Modeling Behavior with Interaction Diagrams
in a UML and OCL Tool

Martin Gogolla®?), Lars Hamann, Frank Hilken,
and Matthias Sedlmeier

Database Systems Group, University of Bremen,
Bremen, Germany
{gogolla,lhamann,fhilken,ms}@informatik.uni-bremen.de

Abstract. This paper discusses system modeling with UML behavior
diagrams. We consider statecharts and both kinds of interaction dia-
grams, i.e., sequence and communication diagrams. We present new
implementation features in a UML and OCL modeling tool: (1) Sequence
diagram lifelines are extended with states from statecharts, and (2) com-
munication diagrams are introduced as an alternative to sequence
diagrams. We assess the introduced features and propose selection mech-
anisms which should be available in both kinds of interaction diagrams.
We emphasize the role that OCL can play for such selection mechanisms.

Keywords: UML - OCL - Model behavior - Statechart diagram - Inter-
action diagram - Sequence diagram - Communication diagram - Model
validation - Diagram view

1 Introduction

In the last years the Unified Modeling Language (UML) has become a de-facto
standard for the graphical design of IT systems. UML [18,20] comprises language
features for structural and behavioral modeling. The textual Object Constraint
Language (OCL) as part of UML adds precision in form of class invariants for
restricting structural aspects and pre- and postconditions for constraining behav-
ioral ones, among other uses of OCL [19,22] within UML.

This contribution puts emphasis on UML interaction diagrams which are
syntactically presented in form of sequence and communication diagrams. Inter-
actions describe sequences of messages exchanged among parts of a system. We
use interactions for the analysis of a system which has been described struc-
turally with a class diagram including class invariants and behaviorally with
operation pre- and postconditions, operation implementations, and statecharts.
In general, behavioral diagrams have become more important in the modeling
of systems. The specification of interactions using the respective behavior dia-
grams is more understandable, which is one of the goals of the UML. In addition,
the specification of actions is more intuitive using diagrams instead of textual
OCL pre- and postconditions, which is widely used for, e.g., business services.
© Springer International Publishing Switzerland 2015

E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 31-58, 2015.
DOI: 10.1007/978-3-319-21912-7_2

32 M. Gogolla et al.

We introduce new features for interactions in a UML tool and discuss how the
two interaction diagrams could be handled in a uniform way.

Our group is developing the UML and OCL tool USE (UML-based Specifica-
tion Environment) since about 15 years. USE [7,10] originally started as a kind
of OCL interpreter with class, object and sequence diagrams available in the
tool from the beginning. Other behavioral diagrams have been added over the
last years, namely statechart diagrams in form of protocol state machines and
most recently communication diagrams. USE claims to be useful for validation
and verification of UML and OCL models. USE has been employed success-
fully in national and international projects (see, for example, [1,6] among other
projects).

The rest of this paper is structured as follows. Section 2 introduces a running
example. After having set with the example the context of our work, we discuss in
Sect. 3 some general issues concerning behavioral modeling: ‘abstraction’; ‘best
practices’, and ‘tool support’. Section4 explains in more details how our sys-
tem USE contributes to system validation and verification. Section 5 shows the
UML metamodel for interactions and sets the context for the interaction dia-
gram implementation within USE. Section 6 presents new features in sequence
diagrams, and Sect. 7 discusses established and new features in communication
diagrams. In Sect. 8 a direct comparison between the two interaction diagrams
is shown. Section9 proposes systematic selection mechanisms that could be
available in both interaction diagrams. Section 10 compares our approach to
related papers. The contribution is closed in Sect. 11 with concluding remarks
and future work.

2 Running Example

This section explains a running example which is used throughout the paper.
In Fig. 1, a small, abstract version of Toll Collect! is shown. Toll Collect is a
tolling system for trucks on German motorways. In the figure, the following
USE features are employed: (a) a class diagram with two classes, (b) two stat-
echarts (two protocol state machines) for each of the classes, (c) one object
diagram, (d) one list of commands representing a scenario (test case), and the
evaluation of (e) the class invariants and (f) a stated OCL query expression in
the system state that is reached by executing the command list. The reached
system state is characterized by the object diagram.

The class diagram consists of a part responsible for building up the
motorway connections (basically Point, Connection, northConnect(Point),
southConnect (Point)) and a part for managing trucks and journeys (basi-
cally Truck, Current, enter (Point), move(Point), pay(Integer)). The model
includes three OCL class invariants (restricting system structure) and a num-
ber of OCL operation contracts in form of pre- and postconditions (restricting
system behavior). Apart from the above used standard UML descriptions, the

! http://www.toll-collect.de/en /home.html.

http://www.toll-collect.de/en/home.html

33

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

"109[[09 [[0} [opowt ojdurexsy *T *Srq

| (swo) o ﬂ.__aﬁ:ooa

any AUIA2){SIUNU:NON .r__

(q)aAow elueds™spalyi ZL
(yy)sajuaelueds™spalyi ‘L L

9£61 SHI-GuEINUIBIUBDSTSPaY; 0L
(,BIUBDSTSPaJ NONIL M3U; 6
(w)auuoguyinos-q; ‘g
(Q)pauuogunos yy; "2
(Myurw; -9

151 puewwod Hj =

aso[9

Je3y

Jasmolg

ajeneA3

s

1(od : Agua)iapa

[(Adugiouc-wauno'jjas
pue (, <> wnu'yas))]
4R

paafia) (el

((aabay) @ unowe)Aed
(04 © EREpasou

anyy AujsappA9ou:juiog __

(quiog)es Aszow_

any Aulkayisiaweu:juiod|f

qnsay Ansay

JuBLIBAY|

(((d)sapnjoxa<-sduyy
| DilvI04=<-S30UBISY
| d)jo3jas<-s30UB]SU|E"UI0g

|, [(Aidugsic-wauno s
pue (, <> wnu'jas))]

143Qou

‘uoIssaldxa)0 Jau3

(€., = wnu'ypes))
ulog

J(BUNS T winpe)yul
|epeuaid
ﬂ {109030.4d} ajpjonaL:onaL

japaln

7 auponuy, auyoew ajeis (5]

[(., <> aweuyjzs)]

(€. = aweuwyjas)]

Bulmoil

FQUI0 T YINOSE)IBULODUINOS
J(UI04 © YHONE)R3ULODYHOU

™ J(Bug : awenE)uu

ulog

1apan

|epeuaad

(tioo0y0ad} aprypuiog:iiod

SjUBLIBAUI SSE[D

Buimoif=ajIuiod
asjej=uolounpsy
=aweu

04w

unos
upiouy

BuimoiB=ajuiod

3p=ajIPfonaL

Z=lep

{dg'yylasuanbag=sdu}

9E6 | SW-gug,=wnu
SoNILBIuB0S Spaa)

=}

anJ=uoiauNpSy
=aueu

Jauna

\

5:3/
Hanay et

BulmoiB=ajIjuiod

asjey=uonounpsy

HH.=aweu
WIodyy

& A

ueajoog : (JAaysiwnu
Aabap) : ()aAy
(4aBa)y) : unowe)Aed
(uiod : 19baepasow

weibeip 103lq0 &5

(uiog : Aua)iajua | yonyy ¢ W3UN3 10| (uiod

(Buis : wnhe)pul
a3 @ Jqap
(uiod)aouanbag : sduy
BULIS © wnu

Jonay

uaund

(uiod : YHONE)PBULODYHOU

ueajoog : ()saj0AD0U
ueajoog : (JAa)s|aweu
(uiog)ias : (Jsnidyinos
(uiod)es : (Jsnidupou
 YIoSEe)0auuo)yInos

(BULIS : aweNE)ul

Yuou 5

uLa|00g : uojouNPSy
PULS : sweu

Wiod

Uo}I3UU0D

ynos ¢

B A

2iued, auiyoew eis 5]

weiberp ssep (5]

34 M. Gogolla et al.

Truck: :move (target:Point)
begin self.trips:=self.trips->including(target);
self.debt:=self.debt+1;
delete (self,self.current) from Current;
insert (self,target) into Current;
end
pre currentExists:
self.current->notEmpty
pre targetReachable:
self.current.north->union(self.current.south)->includes(target)
post debtIncreased:
self.debt@pre+l=self.debt
post tripsUpdated:
self .trips@pre->including(target)=self.trips
post currentAssigned:
target=self.current
post allTruckInvs:
numIsKey ()

Fig. 2. Example of operation implementation and pre- and postconditions.

i [E

%3 Sequence diagram

% [bhPoint | - [b:Point | [angies benzTruck |
— — — T

u:g Communication diagram 2

- === == —— =

1 - init('HH") r@

3 southConnect(h)

southcannect(b). |
<-------- T

int('UM-AM 1954")
T T

n 4' =g | 2nd :
> P4 int(UM-2M 1954 angies benz:Truck

3
=
)

[———=====- (il [ttt ITI nct +5: enter(h)
' ! @ O 6 move(hh)
1 1 -
' enter(b) ' 7 pay(2)
L L Lam »>3: hye()
e ______ . I T 51 by
|

1
|
1 [
- === === = —————— l'- ------- L-'
| 1
| - @)
\ pay(2) . > »2:init(B" \@I
e oo - o - ____ |}
| 1 [
: : (@)
' bye() ! >

Fig. 3. Sequence diagram with statechart states on lifelines (some details suppressed)
and equivalent communication diagram.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

i

#E Command list
1. 'new PointChh')
2. thh.initCHH')

3. 'new Point(’b")
4. 'b.init('B")

S. 'new Point('m’)
6. 'm.init(M")

7. 'hh.southConnect(b)

8. 'b.southConnect(m)

9. Inew Truck('freds_scania’)

10. 'freds_scania.init(BRB-MS 1936")
11. 'freds_scania.enter(hh)

12. 'freds_scania.move(b)

13. 'freds_scania.pay(S)

14. 'freds_scania.move(m)

1S. 'freds_scania.bye()

16. 'new Truck('angies_benz')
17.'angies_benz.int(UM-AN 1954")
18. 'angies_benz.enter(b)

19. 'angies_benz.move(hh)

20. 'angies_benz.pay(2)
21.'angies_benz.bye()

Fig. 4. Command list for used interaction diagrams.

Ob Object diagram

Point
name="HH"
fisdunction=true

north

north

south

south b:Point
h:Point F__ﬂ_"i"‘ﬂ, name="8'

name="H' south fAsdunction=true
Jfisdunction=true north
north
south
kcPoirt soulh
name='K'
fisdunction=true
north
south south
south m:Point
name="'
fisdunction=true

Fig. 5. Example for motorway connections.

35

36 M. Gogolla et al.

operations are implemented in a Simple OCL-like Imperative programming Lan-
guage (SOIL). An example for an operation contract and an operation imple-
mentation in SOIL [2] is shown in Fig. 2. Figure 3 displays a shortened variation
of the scenario that the paper will discuss in detail in form of a sequence diagram
and an equivalent communication diagram.

In Fig. 4, we show a longer command list where the single commands either
generate objects with a specified object identity or call operations on generated
objects. This command list and the commands determined by the respective
operation implementation in SOIL are used in the following as the basis for the
discussed interaction diagrams. This command list represents one test case, and
this test case shows the consistency of the operation contracts in the sense that
at least one scenario is possible where all operations are called (and thus all
pre- and postconditions are valid) and all invariants are valid at times when no
operation is active. The considered motorway connections are a toy example with
the largest German towns Hamburg (hh), Berlin (b), and Munich (m). A slightly
larger motorway example allowing to travel between western and eastern points
as well is shown in Fig. 5. The complete USE model is given in the Appendix.

3 General Behavioral Modeling Issues: Abstraction, Best
Practices, Tool Support

Before we go into the details of our approach we want to discuss crucial questions
between our work and general issues in behavioral modeling: To what extent does
our approach support behavioral modeling abstraction mechanisms? What is the
relationship between our proposal and established best practices in behavioral
modeling? How is our work supported by tools?

Abstraction: The motivation for modeling and the relationship to abstrac-
tion has been formulated to the point in [21] (and other works by the same
author): Why do engineers build models? (a) To understand problems and
solutions, (b) to communicate model and design intent, (c) to predict inter-
esting characteristics of the system under study, and (d) to specify the imple-
mentation of the system under study. Building models is realized by select-
ing statements through abstraction, i.e., reduction of information preserving
properties relative to a given set of concerns.

In our view structural and behavioral modeling must go hand in hand. As
our background is database and information system modeling, we typically
start with structural modeling and later involve behavioral aspects. Other
IT disciplines as, for example, embedded systems may prefer to start with
behavioral issues and continue with structural ones. In our view, behavioral
aspects are inherently more complex than structural issues because in infor-
mation systems the behavioral descriptions must be aware of and respect
the structural requirements. Thus finding good abstraction techniques that
reduce information are even more relevant for behavioral modeling.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 37

As said already before, we use UML interactions for the analysis of a
system which has been described structurally with a class diagram includ-
ing class invariants and behaviorally with operation pre- and postconditions,
operation implementations, and statecharts. One focus here is on UML inter-
action diagrams in form of communication diagrams. Communication dia-
gram are able to present all details of a behavioral scenario and bear the
danger to overwhelm the modeler with too many messages which are the
basic cornerstones of a scenario. Thus in particular for communication dia-
grams proper and adequate abstraction mechanisms are strongly needed.
This demand leads in our approach to a proposal for allowing views on
interaction diagrams that take into account message number intervals, mes-
sage depth, and message kind abstraction mechanisms in order to show that
part of a scenario that the modeler regards as important.

Best practices: UML sequence and communication diagrams are employed
for showing interactions, i.e., message exchanges between objects (or object
roles) in order to perform a task. Both sequence and communication diagrams
show interactions, but they emphasize different aspects. A sequence diagram
shows time sequence as a geometric dimension, but the relationship among
[object] roles are implicit. A communication diagram shows the relationships
among [object] roles geometrically and relates messages to the connectors,
but time sequences are less clear because they are implied by the sequence
numbers. Fach diagram should be used when its main aspect is the focus of
attention (quoted from [20]). If one wants to capture the difference along
the slogan Time vs Space, one would classify the sequence diagram into the
Time dimension and the communication diagram into the Space dimension.

However, there is only little methodological help on the question when to
use which diagram. Our observation is that sequence diagrams are more fre-
quently used than communication diagrams. It seems that sequence diagrams
can be used intuitively easier due to explicitly displayed message order. The
message order must be mentally retrieved in communication diagrams. How-
ever, as said before, communication diagrams show the relationship between
objects which is neglected in sequence diagrams.

Tool support: Both sequence and communication diagrams are supported by
UML tools. However, a general common view mechanism on the underlying
interactions is not explicitly stated in UML. This leads to different features
for interactions diagrams in different tools.

Our proposal here is to offer the same view mechanisms in both interac-
tion diagrams. The motivation for an (as far as possible) uniform treatment
of sequence diagrams and communication diagrams comes from the fact that
both diagram forms treat the same model elements: interactions, i.e., objects
and messages between them. For example, if one starts from a complex inter-
action in form of a sequence diagram and one selects a subset of the involved
objects for viewing, then it should be possible to do the same selection in
the corresponding communication diagram. The same holds if the selection is
made for messages. A conversion between both diagram forms is in principle
possible because of identical underlying elements (objects and messages) and

38 M. Gogolla et al.

because of the fact that the geometrical ordering in the sequence diagram
has its equivalent in the numerical ordering in the communication diagram.
However the relationships between objects present in the communication
diagram do not have an equivalent in the sequence diagram and thus cannot
be represented. With respect to the underlying static structure (the class
diagram) both interaction diagrams use the same elements arising from the
class diagram, basically commands for the creation and deletion of objects
and links, for the manipulation of attributes and for operation calls.

Interaction diagrams can be looked at from different angles. One can
view interactions in both sequence and communication diagrams along the
object or along the message dimension. Furthermore, apart from interac-
tively selecting relevant parts in a scenario, we discuss how to employ OCL
for systematically accessing objects and messages.

The discussed features are implemented in our tool USE. Sequence dia-
grams have been present in USE from the very beginning, and only later
communication diagrams were added. Integrated views on both kinds of
interaction diagrams with common features are currently under develop-
ment. The aim of the newly added view features is to better support new
abstraction mechanisms for behavioral modeling, in particular in connection
with communication diagrams that are only poorly supported in present
UML tools as far as voluminous scenarios are concerned.

4 Validation and Verification with USE

OCL can be employed in USE for various tasks: in class diagrams for (a) class
invariants, (b) operation contracts, (¢) attribute and association derivation rules,
and (d) attribute initializations; in protocol state machines for (e) state invari-
ants and (f) transition pre- and postconditions; furthermore for (g) ad-hoc OCL
queries in object diagrams, and for (h) expressions within SOIL. In USE, class
diagrams and protocol machines enriched by invariants, operation contracts,
statechart constraints and SOIL operation implementations determine system
structure and behavior. Sequence and communication diagrams are employed in
USE for visualizing and analyzing specified test cases in form of scenarios. Inter-
action diagrams are not used for restricting system behavior, but to document,
analyze, and understand the interactions. These diagrams are built after a com-
plete model including the SOIL operation implementation has been constructed.
The overall aim of USE is to support development by reasoning about the
model through (a) validation, i.e., checking informal expectations against for-
mally given properties, for example, by stating OCL queries against a reached
system state (object diagram) and (b) verification, i.e., checking formal proper-
ties of the model, for example by considering model consistency or the indepen-
dence of invariants as in [7]. That contribution also shows how USE supports
making deductions from the stated model on the basis of a finite search space
of possible system states (object diagrams). Such checks are realized in form of
positive and negative scenarios which can be thought of as being test cases for
the system under consideration. Thus USE supports the development of tests.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 39

In OCL operation contracts as well as pre- and postconditions can be gen-
eral OCL formulas. In postconditions, one can refer with @pre to attribute and
association end values at precondition time. Postconditions can state general
requirements and are not restricted to the specification of changes to attribute
and association end values. Thus the actual changes made by the operation are
described in SOIL and are checked against the contract. Concerning the proto-
col state machines, concurrency is currently not supported, and operation call
sequences which do not fit to the protocol are rejected. The definition of protocol
state machines is optional.

Various validation and verification use cases for the USE tool are discussed
in [9]. A comparison between the USE verification method for behavioral aspects
and another approach is discussed in [11]. The so-called ‘filmstripping’ technique
within USE for mapping behavioral descriptions into structural problems is pro-
posed in [8].

5 UML Metamodel for Interactions

The interactions part of the UML metamodel?® [18, p. 473ff.] was developed to
visualize concrete traces of event occurrences and in addition to allow the def-
inition of all possible traces of an interaction. The former can be used in early
design stages to be able to communicate with designers and to some extent with
stakeholders. A concrete trace does not show alternatives or loop constructs,
because it describes a single message trace (or command trace) in the system.
Elements like alternatives or loops can be used in later design phases to express
all possible traces (cf. [18, p. 473]). Interactions can be visualized by different
diagrams. T'wo of the more common ones are sequence diagrams and communica-
tion diagrams. Both diagrams focus on slightly different aspects of interactions.
While sequence diagrams highlight the time line of an interaction, communica-
tion diagrams focus on the different elements participating in an interaction and
their relationship.

Figure 6 shows an excerpt of the UML metamodel required to briefly dis-
cuss the representation of event occurrences inside interaction diagrams. A more
detailed presentation can, for example, be found in [15]. On the right side of this
figure, meta classes from the structural modeling part of the UML are shown.
These are needed to completely model message occurrences. On the left side,
the relevant parts of the interaction meta classes are shown. Consider the occur-
rence of the message enter (hh) shown in the following sequence diagram in
Fig. 3 and in the (following) communication diagram in Fig. 8. This part of both
diagrams can be expressed as an object diagram of the metamodel, as it is done in
Fig. 7. Again, on the right side the structural part is shown, e. g., the two classes
which participate in the message occurrence: Truck as the class of the receiving

2 UML metamodel novices might skip this section on first reading and continue with
the next section. UML metamodel followers are invited to dive deep.

40 M. Gogolla et al.

fragment {ordered)

InteractionFragment

enclosinglnteraction coveredBy

Interation

covered
{redefines covered} [oo
events {ordered}

covered

Lifeline

Classifier
isAbstract : Boolean
isFinalSpecialization : Boolean

formalGate Operation
AN
Gate > isQuery : Boolean
sendEvent

isOrdered : Boolean

receiveEvent === ownedOperation | isUnique : Boolean
lower : Integer
upper : Integer

messageEnd

Vessage endMessageSend

messageSort : MessageSort

ownedParameter

argument {ordered} Parameter
direction : ParameterDirectionKind

nstance [ianceSpeication default : String

Fig. 6. Relevant parts of the UML interactions metamodel.

instance® and Point which is used as the type of the parameter of the operation
enter. Further, both instances used in the interaction diagrams (freds_scania
and hh) are placed there, too. On the left side, the example scenario is given as
an instance of Interaction. Since we consider the single message occurrence
enter (hh), the object diagram contains few interaction related instances. First,
the Gate gSend acts as the source of the message occurrence. It is linked to the
interaction as a formal gate to signal that the source of the event is outside of
this interaction. The receiving end of the message is represented by the instance
recEnter of type MessageOccurenceSpecification. This instance is linked to
the Lifeline named freds_scania:Truck. The payload of the message mEnter
is given by the InstanceValue argument linked to the instance hh of the class
Point.

6 Sequence Diagrams

As USE allows the developer to employ UML protocol machines to restrict the
model behavior and to document test scenarios with sequence diagrams, it is
desirable to show the protocol machine state of objects on sequence diagram
lifelines, when the developer thinks this may be useful. Thus we have imple-
mented this option for lifelines.

In Fig. 3, a fraction of the test scenario from Fig.4 is displayed. We have
manually selected the lifeline of only two Point objects and one Truck object and
have activated the display of states from protocol state machines. For example,

3 In the current version of the UML metamodel, a lifeline can only represent con-
nectable elements like properties or parameters. Since our tool allows a lifeline to
represent a concrete instance, this fact cannot be expressed using the current UML
metamodel. This is an open issue reported to the OMG [5].

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 41
clsTruck:Cla
name="aScenario” name="Truck'
visibility=#public visibility=#public =

IqualifiedName="aScenario|

isLeaf=Undefined
isAbstract=false
isFinalSpecialization=false
isReentrant=Undefined

.

Truck'
isLeaf=false classifier
isAbstract=false

isFinalSpecialization=false|

name="freds_scania’
visibility=#public
lqualifiedName="freds_scania’

ownedOperation
LES: ifeline
y N pEnter:Operation
name="freds_scania: Truck’ parPoint:Parameter
formalGate visibility=fpublic name=lenter' e e
IqualifiedName="aScenario::freds_scania:Truck visibility=#public visiblity=#public
name="sendEnter’ covered lqualifiedName="arget
isLeaf=false
visibility=#public ordered) " {ordered} | js0
i - B events {ordere :
IqualifiedName="aScenario::sendEnter] P tirred isUnique=false
sendEvent 150 lower=1
name="recEnter' isUnique=false upper=1
visibility=#public - direction=#_in
JqualifiedName="recEnter" signature | 2 default=Undefined
receiveEvent typedElement
endMessageSend
p type
name="enter(hh) argument {ordered) Uitz EPoInECl:
visibility=#public —Point
IqualifiedName="aScenario::enter(hh)| instance name- ot
- visibility=#public
messageKind=#complete pHH:nstanceSpecification| P e S
messageSort=#synchCall e Tr— classifier |
name="hh isLeaf=false
visibility=#public isAbstract=false
IqualifiedName="hh' isFinalSpecialization=false|

Fig. 7. Send message event as an instance of the UML metamodel.

one can directly trace the development of the Truck object and the state chang-
ing through operation calls with init(..), enter(..), move(..), pay(..),
bye(): from born to noDebt to debt and then again to noDebt. In the case
that more money has been paid than is needed for paying the journey, the oper-
ation bye returns the overpayment.

UML sequence diagrams also allow the developer to use combined frag-
ments, which define a combination of interaction fragments. A combined frag-
ment consists of an interaction operator, an appropriate interaction operands
and, if required, so-called guards (Boolean expressions).

Altogether, the UML supports 12 interaction operators. Some of these oper-
ators could be introduced in USE by representing SOIL operations as sequence
diagrams. The alternatives and option operators, for example, could be realized
via SOIL’s conditional execution support (if-then-else). And the loop operator
could be implemented via the SOIL iteration statement (for-in-do-end).

Sequence diagrams also support interaction use elements, which allow devel-
opers to call other interactions to simplify or reuse shared interactions. This
could be represented in SOIL with corresponding operation calls, thus covering
the reference interaction operator.

7 Communication Diagrams

Figure 8 shows the communication diagram representing the messages from the
test scenario in Fig.4 and additionally all messages that are executed within
the operation calls by the SOIL implementation. As usual in communication
diagrams, the ordering of messages is determined by message numbers, and sub-
messages (i.e., messages that are triggered by one message) are displayed by a
structured message number with a dot as separator. For example, message 18 has

M. Gogolla et al.

42

‘(¢ 81 ul os[e soBeSSOW poUIRI]) UMOUS S[IRIOP [IIM WIRISRIP Uoljesiunuuo)) ‘g *S1q

[CUNE-PY
apEa0 IS¢

WLo=awBUlES DL

21251
Jopy R
{ Waisuel) Y TIEINS: [OCRG BT ¥
(w)asow : 1 ¥
oA (s)fed 1 gy
AhaU }UONPEUL0D:
{ PIEEN) (eanow ;7| M
(GRS TR ¥
o DIENT (SEBL Sradal oL |
Fal Oade 21237, WD asu 4) BEEY
1 (@hed “om.w((W' g@)uasul @ |'g xm&m«m«m:ir_wwm\ﬁ‘mw, w:ks ¥
{ (uarow 611y i w.m Vm__kc
(@iansa g1y =
| (bsBL Wl Juut N‘SAF
T TR) b
o=wEpies:ziz A { aisugl }ToEInD:
o=japes Loz e T { yaisuen } 0BT aEp L LsLER
Z=w@Eples izeL P ' wiodq (W@ eueosTSpal@)HasUl L R
{yy'epaouanbasg =: sdyes © gL - —
{paouanbag = sduyjes togl A Go=raweLgEs Ly
L=twEpas izgL A :
. BEE
FSEL TN, = wnuas 1y 2y A _ SRR eEL N (DesesspauD) «Wmm erie
(o' zussafue@)pasul ; |'g) N RN el PRI Febe- { mau }JPNILBIueos Spal
Toy| b
S IR RS LTS
(@@ yu@)pasur: g Hmwnwccoozsom.” m.x T AR RS TR
% GHHOBU : 28 {w'q'yylaouanbag =i sdul s D LRL
A3EP L agomahas s as - c-=lEp RS I LSl
- a0)
(D' zuag” safiue@)pasl : ye) N M T=WER RS IZTL
L {g'yyjaouanbag = sdujjas | 1’71 5
{ waisueyy }0aan3:] _ 3P ”m.m;\ {uyusousnbag = sdias oLl
{ AnaU } TI0gW (WD BIUEaSTSPRUDIMESUL: V' LL L=EpEs T
{ aisuel} yy0aany: GE6L SW-3Mg, =twnu RS L '0L
HH, = 8WBu s 1 LT
weJBEIp UoREAIUNWWOD M.n_

43

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

"‘GT—6 sodessowr A[uo Jurde[dsip wreIderp uoredIUNWWo)) *6 314

g5

Oadg 5y

(uasow : p|

(s)fed gy

(g)anow :z|

(CEV TR

(9261 SI-gu8)uu 1 0L
EI Y

lopy
{ Wisisuey }uaany:

{ amau yToRoauuoy:

A7 AT AT AT A AT AT

{ Jaisue } BN REP 1 LISLR

{[ouy Yogd (W@ elueosTSpaN@IUasUL L R

3P P
(4D BEISTSPAUD)IUASU L T - { amau } NI BIUeosS Spai)

{ amau }ToPauuoy:

Ep RS ITGL
Z-=lEp RS 7L
{w'q'yylaouanhag = sdues @ L'yl
S-=lgEpEs L gL

T=EpiEs LT

{g'yylaouanhag = sduyias @ |'ZL

BBED ETh
(YYD BIEasTSPUDIMASUL | 1Ly

{ anau } JUOgUY L=1ep s i L)L

(SEBL SI-3H8, =lwnuias L oL

{ aisues) yy0aany:

I,V
Iv
|,v
IV
g
IV
{yy}aousnbag =:sdupjas (gLl
l,v
IV
o

weibelp uoledIUNWWO)

44 M. Gogolla et al.

inserted as truck

inserted as currt

set debt =1

set triips := Sequence fhh}

set trips := Sequencethhb}

set debt =2

delete(@freds scania,@hh
insert(

freds scania @b

inserted as truck

inserted as current

set trips := Sequencefhh,b m}
set debt:= 2

delete freds scania, @b

=3
i
S
o
0
2
@
2

delete(@freds_scania,@m) ><
setdebt:=0
E—

Fig. 10. Sequence diagram displaying only messages 9-15.

45

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

"UOIJS[Op pU®R UOILIeSUI Yul] AJuo SurdAe[dsip weidelp uorjestunwwo)) *TT *S1q

{ mau } iogw

0107
{ Wisisuey }uaany:

{ mau YUOROAUUDD:

(Wi q@)uasul: 1'g M

{ Jualsuel) }Yjuaany:

{ Jaisue } BN REP 1 LISLR

{[ouy Yogd (W@ elueosTSpaN@IUasUL L R

3P P
(4D BEISTSPAUD)IUASU L T - { amau } NI BIUeos Spai)

P el N
(4 zuag safue@)pasul @ |'gl N

{ mau JTORoEUU0D:

(D yuDasu: Lz K

3j3Ep 1 11z
(YD) zuay” salfue@)uasul { #'E|

& &

{ waisuey) yy0aan3: _ SRR Ty
{ mau } T0ogay (YYD BIEasTSPUDIMASUL | 1Ly

{ aisuey yy0any:

weJBeIp UoNEJILNWWOD M.n

M. Gogolla et al.

46

“Amuept Aq 109(qo ¥oNI) I0J UOII09[ES TH() YNM WrRISRIP uoresrunwwo)) *gT *31q

lopy

0igz

Oake 1z o

(@ect 0z 7
(anow gL
(eaea gy M
A.%mgq.ga_g:_”t‘v
4_‘

(w)oauuooynos @ g I

apaio gl
| wnseusees __ jeners _ EE] __ I MOuS _

| (Auvo0)ies : {uy'q'zuaq saibuelies|
nsay P ()

{ mau } TI0gG
MOUS @)

AummmmAumaﬁu sI)uotun<-{1}13g uT zuaq satbue=I uwa
g =laweulas |’ 1 i
’ ne “uoissaldxa Aanb 100 Jajua 908 @)

o=wEpEs iz A {aIsuER YD
o=Epies oz A
z=wepies izElL
{yy'oiasuanbag =: sdupjas : 'L
{g)aouanhag =: sdipjes 1 gg)

L=Ep s izl A
FSEL MmN, = wnuas) A

uoissaidxa)0 Aq uoid3jas H

B AF

2P ioEL N
(4 zuag safue@)uasul : |'gl N

{ amau }ToPaULoY:

(@' yy@)pasul: g H

(epauuoOUnos 2
CHHOBU 2
apain | %

3R 1 11T
(D' zuay salfuE@)Masul 1 161

& &

{ waisuel yjmaamny:

{ Mmau) TOgTY

HH, = 8WBu s D LT

weJbelp uoReUNWWO) w.n

47

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

‘g1 "SI ul wreiderp uorjedIuNUIWOd 03 Julpuodsaliod weidelp sousnbeg g1 *31q

N
g g &
8 8 8
E 5 8 2
3 3
5| 9 £
| 2
g 8
5 :
- —III —lll = —II
M £ X 3 Y Y 0 Y S Y .
) 1 I3 1 By 1 1 1
g | g I :
8 'y 1 1 3 1 1 1
G 1 1 8 1 1 1
1) | e R T e R R [I R
< 1 1 1 1 1
o | % “ " A "
; J " | "
B : : : ' :
2 k4
& 1] 1Al 1 1
[= L NS . SN R SR I .
! = : I :
1 1 9 g 1 1 1 1 1
' ' 1 1 ' ' '
--- - - - e S R e B S R S T S -
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 8 ' ' ' 1 1 1 1 1
o [' ' ' 1 1 ' ' 1
of I 19 ' ' ' 1 1 ' ' '
M E 1 1 1 1 1 1 1 1 1
s ¢ 1 ‘ ' ' ' : ' : :
v v v v v v v v v

48 M. Gogolla et al.

the sub-messages 18.1, 18.2, and 18.3, i.e., the enter (b) call on the Truck object
angies_benz is implemented by a link insertion (18.1) in association Current,
an assignment (18.2) for attribute debt and an assignment (18.3) for attribute
trips. As usual in communication diagrams, the specifications new, transient,
resp. destroyed refer to objects that are newly introduced, newly introduced
and deleted, resp. deleted during the interaction.

The relationship to the sequence diagram in Fig. 3 has been indicated man-
ually by messages that are lying inside free drawn frames. These eight framed
messages correspond to the eight messages in the sequence diagram.

For a smart representation of a communication diagram in an interactive
GUI, the main objective is to provide a good overview and comprehensibility
of the diagram. Bigger communication diagrams with multiple operation calls
and messages become quickly difficult to follow (see Fig.8). To improve this
situation, some straightforward ideas have proven to be helpful:

1. Limiting the view of the diagram to a range of messages (see Fig.9).

2. Cropping of different message types to only display those messages that are
relevant to understand the shown process (see Fig.11).

3. Cropping of objects and links to only display those relevant in the shown
process (see Fig. 12).

4. Combinations of the above.

The communication diagram in Fig. 8 shows the complete sequence of mes-
sages (1-21), which can be roughly split into the initialization of a road network
and two navigations of trucks. Figure9 focuses on the navigation of the first
truck only (messages 9-15) and thereby this sequence is easier to understand.

A similar effect occurs when focusing on a subset of message types. Figure 11
only shows link insertion and deletion messages in the communication diagram
and thereby increases the focus on the development of the links. A similar feature
is available for sequence diagrams, allowing to show or hide the message types
create, destroy, insert, delete and set.

Lastly, single objects and links that are not relevant to understand the
current process can be removed from the view of the diagram in favor of a
better accessibility, e.g., in Fig. 12 only one truck, the two points that it visits
and the links in between these objects are displayed. The other parts of the route
as well as the second truck are hidden.

Thus, to help with the selection of large quantities of objects communication
diagrams, the selection by OCL expression feature of the USE tool has been taken
over from the object diagram (see Fig. 12). With this feature, certain objects can
be shown, hidden or cropped.

8 Selection Mechanisms in Communication and Sequence
Diagrams

To further illustrate and compare the selection mechanisms in sequence and
communication diagrams, the following three examples demonstrate selecting

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 49

views on the complete interaction from Fig.8 where one particular aspect is
emphasized in each example. Where appropriate, the corresponding sequence
diagram is also displayed with the same filters applied.

1. Interval selection: Figure9 restricts the messages according to a message
number interval: only the messages 9 to 15 including their sub-messages are
stated. This part of the interaction handles the first Truck object and shows
its initialization and movements. Figure 10 shows the corresponding sequence
diagram with the same selection applied.

2. Message kind selection: Figure 11 presents a view on the complete inter-
action along a different dimension than message numbers. Only messages
concerning a particular message kind are displayed, in this diagram the inser-
tion and deletion of links. As in UML different message kinds are available,
such a restriction can be useful. In USE we currently support the follow-
ing message kinds: object creation, object destruction, link creation, link
destruction, attribute assignment, and operation call.

3. OCL selection: Figure 12 makes a selection in the communication diagram
with the help of an OCL expression. In this case the OCL expression picks
a Truck object together with the Point objects that are visited. The result
is typed as Set(OclAny) because objects of different classes show up. All
messages between the selected objects are shown. This object and message
selection cannot be achieved with a message number interval or a message
kind specification. Figure 13 shows the corresponding sequence diagram with
the same selection applied, however set statements are hidden.

The selection mechanisms shown in the communication diagrams in
Figs. 8 and 12, are currently implemented (modulo some required improvements
in the user interface). USE also supports the selection mechanisms shown in
Figs.9 and 11.

9 Systematic Selection Mechanisms for Views in UML
Interactions and Further Use of OCL

Currently, the selection mechanisms for UML sequence and communication dia-
grams in our tool USE are different. This is due to the fact that the design and
implementation has been done at different times with different people involved.
Our plan is to unify the selection mechanisms and offer a unified view mechanism
for both interaction diagrams. We currently identify the following options. An
overview in form of a generic interaction together with the object and message
dimensions and the resulting presentation options is presented in Fig. 14.

Selection focusing on objects: Objects could be selected through the follow-

ing possibilities:

1. Interactive show, hide or crop for objects individually or by class.
2. Interactive multiple selection by shift key and mouse click.

50 M. Gogolla et al.

Model behavior determined by
- Class diagram with class invariants and operation pre- and postconditions
- Statecharts with state invariants and transition pre- and postconditions

Object selection through

- Manual selection or selection by enumeration

- Class selection (objects of particular classes)

- Operation selection (objects sending/receiving calls of particular operations)
- OCL expression

&£ N
7

Y
Object
A selection

«— — ——
— < —>
< <
— —> <
— <
v

Message selection through

- Manual selection or selection by enumeration

- Class selection (messages in particular classes)

- Operation selection (messages of particular operations)
- Message interval

- Message kind

- Message depth

Fig. 14. Overview on interactions with object and message dimension.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 51

3. Objects satisfying resp. violating an OCL invariant during interaction.
4. Objects satisfying resp. violating an ad-hoc OCL formula during interaction.

Selection focusing on messages: Messages could be selected through the
following possibilities:

Interactive show, hide or crop for messages.

Selection through an OCL object query identifying the sending object.

Selection through a satisfied resp. violated OCL pre- or postcondition.

Selection through a satisfied resp. violated ad-hoc OCL formula at pre- or

postcondition time during an operation call.

5. Selection by message kind: object creation, object destruction, link insertion,
link deletion, attribute assignment, operation call.

6. Selection by message number depth.

7. Determination of a message interval defined by

(a) interactively fixed start message and end message.

(b) start OCL formula and end OCL formula.

(c) a statechart start state and a statechart end state for a fixed object.

- N

The OCL expressions that we employ in communication diagrams are currently
working on the last system state. However, the communication diagram contains
information that is not selectable using plain OCL in this way, i.e., removed
objects and links in general. For example the OCL expression allInstances ()
to select all instances of a class will currently not select transient or destroyed
objects, yet they are still displayed in the communication diagram.

Consequently, to get full access to the elements in the communication dia-
gram, the syntax and accordingly the evaluation of OCL has to be extended.
First, it is desired to access the system’s pre- and post states of each message to
get access to all time steps of the communication diagram. In addition, access to
the elements of a range of messages or the global sequence of messages is helpful
for the selection. Temporal extensions for OCL often include functionality to
formulate expression about the past (see e.g., [24]) and can be considered to be
integrated.

The temporal extension of OCL would not only improve the selection of
elements in the GUI. The access to the new properties increases the possibilities
of validation tasks formulated on the communication diagram.

10 Related Work

Behavior modeling with UML interactions has relationships to other important
approaches. A definition of the UML interaction semantics in terms of the Sys-
tem Model can be found in [3]. In [12], a comparison between software model
verification approaches using OCL and UML interaction diagrams among others
is performed. The work in [16] focuses on the interaction problem in the context
of aspect-oriented programming. It explains how Aspect-UML can be translated

52 M. Gogolla et al.

into Alloy and shows how to verify aspect interactions with Alloy’s model ana-
lyzer. In [17], the synthesis of test cases from UML interaction diagrams by a
systematic interpretation of flow of controls is discussed. Improvements to the
UML interaction metamodel concerning message arguments and loops are pro-
posed and demonstrated in [23]. The approach in [14] is strongly related to the
USE approach because of the emphasis on protocol modeling. That work is how-
ever closer to programming through the use of Java, whereas we are closer to
modeling because of using OCL. The proposals in [4,13] discuss test case genera-
tion from interaction diagrams. Our approach is the only one that employs OCL
for selecting relevant parts in the interactions under consideration. The current
work differs from our previous contributions (like [7,10]) in that we did not
consider sequence diagrams with statechart states on lifelines or communication
diagrams at all.

11 Conclusion

This contribution has discussed how to handle UML interaction diagrams in
a model validation tool and has pointed to the link between protocol machine
and interaction diagrams. We have set up desirable selection mechanisms for
both kinds of UML interaction diagrams, namely sequence and communication
diagrams.

Future work has to complete our current implementation with the missing
features in both interaction diagrams. In particular, message kind selection and
message interval selection seem to offer useful analysis options. We have discussed
how to extend the options for interaction analysis with temporal OCL query
features. Larger examples and case studies need to validate the already existing
and planned features for better support of interaction diagrams that advance
behavioral modeling.

Appendix: Complete USE Model for Toll Collect

——————— -—= -——-———-—————-———-——-——- model TollCollect

____________________ - - class Truck
class Truck

attributes
num:String init: 7’
trips:Sequence(Point) init: Sequence{}
debt:Integer init: O
operations

init(aNum:String)
begin self.num:=aNum end
enter(entry:Point)
begin insert (self,entry) into Current; self.debt:=1;
self.trips:=self.trips->including(self.current) end
move (target:Point)

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 53

begin self.trips:=self.trips->including(target);
self.debt:=self.debt+1; delete (self,self.current) from Current;
insert (self,target) into Current end
pay (amount : Integer)
begin self.debt:=self.debt-amount end
bye() : Integer
begin delete (self,self.current) from Current;
result:=self.debt.abs(); self.debt:=0 end
numIsKey () :Boolean=
Truck.allInstances->forAll(self,self2|
self<>self2 implies self.num<>self2.num)

statemachines
psm TruckLife
states
prenatal:initial
born [num=’’]
noDebt [num<>’’ and current->isEmpty]
debt [num<>’’ and current->notEmpty]

transitions
prenatal -> born { create }
born -> noDebt { init() }
noDebt -> debt { enter() }
debt -> debt { move() }
debt -> debt { pay() }
debt -> noDebt { bye() }

end

end

- -—= —m class Point
class Point
attributes
name:String init: ’’
isJunction:Boolean derived: north->union(south)->size()>=2
operations
init (aName:String)
begin self.name:=aName end
northConnect (aNorth:Point)
begin insert (aNorth,self) into Connection end
southConnect (aSouth:Point)
begin insert (self,aSouth) into Connection end

northPlus() :Set (Point)=north->closure(p|p.north)
southPlus () :Set (Point)=south->closure(p|p.south)

54 M. Gogolla et al.

nameIsKey () :Boolean=

Point.allInstances->forAll(self,self2]
self<>self2 implies self.name<>self2.name)

noCycles() :Boolean=

Point.allInstances->forAll(self|
not (self.northPlus()->includes(self)))

statemachines

psm PointLife

states
prenatal:initial
born [name=’"]
growing [name<>’’]

transitions
prenatal -> born { create }
born -> growing { init() }

growing -> growing { northConnect() }
growing -> growing { southConnect() }

end
end

association Current between
Truck[0..*] role truck
Point[0..1] role current
end

association Connection between
Point[0..*] role north
Point[0..*] role south

end

association Current

-- association Connection

context Truck inv numIsKeyInv:
numIsKey ()

context Point inv nameIsKeyInv:
nameIsKey ()

context Point inv noCyclesInv:
noCycles()

constraints

——————————————— invariants

Point::init

context Point::init(aName:String)
pre freshPoint:

self .name=’’ and self.north->isEmpty and self.south->isEmpty

pre aNameOk:
aName<>’’ and aName<>null
post nameAssigned:

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool

aName=self.name
post allPointInvs:
nameIsKey() and noCycles()

- - - -—= -- Point: :northConnect
context Point::northConnect (aNorth:Point)
pre aNorthDefined:
aNorth.isDefined
pre freshConnection:
self.north->excludes(aNorth) and self.south->excludes(aNorth)
pre notSelfLink:
self<>aNorth
pre noCycleIntroduced:
aNorth.northPlus () ->excludes (self)
post connectionAssigned:
self.north->includes (aNorth)
post allPointInvs:
nameIsKey() and noCycles()

- - - - Truck::init
context Point::southConnect (aSouth:Point)
pre aSouthDefined:
aSouth.isDefined
pre freshConnection:
self.south->excludes(aSouth) and self.south->excludes(aSouth)
pre notSelfLink:
self<>aSouth
pre noCycleIntroduced:
aSouth.southPlus () ->excludes (self)
post connectionAssigned:
self.south->includes(aSouth)
post allPointInvs:
nameIsKey() and noCycles()

-- -—- -—- —mmmm o Truck: :init
context Truck::init(aNum:String)
pre freshTruck:
self .num="’ and self.trips=Sequence{} and self.debt=0 and
self.current->isEmpty
pre aNumOk:
aNum<>’’ and aNum<>null
post numAssigned:
aNum=self.num
post allTruckInvs:
numIsKey ()

- - - -== ---- Truck::enter
context Truck::enter(entry:Point)
pre noDebt:

O=self.debt

55

56 M. Gogolla et al.

pre currentEmpty:
self.current->isEmpty

pre entryOk:
entry<>null

post debtAssigned:
1=self .debt

post currentAssigned:
entry=self.current

post allTruckInvs:
numIsKey ()

- - - - Truck: :move
context Truck::move(target:Point)
pre currentExists:
self.current->notEmpty
pre targetReachable:
self.current.north->union(self.current.south)->includes (target)
post debtIncreased:
self.debt@pre+l=self.debt
post tripsUpdated:
self.trips@pre->including(target)=self.trips
post currentAssigned:
target=self.current
post allTruckInvs:
numIsKey()
——————— - - --—-—-—-—-------- Truck: :pay
context Truck::pay(amount:Integer)
pre amountPositive:
amount>0
pre currentExists:
self.current->notEmpty
post debtReduced:
(self .debt@pre-amount)=(self.debt)
post allTruckInvs:
numIsKey ()

——— Truck: :bye
context Truck::bye():Integer
pre currentExists:
self.current->notEmpty
pre noDebt:
self.debt<=0
post resultEqualsOverPayment:
self.debt@pre.abs()=result
post zeroDebt:
self.debt=0
post currentEmpty:
self.current->isEmpty
post allTruckInvs:
numIsKey ()

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 57

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Biittner, F., Bartels, U., Hamann, L., Hofrichter, O., Kuhlmann, M., Gogolla, M.,
Rabe, L., Steimke, F., Rabenstein, Y., Stosiek, A.: Model-driven standardization
of public authority data interchange. Sci. Comput. Program. 89, 162-175 (2014)
Biittner, F., Gogolla, M.: Modular embedding of the object constraint language
into a programming language. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 124-139. Springer, Heidelberg (2011)

Calegari, D., Cengarle, M.V, Szasz, N.: UML 2.0 Interactions with OCL/RT Con-
straints. In: FDL, pp. 167-172. IEEE (2008)

Chen, H.Y., Li, C., Tse, T.H.: Transformation of UML Interaction Diagrams into
Contract Specifications for Object-oriented Testing. In: IEEE [12], pp. 1298-1303
(2007)

Chonoles, M.M.J.: Issue 15123: Sequence Diagram and Communication Diagrams
should Support Instances as Lifelines (uml2-rtf), March 2010. http://www.omg.
org/issues/uml2-rtf.html#Issuel5123

Georg, G., France, R.: An Activity Theory Language: USE Implementation. Col-
orado State University, Computer Science, Technical report CS-13-101 (2013)
Gogolla, M., Bittner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69, 27-34 (2007)
Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Applica-
tion Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. In: Fill, H., Karagiannis, D., Reimer, U. (eds.) Proceedings Model-
lierung (MODELLIERUNG’2014), pp. 273—-288. GI, LNI 225 (2014)

Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCL models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 90-104. Springer, Heidelberg (2009)

Hamann, L., Hofrichter, O., Gogolla, M.: On integrating structure and behavior
modeling with OCL. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 235-251. Springer, Heidelberg (2012)
Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and unrolling: a
comparison of verification approaches for UML and OCL behavioral models. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 99-116. Springer,
Heidelberg (2014)

Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kiihne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42-51. Springer, Heidelberg (2007)
Machado, P.D.L., de Figueiredo, J.C.A., Lima, E.F.A., Barbosa, A.E.V., Lima,
H.S.: Component-based Integration Testing from UML Interaction Diagrams. In:
IEEE [12], pp. 2679-2686 (2007)

McNeile, A.T., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Softw. Syst. Model. 5(1), 91-107 (2006)
Micskei, Z., Waeselynck, H.: The many meanings of UML2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489-514 (2011)

Mostefaoui, F., Vachon, J.: Design-level detection of interactions in aspect-UML
models using Alloy. J. Object Technol. 6(7), 137-165 (2007)

Nayak, A., Samanta, D.: Model-based test cases synthesis using UML interaction
diagrams. ACM SIGSOFT Softw. Eng. Notes 34(2), 1-10 (2009)

OMG, (ed.) UML Superstructure 2.4.1. Object Management Group (OMG),
August 2011

http://www.omg.org/issues/uml2-rtf.html
http://www.omg.org/issues/uml2-rtf.html

58

19.

20.

21.

22.

23.

24.

M. Gogolla et al.

OMG, (ed.) Object Constraint Language, Version 2.3.1. OMG (2012). http://www.
omg.org. OMG Document

Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language 2.0 Ref-
erence Manual. Addison-Wesley, Massachusetts (2003)

Selic, B.: The Theory and Practice of Modeling Language Design. Tutorial at
MODELS 2012 (2012). http://models2012.info/

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML, 2nd edn. Addison-Wesley (2003)

Wendland, M.-F., Schneider, M., Haugen, @.: Evolution of the UML interactions
metamodel. In: Moreira, A., Schitz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 405-421. Springer, Heidelberg (2013)
Ziemann, P., Gogolla, M.: OCL extended with temporal logic. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 351-357. Springer, Heidelberg
(2004)

http://www.omg.org
http://www.omg.org
http://models2012.info/

2 Springer
http://www.springer.com/978-3-319-21911-0

Behavior Modeling -- Foundations and Applications
International Workshops, BM-FA 2005-2014, Revised
Selected Papers

Roubtsowva, E.; McNeile, A Kindler, E.; Gerth, C. (Eds.)
2015, XMV, 279 p. 101 illus., Softcover

ISBMN: 978-3-319-21911-0

	Modeling Behavior with Interaction Diagrams in a UML and OCL Tool
	1 Introduction
	2 Running Example
	3 General Behavioral Modeling Issues: Abstraction, Best Practices, Tool Support
	4 Validation and Verification with USE
	5 UML Metamodel for Interactions
	6 Sequence Diagrams
	7 Communication Diagrams
	8 Selection Mechanisms in Communication and Sequence Diagrams
	9 Systematic Selection Mechanisms for Views in UML Interactions and Further Use of OCL
	10 Related Work
	11 Conclusion
	References

