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Abstract. We present a software system solution that significantly simplifies
data sharing of medical data. This system, called GEM (for the GAAIN Entity
Mapper), harmonizes medical data. Harmonization is the process of unifying
information across multiple disparate datasets needed to share and aggregate
medical data. Specifically, our system automates the task of finding corresponding
elements across different independently created (medical) datasets of related data.
We present our overall approach, detailed technical architecture, and experi-
mental evaluations demonstrating the effectiveness of our approach.

1 Introduction

This paper describes a software solution for medical data harmonization. Our work is
in the context of the “GAAIN” project in the domain of Alzheimer’s disease data.
However, this solution is applicable to any medical and clinical data harmonization in
general. GAAIN stands for the Global Alzheimer’s Association Interactive Network!,
a data sharing federated network of Alzheimer’s disease datasets from around the globe.
The aim of GAAIN is to create a network of Alzheimer’s disease data, researchers,
analytical tools and computational resources to better our understanding of this disease.
A key capability of this network is also to provide investigators with access to harmon-
ized data across multiple, independently created Alzheimer’s datasets.

Our primary interest is in medical data sharing and specifically data that is harmon-
ized in the process of sharing. Harmonized data from multiple data providers has been
curated to a unified representation after reconciling the different formats, representation,
and terminology from which it was derived [7, 16]. The process of data harmonization
can be resource intensive and time consuming and our work is a software solution to
significantly automate that process. Data harmonization is fundamentally about data
alignment - which is to establish correspondence of related or identical data elements
across different datasets. Consider the very simple example of a data element capturing
the gender of a subject that is defined as ‘SEX’ in one dataset, ‘GENDER’ in another
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and ‘M/F’ in yet another. When harmonizing data, a unified element is needed to capture
this gender concept and to link (align) the individual elements in different datasets with
this unified element.

The data mapping problem can be solved in two ways. We could map elements across
two datasets, for instance match the element ‘GENDER’ from one data source (DATA
SOURCE 1) to the element ‘SEX’ in a second source (DATA SOURCE 2). We could
also map elements from one dataset to elements from a common data model. A common
data model [7] is a uniform representation which all data sources or providers in a data
sharing network agree to adopt. The fundamental mapping task is the same in both. Also,
the task of data alignment is inevitable regardless of the data sharing model one employs.
In a centralized data sharing model [15], where we create a single unified store of data
from multiple data sources, the data from any data source must be mapped and trans-
formed to the unified representation of the central repository. In federated or mediated
approaches to data sharing [7] individual data sources (such as databases) have to be
mapped to a “global” unified model through mapping rules [1]. The common data model
approach, which is also the GAAIN approach, also requires us to map and transform
every dataset to the (GAAIN) common data model. This kind of data alignment or
mapping can be a multi-month effort per dataset in medical and clinical data integration
case studies [1]. A single dataset typically has thousands of distinct data elements of
which a large subset needs to be accurately mapped. On the other hand it is well
acknowledged that data sharing and integration processes need to be simplified and made
less resource intensive for data sharing in the medical and clinical domains [1, 7] ) as
well as the more general enterprise information integration domain [10]. The GEM
system is built to achieve this by providing automated assistance to developers for such
data alignment or mapping.

The GEM data mapping approach is centered on exploiting the information in the
data documentation, typically in the form of data dictionaries associated with the data.
The importance of data dictionary documentation, and for Alzheimer’s data in particular,
has been articulated in (Morris et al., 2006). These data dictionaries contain detailed
descriptive information and metadata about each data element in the dataset. The rest
of this paper is organized as follows. In the next section (Sect. 2) we review the work
and available industrial or open-source software tools that are related to data mapping.
This is followed by a detailed description of the GEM system. In Sect. 4 we present
experimental results evaluating the efficacy of the GEM system and also a detailed
comparison with related data mapping systems. Finally we propose further work and
provide a conclusion.

2 Related Technologies

Data mapping is often done manually based on data dictionaries, on any other informa-
tion such as database design diagrams [9], and in consultation with the original dataset
creators and/or administrators. Data mapping is well understood (Halevy et al., 2005)
and there are a number of software tools that have been developed in the past years that
relate to it. We first examine existing software tools to (1) determine their applicability
to our domain, (2) understand what functions are still needed in the GEM system.
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Existing tools can be categorized as metadata visualization tools, Extract-Transform-
Load (ETL), and schema-mapping tools. Metadata visualization tools are those that
create a visual representation of the design of a database by examining the database
itself. Forinstance SchemaSpy? provides functionality of “reverse engineering” to create
a graphical representation of metadata, such as an “ER” (Entity-Relationship) diagram
[9] from the database metadata. Altova? is a tool for analyzing and managing relation-
ships among data in data files in XML. These tools are relevant to our task as they can
be employed to examine the data and/or metadata of a new dataset that we have to map.
Extract-Transform-Load (ETL) tools provide support for data schema mapping.
However the mappings are not automated and have to be created by hand using a graph-
ical user interface (GUT). Tools in this category include Talend*, Informatica’ and Clio
(Haas et al., 2000). The category most relevant to our data mapping problem is Schema-
Mapping which provides automated mapping of data elements from two different data-
base or ontology schemas. These tools take as input the data definition language or
“DDL” [9] associated with a dataset (database) and are able to match elements across
two database schemas based on the DDL information. Prominent examples in this cate-
gory include the Harmony schema-mapping tool® from the Open Information Integration
or Openll initiative and Coma++ (Rahm et al., 2012). There are also schema-mapping
tools that are based on “learning-from-examples” i.e., the system is trained to recognize
data element mappings from a tagged corpus of element matches (from the domain of
interest). LSD [8] is an example in this category. Another tool is KARMA’ which
actually has more of an ontology alignment focus as opposed to data (element) mapping.
Finally, PhenoExplorer [8], is an online tool that allows researchers to identify research
studies of interest. Specifically, a researcher can search for studies along a set of dimen-
sions, including race/ethnicity, sex, study design, type of genetic data, genotype plat-
form, and diseases studied and the system determines the relevance of a study by
mapping data elements in a study to dimensions specified by a researcher.

Our work was motivated by the observation that the rich metadata available in data
dictionaries of medical datasets can be leveraged towards a significantly more automated
approach to schema-mapping than could be done with existing tools. The next section
describes the details of our approach.

3 Methods

This section describes our approach and the technical details of the GEM system. We
begin with enumerating the particular data characteristics of Alzheimer’s disease and

: http://schemaspy.sourceforge.net.
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http://www.informatica.com.
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medical data schemas as they bear upon the data mapping approach. We also describe
the metadata detail that is typically present in medical data dictionaries that can be
accommodated. We then present the GEM architecture and description of the algo-
rithms.

3.1 Medical Data Characteristics

Medical data and associated data schemas have the following characteristics that are
relevant to the schema mapping problem:

(i) Availability of Metadata but not Data. Overall, data providers may be more
willing to make metadata (dictionaries) available during harmonization but the not
the actual data. Alzheimer’s and other medical research data are highly sensitive
and data providers are typically willing to share their metadata (such as data
dictionaries) but actual access to data may be restricted. In fact many data sharing
and exploration networks help users to locate relevant data and cohorts but actual
data must be obtained directly from data providers (Mandel et al., 2012). The data
harmonization and thus the data mapping process must work with the metadata
(only), and not assume the availability of actual data. This is an important distinc-
tion as some schema mapping tools, such as Coma ++, expect the availability of
actual data (as well) to generate mappings.

(i) Element Names and Element Descriptions. Data elements often have cryptic
names in medical datasets. An example is “TR1S1’ which is ill defined and difficult
to infer. The element names can also be composite. Essentially, a data element may
be one of an entire family of elements. For instance an element named
‘MOMDEMYRI1’ has 3 sub-elements in the name which are MOM (for mother),
DEM (for dementia) and YR1 for year 1. Element names thus are of limited utility
in determining element mappings in this domain. On the other hand the element
descriptions are often rather clear and detailed for each data element and we
leverage that for mapping.

(iii) Presence of Special “Ubiquitous” Data Elements. There are elements such as
the subject identifier, date and timestamp fields, or subject visit number fields that
are present in every database table in a database. Such elements must be pre-iden-
tified and filtered before matching, as they are not candidate matches for other
“regular” data elements we seek to match.

3.2 Element Metadata

Relative to other domains such as enterprise data, medical metadata is richer in terms
of element descriptions and also accompanying information about the element data type
and constraints on values. The detailed metadata that can be extracted or derived from
the dictionary information is as follows:

(i) Element Description. We usually have a text description of what the element
fundamentally is. In the example in Fig. 1 this is the text under the ‘Short
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Descriptor’ and ‘UDS Question sections’ (UDS refers to the Uniform Data Set of
clinical and cognitive variables in Alzheimer’s disease data). The description is
usually comprehensive and verbose to the extent required, as opposed to data
schemas in other domains where the element (database column) descriptive infor-
mation (the ‘COMMENT” in a DDL) is simply absent or is typically terse.

2

NPSYCLOC of ELEMENT NAME
2 r ,
NPSYCH battery location +| DESCRIPTION

Variable Number 1

Variable Name BILLS

Version 2

Short Descriptor Paying bills

UDS Question In the past four weeks, did the subject have any difficulty or need help

Length of Field 1

Column Positions 45

Data Type Numeric
Allowable Codes 0= Normal

The remainder of the battery was administered:

1 | copine
122

Numeric

1= In ADC/clinic

2=Inhome

3 = In person-other

4

HRATE

2

Subject resting heart rate (pulse)
Subject resting heart rate (pulse)
3

Form B7: Functional Assessment - FAQ

o RANGE

with writing checks, paying bills, or balancing a checkbook.

1 = Has difficulty, but does by self
2 = Requires assistance Numeric
3 = Dependent owable Codes 35-140
8 = Not applicable (e.g., never did) 999 = unknown

62-64

(ii)

(iii)

Fig. 1. Element metadata from data dictionary

e Data value constraints. For a majority of data elements, the metadata also
contains constraints on the actual values they can take. This information is of
two types:

e Coding legend information. The coding legend provided under ‘Allowable
Codes’ tells us the interpretation of various codes, which is the set of possible
values that element can take. We can also derive the number of distinct possible
values for that element, which is 5 values (0,1,2,3,8) in this example.

The Range of Values. For many numerical elements, the metadata provides the

explicit range of allowable values, for instance the range 0—30 for ‘MMSE’ scores,

etc. MMSE stands for the Mini-Mental State Examination and is commonly used

to measure cognitive impairment (Escobar et al., 1986).

The Element Category. Elements can be divided into a few distinct categories

based on the kind of values they can take. For instance the element may take one

of small set of prefixed codes as values (as in Fig. 1), or take a numerical value
such as the (actual) heart rate, etc., This category can be derived from the metadata
and is described in more detail below.

All of the above element information is utilized during data mappings, as we
describe.

33

System

Before describing the system we clarify some terminology and definitions. A dataset is
a source of data. For instance a dataset provided by ADNI would be a source. A data
dictionary is the document associated with a dataset, which defines the terms used in



18 N. Ashish et al.

the dataset. A data element is an individual ‘atomic’ unit of information in a dataset, for
instance a field or a column in a table in a database or in a spreadsheet. The documen-
tation for each data element in a data dictionary is called element metadata or element
information. A mapping or element mapping is a one-to-one relationship across two data
elements, coming from different sources. Mappings are created across two distinct
sources. The element that we seek to match is called the query element. The source we
must find matches from is called the target source and the source of the query element
is called the guery source. Note that a common data model may also be treated as a target
source.

The key task of the GEM system is to find element mappings with a “match” oper-
ation. “match” is an operation which takes as input (i) a query element, (ii) a target
source, and (ii) a matching threshold. It returns a set of elements, from the target source,
that match the source element and with a match confidence score associated with each
matched element.

Figure 2 illustrates the high level steps of the system. The first step is the metadata
ingestion step where we start from data dictionaries, extract and synthesize detailed
metadata from the data dictionaries for each data element, and store the synthesized
metadata in a database. This database is called the metadata database. The second step
is the element matching step where matching algorithms find matches for data elements
based on the information in the metadata database.

% METADATA
Al » R
' INGESTION i MATCHING MATCHES

DATA METADATA
DICTIONARIES DATABASE

Fig. 2. System phases

Match Request

TEXT SEGREGATOR Tainon ¢ reme
feedback 1!\?0”[‘)‘;[ Pyl
SRR TYPECLASSIFER | | Matches
: E TEXT
§ J +  ELEMENT \» METADATA DETAIL » . METADATA SIMILARITY
| EXTRACTOR | . EXTRACTOR FILTER
Data Basic Element etailed Metadata Metadata Metadata Description
Dictionaries  Extractor Extractor & Classifier Database Filter Matcher

Fig. 3. System architecture

Figure 3 illustrates the architecture and key modules in more detail.
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3.3.1 Metadata Ingestion

This part of the pipeline is comprised of two modules. One is for basic individual element
metadata extraction from the data dictionary. The other synthesizes detailed metadata
per data element.

Basic Element Extractor. The element extractor identifies the description and metadata
per data element. In many cases the data dictionary is available in a structured format,
such as a spreadsheet, with various components such as the data element name, any
(text) descriptions(s) of the field, and other information such the allowable values for
the data element etc., clearly delineated. If structured metadata is available this step is
not required, however there are instances when data dictionaries are available only as
Word or PDF documents. We have developed element extractors for Word and PDF
formats to work with these semi-structured documents and extract the per element
metadata.

Detailed Metadata Synthesizer. The detailed metadata synthesizer has three compo-
nents. (1) The first segregates the various important portions of the element overall
metadata. (2) The second classifies the data element into a distinct category. (3) The
final component extracts specific data constraints that may have been specified for the
data element. We describe these.

Segregator: As illustrated in Fig. 1, we model the element information comprised of 4
segments, namely:

(i) The element or field name.

(i) The text description of the element, which is the “Short Descriptor” as well as
“UDS Question” in the above example data dictionary.

(iii) The value coding legend, for applicable elements.

(iv) The value numerical range (if any) for a numerical element.

For many data dictionaries segmentation is already complete if the data dictionary
itself is structured with various segments in segregated fields. For other formats, such
as the example in Fig. 1 (which is a PDF document) we use simple semi-structured data
extraction techniques exploiting the labels for the various segments.

Category classifier: The type information of an element (Data Type’) illustrated in
Fig. 2 is usually provided. We categorize a data element based on the kinds of values it
can take. Data elements fall into one of the below categories:

(i) Coded elements i.e., where the data values are specific codes for a small finite set
of values. Coded elements can be:
a. Binary coded elements i.e., elements that take a Yes/No value
b. Other coded elements

(ii) Numerical elements that take a non-coded, actual numerical value. Examples are
elements such blood pressure or heart rate.

(iii) Text elements that take an actual text value.

We developed an element category classifier that is driven by heuristics as follows:
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e Coded elements can be identified by the presence of a coding legend in the element
metadata.

e Coded elements can further be classified as Binary Coded elements if they contain
legend values such as Yes/No, Present/Absent, 0/1, Normal/Abnormal etc.,

e Numerical elements have a (data) type for numbers (such as integer, float etc.). Also
a range is usually specified for numerical elements.

e Text elements have a data type for text strings.

e Special elements

e Elements for date or timestamps are identified by appropriate regular expression
patterns

o (Subject) identifier elements are identified by the element name, usually having indi-
cators such as ‘ID’ in the name.

Metadata Detail Extractor: Here we extract and synthesize the metadata details,
specifically, (i) The element cardinality (number of distinct possible data values) from
the coding legend, and (ii) The range (minimum and maximum permissible values) for
numerical values. This extraction and derivation (for cardinality) is performed using
simple regular expression based extraction patterns, and label information.

3.3.2 Metadata Database
The metadata database is a uniform, detailed repository of the extracted metadata. This
metadata database powers the various matching algorithms in the matching phase.

3.3.3 Matching
The matching step has two sub-steps as follows:

(1) A candidate elimination or blocking sub-step, where for a given data element we
eliminate incompatible candidate elements from consideration. The incompatibility
is determined using some metadata details. This step is analogous to blocking in
record linkage where incompatible or improbable candidates are eliminated in a
filtering step (Minton et al., 2005).

(2) A similarity matching sub-step, where we determine similarity among compatible
candidate elements (to the original element we are seeking a match for) based on
the element description.

Incompatible Candidate Blocking. Incompatible candidates can be identified in different
ways. The first, applicable to all data elements, is if the original element and the candidate
match element have incongruent (different) categories. So essentially all candidates with
element category other than that of the original element are incompatible. Candidates
can then further be eliminated based on the other metadata constraints, specifically
cardinality or range. The cardinality of an element applies to elements where the data
values take one of a fixed and finite set of values, typically the set of values is small.
The cardinality of the element is then the number of possible such data values it can
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take. The cardinalities of two matching elements need to be “close” but not necessarily
exactly equal. For instance one data source may have a GENDER element with cardin-
ality of 3 (taking values ‘M’, ‘F’, or ‘U’ for unknown) whereas another source may have
a corresponding (gender) element with cardinality of 4 (say 1 each for male and female,
1 for unknown, and 1 for error). For a given element with cardinality O we assume that
the cardinalities of any corresponding elements are distributed normally with O as the
mean and a standard deviation of 1. For a candidate element, with cardinality O’, we
compute the probability that O’ belongs to the normal distribution withp=0O and o = 1.
Candidates with this probability below a certain threshold are eliminated.

Candidates in the numerical category can be eliminated based on a range of values.
Certain elements have a strict fixed range, by definition, in any dataset. For instance the
MMSE score element by definition takes values 0—30 (only). On the other hand an
element for heart rate may have a range specified as 35-140 in one dataset and 30—150
in another, both being “reasonable” range bounds for the values. We employ a range
match score (RMS) that is defined as follows:

|min (U1, U2) — max (L1, L2)|

RMS (el,2) =
(el ) = — (U —LL.U2-12)

This RMS score is measure of the overlap of the range of values across two elements.
Candidates with an RMS score below a certain threshold are eliminated.

Similarity Matching. After candidate elimination based on metadata constraints we
compute an element similarity match based on the similarity of the element text descrip-
tions. We mentioned that the element (text) description is relatively more comprehensive
and verbose in medical data dictionaries and this is the reason we have explored and
utilized more sophisticated approaches to determine element description similarity
across two elements. Our approach employs fopic modeling on the element descriptions.
Topic modeling (Blei 2012) is an unsupervised machine learning approach, which is
used for discovering the abstract “topics” that occur in a collection of documents (data
dictionaries). The underlying hypothesis is that a document is a mixture of various topics
and that each word in the document is attributable to one of the document’s topics. We
formally define a topic to be a probability distribution over the unique words in the
collection. Topic modeling is a generative statistical modeling technique which defines
a joint probability over both observed and hidden random variables. This joint proba-
bility is used to calculate the conditional distribution of the hidden variables given the
observed variables. In our case, the documents in the collection are the observed vari-
ables whereas the topic structure which includes both the topic distribution per document
and the word distribution per topic is latent or hidden.

In our approach, each column from the source is considered as a document, with the
column name as the document name and the column description as the content of the
document. After formatting our input in this way and generating a topic model, we
receive a document distribution probability matrix where each row represents a docu-
ment, each column represents a topic, and each particular document topic cell contains
the probability that the particular document belongs to that particular topic. Thus we
have for each document i.e., element description, a probability distribution over the set
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of topics. The similarity between two element descriptions is the cosine similarity or dot
product [18] of the topic probability distribution vectors associated with the two element
descriptions. The description similarity (DS) is defined as:

DS (el,e2) = TPV (el.description) - TPV (e2.description)

where TPV = Topic Probability Vector (associated with an element description).

4 Results

We conducted a series of experimental evaluations with the GEM system which are
centered on evaluating the mapping accuracy of GEM with various data schema pairs.
Specifically, we determined (i) The optimal configuration for the GEM system that
results in high mapping accuracy, (ii) The actual data mapping accuracy that can be
achieved by GEM for various GAAIN dataset pairs, and (iii) Comparison of mapping
accuracy of GEM with that of other schema-mapping systems.

Experimental Setup. We used six of the data sources of Alzheimer’s disease data that
we have in GAAIN namely (1) the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [17], (2) the National Alzheimer’s Coordinating Center database (NACC) [3],
(3) the Dominantly Inherited Alzheimer Network database (DIAN) [13], (4) the Inte-
grated Neurogenerative Disease Database (INDD) [21], (5) the Layton Aging and
Alzheimer’s Disease Center database [20] and (6) the Canadian Longitudinal Study of
Aging (CLSA)®. The original data provider provided the data dictionaries for each
source. We conducted multiple data mappings using GEM, for various pairs of the six
datasets as well from the datasets (one at a time) to the GAAIN common model. We
also conducted data mappings for some of these dataset pairs using the Harmony system,
for comparison. We manually created truth sets of data mappings across these dataset
pairs, which are used as the gold standard against which GEM generated mappings are
evaluated.

Mapping Accuracy Evaluations. The GEM system provides multiple alternatives as
suggested matches for a given data element. The (maximum) number of alternatives
provided is configurable. We present results showing data mapping accuracy as a func-
tion of the number of alternatives for a set of evaluations below.

Topic modeling vs TFIDF. The first set of evaluations is to determine the effectiveness
of topic modeling based text description by evaluating the impact of the text description
match algorithm on the mapping accuracy. In addition to topic modeling based text
match we also employed a TF-IDF Cosine similarity (Tata and Patel, 2007) algorithm
for matching text descriptions. The mapping accuracies for various schema pairs are
shown in Fig. 4.

s http://www.cihr-irsc.gc.ca.
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Fig. 4. Text description similarity algorithm impact

Our results with various pairs of schemas, of which the three pairs illustrated in
Fig. 4 are a subset, show that in most cases the mapping accuracy achieved with
topic modeling based text description matching is superior to that achieved with
TFIDF based text matching. This is however not the case universally as in the INDD
to ADNI mapping (not illustrated) TFIDF based mapping outperformed that based
on topic modeling. Our observation is that topic modeling based text matching works
better when the two sources (being matched) have comprehensive data dictionaries
with verbose text descriptions for data elements. On the other hand TFIDF appears
to work better when one or both data sources have dictionaries with brief or succinct
element text descriptions. While not obvious, this result is not surprising given that
the underlying topic model generation algorithm, Latent Dirichlet Allocation
(LDA), works by finding cohesive themes in large collections of unstructured data
(Blei 2012). More elaborate element text descriptions provide a better basis for this
algorithm to discover themes in the corpus of all descriptions. In Fig. 4 also show
results for an approach that combines TFIDF and topic modeling text match. We use
a voting algorithm that considers, for a specific matching instance, either one of
topic modeling or TFIDF for determining the text similarity based on which of the
two text matching approaches has a higher text match similarity score. The text
match similarity score is in the range 0-1 for both approaches. A more principled
way to address this however would be to assess the probabilistic confidence that a
pair of elements match, given the match similarity scores from both TFIDF and topic
modeling approaches. We propose to add this as part of the larger effort of incorpo-
rating machine-learning techniques into the system that we discuss in the Conclu-
sions section.

Impact of Blocking Based on Metadata Constraints. Figure 5 illustrates the impact of
employing metadata data constraint based filtering or blocking on mapping where we
evaluate mapping accuracy with and without the metadata based blocking step.

We see that using metadata constraint based blocking indeed provides an improve-
ment in mapping accuracy. The improvement is about 5 % on average and as high as
10 % in some cases as evaluated by mapping across various schema pairs.
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Fig. 5. Impact of metadata Constraint Based Blocking

Comparison with Other Systems. We also compared our system with related systems
to the extent we could, given limitations of other systems. Our aim was to compare the
mapping accuracy of various schema pairs provided to GEM as well as to systems with
identical functionality namely Harmony and Coma++. For Harmony, we could
complete this comparison for only one of the schema pairs as the system could not work
with other schema pairs, given its limitations in terms of the total number of database
tables and columns it can reason with. That comparison, NACC to ADNI, is provided
in Fig. 6(a) where GEM was significantly superior (around 12-15 % better) than
Harmony in mapping this dataset pair. With Coma++, the mapping accuracies for all
dataset pairs were less than an F-Measure of 0.3 and we do not report these results. Coma
++ is not designed to consider element text descriptions in schema mapping and the
focus is more on matching ontology and XML schemas based on structural information
(Bosch et al., 2011).

Schema Mapping Comparison for different Tools Mapping to GAAIN common model
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Fig. 6. Comparison, and mapping to GAAIN common model
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Mapping to GAAIN Common Model. Finally, we evaluated the mapping accuracy of
GEM to the current GAAIN common data model. The GAAIN common data model
currently comprises of 24 data elements of key subject data elements that include demo-
graphic elements such as age and gender and also select patient assessments and scores.
We represented the common model as (just) another data schema. The results of the
mapping from ADNI to GAAIN and NACC to GAAIN are shown in Fig. 6(b).

4.1 Conclusions from Results

The experimental results provide several important conclusions regarding the perform-
ance and the configuration of GEM. The GEM system provides high mapping accuracy,
in the range of 85 % or above F-Measure for GAAIN datasets and the common model,
and for reasonable result window sizes of 6 to 8 result alternatives. The system performs
better than existing systems such as Harmony, in terms of both scalability in handling
large data schemas as well as mapping accuracy. From a system configuration perspec-
tive we can conclude that it is indeed beneficial to determine element text description
similarity using a sophisticated topic modeling based approach. This generally results
in higher schema mapping accuracies, compared to using existing text similarity tech-
niques. Further, it is advantageous to train the topic model used for text matching, on
element text descriptions from a large number of data sources. Finally, metadata
constraint based blocking is beneficial in achieving higher accuracy of mapping.

5 Conclusion

We described and evaluated the GEM system in this paper. Compared to existing schema
mapping approaches, the GEM system is better optimized for medical data mapping
such as in Alzheimer’s disease research. Our experimental evaluations demonstrate
significant mapping accuracy improvements that have been obtained with our approach,
particularly by leveraging the detailed information synthesized from data dictionaries.

Currently we are integrating the GEM system with the overall GAAIN data trans-
formation platform so that developers can operationally use the mapping capabilities to
integrate new datasets. We are also enhancing the system with machine-learning based
classification for schema mapping. This will enable us to systematically combine various
match indicators such as text similarity using multiple approaches such as topic
modeling and TFIDF cosine similarity, and also features based on data element name
similarity. We are also developing an active learning capability (Rubens, Kaplan and
Sugiyama, 2011) where developers can vet or correct GEM system mappings and the
system is able to learn and improve from such feedback.
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