassy plastics were obtained for NCO/OH ratios ranging from 0.4 to 1.05 [37].

Rigid and flexible PU foams have been prepared from epoxidized polyols
derived from vegetable oils such as soybean oil and rapeseed oil. Compared to
petroleum-derived polyols that contain mostly primary hydroxyl groups, epoxidized
polyols from vegetable oils have lower reactivity and need longer curing time when
they react with isocyanates for PU foam production.

Several strategies, such as addition of a crosslinker [38], post-modifications by
alcoholysis [29], and mixing with commercial petroleum-derived polyols [39, 40],
have been developed to produce rigid PU foams from epoxidized polyols. In view
of its high hydroxyl number (1829 mg KOH/g) and compact backbone, glycerol has
been proven to be an excellent crosslinker to increase the rigidity of epoxidized
polyol-based PU foams [38]. Under preferred glycerol addition (10–25 wt% of soy
polyol) and optimized foam formulation conditions, the produced rigid PU foams
exhibited mechanical and thermal-insulating properties comparable to analogues
prepared from commercial polyether polyols. Applying triethanolamine-based
alcoholysis to post-modify hydroxylated rapeseed oil effectively increased polyol
hydroxyl numbers from 100 to 367 mg KOH/g, and the resulting PU foams showed
very similar mechanical and thermal-insulating properties to those prepared from a
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commercial petroleum-derived polyol [29]. Partial substitution of commercial
petroleum-derived polyols by epoxidized polyols has been shown to be feasible for
the production of high-quality rigid PU foams [39, 40]. Under optimal foaming
conditions, PU foams produced with up to 50 % epoxidized polyol substitution
possessed mechanical and thermal-insulating properties comparable with those
based on 100 % petroleum-derived polyols [39, 40]. However, the epoxidized
polyol-derived PU foams had the drawback of higher aging rates, i.e. an increase of
thermal conductivity with time due to its higher N2 permeation, than
petroleum-derived foams, which may be alleviated by the addition of a crosslinker,
such as glycerol [39]. Flexible PU foams from epoxidized polyols have also been
prepared by this blending method. Mixing epoxidized polyols (up to 50 % by
weight) with petroleum-derived polyols was found to increase the compressive
strength and modulus of the resulting foams [41–45]. Several factors can contribute
to this phenomenon including the existence of a high glass transition phase rich in
vegetable oil-derived polyols, high hard segment concentration, and improved hard
domain ordering in foam morphologies [43]. Flexible PU foams from epoxidized
polyols also exhibited lower resilience values and higher hysteresis loss due to their
decreased elasticity [45]. However, these issues may be alleviated through opti-
mization of foaming formulations, which can be achieved by approaches such as
controlling the amount and type of epoxidized polyols incorporated and the
NCO/OH ratio [42, 44].

Waterborne PU dispersions, including anionic and cationic PU or hybrid disper-
sions, have been synthesized from methoxylated soybean oil polyols [46–51]. As the
polyol functionality and/or hard segment increased, PU films exhibited increased
crosslinking density, Tg, and tensile strength. By employing polyols with increasing
functionalities ranging from 2.4 to 4.0, PU films ranged from elastomers to ductile
plastics to rigid plastics [46, 49]. Urethane-acrylic and urethane-styrene-acrylic
hybrid latexes have been prepared from soybean oil-based epoxidized polyols by
emulsion polymerization [47, 50, 51]. Generally, these hybrid latex films showed
improved tensile strength, Young’s modulus, and thermal stability, compared to
non-hybrid PU films [47, 50, 51].

2.2.2 Hydroformylation and Hydrogenation Pathway

Hydroformylation followed by hydrogenation is another important pathway for the
preparation of vegetable oil-derived polyols. During preparation, double bonds in
vegetable oil structures are first converted to aldehydes via catalyzed hydroformylation
by syngas (typically a 1:1 mixture of CO and H2), and then to hydroxyl groups via the
hydrogenation of aldehyde (Scheme 2.3) [52, 53]. Rhodium- or cobalt- based catalysts
are the common ones used for the hydroformylation of vegetable oils. Excellent double
bond to aldehyde conversion yield (95%) has been obtained using rhodium catalysts as
compared to that of cobalt catalysts (67 %) [52]. However, rhodium catalysts are
expensive and, when used as hydroformylation catalysts, the hydrogenation process
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that follows requires an additional Raney nickel catalyst. In contrast, cobalt catalysts are
less expensive and capable of catalyzing both hydroformylation and hydrogenation
reactions, but they require harsher reaction conditions [1, 52]. A comparison between
rhodium- and cobalt- based catalysts revealed that polyols obtained from the rhodium
catalyzed process exhibited higher hydroxyl numbers and higher functionalities than
those from the cobalt catalyzed process [52]. As a result, rigid plastic-like PUs were
produced from rhodium-derived polyols, while hard rubber-like PUs from
cobalt-derived polyols [52]. The major advantage of the hydroformylation-
hydrogenation process is the formation of primary hydroxyl groups, which are
preferred to the secondary hydroxyl groups usually obtained from the epoxidation and
oxirane ring-opening pathway. Consequently, polyols produced by the hydroformyl-
ation and hydrogenation pathway are more reactive than epoxidized polyols and a
smaller amount of catalyst is required for their reactions with isocyanates [68].

As only one hydroxyl group per carbon-carbon double bond is generated via
hydroformylation and hydrogenation, the polyols have the same functionalities as the
original vegetable oils. This makes the properties of polyols dependent on the
compositions of the starting vegetable oils. In order to widen the structural and
property versatility of polyols, other structural modifications have been introduced in
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combination with hydroformylation and hydrogenation, such as methanolysis and
polycondensation by which hyperbranched polyols with high molecular weights and
functionalities [54] and triols with high molecular weights [55] were prepared.

When reacted with isocyanates for PUs, hydroformylated polyols (polyols
derived via the hydroformylation and hydrogenation pathway) showed shorter gel
time and better curing efficiency, compared to epoxidized polyols [56]. PU foams
with enhanced rigidity can be produced from hydroformylated polyols when mixed
with a crosslinker such as glycerol [56]. The effects of structural heterogeneity on
the properties of hydroformylation-derived PUs have also been evaluated [53]. In
one study, a commercial soybean oil-based hydroformylated polyol (hydroxyl
number: 236 mg KOH/g) was partially esterified at different extents by formic acid
to prepare a group of polyester polyols with hydroxyl numbers varying from 86 to
236 mg KOH/g [53]. PUs prepared from polyols with hydroxyl numbers larger than
200 mg KOH/g were glassy materials possessing high Tg and high crosslinking
densities, and their properties were not negatively affected by the heterogeneity of
polyol functionalities. In contrast, PUs obtained from polyols with hydroxyl
numbers less than 200 mg KOH/g were rubbery materials with low Tg and cross-
linking densities. The heterogeneity of polyol functionalities caused these rubbery
PUs to have low strength and elongation, suggesting the necessity to consider
polyol heterogeneity when developing flexible PUs [53]. In order to alleviate the
negative effects of such heterogeneity on flexible PU applications, novel triols with
high molecular weights and well-defined structure have been prepared from
high-oleic sunflower oil via a series of modification and separation processes
including methanolysis, fractionation, hydroformylation, hydrogenation, and
polycondesation [55]. The resulting PU networks exhibited good elastomeric
properties, indicating the suitability of triols for flexible PU foams applications [55].
The heterogeneity of hydroxyl functionality distribution of hydroformylated poly-
ols has also been shown to negatively affect the performance of waterborne PU
coatings [57]. Polyols with the narrowest functionality distribution resulted in
coatings with the best balance of hardness, flexibility, and abrasion resistance, while
polyols with the widest functionality distribution led to soft coatings with the lowest
abrasion resistance.

2.2.3 Ozonolysis Pathway

Polyol production from vegetable oils by ozonolysis typically involves two steps
(Scheme 2.4a): (1) formation of ozonide at the unsaturation sites of vegetable oils
and simultaneous decomposition of ozonide into aldehyde and carboxylic acid; and
(2) reduction of aldehyde into alcohols with a catalyst, such as Raney nickel.
Because of the cleavage of all double bonds during ozonolysis, only one primary
hydroxyl group is introduced at each unsaturated fatty acid chain no matter whether
it is mono- or poly- unsaturated, thus polyols having a maximal functionality of
three are obtained [58]. Depending on the composition of fatty acids of vegetable

2.2 Vegetable Oil-Based Polyols and Polyurethanes 25



oils, the ozonolysis-derived polyols are a mixture of different contents of mono-,
di-, and tri-ols with triglyceride structures and saturated triglycerides. During the
ozonolysis of vegetable oils, the cleavage of double bonds may also generate small
alcohol molecules such as nonanol, 1, 3-propanediol, hexanol, and others [59],
which could be valuable intermediates in chemical industries upon separation and
purification. However, for the purpose of producing polyols for PU applications,
small alcohol molecules are usually removed due to their detrimental effects on PU
properties [58, 59]. Compared to polyols from epoxidization and ring-opening and
from hydroformylation and hydrogenation, which have hydroxyl groups in the
middle of fatty acids chains, ozonolysis-derived polyols only have terminal primary
hydroxyl groups. As a result, ozonolysis-derived polyols have faster curing rates
with isocyanates and effectively eliminate a majority of undesirable dangling
chains. Ozonolysis-derived polyols typically have low molecular weights due to
loss of part of the fatty acid chains that result from double bond cleavages [1].
Under different ozonolysis conditions, polyols prepared from canola oil have been
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reported to have varied properties, such as hydroxyl numbers from 152 to 260 mg
KOH/g and acid numbers from 2 to 52 mg KOH/g [58–60]. The high acid numbers
are attributed to carboxylic acids, which form during ozonation processes and
cannot be reduced to alcohols under subsequent hydrogenation conditions [58–60].

Ozonolysis-derived polyols have also been produced via a one-step reaction
without hydrogenation. Typically, multi-hydroxyl alcohols, such as ethylene glycol
or glycerol, were mixed with vegetable oil and a catalyst (e.g., sodium hydroxide,
calcium carbonate, and sulfuric acid). With the bubbling of ozone, the alcohol
reacts with ozonide intermediates generated from ozonolysis of vegetable oil to
form ester linkages, producing polyester polyols with terminal hydroxyl groups [61,
62]. Scheme 2.4b shows a schematic route for the production of polyester polyols
by ozonolysis with the addition of ethylene glycol. Besides its simplicity and
potential low cost, this one-step ozonolysis pathway has the advantage of producing
polyols with a broad range of properties by using different multi-hydroxyl alcohols.

Due to their low contents of fatty acid dangling chains, ozonolysis-derived
polyols produce highly crosslinked PUs that feature strong hydrogen bonding and
superior mechanical properties such as compressive strength and Young’s modulus
[63, 64]. The properties of PUs from ozonolysis-derived polyols can be manipu-
lated by factors such as polyol structures and NCO/OH molar ratios. PU produced
from trilinolein-based polyols had a high Tg and showed properties typical of rigid
plastics, such as a high tensile strength of 51 MPa and a low elongation of 25 %,
while PU from soybean oil-based polyols had a low Tg, tensile strength of 31 MPa
and an elongation of 176 %, showing hard rubber-like properties [58]. This dif-
ference of PU properties is mainly attributed to different functionalities of
trilinolein-based polyols (f = 3) and soybean oil-based polyols (f = 2.5) and the
presence of fatty acid dangling chains in soybean oil-based polyols. Compared to
PUs prepared from epoxidized and hydroformylated polyols, PUs from
ozonolysis-derived polyols with the same functionality exhibited improved
mechanical properties and higher Tg due to the absence or lower content of fatty
acid dangling chains [58]. When the NCO/OH molar ratio increased from 1.0 to
1.2, Tg of PU plastic sheets produced from ozonolysis-derived canola oil polyols
increased from 23 to 43 °C [60]. An NCO/OH ratio of 1.2 or higher could result in
the formation of imperfect elastic networks due to the decreased concentration of
elastically active network chains in PU networks [60].

Zero or low volatile organic content (VOC) PU coatings from soybean oil glyc-
eride polyols prepared by one-step ozonolysis with glycerol exhibited high hardness,
gloss, and chemical resistance as well as excellent adhesion to metal surfaces [61].
They are suitable for industrial, automotive and architectural applications. Rigid PU
foams prepared from amixture of glycerol and the above soybean oil glyceride polyol
at a 1:3 weight ratio also showed satisfactory mechanical and thermal properties,
which were comparable to those of PU analogues from a commercial polyol [61]. The
addition of glycerol not only increased the hydroxyl number of polyols but also acted
as a crosslinker to improve the mechanical strength of the foams. Ozonolysis-derived
polyols combined with poly(methyl methacrylate) (PMMA) have also been used to
prepare sequential interpenetrating polymer networks (IPNs) with satisfactory
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mechanical properties. IPNs showed varying performance for different applications
depending on the PMMA content in the PU structure [65]. Additionally, 100 %
bio-based PUs have been prepared from ozonolysis-derived polyols from canola oil
and two oleic acid-based isocyanates (1,16-diisocyanatohexadec-8-ene and
1,7-heptamethylene diisocyanate, Chap. 1) [66, 67]. Lower Young’s modulus and
higher elongationwere observed in PU from the former isocyanate than from the latter
one due to more flexibility of the long chain of 1,16-diisocyanatohexadec-8-ene [66].
With the same ozonolysis-derived polyols, PU derived from 1,7-heptamethylene
diisocyanate showed properties comparable to those of an analogue from
petroleum-based 1,6-hexamethylene diisocyanate [67].

2.2.4 Thiol-ene Coupling Pathway

Thiol-ene coupling reactions involve a free radical chain mechanism by which
thiols are grafted onto double bonds. They are not sensitive to oxygen and can be
carried out in the absence of photoinitiators through a photoreaction [68]. Due to its
high conversion yield and fast reaction rate, a UV-initiated thiol-ene coupling
reaction is generally used for preparing polyols from vegetable oils and their
derivatives with 2-mercaptoethanol as a common thiol monomer (Scheme 2.5).
Soybean oil-based polyols have also been prepared via heat-initiated thiol-ene
coupling which required longer reaction time than UV-initiated thiol-ene coupling
[69]. During the thiol-ene coupling process of vegetable oils and their derivatives,
side reactions occurred, including disulfide formation, double bond isomerization,
and inter- and intra-molecular bond formation [70]. Despite these side reactions,
most byproducts contained hydroxyl functional groups and could participate in PU
formation. Similar to polyols from epoxidation followed by oxirane ring-opening
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and from hydroformylation followed by hydrogenation, polyols from the thiol-ene
coupling pathway also contain hydroxyl groups located in the middle of fatty acid
chains, leaving part of the fatty acid chains as dangling components in PU struc-
tures. Currently, most thiol-ene coupling-derived polyols have been prepared from
fatty acids or fatty acid esters. Reports on the preparation of vegetable oil-based
polyols via thiol-ene coupling reactions are limited [69, 70]. Rapeseed oil-based
polyols produced by UV-initiated thiol-ene coupling with 2-mercaptoethanol
showed an acid number of 2.5 mg KOH/g, a hydroxyl number of 223 mg KOH/g,
and an average functionality of 3.6. Soybean oil-based polyols produced by
heat-initiated thiol-ene coupling with 2-mercaptoethanol showed an acid number of
2.5 mg KOH/g and a hydroxyl number of 200 mg KOH/g. PUs derived from these
two polyols showed properties such as thermal and mechanical properties similar to
those from a commercial polyol [69, 70].

2.2.5 Transesterification/Amidation Pathway

All of the above discussed pathways for the production of vegetable oil-based
polyols take place at the double bond moieties of vegetable oils. Transesterification
and amidation use a different approach that makes use of the ester moieties in the
structures of vegetable oils to produce polyols (Scheme 2.6) [1]. Glycerol is the
most predominantly used alcohol for the transesterification of vegetable oils, but the
use of other alcohols, such as pentaerythritol [71] and triethanolamine [72], has also
been reported. During transesterification, the addition of a small amount of soap
acts as an emulsifier that can improve the compatibility between glycerol and
triglycerides and thus increase the production efficiency of monoglycerides [73, 74].
Transesterification reactions are mostly catalyzed by organic and inorganic bases
such as methoxides of sodium, calcium, and postassium [71, 75–77]; sodium
hydroxide; and calcium hydroxide [73], and by metal oxides such as lead [78, 79]
and calcium oxides [80]. Enzyme-catalyzed transesterification has also been
reported [81]. Polyols produced from vegetable oils by transesterification with
glycerol (i.e., glycerolysis) are a mixture of mono-, di-, and tri-glycerides and
residual glycerol. Among these components, monoglycerides, which contain two
hydroxyl groups per molecule, play an important role for PU production.
Depending on reaction conditions and feedstocks used, polyols with monoglyceride
contents ranging from 48.3 to 90.1 % and hydroxyl numbers ranging from 90 to
183 mg KOH/g have been obtained [73, 80, 82]. Since all hydroxyl groups in
polyols derived from transesterification of vegetable oils, except for castor oil, are
located on the glycerol backbone, all of the acid side chains would act as dangling
components when polyols are crosslinked with isocyanates. In applications where
flexibility is preferred, these dangling chains are beneficial due to their plasticizing
effects, while in applications that require high rigidity, these plasticizing effects are
detrimental and undesirable.
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Polyols produced by the transesterification of vegetable oils can be partially or
completely substituted for petroleum-derived polyols for the preparation of PU
foams and coatings. Compared to epoxidized and hydroxylated soy polyols, a
mixture of glycerolysis-based soy polyols (90.1 % of monoglyceride, 1.3 % of
diglyceride, and 8.6 % of glycerol) and glycerol propoxylate (Mw: 400 g/mol)
exhibited higher reactivity with isocyanates and resulted in flexible PU foams with
more uniform cell structure [73]. Increasing the portion of glycerolysis-based
polyols from palm oil in blends with diethylene glycol (DEG)/polyethylene glycol
(PEG, Mw: 200 g/mol) produced semi-rigid PU foams with higher flexibility. This
was mainly caused by the increased content of monoglycerides, which served as
soft segments in the foam structures [82]. A mixture of glycerolysis-based polyols
from Nahar oil and PEG (Mw: 200 g/mol) has also been used to produce PU
coatings [79]. As the molar ratio of NCO/OH increased, PU coatings showed
improved properties including impact resistance, hardness, gloss, and adhesive
strength, which can be attributed to the increased crosslinking densities in PU
networks. By reacting with trimmers of isophorone diisocyanate, PU coatings based
on 100 % glycerolysis-based polyols were prepared from linseed, soybean, and
sesame oils. The produced coatings generally showed satisfactory flexibility and
adhesion properties as well as good chemical resistance [83].

Similar to the above transesterification processes, amidation with amines, usually
diethanolamine, can also convert vegetable oils into diethanol fatty acid amides for
producing PU foams and coatings. Compared to commonly used transesterification
with glycerol at 230–250 °C [73, 78, 80], the amidation of vegetable oils with
diethanolamine are carried out at a lower temperature, usually at 110 °C [72, 84–87].
Amidation-derived polyols from vegetable oils, such as linseed, soybean, rapeseed,
sunflower, coconut, Nahar, and cottonseed oils, have been used for the development
of PU foams and coatings with satisfactory physical and mechanical properties [72,
84, 88–90]. PU resins from amidation-based polyols from Nahar and linseed oils
showed superior coating performance, such as adhesion, gloss, hardness, and
chemical resistance, compared to polyester resins from the same oils [84, 89].

2.3 Castor Oil-Based Polyols and Polyurethanes

As an exception to common vegetable oils, castor oil contains naturally occurring
hydroxyl groups. Approximately 90 % of fatty acids in castor oil consist of ricin-
oleic acid, which is a mono-unsaturated 18-carbon fatty acid with a hydroxyl group
on its 12th carbon [2] (Fig. 2.4). An in-depth structural analysis of castor oil showed
that castor oil had an average hydroxyl functionality of 2.7, which resulted from the
contributions of 70 % triols (triricinoleate of glycerol) and 30 % diols (triacyl-
glycerols having only two ricinoleyl groups), and the absence of monoalcohols
(triacylglycerols having one ricinoleyl group) [91]. Due to its naturally occurring
hydroxyl groups and wide availability, castor oil has long been a versatile and
valuable feedstock for direct use in the PU industry.
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Castor oil has low functionality and possesses low reactivity due to the sec-
ondary hydroxyl groups in the ricinoleic acid chains, resulting in castor oil-based
PUs with semi-flexible or semi-rigid properties [92]. Two major modification
pathways have been widely used to improve the properties and applicability of
castor oil-based polyols for producing PUs with improved properties and wider
applications. One is the transesterification/amidation of castor oil using its ester
moieties, and the other is the alkoxylation of castor oil using its hydroxyl groups.
The functionality and hydroxyl number of castor oil-based polyols can be increased
by transesterification with glycerol, pentaerythritol, and other polyols [1], or ami-
dation with diethanolamine [93]. As a result, PUs with more rigid properties have
been obtained. For example, castor oil-based polyols prepared by transesterification
with triethanolamine and amidation with diethanolamine, showed hydroxyl num-
bers ranging from approximately 291 to 512 mg KOH/g. Their derived PU coatings
exhibited higher tensile strengths (19.8–57.4 MPa) and glass transition temperatures
(Tg, 44.5–84.5 °C) than those from an unmodified castor oil-based analogue (tensile
strength: 14.1 MPa; Tg: 18.6 °C) [93]. Alkoxylation is a polymerization process by
which epoxide monomers (e.g., ethylene oxide and propylene oxide) are incorpo-
rated into an alcohol for the formation of polyols. Castor oil can be converted to
polyols with higher molecular weights and lower hydroxyl numbers by ethoxyla-
tion (alkoxylation with ethylene oxide) or propoxylation (alkoxylation with pro-
pylene oxide) [94]. Due to the incorporation of long polyether chains from castor
oil, high quality flexible PUs such as foam mattresses can be produced. Scheme 2.7
shows a schematic synthetic route for castor oil-based polyols via ethoxylation.

In addition to these two modification methods, mixing castor oil with
petrochemical-derived polyols is also an effective way to obtain fast reaction rates
with isocyanates and to fine-tune product properties in the PU production process.
By adding triisopropanolamine to the PU formulation, castor oil-based rigid PU
foams showed increased compressive strength [95]. Millable PU elastomers pre-
pared from castor oil and poly(propylene glycol) showed a wide range of physical
and mechanical properties via varying PU formulations, such as the content of
polyols and chain extenders [96]. They varied from soft elastomers to hard plastics.
In comparison to a petroleum-based sample (e.g., Urepan 600), castor oil-based PU
elastomers exhibited comparable tensile strength, compression set, and resilience
and slightly inferior abrasion resistance and elongation at break [96]. Castor oil, in
combination with recycled polyethylene terephthalate (PET), adipic acid, and
polyethylene glycol (PEG), has been used to prepare PU coatings for insulation
applications [97, 98]. Higher tensile strength and better electrical insulation
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Fig. 2.4 Chemical structure of major fatty acid in castor oil
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performance (comparable or superior to regular PU insulation) were generally
obtained with increasing crosslinking density in PU networks. These coatings also
exhibited excellent resistance to acid (1 or 10 % sulfuric acid) and alkaline (1 %
sodium hydroxide) solutions, and a certain degree of swelling in toluene and DMF
[97, 98]. Additionally, castor oil has been extensively used in the preparation of
PU-based interpenetrating polymer networks (IPNs) [99–102]. PUs with 100 %
bio-based materials have also been prepared from castor oil and soybean oil-based
isocyanates, showing low Young’s modulus and tensile strength due to the absence
of hard segments [103].

2.4 Fatty Acid- and Fatty Acid Ester-Based Polyols
and Polyurethanes

Fatty acids and fatty acid esters have carbon-carbon double bonds and carboxyl
groups/ester linkages, which can be converted to hydroxyl groups with the above
mentioned methods for vegetable oil-based polyols. Besides these methods [54, 67,
104–108], other methods have been reported for the synthesis of polyols from fatty
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acids and fatty acid esters, including dimerization of fatty acids, cyclotrimerization
of alkyne fatty acid esters, self-metathesis of fatty acids, cationic polymerization of
epoxidized fatty acid esters, and hydrosilylation of fatty acid esters, all of which
were followed by a reduction reaction.

Dimerization of fatty acids is a complex reaction that can proceed under various
catalysts, such as alkaline metal salts, Lewis acids, and clays [109]. Through further
reduction (Scheme 2.8a) or polycondensation with glycols (Scheme 2.8b), dimeric
fatty acid diols/polyester polyols are obtained [68, 110]. Waterborne PU coatings
synthesized from dimer fatty acid-based polyester polyols exhibited high water
resistance and thermal stability but low toluene resistance and mechanical prop-
erties [110]. The introduction of adipic acid to dimer fatty acid-based polyester
polyols could improve the toluene resistance and mechanical properties of dimer
fatty acid-derived PU coatings.

Fatty acid-based cyclotrimerization (Scheme 2.9) has also been reported for
producing polyols. Through a series of modifications, including bromation, dehy-
drobromination, and esterification, oleic acid and 10-undecenoic acid (derived from
ricinoleic acid) were first converted to methyl 9-octadecynoate and methyl
10-undecynoate, which then underwent cyclotrimerization using heterogeneous
Pd/C as a catalyst and subsequent reduction of ester groups with LiAlH4 to yield
primary hydroxyl groups [111]. Because of the plasticizing effect of the long ali-
phatic chains in oleic acid-derived aromatic triols, oleic acid-based PUs showed a
lower Tg value than 10-undecenoic acid-based analogues.

Unsaturated linear diol with terminal primary hydroxyl groups was synthesized
via the self-metathesis of oleic acid with a Grubbs catalyst followed by reduction
with LiAlH4 (Scheme 2.10) [105]. By reacting with an oleic acid-derived
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diisocyanate (1,7-heptamethylene diisocyanate, Chap. 1) in the presence of a
bio-based chain extender (1,9-nonanediol, derived from ozonolyzed oleic acid)
[67], 100 % bio-based thermoplastic PU (TPU) has been prepared from the
unsaturated linear diol. The TPU showed similar phase behavior but lower tensile
strength and elongation at break, compared to an analogue prepared from the diols
with a petroleum-based diisocyanate (i.e., 1,6-hexamethylene diisocyanate). The
difference of properties between these two TPUs was due to the effects of odd- and
even-numbered methylene groups in 1,7-heptamethylene diisocyanate and
1,6-hexamethylene diisocyanate [105].

Oligomeric polyether polyols were synthesized via fluoroantimonic acid-
catalyzed cationic polymerization of epoxidized methyl oleate and subsequent
controlled reduction of ester groups (Scheme 2.11) [112]. Depending on the degree
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of reduction reaction with lithium aluminum hydride, polyols had hydroxyl num-
bers ranging from 94 to 260 mg KOH/g and molecular weights from 1220 to
1149 g/mol, and varied from clear liquids to white, waxy solids at room temper-
ature. Thermal and mechanical analyses indicated that the produced PUs could be
used as hard rubber or rigid plastics [112].

Through platinum-catalyzed hydrosilylation with phenyltris(dimethylsiloxy)
silane followed by reduction with LiAlH4, methyl 10-undecenoate was converted to a
silicon-containing polyol with terminal primary hydroxyl groups (Scheme 2.12),
which had a hydroxyl number of 194 mg KOH/g [113]. The incorporation of silicone
endowed the resulting PUs with enhanced thermal stability under atmospheric con-
ditions, suggesting their potential applications as fire-retardant materials [113].

2.5 Crude Glycerol-Based Polyols and Polyurethanes

Recently, the feasibility of utilizing crude glycerol as a renewable feedstock for the
production of polyols and PU foams and coatings has been investigated [9, 11, 12].
Through a one-pot thermochemical process, crude glycerol, in the presence of sul-
furic acid, was successfully converted to polyols with suitable properties for appli-
cations of PU foams and coatings. The reactions involved in the thermochemical
process mainly included the acidification of soap, esterification of glycerol and fatty
acids, and transesterification of glycerol and fatty acid methyl esters, as shown in
Scheme 2.13. Crude glycerol-based polyols were a mixture primarily consisting of
monoglycerides, glycerol, and diglycerides. Under preferred reaction conditions of
200 °C, 90 min, and 3 % sulfuric acid loading, the crude glycerol-based polyols
produced showed a hydroxyl number of approximately 481 mg KOH/g and an acid
number of approximately 5 mg KOH/g. PU foams produced from this crude
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glycerol-based polyol and polymeric methylene-4,4’-diphenyl diisocyanate (pMDI)
presented a compressive strength of approximately 184.5 kPa and a density of
approximately 43.0 kg/m3, which were comparable to those of some petroleum-based
analogs [9]. Crude glycerol has also been used for producing polyols and PU foams in
combination with PET and diethylene glycol [10]. With an increase of the weight
ratio of crude glycerol to PET and DEG, polyols showed increased hydroxyl num-
bers, which resulted in PU foamswith increased density and compressive strength but
decreased thermal stability. A decreased content of aromatic segments was respon-
sible for the decreased thermal stability of PU foams. Under vacuum conditions, a
crude glycerol-based polyol with a lower hydroxyl number (e.g., 378 mg KOH/g)
was also prepared by a one-pot thermochemical process and had components similar
to polyols obtained under atmospheric conditions [11].Waterborne PU coatings from
this polyol and isophorone diisocyanate (IPDI) showed excellent adhesion to steel
surfaces, good pencil hardness, but relatively low flexibility. The incorporation of
petroleum-based polyether polyols can improve the flexibility of crude
glycerol-based waterborne PU coatings [11].

2.6 Summary and Future Prospects

Vegetable oils and their derivatives including fatty acids, fatty acid esters, and crude
glycerol have good potential as renewable and sustainable feedstocks in producing
bio-based polyols and PUs. Modifications made on the double bond and/or car-
bonyl moieties (i.e., ester linkages or carboxyl group) of vegetable oils and their
derivatives allow the synthesis of polyols with different reactivities, functionalities,
molecular weights, and other properties. Because of their high versatility, polyols
from vegetable oils and their derivatives have been used to produce various PU
materials such as foams, elastomers, rigid plastics, and coatings, which have shown
properties mostly comparable to those of their petroleum-based analogs.

In spite of their promise, vegetable oils and their derivatives still face challenges
such as technical and/or cost barriers to production of high resilient flexible foams.
Future efforts in this field will be of high interest. Crude glycerol, a byproduct of the
biodiesel industry, is a promising renewable feedstock for producing polyols and
PUs. However, its varied composition makes it difficult to obtain polyols with con-
sistent quality and properties. This problemwill be effectively solved by adjusting the
composition of crude glycerol with the addition of crude fatty acids or fatty acid
methyl esters. The inherent structural heterogeneities of vegetable oils also challenge
the production of polyols and PUs with consistent properties. The use of single
components or derivatives, such as one type of fatty acid, and advances in genetic
engineering should lead to polyols and PUs with more homogeneous structures and
consistent qualities. Currently, bio-based polyols and PUs may still have higher costs
than petroleum-based analogues. However, with the continuing advances in tech-
nologies and the inevitable depletion of the world’s petroleum resources, the future of
bio-based polyols and PUs looks very promising and bright.
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