
Chapter 2
Unary Algebras

Abstract We introduce the definition of unary algebra as well as subclasses of it
called k-valued, strongly-k-valued and strongly-k-generated. Then we proceed with
the simplification algorithm that transforms each system of equations into a more
regular one at the expense of adding some definable constraints. Finally we give
computational complexity characterization of SysTermSat over three-element unary
algebras that depends on width of a special preorder constructed from given algebra.

Definition 2.1 We call an algebra A unary if all of its basic operations are unary or
constants.

Example 2.2 The algebra A = ({0, 1, 2} , f, g, h) with the following operations is
unary.

x f g h
0 1 0 0
1 0 1 0
2 0 0 1

We have announced in Sect. 1.1 that considering terms, instead of polynomials,
is a more general approach. Since one can switch between terms and polynomials,
when necessary, we are going to use terms during the presentation in the rest of the
text.

The definition of T (V) over A is much simpler, when applied to unary algebras.
Any term over a unary algebra A = (A, F):

• is either a variable x from V ,
• or has the form f1(f2(. . . fn(x) . . .)) for some variable x from V and some
sequence (f1, . . . , fn) of basic operations from F1,

• or is an element c from F0,
• or has the form f1(f2(. . . fn(c) . . .)) for some element c from F0 and some
sequence (f1, . . . , fn) of basic operations from F1.

Since we will be solving term equations, we are interested how values of terms
depend on valuation of variables. However, value of a term is defined by its term
operation, thus we are going to switch from terms to term operations. A term over

© The Author(s) 2015
P. Broniek, Computational Complexity of Solving Equation Systems,
SpringerBriefs in Philosophy, DOI 10.1007/978-3-319-21750-5_2

13

http://dx.doi.org/10.1007/978-3-319-21750-5_1

14 2 Unary Algebras

A has one or no variable, but for convenience we will treat all of them as unary term
operations from Clo1(A).

Let t be a term over A. If t has one variable x then we replace t by tA(x), where
tA ∈ Clo1(A). If t has no variable thenwe need a small discussion about replacement
that we make. The value of t is constant, say c ∈ A. However, we can treat t as a
term t (x) with some variable x . This trick gives us that unary term operation that
takes only value c belongs to Clo1(A). Since we are going to use only operations
from Clo1(A), we denote by c the above unary term operation and call it a constant.
Then we finally replace t with c ∈ Clo1(A), but without specifying a variable.

Given a term t (x) we can compute its term operation tA(x) in time O(|t | |A|).
Every unary term operation can be described by its table of size O(|A|). To com-
pute tA we start with the identity operation and compose basic operations that form
sequence (f1, . . . , fn) in t . Dealing with t without a variable is even simpler.

We are going to show, that in problems that have terms on their input we can
replace them by unary term operations without essential change of the complexity. If
F1 is nonempty then the number of terms over A is infinite. However, if we consider
unary term operations, the situation is different. Every unary term operation is a
unary function over A, thus Clo1(A) is finite. This happens because many terms
define the same term operations.

We compute the set Clo1(A) in time O(|A|2|A|). Each unary term opera-
tion p(x) is generated by a term over A. Consider a shortest one, say tp(x) =
f1(f2(. . . fn(x) . . .)). As tp(x) is the shortest, terms of the form fi (. . . fn(x) . . .),
for i ∈ {1 . . . n} generate different term operations. As there are at most |A||A|
term operations, n � |A||A|. We generate all such sequences of length at most
|A||A| and find tp(x) for given p(x). Similarly we check all sequences of the form
f1(f2(. . . fn(c) . . .)), for c ∈ F0 and n � |A|. As we never consider A as a part of
the input, the complexity of the above process is constant for us. A careful imple-
mentation of the idea described above gives algorithm working in O(|A|2|A|) time.
Observe that Pol1(A) is Clo1(A) expanded by all missing constant operations. On
the other hand Clo1(A) does not need to have all constant operations.

Example 2.3 For the algebra from theExample2.2 the cloneof unary termoperations
Clo1(A) contains 9 elements. The identity operation, corresponding to a variable, is
denoted by id.

x id f g h hh f hh f f f g f h
0 0 1 0 0 0 1 0 1 1
1 1 0 1 0 0 1 1 0 1
2 2 0 0 1 0 1 1 1 0

Observe that Clo1(A) contains two constant operations, hh and f hh. The clone
of polynomial operations Pol1(A) containts also missing third constant operation
equal to 2. The names of operations are not unique, as for example hh = h f but it
does not matter to us. For each particular element of Clo1(A) we can assign new
symbol or choose unique term string, that defines it.

2 Unary Algebras 15

Lemma 2.4 For a fixed unary algebra A the problems of the form TermSat (A),
SysTermSat (A), CSysTermSat (A) are polynomially equivalent1 to their
counterparts in which on input the terms are replaced by term operations. The same
happens with PolSat (A), SysPolSat (A) and CSysPolSat (A).

Proof Since A is not a part of the input there is a transformation working in linear
time. Simply note that passing from a term t to tA takes O(|t |) time and passing
from a term operation p to tp takes constant time O(|A|2|A|). �

Lemma 2.4 allows us to switch between input representation by terms and term
operations in each of the problem we consider. Therefore, when dealing with terms
over unary algebras we will often denote by t both a term and its corresponding term
operation. The same applies to polynomials and polynomial operations.

In view of all the remarks above, during the preprocessing of term equations given
on input, we replace terms by their term operations:

x → id(x),

f1(f2(. . . fn(x) . . .)) → (f A
1 . . . f A

n)(x),

where now (f A
1 . . . f A

n) is an element ofClo1(A) and therefore has length 1. Similarly
for a term without a variable we also remove unnecessary compositions and replace:

f1(f2(. . . fn(c) . . .)) → (f A
1 . . . f A

n)(c) ∈ Clo1(A).

Summarizing, every member of T (V) over unary algebra A can be replaced by t (x),
where x ∈ V and t ∈ Clo1(A) or by a constant c ∈ Clo1(A). Remember all constants
are expressible by polynomials, but not necessarily all of them by terms.

Definition 2.5 Given a unary term operation t (x)we define: Var(t (x)) = {x}, while
given a constant unary term operation c with unspecified variable, we putVar(c) = ∅.
Moreover, for an equation t ≈ s we put Var(t ≈ s) = Var(t) ∪ Var(s). Finally, for
a set of equations S, we put Var(S) = ⋃

e∈S Var(e).

After all the preparations we have just made, we are ready for the following
description of possible shapes of term equations.

Observation 2.6 With respect to left-right symmetry, each term equation has one
of the following forms:

• no-variable equation

– the equation has the form c1 ≈ c2 for two constants c1, c2 ∈ Clo1(A),

• one-sided one-variable equation

1We use here (and in the rest of the text) polynomial-time many-one reductions also known as
polynomial transformations.

16 2 Unary Algebras

– the equation has the form f (x) ≈ c for some x ∈ V , f ∈ Clo1(A) and constant
c ∈ Clo1(A),

• two-sided one-variable equation

– the equation has the form f (x) ≈ g(x) for some x ∈ V and f, g ∈ Clo1(A),

• two-sided two-variables equation

– the equation has the form f (x) ≈ g(y) for some x, y ∈ V , x �= y and f, g ∈
Clo1(A).

At this moment we can easily see that solving systems of equations over unary
algebra is interesting only if the number of equations is unbounded. Since every
equation has at most two variables, we can solve every single equation in a quadratic
time of the size of an algebra. Even solving k equations, where k is not part of the
input, is polynomial in size of |A|. Therefore in the rest of the text we will only
consider systems of equations.

Let I1, I2 be instances of either of the problems SysTermSat (A), CSysTerm-
Sat (A), SysPolSat (A) and CSysPolSat (A). We say I1 and I2 are equivalent if
I1 has a solution if and only if I2 does. Since the size of all equations is uniformly
bounded, we define the size of an instance I , denoted |I |, as the number of equations.

For a finite set A and a permutation p : A → A there is k such that pk(a) = a
for all a ∈ A, indeed e.g. k = |A|! works. Now if p ∈ Clo1(A), where A is an
algebra, pk−1 is a unary term operation and obviously pk−1 is the inverse of p. Thus
p ∈ Clo1(A) implies p−1 ∈ Clo1(A).

Definition 2.7 A unary term operation t over a unary algebra A = (A, F) is:

• k-valued, if |t (A)| � k,
• generic, if 1 < |t (A)| < |A|, so that t is neither a constant nor a permutation.

Definition 2.8 A set T of unary term operations is k-valued if every generic term
operation in T is k-valued.

Definition 2.9 A set T of unary term operations over a unary algebra A = (A, F)

is strongly-k-valued if there is D ⊆ A with |D| � k such that t (A) ⊆ D for every
generic t ∈ T .

Definition 2.10 Let (A, F) be a unary algebra. A set C ⊆ Clo1(A, F) is strongly-
k-generated if C = Clo1(A, G) for some strongly-k-valued set G ⊆ C .

Definition 2.11 A unary algebra A is:

• k-valued if Clo1(A) is k-valued.
• strongly-k-valued if Clo1(A) is strongly-k-valued.
• strongly-k-generated if Clo1(A) is strongly-k-generated.

Observation 2.12 Let A = (A, F) be a unary algebra. The following diagram
shows straightforward dependencies between properties defined in Definitions
2.8–2.11.

2 Unary Algebras 17

F is strongly-k-valued A is strongly-k-valued
↘ ↓

A is strongly-k-generated
↓

F is k-valued ←→ A is k-valued

With the next two examples we see that the implications in the right column can not
be reversed.

Example 2.13 Let the algebra A = ({0, 1, 2, 3} , F), with F = {p, f } be defined
by:

x p f p f
0 1 1 0
1 0 1 0
2 2 2 2
3 3 2 2

Then the set F is strongly-2-valued. Therefore the set Clo1(A) = {id, p, f, p f }
is strongly-2-generated. Thus A is strongly-2-generated but not strongly-2-valued,
as | f (A) ∪ p f (A)| = 3.

Example 2.14 Let the algebra A = ({0, 1, 2, 3} , F), with F = { f, g} be defined by:

x f g f g
0 0 0 0
1 0 0 0
2 0 2 0
3 3 0 0

Then the set F is 2-valued and Clo1(A) = {id, f, g, f g} is 2-valued. Thus A is
2-valued but not strongly-2-generated.

2.1 Simplification Algorithm

Definition 2.15 LetA = (A, F) be a unary algebra. The set of definable constraints
over algebra A is the smallest set C(A) ⊆ P(A) such that:

• if t, s ∈ Clo1(A) then {a ∈ A : t (a) = s(a)} ∈ C(A),
• if C1, C2 ∈ C(A) then C1 ∩ C2 ∈ C(A),
• if C ∈ C(A) and t ∈ Clo1(A) then t (C), t−1(C) ∈ C(A).

Note that, for a unary algebra A the set C(A) is computable in O(|A|2|A|) time,
because there are at most |A|2|A| possibilities in each case of Definition 2.15.

18 2 Unary Algebras

Our next Lemma shows that each definable constraint is essentially expressible
by a set of equations.

Lemma 2.16 Let A = (A, F) be a unary algebra, C ∈ C(A) be a definable con-
straint and x be a variable. Then there is a set SC (x) of term equations over A, with
V = Var(SC (x)) and x ∈ V such that:

• if v : V → A is a solution of SC (x) then v(x) ∈ C,
• if a ∈ C then there exists a solution v : V → A of SC (x) such that v(x) = a.

Proof We induct on the complexity of how C is built according to the definition of
C(A). If C = {a ∈ A : t (a) = s(a)} then the set SC (x) = {t (x) ≈ s(x)} satisfies the
Lemma.

If C = C1 ∩ C2 then first we rename all variables in Var(SC2(x)) \ {x} so that
Var(SC1(x)) ∩ Var(SC2(x)) = {x} and then we put SC (x) = SC1(x) ∪ SC2(x). The
required properties of solutions of SC (x) are obvious.

Finally, let C = t−1(s(C ′)) for t, s ∈ Clo1(A). Since id ∈ Clo1(A) this covers
the last possibility of building C . First note that the set C ′ can be realized by a
set SC ′(y) of equations in which x does not appear. Now put SC (x) = SC ′(y) ∪
{t (x) ≈ s(y)}. For short put V ′ = Var(SC ′(y)) and V = Var(SC (x)) and note
that V = V ′ ∪ {x}. First suppose that v : V → A is a solution of SC (x). Then
v|V ′ is a solution of SC ′(y) and by the induction hypothesis we have v(y) ∈ C ′.
Since v satisfies also the new equation we get t (v(x)) = s(v(y)), which implies
v(x) ∈ t−1(s(C ′)) = C . Now assume a ∈ t−1(s(C ′)) so that t (a) = s(a′) for some
a′ ∈ C ′. Again by the induction hypothesis we get a solution v′ : V ′ → A of SC ′(y)

such that v′(y) = a′. Then the valuation v : V → A defined by:

v(z) =
{

v′(z), ifz ∈ V ′,
a, if z = x,

satisfies all equations in SC (x) and moreover v(x) = a, as required. �

We are going to present a procedure that transforms each system of equations
into a more regular one at the expense of adding some definable constraints. More
formally, this Simplify procedure takes an instance I of SysTermSat (A) to
remove equations during an iterative process. Finally it produces an instance I ′ of
CSysTermSat (A) where a constraint function C is allowed and I ′ is supposed to
satisfy:

(1) I ′ is equivalent to I ,
(2) all equations in I ′ are of the form q(x) = r(y), where q, r ∈ Clo1(A) and x, y

are different variables. Both q and r are generic and |q(C(x)) ∩ r(C(y))| > 1,
(3) C(x) ∈ C(A) and |C(x)| > 1 for all x ∈ Var(I ′).

The procedure also returns a boolean value, withFalsemeaning that the instance
I has no solutions at all. The True value does not say however that I has a solution
but allows to replace I by its equivalent modification I ′.

2.1 Simplification Algorithm 19

1 Simplify(I)
2 V := Var(I)
3 C(x) := A for all x ∈ V
4 I ′ := (I , C)

5
6 repeat
7 if exists (x ∈ V, C(x) = ∅) then return False
8 for each e ∈ I ′ do
9 if e is c ≈ d and c, d are different constants then
10 return False
11 if e is c ≈ c and c is a constant then
12 remove e from I ′
13 if e is t (x) ≈ c then
14 remove e from I ′
15 C(x) := C(x) ∩ t−1(c)
16 if e is t (x) ≈ s(x) then
17 remove e from I ′
18 C(x) := C(x) ∩ {a ∈ A : t (a) = s(a)}
19 if e is s(x) ≈ p(y) and x, y are different variables
20 and p is a permutation then
21 remove e from I ′
22 t := p−1s
23 replace all occurrences of y in I ′ with t (x)

24 C(x) := C(x) ∩ t−1(C(y))

25 if e is t (x) ≈ s(y) and x, y are different variables
26 and t (C(x)) ∩ s(C(y)) = ∅ then
27 return False
28 if e is t (x) ≈ s(y) and x, y are different variables
29 and t (C(x)) ∩ s(C(y)) = {c} for some c ∈ A then
30 remove e from I ′
31 C(x) := C(x) ∩ t−1(c)
32 C(y) := C(y) ∩ s−1(c)
33 until not changed(I ′)
34
35 return True

Looking at what is done in the repeat loop we easily see that each time the
instance I ′ is transformed to its equivalent form. Only a few words are needed to
comment lines 19–24. The equation s(x) ≈ p(y) is equivalent to p−1s(x) ≈ y.
Therefore introducing t = p−1s and replacing all occurrences of y by t (x) together
with updating the constraint for x by requiring t (x) ∈ C(y) transforms I ′ to an
equivalent form. Since I ′ is equivalent to I we get the answer for I by considering
I ′. Actually one can transform any solution of I ′ to a solution of I by remembering
the replacements for variables from the set V \ Var(I ′).

To see that (2) is satisfied observe that repeat loop removes all no-variable
and one-variable equations. Suppose q(x) ≈ r(y) is a two-variables equation with

20 2 Unary Algebras

an operation, say q, that is not generic. If q is a permutation then the equation
q(x) ≈ r(y) is removed in line 21. Otherwise q is a constant. However then
|q(C(x)) ∩ r(C(y))| � |q(C(x))| = 1 thus either False is returned in line 27
or the equation is removed in line 30. Finally, all two-variables equation that are left
in I ′ satisfy |q(C(x)) ∩ r(C(y))| > 1 thanks to condition from line 29.

If I ′ does not satisfy (2) then each run of the repeat loop either returns False
or removes at least one equation. Therefore there are at most |I | runs of the loop. On
the other hand each single run can be done in linear time so that Simplify works
in quadratic time.

To prove that |C(x)| > 1, first pick a variable x ∈ Var(I ′). Then observe that line7
gives |C(x)| �= 0. Suppose |C(x)| = 1 and take a two-variables equation from I ′ that
contains x . We immediately get |q(C(x)) ∩ r(C(y))| � |q(C(x))| � |C(x)| = 1
which is a contradiction to the property (2).

The rest of the last property (3) is covered by the following Claim.

Claim 2.17 Whenever Simplify sets a value of the constraint function C for a
variable x we have C(x) ∈ C(A). Moreover, ifSimplify procedure returnsFalse
then ∅ ∈ C(A).

Proof We initialize the constraint function C in line 3 by putting the value A. Obvi-
ously A = {a ∈ A : id(a) = id(a)} ∈ C(A). During the main loop of Simplify
we change values of the constraint functionC in five cases.We are going to show that
after every change C(x) ∈ C(A). First time we make a change in line 15 by putting
C(x) := C(x) ∩ t−1(c) so that we need to argue that t−1(c) ∈ C(A). However {c} is
the image of A by the constant term operation c ∈ Clo1(A) and then t−1(c) is defin-
able. Similar argument applies to line18withC(x) := C(x)∩{a ∈ A : t (a) = s(a)}
and to line 24with C(x) := C(x)∩ t−1(C(y)). The situation in lines 31–32 is very
similar to the one from line 15. Again we have to argue that {c} ∈ C(A). This time
however, we do not know that c is a constant expressible by a term operation from
Clo1(A). But we have {c} = t (C(x)) ∩ s(C(y)), thus {c} ∈ C(A), as required.

The Simplify procedure returns False in three cases. First time it happens
in line 7, after detecting x with C(x) = ∅. Since C(A) contains all sets of the form
C(x) we have ∅ ∈ C(A), as required. Next, in line 9 there is an equation c ≈ d with
c �= d. However ∅ = {a ∈ A : c(a) = d(a)} ∈ C(A). Finally False is returned in
line 27, after detecting that ∅ = t (C(x)) ∩ s(C(y)) is the intersection of images of
definable constraints. Thus ∅ ∈ C(A). �

2.2 Three-Element Algebras

The first example of a finite algebraA such that SysPolSat (A) isNP-complete goes
back to Cook, when he had shown that Satisfiability problem is NP-complete.
This simply means that the boolean algebra (2,∨,∧,¬) gives rise to NP-complete
TermSat, PolSat, SysTermSat and SysPolSat. Many other such examples can
be derived from theorems of Chap. 1.

http://dx.doi.org/10.1007/978-3-319-21750-5_1

2.2 Three-Element Algebras 21

Our first lemma shows that SysTermSat remains NP-complete even for some
unary algebras (already with three elements).

Lemma 2.18 There are finite unary algebras for which the problem
SysTermSat (A) is NP-complete.

Proof A similar argument can be found in [FMS04]. Let A = ({0, 1, 2}, f, g, h) be
an algebra with the following operations:

x f g h
0 1 0 0
1 0 1 0
2 0 0 1

We have already mentioned in Chap.1 that SysTermSat (A) belongs to NP. To
show that it is NP-complete we need the following version of the Satisfiability
problem:

Positive-1-in-3-Sat is a problem taking on its input a formula F = C1 ∧ . . .

∧ Cn , in which each clause Ci is of the form (x ∨ y ∨ z), where x, y, z are (non-
negated) variables, and answering the question if there is a boolean valuation such
that in each clause exactly one variable takes value 1. For example for a formula
(x ∨ y ∨ z) ∧ (x ∨ t ∨ v) ∧ (v ∨ t ∨ z) the positive answer can be witnessed by
(0∨1∨0)∧ (0∨0∨1)∧ (1∨0∨0). It is easy to check by Schaefer [Sch78] result2

(see also Garey and Johnson [GJ79]) that Positive-1-in-3-Sat is NP-complete.
Next we reduce Positive-1-in-3-Sat to systems of equations over the algebra

A. A formula F = C1 ∧ · · · ∧ Cn is transformed into 3n equations as follows:

Ci = x ∨ y ∨ z �

⎧
⎨

⎩

f (vi) ≈ x
g(vi) ≈ y
h(vi) ≈ z,

where v1, . . . , vn are new variables not occurring in F .
It is easy to check that a solution of the equations exists if and only if the formula

F is satisfiable according to Positive-1-in-3-Sat rules. If vi takes the value 0 (1 or
2) then only x (y or z respectively) takes boolean value 1 to make Ci true. �

The following Lemma shows that the essence of the complexity of solving equa-
tions is hidden in generic operations:

Lemma 2.19 For a unary algebra A = (A, F) with no generic operations in F the
problem SysTermSat (A) is in P.

2 The relation defined by Positive-1-in-3-Sat is {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and it is not closed
under any of the operations listed in Fact 1.15.

http://dx.doi.org/10.1007/978-3-319-21750-5_1
http://dx.doi.org/10.1007/978-3-319-21750-5_1

22 2 Unary Algebras

Proof We apply Simplify procedure to an instance I . If we get False then there
is no solution. Otherwise, because no operation in F , and thus inClo1(A), is generic,
the instance I ′ computed by Simplify has empty set of equations. Thus I ′ has a
solution. �

Since two-element unary algebras have no generic operations we immediately get
from Lemma 2.19 that SysTermSat over two-element unary algebras is in P.

For our main Theorem of this section we need to define the following:

Definition 2.20 We call a unary algebra A = (A, F) proper if there is no a ∈ A
with f (a) = a for all f ∈ Clo1(A).

Consider SysTermSat (A) over a unary algebra A = (A, F) that is not proper,
with a ∈ A being a witness described in Definition 2.20. The valuation putting a for
all variables obviously satisfies all term equations over A. Thus the problem Sys-
TermSat (A) can be solved in a constant time, with positive answer for all instances.

For a unary algebra A = (A, F) and f ∈ Clo1(A) by K er(f) = {(x, y) ∈ A2 :
f (x) = f (y)} we denote the kernel of f .

Definition 2.21 For a unary algebra A = (A, F) we define a preorder � on
Clo1(A) by putting f � g if and only if K er(f) ⊆ K er(g). We also put P(A) =
(Clo1(A),�).

Example 2.22 In the algebra A = ({0, 1, 2} , f, g, h), with the operations:

x f g h
0 0 0 0
1 0 1 0
2 0 0 1

we have g � f, h � f while g, h are incomparable.

By the width of an ordered set (or more generally, a preordered set) P we mean
the largest number of pairwise incomparable elements of P.

For our next theorem we need two lemmas:

Lemma 2.23 For a proper unary algebra A with three elements the problem
SysTermSat (A) is NP-complete if width (P(A)) = 3.

Proof To witness width 3 in the preorder P(A) the algebra A must have 3 term
operations f0, f1, f2 with pairwise incomparable kernels. Without loss of generality
we may assume that f0, f1, f2 act as follows (ai �= bi):

x f0 f1 f2
0 b0 a1 a2
1 a0 b1 a2
2 a0 a1 b2

2.2 Three-Element Algebras 23

We are going to show that there are f, g, h ∈ Clo1(A) and ⊥ �= � in A such that
either P1 or P2 holds:

P1 P2
x f g h
0 � ⊥ ⊥
1 ⊥ � ⊥
2 ⊥ ⊥ �

x f g h
0 ⊥ ⊥ ⊥
1 � � ⊥
2 � ⊥ �

• Case 1: There exists i ∈ {0, 1, 2} such that i �= bi .
Without loss of generality we may assume that i = 0 and b0 = 1. Then for
f3 := f1 f0 ∈ Clo1(A) we have:

x f0 f1 f2 f3
0 1 a1 a2 b1
1 a0 b1 a2 a1
2 a0 a1 b2 a1

– Subcase 1.1: {a1, b1} �= {0, 1}. Then f2 f3, f2 f1, f2 satisfy:

x f2 f3 f2 f1 f2
0 b2 a2 a2
1 a2 b2 a2
2 a2 a2 b2

or

x f2 f3 f2 f1 f2
0 a2 b2 a2
1 b2 a2 a2
2 b2 b2 b2

i.e., P1 or P2 (with 0 and 2 interchanged) holds.
– Subcase 1.2: {a1, b1} = {0, 1}. Since we are not going to use f0 any more, without
loss of generality we may assume3 that a1 = 0, b1 = 1. Observe that if {a2, b2} =
{0, 1} then f3, f1, f2 satisfy either P1 or P2 (with 0 and 2 interchanged). Let
{a2, b2} �= {0, 1} and put:

f4 =
{

f1 f2, if b2 = 2 and a2 = 1,
f3 f2, if b2 = 2 and a2 = 0,

f5 =
{

f1 f2, if a2 = 2 and b2 = 1,
f3 f2, if a2 = 2 and b2 = 0,

3We will use only f1, f2 and f3 for which the situation a1 = 1, b1 = 0 is symmetric.

24 2 Unary Algebras

to get:

x f1 f3 f2 f4 f5
0 0 1 a2 1 0
1 1 0 a2 1 0
2 0 0 b2 0 1

Thus f3, f1, f4 satisfy P2 (with 0 and 2 interchanged) or f3, f1, f5 satisfy P1.

• Case 2: For each i ∈ {0, 1, 2} we have i = bi .
Without loss of generality we may assume that a0 = 1, so that:

x f0 f1 f2
0 0 a1 a2
1 1 1 a2
2 1 a1 2

If a2 = 0 then replacing f2 by f0 f2 puts us into Case 1. If a2 = 1 and a1 =
2 then the term operations f1 f0, f1, f2 put us into P2 situation (with 0 and 1
interchanged). Finally, if a2 = 1 and a1 = 0 the term operations f0, f1, f1 f2
again put us into P2 situation (with 0 and 1 interchanged).

Now we know that A has 3 term operations f, g, h satisfying either P1 or P2.
Being in situation P1 we use the reduction of Positive-1-in-3-Sat presented in

the proof of Lemma 2.18 to conclude that SysTermSat (A) is NP-complete.
The reduction of Positive-1-in-3-Sat in situation P2 is only a bit harder. First

we are going to show that if we are in P2 and not in P1 then a constant term
operation � belongs to Clo1(A). If {⊥,�} = {1, 2} then f f = � ∈ Clo1(A).
Assume {⊥,�} �= {1, 2}.
• Case 1: � = 0. In this situation f f, g, h satisfy P1.

x f g h f f
0 ⊥ ⊥ ⊥ 0
1 0 0 ⊥ ⊥
2 0 ⊥ 0 ⊥

• Case 2: ⊥ = 0. Since A is proper, then there exists a term operation d such that
d(0) = d0 �= 0. We analyze below the term operation f d f :

x f g h d d f f d f
0 0 0 0 d0 d0 �
1 � � 0 d1 d3 d4
2 � 0 � d2 d3 d4

2.2 Three-Element Algebras 25

If d4 = � then � = f d f ∈ Clo1(A). Otherwise d4 = 0, thus f d f, g, h satisfy
P1.

A formula F = C1 ∧ · · · ∧ Cn is transformed into equations as follows. For each
variable x occurring in F we need additional two variables vx and x ′ and 3 equations:

x �

⎧
⎨

⎩

f (vx) ≈ �
g(vx) ≈ x
h(vx) ≈ x ′

Next, for each clause Ci we need a variable vi and then Ci is transformed into 3
equations as follows:

Ci = x ∨ y ∨ z �

⎧
⎨

⎩

f (vi) ≈ x ′
g(vi) ≈ y
h(vi) ≈ z

The equations for variable x force x ′ to simulate the negation of x . Indeed, because
of the equation f (vx) ≈ � the variable vx cannot be valuated to 0. If vx = 1 then
x = � and x ′ = ⊥, while for vx = 2 we have x = ⊥ and x ′ = �. The equations
for the clause Ci work as in the proof of Lemma 2.18. Indeed, if vi = 0 then x ′, y, z
take value ⊥ and thus x take value �. If vi takes value 1 or 2 again exactly one of
the variables x, y, z takes value �.

Lemma 2.24 For a unary algebra A with three elements the problem SysTerm-
Sat (A) is in P (in fact it is O(n2)) if width (P(A)) � 2.

Proof Given an instance I of SysTermSat (A)wefirst applySimplifyprocedure.
As a result we get False, meaning that there is no solution of I , or an equivalent
instance I ′ satisfying:

(1) All equations are of the form f (x) ≈ g(y), where x �= y, | f (A)| = 2 and
f (A) = g(A),

(2) |C(x)| > 1 for each x ∈ Var(I ′).

Now we present the algorithm solving such simplified instance I ′. We do a reduc-
tion into 2-Sat which is known to be polynomial (in fact O(n2), see e.g. Papadim-
itriou [Pap94]). We put V ′ = Var(I ′) and T to be the set of generic operations from
Clo1(A). We define set of variables of 2-Sat by V � = {

X x
t : x ∈ V ′ and t ∈ T

}
.

Since |t (A)| = 2 for t ∈ T , so there is exactly one ct ∈ A with
∣
∣t−1(t (ct))

∣
∣ = 1.

This means that for every a ∈ A we have:

t (a) = t (ct) ⇔ a = ct . (�)

With the use of ct our intended interpretation of 2-Sat variables can be described by:

X x
t is valuated by 1 ⇔ x is valuated by ct .

26 2 Unary Algebras

We start our construction of the instance I � of 2-Sat by transforming each equa-
tion of the form f (x) ≈ g(y) into two 2-Sat clauses4:

X x
f ⇔ X y

g , if f (c f) = g(cg),
or

X x
f ⇔ ¬X y

g , otherwise.
(��)

For term operations f, g ∈ T and a variable x with C(x) = A we add clauses
which code the interaction between 2-Sat variables X x

f and X x
g :

X x
f ⇒ X x

g , if c f = cg,
or

X x
f ⇒ ¬X x

g , if c f �= cg.
(���)

If C(x) �= A then from (2) we know that |C(x)| = 2. We finish our construction
of I � by adding the following clauses for each such variable x and f, g ∈ T :

¬X x
f , whenever c f /∈ C(x),

X x
f ⇔ X x

g , if c f = cg and {c f , cg} ⊆ C(x),

X x
f ⇔ ¬X x

g , if c f �= cg and {c f , cg} ⊆ C(x).

(����)

Take a solution v : V ′ → A of I ′. We follow our intended interpretation to define
a valuation s : V � → 2 by:

s(X x
t) =

{
1, if v(x) = ct ,

0, otherwise.

To see that s is a solution of I � first take a clause C ∈ I � (in fact a pair of 2-
Sat clauses) generated by (��) for an equation of the form f (x) ≈ g(y). We have
f (v(x)) = g(v(y)) and two cases to consider:

• Case 1: f (c f) = g(cg), so that C = (X x
f ⇔ X y

g). Thanks to (�) the following
equivalences hold:

s(X x
f) = 1 ⇔ v(x) = c f ⇔ f (v(x)) = f (c f) ⇔ f (v(x)) = g(cg) ⇔

g(v(y)) = g(cg) ⇔ v(y) = cg ⇔ s(X y
g) = 1,

as required.
• Case 2: f (c f) �= g(cg), so that C = (X x

f ⇔ ¬X y
g). The proof is very similar to

Case 1. Remember that f (A) = g(A) and | f (A)| = 2. This time the following
equivalences hold:

4Obviously X ⇔ Y is a pair of 2-Sat clauses: ¬X ∨ Y and X ∨ ¬Y .

2.2 Three-Element Algebras 27

s(X x
f) = 1 ⇔ v(x) = c f ⇔ f (v(x)) = f (c f) ⇔ f (v(x)) �= g(cg) ⇔

g(v(y)) �= g(cg) ⇔ v(y) �= cg ⇔ s(X y
g) = 0,

as required.

The other clauses in I � were generated either by (���) or by (����). First choose a
variable x ∈ V ′ with C(x) = A and take a clause C generated by (���) for f, g ∈ T
to get:

• Case 1: c f = cg , so that C = (X x
f ⇒ X x

g). We have:

s(X x
f) = 1 ⇔ v(x) = c f ⇒ v(x) = cg ⇔ s(X x

g) = 1,

as required.
• Case 2: c f �= cg , so that C = (X x

f ⇒ ¬X x
g). This time we have:

s(X x
f) = 1 ⇔ v(x) = c f ⇒ v(x) �= cg ⇔ s(X x

g) = 0,

as required.

Finally choose a variable x ∈ V ′ with |C(x)| = 2. If c f /∈ C(x) for some f ∈ T
then v(x) �= c f and thus s(X x

f) = 0 as determined by the first type of clauses from

(����). Suppose
{
c f , cg

} ⊆ C(x) to get:

• Case 1: c f = cg , so that X x
f ⇔ X x

g ∈ I �. Similarly to the situation C(x) = A the
following equivalences hold:

s(X x
f) = 1 ⇔ v(x) = c f ⇔ v(x) = cg ⇔ s(X x

g) = 1,

as required.
• Case 2: c f �= cg , so that X x

f ⇔ ¬X x
g ∈ I �. This time thanks to |C(x)| = 2 we

have v(x) = c f ⇔ v(x) �= cg thus:

s(X x
f) = 1 ⇔ v(x) = c f ⇔ v(x) �= cg ⇔ s(X x

g) = 0,

as required.

Conversely, for a boolean valuation s : V � → 2 satisfying all clauses from I � we
define a valuation v : V ′ → A by:

v(x) =
{

ct , for some t ∈ T such that s(X x
t) = 1, if such t exists,

a, such that a �= ct for all t ∈ T, otherwise.

To see that v is well defined in the situationwhen s(X x
t) = 0 for all t ∈ T first assume

C(x) = A. Since width (P(A)) � 2, there is a ∈ A with a �= ct for all t ∈ T . Now
assume |C(x)| = 2. Since s is a solution of I �, then I � cannot contain any clause of

28 2 Unary Algebras

the form X x
f ⇔ ¬X x

g generated by (����). Thus |{ct : t ∈ T and ct ∈ C(x)}| � 1,
so there is a ∈ C(x) such that a �= ct for all t ∈ T , which we choose as a value
for x .

Claim 2.25 For each X x
t ∈ V � we have s(X x

t) = 1 ⇔ v(x) = ct .

Proof Assume to the contrary that s(X x
t) = 1 and v(x) �= ct . By definition of v

there is t ′ ∈ T such that s(X x
t ′) = 1 and v(x) = ct ′ ∈ C(x), so obviously ct �= ct ′ .

Since s(X x
t) = 1 then ¬X x

t /∈ I �, so ct ∈ C(x) by (����). Thus {ct , ct ′ } ⊆ C(x) and
by (���) or (����) we get that the clause X x

t ′ ⇒ ¬X x
t is in I �. We get a contradiction

with s(X x
t) = s(X x

t ′) = 1.
Now take s(X x

t) = 0 to show v(x) �= ct . First observe that if ct /∈ C(x) then
obviously v(x) �= ct . Now assume ct ∈ C(x) to get two possibilities:

• Case 1: s(X x
t ′) = 1 for some t ′ ∈ T and v(x) = ct ′ ∈ C(x) thus {ct ′ , ct } ⊆ C(x).

Since the clause X x
t ′ ⇒ X x

t is not satisfiable then, by (���) or (����), we get that
ct �= ct ′ and thus v(x) �= ct , as required.

• Case 2: s(X x
t ′) = 0 for all t ′ ∈ T . By the definition of v we get v(x) �= ct . �

To prove that v is a solution of I ′ take an equation of the form f (x) ≈ g(y)

from I ′.
• Case 1: f (c f) = g(cg). Since s is a solution of I � we get by (��) that s(X x

f) =
1 ⇔ s(X y

g) = 1. Thanks to Claim 2.25 and (�) the following equivalences hold:

f (v(x)) = f (c f) ⇔ v(x) = c f ⇔ s(X x
f) = 1 ⇔ s(X y

g) = 1 ⇔

v(y) = cg ⇔ g(v(y)) = g(cg) ⇔ g(v(y)) = f (c f).

Thus f (v(x)) = g(v(y)) as f (A) = g(A) has only two elements.
• Case 2: f (c f) �= g(cg), so that s(X x

f) = 1 ⇔ s(X y
g) = 0. The proof is very

similar to Case 1. This time the following equivalences hold:

f (v(x)) = f (c f) ⇔ v(x) = c f ⇔ s(X x
f) = 1 ⇔ s(X y

g) = 0 ⇔

v(y) �= cg ⇔ g(v(y)) �= g(cg) ⇔ g(v(y)) = f (c f).

Thus f (v(x)) = g(v(y)) as required. �
Now we are ready to state the main theorem of this section.

Theorem 2.26 [Bro06] For a unary algebra A with at most three elements,
SysTermSat (A) is in P (in fact it is O(n2)) if A is not proper or width (P(A)) � 2
holds, otherwise it is NP-complete.

Proof Note that width (P(A)) = 1 for any two-element algebra. On the other hand
on the two-element set all four unary operations are not generic, thus Lemma 2.19
gives us that SysTermSat (A) is in P. For |A| = 3 we directly apply Lemmas 2.23
and 2.24. �

http://dx.doi.org/10.1007/978-3-319-21750-5_2

2.3 Width and Complexity 29

2.3 Width and Complexity

Wehave seen inTheorem2.26 that for three-element unary algebrasA the complexity
of SysTermSat (A) is fully characterized by thewidth of the corresponding preorder
P(A).

Unfortunately this characterization does not extend to larger algebras. We are
going to show that width and computational complexity are independent.

Observation 2.27 For the following algebra A = (A, F)with F = { f, g, h, r, s, 1}
defined by:

x f g h r s 1
0 0 0 0 0 0 1
1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
4 1 2 3 2 1 1
5 2 3 1 1 1 1
6 3 1 2 1 1 1

we have width (P(A)) = 1 and SysTermSat (A) is NP-complete.

Proof First observe that Clo1(A) = F ∪ {0, id}. Thus P(A) is a chain K er(id) ⊆
K er(f) = K er(g) = K er(h) ⊆ K er(r) ⊆ K er(s) ⊆ K er(1) = K er(0), so that
width (P(A)) = 1.

Next consider the following system of term equations over A:

⎧
⎨

⎩

s(a) ≈ 1
f (a) ≈ g(b)

f (a) ≈ h(c)

and observe that there are only three possibilities for values of the quadruple
(a, r(a), r(b), r(c)) in the solutions of the above system:

a r(a) r(b) r(c)
4 2 1 1
5 1 2 1
6 1 1 2

This allows us to make a reduction from Positive-1-in-3-Sat similar to the one
presented in Lemma 2.18. A formula F = C1 ∧ · · · ∧ Cn is transformed into 6n
equations as follows:

30 2 Unary Algebras

Ci = x ∨ y ∨ z �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s(ai) ≈ 1
f (ai) ≈ g(bi)

f (ai) ≈ h(ci)

r(ai) ≈ x
r(bi) ≈ y
r(ci) ≈ z,

where ai , bi , ci are new variables not occurring in F .
It is easy to check that a solution of these 6n equations exists if and only if the

formula F is satisfiable according to Positive-1-in-3-Sat rules. If ai takes the value
4 (5 or 6) then only x (y or z, respectively) is valuated by 2, while other two variables
from {x, y, z} are valuated by 1. Transforming 2 and 1 into true and false boolean
values we make Ci true according to Positive-1-in-3-Sat rules. �

To give examples of algebras A with arbitrarily large width (P(A)), but for which
SysTermSat (A) is solvable in a polynomial time, we need the following Lemma:

Lemma 2.28 Let A = (A, F) be a unary algebra in which there is a0 ∈ A such
that for all non-constant f ∈ F:

(1) f (a0) = a0.
(2) | f −1(a)| � 1 for all a �= a0.

Then SysTermSat (A) is in P.

Proof Given an instance I of SysTermSat (A) we apply the Simplify procedure
to get an instance I ′ of CSysTermSat (A). If Simplify procedure returns True
then we valuate all variables in V by a0. Observe that by (1) all generic operations
t ∈ Clo1(A) satisfy t (a0) = a0. Since I ′ has only equations with generic operations,
we get that all equations in I ′ are satisfied. One can check that for all definable
constraints C such that |C | > 1 we have a0 ∈ C , so that the above valuation is a
solution of the instance I ′ of CSysTermSat (A). �

One consequence of Lemma 2.28 blocks a natural generalization of Theorem 2.26:

Observation 2.29 For each n there exists a proper algebra An such that width
(P(An)) = n and SysTermSat (An) is in P.

Proof Put An = ({0, . . . , n}, f1, . . . , fn, c), where:

x f1 f2 f3 . . . fn c
0 0 0 0 . . . 0 1
1 1 0 0 . . . 0 1
2 0 1 0 . . . 0 1
3 0 0 1 . . . 0 1
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

n 0 0 0 . . . 1 1

2.3 Width and Complexity 31

The algebra An is proper and satisfies (1) and (2) of Lemma 2.28 with a0 = 0.
Therefore SysTermSat (An) is in P. On the other hand one can easily check that
width(P(An)) = n. �

Note however, that the problem CSysTermSat (An) for n � 3 is NP-complete.
It is because in CSysTermSat we are allowed to use arbitrarily chosen constraints,
e.g. of the form C(x) = {1, 2, 3}. Such constraint makes possible a reduction simi-
lar to the one from Lemma 2.18 (from Positive-1-in-3-Sat) with additional twist
given by putting C(vi) = {1, 2, 3} for each variable vi . Therefore we introduced the
concept of definable constraints, which prevents us from such situations when trans-
lating instances of SysTermSat into instances of CSysTermSat in theSimplify
procedure.

FromObservation 2.27we know that width 1 does not suffice to put SysTermSat
into P. However an assumption stronger than width 1, namely that the algebra A has
exactly one non-constant operation is sufficient, as can be seen from the following
Lemma:

Lemma 2.30 For a unary algebra A = (A, F) with exactly one non-constant oper-
ation in F the problem SysTermSat (A) is in P.

Proof Given an instance I of SysTermSat (A) we apply the Simplify procedure
to get an instance I ′ of CSysTermSat (A). Denote by f the only non-constant
operation in F . Since in I ′ we are left only with equations with generic operations,
all of the operations in I ′ can be expressed by f i , for some i > 0. Now pick a variable
x ∈ Var(I ′) and choose minimal m such that f m(x) can be found somewhere in I ′.
This means that i � m whenever f i (x) occurs in I ′. We replace every f i (x) with
f i−m(x ′) for a new variable x ′ to get instance I ′′. We also copy constraint function
from I ′ to I ′′ and then put C(x ′) := f m(C(x)) in I ′′. It is easy to check that I ′ and
I ′′ are equivalent and equal in size.

Now observe that at least one equation in I ′′ contains id(x ′), since m was cho-
sen to be minimal. Thus we can apply Simplify procedure once again, to get
instance smaller than I ′ and repeat the above process. Whenever Simplify pro-
cedure returns False we know that there is no solution of the starting instance I .
Otherwise we will end up with empty instance meaning that the solution exists. The
number of steps is at most linear (in the size of I), so that the whole algorithm works
in a polynomial time. �

References

[Bro06] Broniek P (2006) Solving equations over small unary algebras, Discrete Math Theoret
Comput Sci Proc AF, 49–60

[FMS04] Feder Tomás,Madelaine Florent, Stewart IainA (2004)Dichotomies for classes of homo-
morphism problems involving unary functions. Theoret Comput Sci 314(1–2):1–43

[GJ79] Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman and Co., San Francisco, California

32 2 Unary Algebras

[Pap94] Papadimitriou CH (1994) Computational complexity. Addison-Wesley Publishing Com-
pany, Reading, MA

[Sch78] Schaefer TJ (1978) The complexity of satisfiability problems, In: Conference record of
the tenth annual ACM symposium on theory of computing (SanDiego, California, 1978),
ACM, New York, pp. 216–226

http://www.springer.com/978-3-319-21749-9

	2 Unary Algebras
	2.1 Simplification Algorithm
	2.2 Three-Element Algebras
	2.3 Width and Complexity
	References

