
Chapter 2
The Linear Hypothesis

2.1 Linear Regression

Ini this chapter we consider a number of linear hypotheses before giving a general
definition. Our first example is found in regression analysis.

Example 2.1 Suppose we have a random variable y with mean � and we assume that
� is a linear function of p non-random variables x0; x1; : : : ; xp�1 called regressors or
explanatory variables, namely,

� D ˇ0x0 C ˇ1x1 C � � � C ˇp�1xp�1;

where the ˇ’s are unknown constants (parameters). For n values of the x’s, we get n
observations on y, giving the model G

yi D �i C "i

D xi0ˇ0 C xi1ˇ1 C � � � C xi;p�1ˇp�1 C "i; .i D 1; 2; : : : ; n/;

where EŒ"i� D 0; generally xi0 D 1, which we shall assume unless stated otherwise.
This is known as a multiple linear regression model with p parameters, and by
putting xij D xj

i we see that the polynomial regression model

yi D ˇ0 C ˇ1xi C ˇ2x
2
i C � � � C ˇp�1xp�1

i C "i;

of degree p �1 for a single variable x is included as a special case. We can also have
a mixture of both models. The linearity resides in the parameters.

Two further assumptions about the errors "i are generally made: (i) the errors are
uncorrelated, or covŒ"i; "j� D 0 for all i ¤ j and (ii) the errors have the same variance
�2. If we wish to test the null hypothesis H W ˇr D ˇrC1 D � � � D ˇp�1 D 0, then we
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22 2 The Linear Hypothesis

need to add a further assumption that the errors are normally distributed. If we define
X D .xij/, β D .ˇ0; ˇ1; : : : ; ˇp�1/0, and let Xr represent the matrix consisting of the
first r columns of X, then the model, assumptions, and hypothesis can be written in
the form y D θ C ε, where ε � NnŒ0; �2In�, G W θ D Xβ and H W θ D Xrβr,
where βr is the vector of the first r elements of β. In this situation X usually has
full rank, that is the rank of X is p. If we define the two column spaces ˝ D CŒX�
and ! D CŒXr�, then it follows from Sect. 1.2 that ˝ and ! are vector subspaces
of Rn and ! � ˝ . Thus H is the linear hypothesis that θ belongs to a vector space
! given the assumption G that it belongs to a vector space ˝ . We also have that
VarŒy� D VarŒy � θ� D VarŒε� D σ2In (Theorem 1.5(v)) so that y � NnŒXβ; �2In�.

2.2 Analysis of Variance

Example 2.2 We note that some of the x-variables in our regression model can also
be so-called indicator variables, that is variables taking the values of 0 or 1. For
example consider n observations from the straight-line model

EŒyi� D ˇ0 C ˇ1xi; i D 1; 2; : : : ; n;

where xi D 0 for i D 1; 2; : : : n1 and xi D 1 for i D n1 C 1; n1 C 2; : : : ; n. If
n � n1 D n2, then Xβ takes the form

Xβ D
�

1n1 0
1n2 1n2

��
ˇ0
ˇ1

�
:

This model splits into two models or samples, namely EŒyi� D ˇ0 for i D
1; 2; : : : ; n1 and EŒyi� D ˇ0 C ˇ1 for i D 1; 2; : : : ; n2. This would give us a model
for comparing the means �1.D ˇ0/ and �2.D ˇ0 C ˇ1/ of two samples of sizes n1
and n2 respectively. Testing if �1 D �2 is equivalent to testing ˇ1 D 0. This type of
model where variables enter qualitatively is sometimes referred to as an analysis of
variance (ANOVA) model.

Example 2.3 We now consider generalizing the above example to comparing I
different samples with Ji observations in the ith sample. Let yij (i D 1; 2; : : : ; I
and j D 1; 2; : : : Ji) be the jth observation from the ith sample, so that we have the
model yij D �i C "ij. Setting y D θC ε, where

y0 D .y11; y12; : : : y1J1 ; y21; y22; : : : ; y2J2 ; : : : ; yI1; yI2 : : : ; yIJI /;
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and θ is similarly defined, we get θ D Xμ, where

X D

0

B
BB
@

1J1 0 � � � 0
� � � 1J2 � � � 0

� � : : : �
0 0 � � � 1JI

1

C
CC
A
; (2.1)

and μ D .�1; �2; : : : ; �I/
0. Suppose we wish to test the hypothesis H W �1 D �2 D

� � � D �I .D �; say/, or θ D 1n�, where 1n is obtained by adding the columns of X
together. Then, from the previous section, ˝ D CŒX� and ! D CŒ1n�.

Alternatively, we can express H in the form

�1 � �2 D �2 � �3 D � � � D �I�1 � �I D 0;

which can be written in matrix form Cμ D 0, where

C D

0

B
B
@

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

� � � � � � � �
0 0 0 � � � 1 �1

1

C
C
A :

Since θ D Xμ and X has full rank p, the p�p matrix X0X has rank p and is therefore
nonsingular (cf. A.4(ii)). From θ D Xμ we can then multiply on the left by X0 and
get μ D .X0X/�1X0θ. Hence H takes the form

0 D Cμ D C.X0X/�1X0θ D Bθ; (2.2)

say, or θ 2 !, where ! D CŒX� \ N ŒB�.
An alternative parametrization can be used for the above example that is more

typical of analysis of variance models. Let� D PI
iD1 �i=I and define ˛i D �i�� so

that �i D �C ˛i. Then
PI

iD1 ˛i D 0 is an “identifiability condition” (see Sect. 3.4)
giving us I C 1 parameters or I free parameters still. We now have

Xβ D

0

B
B
@

1J1 1J1 0 � � � 0
1J2 0 1J2 � � � 0
� � � � � � �

1JI 0 0 � � � 1JI

1

C
C
A

0

B
B
B
BB
@

�

˛1
˛2
:::

˛I

1

C
C
C
CC
A
; (2.3)

where the first column of X, namely 1n, is the sum of the other columns, and the
matrix X is no longer of full rank.
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Example 2.4 We consider one other ANOVA model, the randomized block design
where there are J blocks and I treatments randomized in each block. Let yij

with mean �ij be the observation from the ith treatment in the jth block and,
for i D 1; 2; : : : ; I, let yi D .yi1; yi2; : : : ; yiJ/

0 and θi D .�i1; �i2; : : : �iJ/
0. Let

y D .y01; y02; : : : y0I/0 with θ and ε similarly defined. We assume the model

yij D �ij C "ij D �C ˛i C ˇj C "ij; .i D 1; 2; : : : ; I W j D 1; 2; : : : ; J/;

or y D θ C ε, where θ D Xδ, namely

0

B
B
@

θ1
θ2
�
θI

1

C
C
A D

0

B
B
@

1J j 1J 0 0 � � � 0 j IJ

1J j 0 1J 0 � � � 0 j IJ

� j � � � � � � � j �
1J j 0 0 0 � � � 1J j IJ

1

C
C
A

0

@
�

α

β

1

A ;

where α D .˛1; ˛2; : : : ; ˛I/
0 and β D .ˇ1; ˇ2; : : : ; ˇJ/

0.

We have IJ observations and 1 C I C J unknown parameters. Setting � i� DP
j �ij=J and � �� D P

i

P
j �ij=IJ etc., we assume from the randomization process

that the so-called interactions �ij D �ij � � i� � � �j C � �� are all zero, i.e., Cθ D 0
for some matrix C. Since we have

P
i �ij D 0 for j D 1; 2; : : : ; J,

P
j �ij D 0

for i D 1; 2; : : : ; I, and both sets include
P

i

P
j �ij D 0, we have IJ � I � J C 1 D

.I�1/.J�1/ independent constraints so that C will be .I�1/.J�1/�IJ. The number
of parameters that can be estimated is IJ � .I � 1/.J � 1/ D I C J � 1, which means
we have 2 too many parameters in δ. We need to add two identifiability constraints
such as

P
i ˛i D 0 and

P
j ˇj D 0, or ˛I D 0 and ˇJ D 0, for example. By summing

columns, we see that the matrix X above has two linearly dependent columns so that
it is IJ � .1C I CJ/ of rank I CJ �1. If we set ˛I D 0 and ˇJ D 0 then X is reduced
to X1, say, with full rank and the same column space as that of X, and δ is reduced
by two elements to δ1, say. We are usually interested in testing H that there are no
differences in the treatments. Then H W ˛1 D ˛2 D � � � D ˛I�1 D 0 or C1δ1 D 0,
say. Using (2.2) with δ1 D .X01X1/

�1X01θ, we now have ˝ D CŒX� \ N ŒC� and
! D ˝ \ N ŒC1.X01X1/

�1X01�.

2.3 Analysis of Covariance

When we have a mixture of quantitive and qualitative explanatory variables we have
a so-called analysis of covariance model. For example

yij D �i C �izij C "ij .i D 1; 2; : : : ; I W j D 1; 2; : : : ; Ji/

represents observations from I straight-line models. Two hypotheses are of interest,
namely H1 that the lines are parallel (i.e. equal �i) and H2 that the lines have the
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same intercept on the x-axis (i.e. equal �i). If both hypotheses are true, the lines are
identical. This model G can usually be regarded as the “sum” of two models with
˝ D CŒX�˚ CŒZ�, where Z D .zij/, X is given by Eq. (2.1) in the previous section,
and CŒX� \ CŒZ� D 0. Such “augmented” models are discussed in Chap. 7.

2.4 General Definition and Extensions

The above examples illustrate what we mean by a linear hypothesis, and we now
give a formal definition. Let y D θ C ε, where θ is known to belong to a vector
space ˝ , then a linear hypothesis H is a hypothesis which states that θ 2 !, a
linear subspace of ˝ . The assumption that θ 2 ˝ we denote by G. For purposes
of estimation we add the assumptions EŒε� D 0 and VarŒy� D VarŒε� D �2In,
and for testing H we add the further assumption that ε has the multivariate normal
distribution. We now consider three extensions.

Example 2.5 There is one hypothesis that is basically linear, but does not satisfy the
definition. For example, suppose θ D Xβ, where X is n � p of full column rank p,
say, and we wish to test H W Aβ D a, where A and a are known and a ¤ 0. Now
.β D X0X/�1X0θ, so that ! D fθ W A.X0X/�1X0θ D ag is not a linear vector space
(technically a linear manifold) when a ¤ 0. However, if we choose any vector c
such that Ac D a (which is possible if the linear equations Aβ D a are consistent)
and put

z D y � Xc; φ D θ � Xc D X.β � c/; and γ D β � c;

we have

z D φC ε; G W φ D Xγ;

and H W Aγ D A.β � c/ D 0 or A.X0X/�1X0φ D A1φ D 0 is now a linear
hypothesis with ! D N ŒA1�\˝ and ˝ D CŒX�.
Example 2.6 In some examples the underlying model takes the form y D θ C η,
where η is NnŒ0; �2B� and B is a known positive-definite matrix. This implies that
there exists a nonsingular matrix V such that B D VV0 (by A.9(iii)). Using the
transformations z D V�1y, φ D V�1θ, and ε D V�1η we can transform the model
to z D φC ε, where by Theorem 1.5(iii) in Sect. 1.6,

VarŒε� D VarŒV�1η�

D V�1VarŒη�.V�1/0

D �2V�1.VV0/.V0/�1 D �2In;
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as before. To see that linear hypotheses remain linear, let the columns of W be any
basis of ˝ . Then

˝ D fθ W θ D Wβg
D fφ W φ D V�1Wβg
D CŒV�1W�:

To test Aβ D 0 we note from above that β D .W0W/�1W0θ so that we have
H W A.W0W/�1W0Vφ D 0 or ! D ˝ \ N ŒA.W0W/�1W0V�.

Example 2.7 One model of interest is y D θCε, where ε � NnŒ0; In�,˝ D R
n, and

! is a subspace of Rn. Although this model appears to be impractical, it does arise
in the large sample theory used in the last three chapters of this monograph. Large
sample models and hypotheses are shown there to be asymptotically equivalent to
this simple situation.
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