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Abstract. Automating the routing process is essential for the semi-
conductor industry to reduce time-to-market and increase productivity.
This study sprang from the need to automate the following critical task
in clock routing: given a set of nets, each net consisting of a driver and
a receiver, connect each driver to its receiver, where the delay should be
almost the same across the nets. We demonstrate that this problem can
be reduced to bounded-path, that is, the NP-hard problem of finding a
simple path, whose cost is bounded by a given range, connecting two
given vertices in an undirected positively weighted graph. Furthermore,
we show that bounded-path can be reduced to bit-vector reasoning and
solved with a SAT-based bit-vector SMT solver. In order to render our
solution scalable, we override the SAT solver’s decision strategy with a
novel graph-aware strategy and augment conflict analysis with a graph-
aware procedure. Our solution scales to graphs having millions of edges
and vertices. It has been deployed at Intel for clock routing automation.

1 Introduction

Integrated circuits (IC) are made up of a large number of transistors forming
logical gates connected by nets. The process of finding the geometrical layout
of all the nets is called routing. Routing is an essential stage of the physical
design process [25]. A clock is a control signal that synchronizes data transfer
in the circuit. Specialized algorithms are required for routing the clock nets as
opposed to other types of nets [26]. This is because the clock must arrive at
all functional units at almost the same time. Clock nets must be routed before
the other nets (except the power nets), hence rapid clock routing is critical for
decreasing the time-to-market of semiconductor products. In clock routing, the
following requirement must often be met for a set of nets, each net consisting
of a driver and a receiver: wires connecting the driver to the receiver must have
almost the same delay across the nets. This type of routing is called matching
constrained routing (MCR). This paper shows how to automate MCR.

Section 2 reviews related work and provides some preliminaries. We define
the bounded path problem (or, simply, bounded-path) as follows: given a positively
weighted undirected graph, a source s and a target t, find a bounded path (that
is, a simple path, whose cost lays within a given cost range) from s to t. Section 3
shows that MCR can be reduced to bounded-path in a grid graph.
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Section 4 demonstrates that bounded-path is NP-hard even for a grid graph.
It also shows how to reduce bounded-path to bit-vector (BV) logic. Solving
bounded-path instances originating in MCR with a BV solver does not scale
to industrial instances. Section 5 remedies this situation by proposing a new
problem-aware approach to solving bounded-path within an eager BV solver
[9,14]. First, we override the decision strategy of the SAT solver with a graph-
aware strategy, which builds a bounded path from source to target explicitly.
Second, we augment conflict analysis with graph-aware reasoning.

The main conceptual novelty of our approach w.r.t the decision procedure,
independent of the particular problem, is the pivotal role of the decision strategy.
While custom SAT decision heuristics have been applied previously [3,24], our
decision strategy replaces constraints, that is, it guarantees that the algorithm
is sound even after we remove the heaviest part of the constraints used in our
initial reduction to BV logic. In addition, we use the decision strategy rather than
constraints for heuristically optimizing the solution (w.r.t track utilization).

Furthermore, the underlying ideas behind graph-aware reasoning can be used
to speed-up SAT-based approaches to other graph reachability problems, such as
routing in the presence of design patterns [23] and cooperative path finding [28].

Section 6 of this work presents experimental results. We study the impact
various aspects of our approach have on crafted bounded-path instances (avail-
able in [11]). In addition, we demonstrate that our approach solves a family
of instances originating in the clock routing of modern Intel designs. Section 7
concludes our work.

2 Related Work and Preliminaries

The term clock routing is often associated with a routing scenario where the
driver needs to be connected to multiple receivers within the same net, form-
ing a tree wherein the delay from the driver to each receiver should be almost
identical [13,31]. This scenario does not fall within the scope of this work.

The current solutions for MCR in IC [16,22] are designed for handling analog
and mixed designs with exactly zero allowed skew (where skew is deviation
in delay). The solution space explored in [16,22] is limited to cases where the
number of wire segments in all nets is identical, and the length, layer and width of
respective wires are identical. These limitations guarantee that the zero allowed
skew requirement is met but are too restrictive for our setting. In particular,
if the routing area is not rectangular (a common phenomenon in hierarchical
designs with non-rectangular hierarchical block boundaries), none of the valid
routing solutions are expected to conform to these limitations in a variety of
test-cases. In addition, in our setting the allowed skew is greater than zero.

A propositional formula in Conjunctive Normal Form (CNF) is a conjunc-
tion/set of Boolean clauses, where each clause is a disjunction of literals and a
literal is a Boolean variable or its negation. A SAT solver [8,20,27] receives a
CNF formula and returns a satisfying assignment to its variables, if one exists.
An eager BV solver [9,14] works by preprocessing the given BV formula [9,14,21],
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bit-blasting it to CNF and solving with SAT. We assume that the reader is famil-
iar with the basics of modern SAT and eager BV solving. See [17] for a recent
overview.

Propositional satisfiability has been applied to solving the NP-complete prob-
lem of FPGA routing since [30]. From [30] we borrow the idea of using connectiv-
ity constraints to ensure that two given nodes are connected. The core problem
in MCR of routing with almost the same delay does not exist in FPGA routing.

A DPLL(T) [15] theory solver for reasoning about costs to ensure that any
satisfying assignment lays within some user-given cost bound has been proposed
in [10]. Conceptually, the added value of our approach lies in: (a) introducing the
concept of a decision strategy which replaces constraints and guides the solver
towards a good solution while meeting additional optimization goals, and (b)
introducing graph-aware reasoning.

We need some graph theory-related notations. Given an undirected graph
G = (V,E), where each edge e ∈ E is associated with a positive cost ce, a source
node s ∈ V , a target node t ∈ V , and a simple path π from s to t of cost c
(where the cost of a path is the sum of the costs of its edges), π is the longest
path if there is no path from s to t of cost greater than c. π is bounded in the
given cost range [cmin, cmax], if cmin ≤ c ≤ cmax. A vertex v ∈ V is internal if
it is neither a source nor a target. We denote by S =

∑
e∈E ce the sum of the

costs of all the edges in the graph. Let m = (cmax+cmin)/2 be the middle of the
cost range. Then the actual skew k = |c−m|/(cmax −m) is the deviation of the
generated path’s cost from the middle. Sometimes the cost range is provided as
a pair consisting of the target cost tc and the allowed skew a, which is equivalent
to the cost range [(1 − a) ∗ tc, (1 + a) ∗ tc].

We define a grid graph next. Let I be the infinite graph whose vertex set
consists of all points of the plane with integer coordinates and in which two
vertices are connected if the Euclidean distance between them is equal to 1.
A grid graph is a finite, node-induced sub-graph of I. A vertex v in a grid graph is
uniquely determined by its coordinates (vx, vy). A vertical track i or a horizontal
track i comprises vertices whose x-coordinate or y-coordinate, respectively, is i.
The maximal degree of a vertex in a grid graph is 4. An edge in a grid graph
is either vertical, if the x-coordinates of its vertices are identical, or, otherwise,
horizontal. The grid graph G is mainly vertical if most of its edges are vertical,
otherwise it is mainly horizontal. Figure 4a on page 13 is an example of a mainly
vertical grid graph. A vertex v = (vx, vy) is to the north/south/east/west of
u = (ux, uy) if vy > uy/vy < uy/vx > ux/vx < ux, respectively.

Finally, we provide some relevant complexity results. Let longest-path be
the problem of finding a longest path. Longest-path is NP-hard even for an
unweighted graph, since Hamiltonian-path is trivially reducible to longest-path
(see, e.g., [18]). Moreover, Hamiltonian-path, and thus longest-path, is NP-hard
even for an unweighted grid graph [19]. Clearly, finding a longest path in a
weighted graph and a weighted grid graph is also NP-hard. Longest-path is
polynomial for some special grid graph classes, including solid grid graphs, where
all of the bounded faces have area one (that is, the grid has no “holes”) [29].
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3 Matching Constrained Routing in Clock Routing

Let net be a subset of vertices in a 3-dimensional grid. Routing is about connect-
ing all the vertices for each net with wires, where intersecting and/or touching
wires which belong to different nets is not allowed (once the vertices have been
connected the wiring is also considered to be part of the net).

Consider our more specific setting. Let {n0, n1, . . . , nk} be a set of nets, where
each net comprises the driver (source vertex) and the receiver (target vertex).
First, as in any routing, in MCR one must connect the driver to the receiver
for each net without intersection. Second, in MCR the delay must be similar for
each net up to an allowed skew, where the delay is the amount of time it takes
for the signal to travel from the driver to the receiver.

In our setting, the routing can use two adjacent x-y planes of the 3-
dimensional grid only, where one plane is called the horizontal metal and the
other is the vertical metal. The wires in the horizontal/vertical metal must lay
along the horizontal/vertical tracks only, respectively. The two metals can be
connected (with so-called vias). Superimposing the two metals reduces the prob-
lem space to a two-dimensional grid graph, where each intersection between
available sub-tracks induces a vertex as shown in Fig. 1.

The routing delay depends on the length of the wires and the physical prop-
erties of the metals used. To model the similar delay requirement, we associate
each edge with a cost proportional to the length of the wire represented by
the edge, multiplied by a constant Ch or Cv, depending on whether the edge
is horizontal or vertical. The ratio between constants Ch and Cv represents the
difference in delay between the horizontal and vertical metals.

To generate routing with similar delay for the given set of nets, we proceed
as follows. For each net independently we find the shortest path connecting its
driver to its receiver. We then select as a reference cost (RC) the cost of the
longest shortest path πrc connecting the driver to the receiver for some net nrc.
πrc comprises the solution for nrc. Then, for each remaining net we formulate
and solve a separate bounded-path instance, with the target cost being the RC
and the allowed skew being user given (e.g., 2.5 %), where sub-tracks occupied
by previously laid out nets are not part of the problem, as shown in Fig. 1. Hence
the resulting grid graphs are normally not solid.

Moreover, as is the case with other routing algorithms, the router is requested
to use as few tracks as possible. It is also desirable to minimize the actual skew.
Both of these requirements are naturally translated into similar requirements for
the bounded-path solver. Both are not strict in the sense that a good enough
rather than the optimal solution is required.

4 Reducing Bounded-Path to Bit-Vector Reasoning

This section shows that bounded-path is NP-hard, and provides an encoding of
bounded-path into BV logic. We start with Proposition 1, which shows that
bounded-path is NP-hard by reducing longest-path to a binary search over



24 A. Erez and A. Nadel

Fig. 1. Reducing the physical design problem (left) to a grid graph (right). On the left
we see a bird’s-eye view on a piece of layout with some of the vertical and horizontal
tracks already occupied by wires. On the right we see the grid graph generation process.
Legal sub-tracks are formed in non-occupied track parts, not too close to wires ends.
Intersections and edge points of the legal sub-tracks are the vertices in the resulting
grid graph. Edges are induced by the connections between the vertices.

the entire cost range, where each invocation solves bounded-path. Proposition 1
holds for any graph class for which longest-path is NP-hard, including weighted
grid graphs induced by MCR. The extended version of this work [12] details the
proof of Proposition 1 and provides lower-level examples of our encoding, which
is introduced next.

Proposition 1. The bounded path problem is NP-hard.

We propose a reduction of bounded-path to bit-vector (BV) logic. Given an
instance of bounded-path, our encoding ensures that a BV solver will output
sat and return a bounded path iff such exists.

We call an edge/vertex active iff it appears on the path from s to t and
inactive otherwise. Consider now Fig. 2.

First, we associate each edge e and vertex v with a Boolean variable ae and
av, respectively, to represent whether the edge or the vertex, respectively, is
active (items 1a and 1b in Fig. 2). The set of active vertices and edges comprise
the bounded path returned by the solver for a satisfiable problem. The variables
cv and dire, discussed next, are intended to contain meaningful values for active
edges and vertices only.

Second, each vertex v is associated with a BV variable cv which represents
the cost of the path from the source s to v if v is active (item 2a in Fig. 2). The
width of cv for each v is set to �log2S� + 1 to be able, in the worst case, to
accommodate the cost of all the edges S without overflow.

Third, each edge e is associated with a Boolean variable representing its
direction dire (item 2b in Fig. 2). The direction dire is intended to contain 0
for e = (v, u) iff v is closer to s than u on the constructed path from s to t, in
which case we say that e is v-outgoing and u-incoming. The other option is that
dire = 1, and we say that e is u-outgoing and v-incoming.

Next, we introduce the constraints. They can be classified into connectivity
constraints and cost constraints.
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Connectivity constraints guarantee that a valid path of an arbitrary cost from
s to t is constructed by the solver. Given a vertex v, let the set of v’s neighbors
be the set of edges touching v. Constraint 3a ensures that if an edge e = (v, u) is
active, then both v and u are active, while constraint 3b ensures that each vertex
has a proper number of active neighbors. Specifically, an inactive vertex has no
active neighbors. The source and the target vertices have one active neighbor
each, while an internal active vertex has two active neighbors.

Figure 2 contains a high-level representation of constraint 3b’s encoding. The
actual encoding requires a solver supporting conditional cardinality constraints
of the form a → exactlykN (that is, if a Boolean a holds, then exactly k out of
the set of Boolean variables N hold), where k is either 0, 1, or, 2 and N can be
as large as the maximal vertex degree. While such constraints are not part of the
standard BV language [4], an eager SMT solver can easily be extended to support
them. This can be done by encoding the cardinality constraint exactlykN as
a set of clauses (the problem is well-studied; see [7] for an overview) and then
adding the selector literal ¬a to each clause. Note that in a grid graph, the
maximal degree of any vertex is 4, hence conditional cardinality constraints can
be expressed with just a few clauses.

Consider now the cost constraints. They ensure that the cost of the con-
structed path falls within the specified cost range.

Constraints 4a to 4c guarantee that the direction is set correctly for any
active edge. Namely, constraint 4a ensures that the active edge touching the
source s must be s-outgoing, while constraint 4b ensures that the active edge
touching the target t must be t-incoming (note that connectivity constraints
guarantee that there is one and only one active edge touching the source and
the target). Constraint 4c guarantees that if an internal vertex v is active, it has
one v-incoming and one v-outgoing edge.

Finally, constraints 4d to 4f ensure that the eventual cost falls within the
specified range. The cost is 0 for the source (constraint 4d) and it falls within the
user-given range for the target (constraint 4f). The cost is propagated through
the path’s vertices taking advantage of the fact that the previous vertex is avail-
able through the direction of the incoming edge (constraint 4e).

5 Graph-Aware Solving

This section introduces graph-aware reasoning that enhances the eager approach
to BV solving. In our new approach, the BV solver is provided with the con-
nectivity variables and constraints only; the cost variables and constraints are
omitted, thus substantially reducing the size of the problem. Our graph-aware
decision strategy ensures that the path returned will still be bounded.

5.1 Graph-Aware Solving with Augmented Conflict Analysis

Consider Algorithm 1 which comprises the algorithmic framework of our app-
roach. The algorithm contains five functions:
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Algorithm 1. Graph-Aware Solving

1: function Solve(Graph G, Source s, Target t, Cost cmin, Cost cmax)
2: For every vertex v, compute the minimal cost m(v) to t with Dijkstra
3: Generate connectivity constraints and bit-blast to SAT
4: tc:=(cmax + cmin)/2
5: P := []; l :=s; curr cost :=0; stage:=init

6: loop
7: s:= Run the SAT solver
8: if s = sat then
9: return P

10: else if s = unsat then
11: return No path exists
12: else � s = unknown
13: Refine by providing the clause ¬P to the SAT solver and restart the

SAT solver

14: function OnDecision(Decision level d)
15: if stage �= shortestp and curr cost + m(l) ≥ tc then
16: stage:=shortestp

17: if stage = shortestp then
18: N := unassigned edges in nbors(l)
19: return e ∈ N minimizing ce + m(other ver(e, l))

20: e:= NextEdge
21: l :=PathPushBack(e,d)
22: return ae

23: function OnImplication(Literal l)
24: if l ≡ ae for e = (l , v) then
25: l := PathPushBack(e, not a decision)

26: function OnBacktrack(Decision level d)
27: {P , l , curr cost , stage} :=backtrack point(d)

28: function PathPushBack(Edge e, Decision level d)
29: if d �= not a decision then
30: backtrack point(d):= {P , l , curr cost , stage}
31: curr cost :=curr cost + ce
32: Push e to the back of P
33: u:=other ver(e, l)
34: if curr cost + m(u) > cmax or (u = t and curr cost < cmin) then
35: Stop the SAT solver and have it return unknown

36: if u = t then
37: Stop the SAT solver and have it return sat

38: return u
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Algorithm 2. Grid-Aware Strategies

1: function GetUnassignedEdge(Direction d)
2: if e = (l , u) or e = (u, l) ∈ E, such that u is to the d from v, exists and

unassigned then
3: return e
4: else
5: return ∅

6: function ChooseDirOrdered
7: for all d ∈ D do
8: if GetUnassignedEdge(d) �= ∅ then
9: return GetUnassignedEdge(d)

10: return ∅

11: function GridAwareNextEdge
12: if stage = init then
13: if ChooseDirOrdered({south, west}) �= ∅ then
14: return ChooseDirOrdered(south, west)

15: stage:=spend

16: if stage = spend then
17: if lx = tx then
18: stage:=sec init

19: sec init main dir:= s to the south of t ? south : north
20: else
21: d:= ChooseDirOrdered({north, south, east, west})
22: if d = west and there is no simple path from l to t then
23: Stop the SAT solver and have it return unknown

24: return d
25: if stage = sec init then
26: if ChooseDirOrdered({sec init main dir, east}) �= ∅ then
27: return ChooseDirOrdered({sec init main dir, east})

28: stage:=sec spend

29: if stage = sec spend then
30: d:= ChooseDirOrdered({north, south, west, east})
31: if d = east and there is no simple path from l to t then
32: Stop the SAT solver and have it return unknown

33: return d

1. Solve: the main function invoked by the user.
2. OnDecision: this function is invoked by the underlying SAT solver to get a

decision literal when it has to take a decision.
3. OnImplication: invoked by the SAT solver whenever it derives a new impli-

cation (that is, whenever a value for a variable is forced by propagation).
4. OnBacktrack: invoked by the SAT solver whenever it backtracks.
5. PathPushBack: a multi-functional auxiliary function, explained later.

Solve receives the graph G, the source s, the target t, the minimal cost
cmin and the maximal cost cmax. It returns a path P from s to t, whose cost is
bounded by [cmin, cmax], if available. The function starts at line 2 by computing
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1. Connectivity variables
(a) Boolean ae: ae is 1 iff e ∈ E is active.
(b) Boolean av: av is 1 iff v ∈ V is active.

2. Cost variables
(a) BV cv: the cost of the path from s to v
(b) Boolean dire: the direction of e ∈ E

3. Connectivity constraints
(a) ae implies av and au, where e = (v, u)
(b) Each vertex v has exactly n active neighbor edges, where:

i. n=0 if the vertex is inactive
ii. n=1 if v is the source or the target
iii. n=2 if v is an active internal vertex

4. Cost constraints
(a) The active edge touching the source s is s-outgoing
(b) The active edge touching the target t is t-incoming
(c) For every active internal vertex v, there must be one v-outgoing and

one v-incoming active edge
(d) cs = 0
(e) cv = ce + cu, given an active internal vertex v, where e, touching v

and u, is the v-incoming edge
(f) cmin ≤ ct ≤ cmax

Fig. 2. Translating bounded-path to BV

the minimal cost m(v) from each node v to the target t with one invocation of
the Dijkstra algorithm. As we will see, the minimal costs are required for the
decision strategies and conflict analysis. At line 3, connectivity constraints are
generated and bit-blasted to SAT (word-level preprocessing can also be applied
before bit-blasting). The SAT solver is not yet invoked at this stage. At line 4,
the target cost tc, comprising the middle of the range [cmin, cmax], is computed.
The algorithm will try to build a path from s to t whose cost is as close as
possible to tc (in accordance with the actual skew minimization requirement).

The main loop of the algorithm starts at line 6. It uses the following variables,
initialized at line 5:

1. P holds the edges of a simple path starting at s. If the algorithm completes
successfully, P will hold a path from s to t bounded by [cmin, cmax].

2. l contains the latest vertex of the generated path from s to t.
3. curr cost contains the overall cost of (the edges of) P so far.
4. stage contains the current stage of the decision strategy (explained later in

Sects. 5.2 and 5.3).

The main loop invokes the SAT solver at line 7. The solver may return three
possible results. If the solver returns sat, then P is guaranteed to contain a
bounded path from s to t; thus P is returned to the user. If it returns unsat,
there is no solution, and a special value is returned to the user.
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In addition, the solver may return the value unknown, meaning that a graph
conflict was encountered and refinement is required. A graph conflict is a situa-
tion where no path from s to t with prefix P and cost bounded by [cmin, cmax]
exists. Our algorithm may identify three types of graph conflicts, shown in Fig. 3
and discussed later. When a graph conflict is encountered, the algorithm refines
the problem by adding a new graph conflict clause which prevents regeneration
of the current path P . The graph conflict clause contains activation variables
corresponding to the edges in the path P , negated (the clause can be optionally
minimized by removing edges from its tail as long as the conflict still occurs).
Then the algorithm continues to the next iteration of the loop. After restarting
(where by restarting we mean backtracking to decision level 0), the algorithm
will pick the same decisions until but not including the latest edge, which has
to be different in order to satisfy the graph conflict clause.

5.2 Interactive SAT Solving

We continue the presentation of Algorithm1. Given a vertex v, let nbors(v) be
the set of v’s neighbors (recall that v’s neighbors are the edges touching v). Given
a vertex v and an edge e ∈ nbors(v), the other vertex of e, other ver(e, v), is the
vertex u �= v, touched by e.

Consider the function OnDecision, invoked by the SAT solver to pick the
next decision. It receives the current decision level d and returns an unassigned
literal, which is picked by the SAT solver as the next decision literal.

At each stage of the algorithm, let the cost low bound (CLB) be c(P )+m(l),
that is, the cost of the current path P from s to the latest vertex l plus the
pre-computed minimal cost from l to t. Once CLB is greater than or equal to
the target cost, the algorithm enters the shortest path stage shortestp (see
lines 15 to 16), where the cost of any path from s to t with prefix P cannot
be lower than the target cost. Hence, the algorithm picks an edge so as to have
CLB as low as possible after the edge is picked (lines 17 to 19). Note that if the
pre-computed shortest path is still not occupied, the algorithm will arrive at t,
where the path cost is exactly the target cost. If the shortest path stage is not
entered, OnDecision invokes a core decision strategy (described in Sect. 5.3) to
pick the next unassigned decision literal. The choice is crucial for performance,
but does not alter the correctness.

After an edge is picked, OnDecision invokes the auxiliary function Path-
PushBack, providing it the edge e and the decision level d. Normally, Path-
PushBack pushes e to the end of P and returns the new latest vertex l , and
then OnDecision returns ae as the next decision literal (all this is unless Path-
PushBack discovers a graph conflict or finds that the problem is satisfied). We
will get back to the functionality of PathPushBack a bit later.

The function OnImplication is invoked by the SAT solver whenever its
Boolean Constraint Propagation (BCP) learns a new implication. It receives the
implied literal. If the literal activates an edge e touching the latest vertex l , then
e is pushed to P using PathPushBack and l is updated accordingly.
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Now consider PathPushBack. First, if the function is invoked when a new
decision is taken, it creates a backtrack point at decision level d (lines 29 to 30) so
as to let the algorithm (or, more specifically, function OnBacktrack) restore all
the relevant variables when (and if) the SAT solver backtracks to decision level
d. Creating the backtrack point and backtracking whenever required is essential
to maintaining the consistency of the algorithm. Then PathPushBack updates
the current cost curr cost and pushes e to the end of P .

Line 34 of PathPushBack checks conditions 1 and 2 in Fig. 3 that might
trigger a graph conflict (condition 3 is discussed in Sect. 5.3). First, a graph
conflict occurs when the target t is reached, but the cost is not bounded. Note
that triggering a graph conflict on this occasion is essential to guaranteeing the
soundness of the algorithm. Second, a graph conflict is identified when CLB
exceeds the maximal value cmax for any non-target vertex. This is not necessary
for soundness, but advisable for pruning the search space, thus improving per-
formance. If a graph conflict is identified, PathPushBack stops the SAT solver
and asks it to return unknown.

If no graph conflict is identified, the algorithm checks whether the target
is reached within the required cost, in which case it stops the SAT solver and
has it return sat. Finally, if none of the stopping conditions were triggered,
PathPushBack returns the new latest vertex on the path.

1. P connects s to t, but P ’s cost is not within [cmin, cmax]
2. The CLB c(P) + m(l) exceeds the maximal value cmax and l �= t
3. The target t is no longer reachable (see an example in Fig. 4a)

Fig. 3. Graph conflict conditions

5.3 Core Decision Strategies

This section proposes the core decision strategies for Algorithm 1. We start
by proposing the following simple graph-aware strategy, applicable to finding
a bounded path in any graph: go away from the target until the shortest path
stage is entered. This is done by always preferring an edge e such that CLB, after
picking e, is the lowest possible. Unfortunately, this simple strategy cannot be
used for MCR in our setting, since it ignores the track minimization requirement.

Recall the grid graph related definitions from Sect. 2. We propose a grid-aware
decision strategy for the problem of finding a bounded path from s = (sx, sy)
to t = (tx, ty) in a grid graph G, where the maximal x-coordinate/y-coordinate
is X/Y , respectively. We make the following assumptions regarding the input
problem without restricting the generality: (a) G is mainly vertical; (b) sy < ty
or (sy = ty and |sy| ≤ |Y − sy|); (c) sx ≤ tx. Any grid graph can be transformed
to meet these conditions by rotating G by 90◦, if necessary, to meet the first
condition, and choosing the point (0,0) out of the 4 corners to meet the last two
conditions.
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Our grid-aware strategy is designed to find a bounded path in a grid graph,
keeping two main goals in mind:

1. Graph conflicts-awareness: try to avoid graph-aware conflicts and identify
them when they cannot be avoided.

2. Track minimization: try to minimize the number of tracks in the path.

The function GridAwareNextEdge in Algorithm 2 implements the strat-
egy (it is intended to be called at line 20 in Algorithm 1). The algorithm has
five stages, where the shortest path stage shortestp is entered whenever CLB
is greater than or equal to the target cost at any other stage as discussed in
Sect. 5.2 and shown in Algorithm 1. The remaining four stages are explained
below.

During the initial stage init, the algorithm goes towards the corner (0, 0),
that is, southwards and westwards, whenever possible. See Fig. 4a for an illus-
tration and lines 12 to 15 in Algorithm 2 for the implementation of stage init.
The implementation applies an auxiliary function ChooseDirOrdered, which
receives an ordered sequence of directions D = {d1, d2, . . .}. It returns an unas-
signed edge e touching l , such that other ver(e, l) is to the di of l , where i is
the lowest possible index, such that e exists and is unassigned. After the init
stage, the algorithm enters the spend stage.

During the spend stage, the algorithm tries to “spend the cost” using as few
tracks as possible by moving along the vertical tracks coast-to-coast whenever
possible (recall that the vertical tracks have more edges than the horizontal
tracks by our convention). When moving along a vertical track is no longer
possible, the algorithm turns towards the target t (in order not to block the way
to t). This stage can finish with the following possible outcomes:

1. The algorithm is turned away to the west by the SAT solver’s propagation and
there is no longer any path from l to t (line 22), where the latter condition is
checked using DFS. In this case, a graph conflict corresponding to condition 3
in Fig. 3 is triggered, and the algorithm stops the SAT solver. An example of
such an outcome is shown in Fig. 4a. In this case, a conflict clause is generated
by Algorithm 1. After restarting the SAT solver, the algorithm follows the
same path as before until an implication in the new conflict clause turns it
to the east and the graph conflict is avoided, as shown in Fig. 4b.

2. PathPushBack in Algorithm 1 halts the main loop of Algorithm 1 due to a
graph conflict or when a bounded path from s to t is found (the latter is an
unlikely corner case).

3. The shortest path stage shortestp is entered.
4. The vertical track of t is reached (line 17), in which case the second initial-

ization stage sec init is entered.

During the second initial stage sec init (lines 25 to 28), the algorithm goes
to one of the eastern corners according to the relative position of l with respect
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to t. When moving to the corner is no longer possible, the algorithm enters the
second spend stage sec spend.

During the second spend stage sec spend (lines 29 to 33), the algorithm
spends the cost similarly to the first spend stage spend, except that it moves
eastwards and does not stop when the vertical track of t is reached. In our
example in Fig. 4b, stage sec spend is finished when CLB becomes equal to the
target cost and the shortest path stage is entered.
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(c) Packing

Fig. 4. Application of the grid-aware strategies. Assume the cost of each edge is 1
and the requested cost range is [70, 80]. The red dotted edges correspond to the initial
stages init and sec init, the black solid edges correspond to the cost spend stages
spend and sec spend, while the blue dashed edges correspond to the shortest path
stage shortestp. A graph conflict situation is shown in Fig. 4a; the eventual solution
after the conflict is handled is shown in Fig. 4b; the packing effect is shown in Fig. 4c.

Remark 1. Assume the grid-aware strategy can go either eastwards or along
the vertical track during the spend stage after circumventing an obstacle. Con-
sider the choices at vertex (2, 9) in Fig. 4a for an example. Algorithm 2 prefers
continuing along the vertical track. An alternative would be preferring to go
westwards (implementation-wise, that would require replacing the parameters to
ChooseDirOrdered at line 21 in Algorithm 2 by {west, north, south, east}).
Similarly, such an algorithm would prefer going eastwards whenever possible dur-
ing the sec spend stage. We call this alternative approach packing. Its impact
is shown in Fig. 4c. Packing is designed to use all the available space in the grid
graph, thus it is better suited to cases where there are many obstacles or the
target cost is high. However, it comes at the price of excessive track usage. Note
the “ripple effect” of occupying the horizontal tracks 6,5 and 4, created by the
turn westwards at point (2, 6).

Remark 2. Our approach is expected to generate non-optimal results in terms of
track minimization for a generic rectilinear polygon as compared to a (possibly
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holed) mainly vertical rectangle, since some of the polygon’s rectangles might
be mainly horizontal (even though, most of the edges are vertical). We leave
designing an adaptive strategy that would change the explored dimension on-
the-fly to future work.

6 Experimental Results

First, we present experiments conducted on artificially generated test bench-
marks. The benchmarks and detailed results are available in [11]. The bench-
marks comprise diversified parametrized instances of bounded-path in grid
graphs, generated as follows:
1: for all t ∈ {

101, 102, 103
}
do

2: for all d ∈ {0, 0.25, 0.5, 0.75, 1} do
3: for all vcost ∈ {102, 104, 106, 108, 110, 112, 114, 116, 118, 120} do
4: for all r ∈ {0.1, 0.2, 0.3, 0.4, 0.5} do
5: c:=S × r � S is the overall edges cost
6: Generate a square grid of size t×t with randomly set source and

target. Remove any node v (along with the edges nbors(v)) with probability
d/t. Set the cost of each horizontal and vertical edge to 100 and vcost ,
respectively. Set the target cost to c and the allowed skew to 2.5 %.

The parameters were selected as follows so as to diversify the instances and to
be able to analyze various aspects of the algorithms’ performance: (a) t stands
for the number of tracks along each dimension, hence t × t is the grid size; (b)
d determines the dilution rate. We remove (d/t)t2 = dt vertices on average at
random, so as to defragment the grid graph. (c) vcost determines the vertical
cost, while the horizontal cost is static; (d) r determines the target cost as a
function of the overall edges cost S.

We compared the following algorithms, implemented on top of Intel’s eager
SMT solver Hazel: (a) BV: reduction to BV, described in Sect. 4. (b) Graph:
Algorithm 1 with the graph-aware strategy described in the first paragraph of
Sect. 5.3. (c) Grid: Algorithm 1 with the grid-aware strategy in Algorithm 2 (d)
GridP: Algorithm 1 with the grid-aware strategy Algorithm 2 and packing (recall
Remark 1 in Sect. 5.3).

We used machines with 32Gb of memory running Intel� Xeon� processors
with 3Ghz CPU frequency. The time-out was set to 600 sec.

Table 1 presents the number of instances solved within the time-out per grid
size. Table 2 shows the overall number of tracks used for all the algorithms
(except BV) on benchmarks solved by all these algorithms. Tables 3 and 4 show
the number of instances Grid and GridP, respectively, solve per each combina-
tion of r and d values for s = 102. The main conclusions are as follows.

Plain translation to BV does not scale even to 100×100 grids. To validate that
this result is independent of the underlying solver, in an additional experiment,
we verified that the two leading SAT solvers Lingeling [5,6] and Glucose 4.0 [1,2]
can solve none of the CNF instances corresponding to benchmarks with t = 100
and d ∈ {0, 1}. The CNF instances, available in [11], were dumped by Hazel
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Table 1. Solved per grid size Table 2. Tracks used in %

Table 3. Grid: solved out of 10
instances per cell, given r&d for
s = 102

Table 4. GridP: solved out of 10
instances per cell, given r&d for s = 102

after the world-level preprocessing stage. We could not run external BV solvers
as is, since they do not support conditional cardinality constraints.

GridP is the most robust strategy as it solves the most test instances. More-
over, when the target cost is not too high (r < 0.5), GridP solves all the instances
for s = 102. Grid cannot solve instances with high target costs and/or dilution
rates. Hence, as expected, packing is useful for handling grids with many obsta-
cles. The performance of Graph is surprisingly good for such a simple strategy.

As expected, Grid is by far the best algorithm in terms of track minimization.
We also conducted experiments on a family of real-world instances generated

by Intel’s clock routing flow. The family has 51 benchmarks. The number of
edges in the benchmarks ranges from 70,492 to 4,436,948, with an average of
1,203,631, while the number of vertices ranges between 44,320 and 2,837,800
with the average of 780,782. The results can be summarized as follows: (a) BV
solved none of the 51 instances, Grid and Graph solved all the instances, while
GridP solved 49 instances. (b) Grid used 285 tracks overall, Graph used 863
tracks, while GridP used 387 tracks. Hence, unlike in the case of randomized
test instances, it pays to use Grid on real-world instances. Grid is successfully
applied for clock routing automation at Intel.

7 Conclusion

We have presented an SMT-based approach to automating the matching con-
strained routing problem that has emerged in the clock routing of integrated
circuits. We reduced the problem to bounded-path, that is, the problem of find-
ing a simple path, whose cost is bounded by a user-given range, connecting two
given vertices in an undirected positively weighted graph. We have shown that
bounded-path can be solved by applying an eager bit-vector solver, but only
if the solver is enhanced with a dedicated graph-aware decision strategy and
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graph-aware conflict analysis. Our solution scales to graphs having millions of
edges and vertices. It has been successfully deployed at Intel as part of the core
engine for automatic clock routing.

Acknowledgments. We are grateful to Nachum Dershowitz for suggesting and prov-
ing that bounded-path is NP-hard (the paper’s proof differs from Nachum’s proof). We
thank Paul Inbar, Eran Talmor, and Vadim Ryvchin for their useful comments.
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