Chapter 2
The Linear Hypothesis

2.1 Linear Regression

Ini this chapter we consider a number of linear hypotheses before giving a general
definition. Our first example is found in regression analysis.

Example 2.1 Suppose we have a random variable y with mean 6 and we assume that
6 is a linear function of p non-random variables xo, xi, . .., x,— called regressors or
explanatory variables, namely,

0= ,BOxO + ,lel +- ,Bp—lxp—h

where the B’s are unknown constants (parameters). For n values of the x’s, we get n
observations on y, giving the model G

yi=0;+¢
= xioBo +xiap1+ -+ xip—1Bp—1 +&, (=1,2,...,n),
where E[e;] = 0; generally x;0 = 1, which we shall assume unless stated otherwise.

This is known as a multiple linear regression model with p parameters, and by
putting x; = x; we see that the polynomial regression model

vi = Bo+ Bixi + Pox? + -+ Bpord T + ey,

of degree p — 1 for a single variable x is included as a special case. We can also have
a mixture of both models. The linearity resides in the parameters.

Two further assumptions about the errors ¢; are generally made: (i) the errors are
uncorrelated, or cov[e;, €j] = Oforalli # j and (ii) the errors have the same variance
o2 If we wish to test the null hypothesis H : 8, = B4 = -+ = Bp—1 = 0, then we
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22 2 The Linear Hypothesis

need to add a further assumption that the errors are normally distributed. If we define
X = (x;5), 8 = (Bo.Bi.....Py—1), and let X, represent the matrix consisting of the
first r columns of X, then the model, assumptions, and hypothesis can be written in
the formy = 0 + ¢, where € ~ N,[0,0%L,], G : 0 = XBand H : 8 = X,[3,,
where 3, is the vector of the first r elements of 3. In this situation X usually has
full rank, that is the rank of X is p. If we define the two column spaces 2 = C[X]
and o = C[X,], then it follows from Sect. 1.2 that §£2 and w are vector subspaces
of R" and w C £2. Thus H is the linear hypothesis that 8 belongs to a vector space
o given the assumption G that it belongs to a vector space §2. We also have that
Var[y] = Var[y — 0] = Var[e] = oI, (Theorem 1.5(v)) so that y ~ N,[X3, 0°L,].

2.2 Analysis of Variance

Example 2.2 'We note that some of the x-variables in our regression model can also
be so-called indicator variables, that is variables taking the values of O or 1. For
example consider n observations from the straight-line model

Elyil=Bo+ pixi, i=1,2,....n,

where x; = Ofori = 1,2,...nyandx; = 1 fori = n; + 1,ny +2,...,n If
n —n; = ny, then X3 takes the form

ln 0 ,30 )
X3 = ! .
6 ( 1"2 1"2 ) ( :31
This model splits into two models or samples, namely E[y;] = Bo for i =
1,2,...,ny and E[y;] = Bo + By fori = 1,2,...,n,. This would give us a model
for comparing the means (= Bo) and p2(= Bo + B1) of two samples of sizes n;
and n; respectively. Testing if ;11 = p, is equivalent to testing 81 = 0. This type of

model where variables enter qualitatively is sometimes referred to as an analysis of
variance (ANOVA) model.

Example 2.3 We now consider generalizing the above example to comparing /
different samples with J; observations in the ith sample. Let y; (. = 1,2,...,]
andj = 1,2,...J;) be the jth observation from the ith sample, so that we have the
model y; = 1; + ¢;;. Setting y = 6 + €, where

/
Y = D1, D12, - VI Y20 Y220 oo Y2lns oo o s VI VI2 -+ 3 VIT) s
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and 6 is similarly defined, we get 8 = Xpu, where

1, 0 --- 0
S PARTON |

X = _ , @2.1)
00 -1,

and p = (1, 42, ..., (1)’ Suppose we wish to test the hypothesis H : i1 = pu, =
-+ = u; (= u, say),or 8 = 1,u, where 1, is obtained by adding the columns of X
together. Then, from the previous section, 2 = C[X] and w = C[1,].

Alternatively, we can express H in the form

Hr— o = o — U3 == - —py =0,
which can be written in matrix form Cp = 0, where

1-1 0-

C= 0 1-1-

.0 0
.0 0

00 0---1-1
Since & = Xpu and X has full rank p, the p x p matrix X’X has rank p and is therefore

nonsingular (cf. A.4(ii)). From 8 = Xu we can then multiply on the left by X’ and
get i = (X’X)"'X’6. Hence H takes the form

0=Cup=CXX)"'X0=8B6, (2.2)

say, or 6 € w, where w = C[X] N N[B].

An alternative parametrization can be used for the above example that is more
typical of analysis of variance models. Let . = Zle /I and define o; = p;—p so
that u; = u + o;. Then Zle a; = 0 is an “identifiability condition” (see Sect. 3.4)
giving us I + 1 parameters or / free parameters still. We now have

n
L1, 00\ [ o
xg= |12 0le 0 (1o | 23)
1,0 0 -1,
o

where the first column of X, namely 1,, is the sum of the other columns, and the
matrix X is no longer of full rank.
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Example 2.4 We consider one other ANOVA model, the randomized block design
where there are J blocks and / treatments randomized in each block. Let y;
with mean 6; be the observation from the ith treatment in the jth block and,
fori = 1,2,...,1, lety; = (yil,yiz, - ,y,'j)/ and 0; = (9,'1, O, ... 9,’])/. Let
Yy = (¥].¥5....y}) with 0 and e similarly defined. We assume the model

yyzeij+€yzﬂ+ai+ﬁi+€y, (l: 1,2,...,Ilj:1,2,...,.,),

ory = 6 + €, where 8 = X§, namely

0, L1,00--0|L

6, L0000 || (H
= e s

6, L{000--1,|L

where o = (0o, 02, ..., 07) and B = (B1, Ba. ..., By).

We have IJ observations and 1 + I + J unknown parameters. Setting 0, =
> 0i/J and 0. = 37, 3" 0;/1] etc., we assume from the randomization process

that the so-called interactions y; = 0; — §i, — @,j + 6. are all zero, i.e., CO = 0
for some matrix C. Since we have ) ;y; = 0 forj = 1,2,....J, Zi vi =0
fori =1,2,...,1, and both sets include ), Zi yi =0, wehavelJ -1 —J+ 1=
(I-1)(J—1) independent constraints so that C will be (/—1)(J—1) x1J. The number
of parameters that can be estimated is IJ — (I — 1)(J — 1) = I +J — 1, which means
we have 2 too many parameters in §. We need to add two identifiability constraints
suchas ) ;o = 0 and Zj Bj = 0,0ra; = 0and B; = 0, for example. By summing
columns, we see that the matrix X above has two linearly dependent columns so that
itis IJ x (1 +1+J)of rank I +J— 1. If we set oy = 0 and B, = 0 then X is reduced
to X, say, with full rank and the same column space as that of X, and ¢ is reduced
by two elements to d, say. We are usually interested in testing H that there are no
differences in the treatments. Then H : o = o = --- = ay_1 = 0 or C16; = 0,
say. Using (2.2) with §; = (X|X;)"'X/ 0, we now have 2 = C[X] N N[C] and
o =2 NN[C X X)) 'X]].

2.3 Analysis of Covariance

When we have a mixture of quantitive and qualitative explanatory variables we have
a so-called analysis of covariance model. For example

yvi=mi+yg+ey (=12,...,0:j=12,...,J)

represents observations from / straight-line models. Two hypotheses are of interest,
namely H, that the lines are parallel (i.e. equal y;) and H, that the lines have the



2.4  General Definition and Extensions 25

same intercept on the x-axis (i.e. equal ;). If both hypotheses are true, the lines are
identical. This model G can usually be regarded as the “sum” of two models with
2 = C[X] @ C[Z], where Z = (z;;), X is given by Eq. (2.1) in the previous section,
and C[X] N C[Z] = 0. Such “augmented” models are discussed in Chap. 7.

2.4 General Definition and Extensions

The above examples illustrate what we mean by a linear hypothesis, and we now
give a formal definition. Let y = 0 + &, where 0 is known to belong to a vector
space §2, then a linear hypothesis H is a hypothesis which states that @ € w, a
linear subspace of §2. The assumption that @ € £2 we denote by G. For purposes
of estimation we add the assumptions E[e] = 0 and Var[y] = Var[e] = oI,
and for testing H we add the further assumption that € has the multivariate normal
distribution. We now consider three extensions.

Example 2.5 There is one hypothesis that is basically linear, but does not satisfy the
definition. For example, suppose 8 = X3, where X is n x p of full column rank p,
say, and we wish to test H : A3 = a, where A and a are known and a # 0. Now
(B =X'X)"'X’0, so that v = {0 : A(X’X)"'X'0 = a} is not a linear vector space
(technically a linear manifold) when a # 0. However, if we choose any vector ¢
such that Ac = a (which is possible if the linear equations A3 = a are consistent)
and put

z=y—Xce, ¢p=0—-Xc=X(B—-¢), and vy=03-c,
we have
z=¢+e, G:¢=X~,
and H : Ay = A(B—¢) = 0 or AX'X)"'X'¢p = Aj¢p = 0 is now a linear

hypothesis with o = N[A;] N 2 and 2 = C[X].

Example 2.6 In some examples the underlying model takes the formy = 6 + n,
where 7 is N, [0, 0>B] and B is a known positive-definite matrix. This implies that
there exists a nonsingular matrix V such that B = VV’ (by A.9(iii)). Using the
transformations z = V~'y, ¢ = V~!6, and e = V~!7 we can transform the model
toz = ¢ + e, where by Theorem 1.5(iii) in Sect. 1.6,

Var[e] = Var[V™!n]
= V~'Var[p)(v™")’
=’V I VV)(V) ! =61,



26 2 The Linear Hypothesis

as before. To see that linear hypotheses remain linear, let the columns of W be any
basis of £2. Then

R=1{0:0=Wg3)
={¢:¢p=V'Wg}
=C[V~'W].

To test AB = 0 we note from above that 3 = (W'W)"!W’@ so that we have
H:AWW)"'WVep =00rw = 2 NNAWW)'WV].

Example 2.7 One model of interestisy = @+¢, where € ~ N, [0,1,], 2 = R", and
w 18 a subspace of R". Although this model appears to be impractical, it does arise
in the large sample theory used in the last three chapters of this monograph. Large
sample models and hypotheses are shown there to be asymptotically equivalent to
this simple situation.



2 Springer
http://www.springer.com/978-3-319-21929-5

The Linear Model and Hypothesis
& General Unifying Theory

Seber, G,

2015, X, 205 p., Hardcover

ISBN: 978-3-319-21929-5



	The Linear Hypothesis

