
Chapter 4
Music Structure Analysis

One of the attributes distinguishing music from random sound sources is the hi-

erarchical structure in which music is organized. At the lowest level, one has events

such as individual notes, which are characterized by the way they sound, their tim-

bre, pitch, and duration. Combining various sound events, one obtains larger struc-

tures such as motifs, phrases, and sections, and these structures again form larger

constructs that determine the overall layout of the composition. This higher struc-

tural level is also referred to as the musical structure of the piece, which is specified

in terms of musical parts and their mutual relations. For example, in popular music

such parts can be the intro, the chorus, and the verse sections of the song. Or in

classical music, they can be the exposition, the development, and the recapitulation

of a movement. The general goal of music structure analysis is to divide a given

music representation into temporal segments that correspond to musical parts and

to group these segments into musically meaningful categories.

Let us consider a concrete example. Figure 4.1a shows a sheet music represen-

tation of the Mazurka Op. 6, No. 4 by the Polish composer Frédéric Chopin. This

piano piece can be subdivided into five sections, where the third and fifth sections

are repetitions of the first section. Therefore, these sections belong to the same cat-

egory denoted by the symbol A. Similarly, the fourth section is a repetition of the

second one. These two sections belong to another group labeled by the symbol B.

Hence, at an abstract level, the overall musical structure can be described by the

sequence A1B1A2B2A3 (see Figure 4.1d). Instead of using the musical score, one

typical scenario is to derive structural information from a given audio recording
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Fig. 4.1 Musical structure of the Mazurka Op. 6, No. 4 by Chopin. (a) Sheet music representation.
(b) Waveform of an audio recording. (c) Chroma representation derived from (b). (d) Manually
annotated segmentation of the audio recording.

(see Figure 4.1b). To this end, one needs to convert the waveform into a suitable

feature representation that captures musical properties relevant for the structure of

interest. In our example, as shown by Figure 4.1c, the repetition-based structure can

be seen in a chroma representation that captures harmonic information.

As demonstrated by the previous example, the musical structure is often related

to recurring patterns such as repeating sections. In general, however, there are many

more criteria for segmenting and structuring music. For example, certain musical

sections may be characterized by some homogeneity property such as a consistent

timbre, the presence of a specific instrument, or the usage of certain harmonies.

Furthermore, segment boundaries may go along with sudden changes in musical

properties such as tempo, dynamics, or the musical key. These various segmenta-

tion principles require different methods, which may be loosely categorized into

repetition-based, homogeneity-based, and novelty-based approaches.

In this chapter, we study general techniques for deriving structural information

from a given music recording. In Section 4.1, we start by giving an overview of dif-

ferent segmentation principles, while introducing a working definition of the struc-

ture analysis problem as used in the subsequent sections. Furthermore, we discuss

some feature representations that account for different musical dimensions. The con-
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cept of self-similarity matrices, which we study in Section 4.2, is of fundamental im-

portance in computational music structure. In particular, we show how the various

segmentation principles are reflected in such matrices and how this can be exploited

for deriving structural information. As a first application of self-similarity matrices,

we discuss in Section 4.3 a subproblem of music structure analysis known as audio

thumbnailing. The goal of this problem is to determine the audio segment that best

represents a given music recording. Providing a compact preview, such audio seg-

ments are useful for music navigation applications similar to visual thumbnails that

help in organizing and accessing large photo collections. While we apply repetition-

based principles for audio thumbnailing, we discuss in Section 4.4 some segmen-

tation procedures that rely on novelty-based principles. The objective of such pro-

cedures is to specify points within a given audio recording where a human listener

would recognize a change, a sudden event, or the transition between two contrast-

ing parts. Finally, in Section 4.5, we address the issue of evaluating analysis results,

which itself constitutes a nontrivial problem.

4.1 General Principles

Music structure analysis is a multifaceted and often ill-defined problem that de-

pends on many different aspects. First of all, the complexity of the problem depends

on the kind of music representation to be analyzed. For example, while it is compar-

atively easy to detect certain structures such as repeating melodies in sheet music,

it is often much harder to automatically identify such structures in audio represen-

tations. Second, there are various principles including homogeneity, repetition, and

novelty that a segmentation may be based on. While the musical structure of the

piano piece shown in Figure 4.1 is based on repetition, musical parts in other mu-

sic may be characterized by a certain instrumentation or tempo. Third, one also has

to account for different musical dimensions, such as melody, harmony, rhythm, or

timbre. For example, in Beethoven’s Fifth Symphony the “fate motif” is repeated in

various ways—sometimes the motif is shifted in pitch; sometimes only the rhyth-

mic pattern is preserved. Finally, the segmentation and structure largely depend on

the musical context and the temporal hierarchy to be considered. For example, the

recapitulation of a sonata may be considered a kind of repetition of the exposition

on a coarse temporal level even though there may be significant modifications in

melody and harmony on a finer temporal level. Figure 4.2 gives an overview of var-

ious aspects that need to be considered when dealing with musical structures. In the

following, we discuss these aspects in more detail. In particular, our goal is to raise

the awareness that computational procedures as described in the subsequent sections

are often based on simplifying model assumptions that only reflect certain aspects

of the complex structural properties of music.
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Fig. 4.2 Overview of various segmentation and structure principles.

4.1.1 Segmentation and Structure Analysis

The tasks of segmenting and structuring multimedia documents are of fundamental

importance not only for the processing of music signals but also for general audio-

visual content. Segmentation typically refers to the process of partitioning a given

document into multiple segments with the goal of simplifying the representation into

something that is more meaningful and easier to analyze than the original document.

For example, in image processing the goal is to partition a given image into a set of

regions such that each region is similar with respect to some characteristic such as

color, intensity, or texture (see Figure 4.3 for an illustration). Region boundaries can

often be described by contour lines or edges at which the image brightness or other

properties change sharply and reveal discontinuities. In music, the segmentation

task is to decompose a given audio stream into acoustically meaningful sections

each corresponding to a continuous time interval that is specified by a start and end

boundary. At a fine level, the segmentation may aim to find the boundaries between

individual notes or to find the beat intervals specified by beat positions. At a coarser

level, the goal may be to detect changes in instrumentation or harmony or to find

the boundaries between verse and chorus sections. Also, discriminating between

silence, speech, and music, finding the actual beginning of a music recording, or

separating the applause at the end of a performance are typical segmentation tasks.

Going beyond mere segmentation, the goal of structure analysis is to also find

and understand the relationships between the segments. For example, certain seg-

ments may be characterized by the instrumentation. There may be sections played

only by strings. Sections played by the full orchestra may be followed by solo sec-

tions. The verse sections with a singing voice may be alternated with purely in-

strumental sections. Or a soft and slow introductory section may precede the main

theme played in a much faster tempo. Furthermore, sections are often repeated. Most
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(a) (b) (c)

Fig. 4.3 Examples for segmentation results for image and 3D data. (a) Novelty-based image seg-
mentation using edge detection. (b) Homegeneity-based texture segmentation. (c) Repetition-based
segmentation of 3D geometry (from [66]).

events of musical relevance are repeated in a musical work in one way or another.

However, repetitions are rarely identical copies of the original section, but undergo

modifications in aspects such as the lyrics, the instrumentation, or the melody. One

main task of structure analysis is to not only segment the given music recording, but

to also group the segments into musically meaningful categories (e.g., intro, chorus,

verse, outro).

The challenge in computational music structure analysis is that structure in mu-

sic arises from many different kinds of relationships including repetition, contrast,

variation, and homogeneity [53]. As we have already noted, repetitions play a par-

ticularly important role in music, where sounds or sequences of notes are often

repeated [39]. Recurrent patterns can be of rhythmic, harmonic, or melodic nature.

On the other hand, contrast is the difference between successive musical sections of

different character. For example, a quiet passage may be contrasted by a loud one,

a slow section by a rapid one, or an orchestral part by a solo. A further principle

is that of variation, where motifs and parts are picked up again in a modified or

transformed form. Finally, a section is often characterized by some sort of inherent

homogeneity; for example, the instrumentation, the tempo, or the harmonic mate-

rial may be similar within the section. All these principles need to be considered in

the temporal context. Music happens in time (as opposed to, say, a painting), and

it is the temporal order of events that is essential for building up musically and

perceptually meaningful entities such as melodies or harmonic progressions [3].

In view of the various principles that crucially influence the musical structure,

a large number of different approaches to music structure analysis have been de-

veloped. In this chapter, we want to roughly distinguish three different classes of
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methods. First, repetition-based methods are used to identify recurring patterns.

Second, novelty-based methods are employed to detect transitions between con-

trasting parts. Third, homogeneity-based methods are used to determine passages

that are consistent with respect to some musical property. Note that novelty-based

and homogeneity-based approaches are two sides of a coin: novelty detection is

based on observing some surprising event or change after a more homogeneous

segment. While the aim of novelty detection is to locate the changes’ time posi-

tions, the focus of homogeneity analysis lies in the identification of longer passages

that are coherent with respect to some musical property. In the following section,

we will study various procedures for structure analysis following one or several of

these paradigms.

4.1.2 Musical Structure

As already mentioned in the introduction of this chapter, our focus is to analyze a

given music recording on a rather coarse structural level. This level corresponds to

what is often referred to as the musical structure, which describes the overall struc-

tural layout of a piece of music. In particular for Western classical music, one also

encounters the term musical form, which refers to specific structural categories ex-

ploiting the principles of contrast and variety in one way or another. In this chapter,

we use the term “musical structure” loosely, including with it the concept of musical

form.

To specify musical structures, we now introduce some terminology as used in

the remainder of this book. First of all, we want to distinguish between a piece of

music (in an abstract sense) and a particular audio recording (an actual performance)

of the piece. The term part is used in the context of the abstract music domain,

whereas the term segment is used for the audio domain. Furthermore, we use the

term section in a rather vague way for both domains to denote either a segment or a

part. Musical parts are typically denoted by the capital letters A,B,C, . . . in the order

of their first occurrence, where numbers (often written as subscripts) indicate the

order of repeated occurrences. For example, the sequence A1B1A2B2A3 describes

the musical structure of the piano piece shown in Figure 4.1, which consists of three

repeating A-parts and two repeating B-parts. Hence, given a recording of this piece

of music, the goal of the structure analysis problem (as considered in this chapter)

is to find the segments within the recording that correspond to the A- and B-parts.

In Western music, the musical structure often follows certain structural patterns

(see Figure 4.4). The simplest of these patterns is the strophic form, which basi-

cally consists of a sequence of a part being repeated over and over again. The form

A1A2A3A4 . . . is, for example, used in folk songs or nursery rhymes, where the A-

parts correspond to the stanzas of the underlying poem. Another structural pattern

is referred to as chain form, which is simply a sequence of self-contained and unre-

lated parts (ABCD . . .), sometimes with repeats (A1A2B1B2C1C2D1D2 . . .). This form

is often used in a composition that consists of a concatenation of favorite tunes from
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I E1 E2 D R C

I C1 V1 C2 V2 C3 B C4 O

I V1 V2 B1 V3 B2 V4 O

Fig. 4.4 Examples for musical structures as encountered in Western music. (a) Strophic form.
(b) Chain form with repetitions. (c) Rondo form. (d) Sonata form. (e) Beatles song “Tell Me Why.”
(f) Beatles song “Yesterday.”

popular songs, dances, or operettas. Examples are medleys or potpourris, which

are pieces composed from parts of existing pieces that are simply juxtaposed with

no strong connection or relationship. Another form is the rondo form, where a re-

curring theme alternates with contrasting sections, yielding the musical structure

A1BA2CA3DA4 . . ..
In Western classical music, one of the most important musical structures is known

as the sonata form, which is a large-scale musical structure typically used in the first

movements of sonatas and symphonies. The basic sonata form consists of an expo-
sition (E), a development (D), and a recapitulation (R), where the exposition is

repeated once. Sometimes, one can find an additional introduction (I) and a clos-

ing coda (C), thus yielding the form IE1E2DRC. In particular, the exposition and the

recapitulation stand in close relation to each other, both containing two subsequent

contrasting subject groups (often simply referred to as the first and second theme)

connected by some transition. As previously noted, at least at a coarse level, the

recapitulation can be regarded as a kind of repetition of the exposition. However, at

a finer level, there are significant differences. For example, the subject groups and

transition in the recapitulation are musically altered and can be quite different from

their corresponding occurrences in the exposition. Finally, we want to discuss some

typical structural elements one finds in popular music. As with the sonata form, one

sometimes uses generic names to denote the musical parts instead of using capital

letters. The most important parts of a pop song are the verse (V ) and the chorus (C)

sections. Each verse usually employs the same melody (possibly with slight modifi-

cations), while the lyrics change for each verse. The chorus (sometimes also called

the refrain) typically consists of a melodic and lyrical phrase which is repeated.

Sometimes, pop songs may start with an intro (I) and close with an outro (O).

Finally, verse and chorus sections may be connected by an additional part called

a bridge (B). The verse and chorus are usually repeated throughout a song, while

the intro and the outro appear only once. Some pop songs may have a solo section,

where one or more instruments play a melodic line, typically following the melody

previously introduced by the singer.

We have presented only a small selection of musical structures. In practice, there

are many more structures as well as variations and deviations from standard forms as

illustrated by the last two examples of Figure 4.4. A musical structure can be rather

vague, and even music experts may argue about the construction of a given compo-
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Fig. 4.5 Sheet music representation and musical structure of the Hungarian Dance No. 5 by Jo-
hannes Brahms. Only the voice for the violin of an arrangement for full orchestra is shown.

sition. In particular, what we call a repetition of a musical section is often far from

being an exact copy. Segments that are considered to correspond to the same musi-

cal part may differ in instrumentation and tempo, or a segment may be transposed to

another key, the melody may be changed while only the underlying harmonic pro-

gression is kept, and so on. Furthermore, musical structure is typically ordered in

hierarchies, and it is often not clear which level should be considered when specify-

ing the musical structure. For example, in the piece shown in Figure 4.1, the A-part

can be further subdivided into substructures consisting of two or even four subparts.

Similarly, the B-part can be regarded as a repetition of two subparts. These repeating

substructures also become visible in the chroma representation derived from the mu-

sic recording (see Figure 4.1c). In music notation, such subparts are often indicated

using small letters a,b,c, . . ..
As a final example, we want to consider the Hungarian Dance No. 5 by Johannes

Brahms, which will also serve as our running example in the next sections. This

piece is part of a set of 21 dance tunes composed by Brahms up to 1869 and based

mostly on traditional Hungarian themes. Each dance has been arranged for a wide

variety of instruments and ensembles, ranging from piano versions to versions for
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full orchestra. Figure 4.5 shows a sheet music representation for the violin voice of

an arrangement for full orchestra. The musical structure as indicated in the figure

is A1A2B1B2CA3B3B4D, which consists of three repeating A-parts, four repeating

B-parts, as well as a C-part and a short closing D-part. The A-part has a substructure

consisting of two more or less repeating subparts. Furthermore, as becomes apparent

when looking at the musical score, the middle C-part may be further subdivided into

a substructure that may be described by d1d2e1e2e3e4 (see Figure 4.28).

The overall musical structure of this piece can be explained in terms of repeat-

ing elements. However, there are also many other musical cues that reinforce the

musical structure. For example, the C-part stands in contrast to the remaining parts.

First, there is a change of the musical key in the C-part (changing from G minor to

G major). Then, there is a change in the notated tempo (changing from ‘Allegro’

to ‘Vivace’). While the A- and B-parts have catchy tunes, there is no such melody

in the C-part. Instead, the entire C-part is rather homogeneous with regard to har-

mony. However, this does not hold for other musical properties such as dynamics

and tempo. For example, while the d-part segments are played in forte, the e-part

segments are played in piano. Also there are many sudden tempo changes within the

C-part. Therefore, in this case, a novelty-based segmentation procedure using tempo

cues may be used to reveal the substructures of the C-part, whereas a homogeneity-

based segmentation procedure using harmonic properties may be suited to distin-

guish the C-part from the other parts. We further develop this example in the next

sections.

4.1.3 Musical Dimensions

We have already seen that the applicability of the different segmentation principles

very much depends on the musical and acoustic properties of the audio signal to be

analyzed. Since the sampled waveform of an audio signal is relatively uninformative

by itself, the first step in automated structure analysis is to transform the given music

recording into a suitable feature representation. As explained in the music synchro-

nization scenario (Section 3.1), finding such a representation constitutes a delicate

trade-off between robustness and expressiveness. Also, it is often unclear which mu-

sical properties are actually relevant for the given music signal and the considered

segmentation scenario. For example, structural boundaries may be based on changes

in harmony, timbre, or tempo. One major task in music processing is to transform a

given audio signal into feature representations that correlate to the various musical

aspects. In the following, we discuss this issue in more detail by considering three

conceptually different feature representations (see Figure 4.6 for an overview).

As a first representation, we consider chroma features as introduced in

Section 3.1.2. Recall that a normalized chroma vector describes the signal’s local

energy distribution over an analysis window (frame) across the twelve pitch classes

of the equal-tempered scale (ignoring octave information). Capturing pitched con-

tent, a chroma-based feature sequence relates to harmonic and melodic properties



176 4 Music Structure Analysis

(b)

(c)

(d)

(e)

Time (seconds)

(a)

A1 A2 B1 B2 C A3 B3 B4

Fig. 4.6 Feature representations for a recording of the Hungarian Dance No. 5 by Johannes
Brahms. (a) Waveform. (b) Chroma-based features. (c) MFCC-based features. (d) Tempo-based
features. (e) Manually generated annotation.

of the music recording. Figure 4.6b shows a chroma representation derived from

a recorded performance of our Brahms example, the Hungarian Dance No. 5. The

patterns visible in the chromagram reveal important structural information. For ex-

ample, the four repeating B-part segments are clearly visible as four similar char-

acteristic subsequences in the chromagram. Furthermore, the C-part segment stands

out in the chromagram by showing a high degree of homogeneity throughout the

entire section. Indeed, for all chroma features of this segment, most of the signal’s

energy is contained in the G-, B-, and D-bands (which is not surprising since the

C-part is in G major). In contrast, as for the A-part segments, many chroma vectors

have dominant entries in the G-, B�-, and D-bands (which nicely reflects that this

part is in G minor).

Besides melody and harmony, the instrumentation and timbral characteristics are

of great importance for the human perception of music structure. As we have dis-

cussed in Section 1.3.4, timbre is a rather vaguely defined perceptual property of

sound, which is hard to describe and to extract from a music recording. For exam-

ple, the automated recognition of musical instruments within polyphonic music sig-

nals is an extremely difficult problem. In applications such as structure analysis, it is

often unnecessary to determine such information explicitly. Instead, mid-level rep-

resentations that somehow correlate to aspects such as instrumentation and timbre



4.1 General Principles 177

may be sufficient. In the context of timbre-based structure analysis, one often uses

mel-frequency cepstral coefficients (MFCCs), which were originally developed

for automated speech recognition. Parametrizing the rough shape of the spectral en-

velope, MFCC-based features capture timbral properties of the signal. At this point,

we do not want to give a technical description on how these features are computed.

Instead, let us have a look at Figure 4.6c, which shows an MFCC-based feature rep-

resentation for our Brahms example. One can recognize that MFCC features within

the A-part segments are different from the ones in the B-part and C-part segments.

For many music recordings such as pop songs, where sections with singing voice

alternate with purely instrumental or percussive sections, MFCC-based feature rep-

resentations are well suited for novelty-based and homogeneity-based segmentation.

As a third musical dimension, we consider properties that are related to beat,

tempo, and rhythmic information. Estimation of the tempo and beat positions is

one of the central topics in music processing, which we cover in Chapter 6. In

the music segmentation context, such techniques are often applied to derive beat-
synchronous feature representations, where the time axis is segmented according

to musically meaningful beat positions. Such beat-synchronous representations are

very useful to compensate for tempo changes in repeating parts. On the downside,

beat tracking errors introduced by automated procedures may have negative conse-

quences for the subsequent music processing tasks to be solved (see Section 6.3.3

for more details).

In music structure analysis, tempo and beat information may also be used in

combination with homogeneity-based segmentation approaches. Instead of extract-

ing such information explicitly, a mid-level feature representation that correlates to

tempo and rhythm may suffice for deriving a meaningful segmentation at a higher

structural level. As an example, Figure 4.6d shows such a mid-level representation,

a tempogram, which encodes local tempo information. More precisely, a cyclic

variant of a tempogram is shown, where tempi differing by a power of two are

identified—similar to cyclic chroma features, where pitches differing by octaves are

identified. Technical details on how to compute such tempograms can be found in

Section 6.2.4. Having a look at Figure 4.6d, one can notice that the different musical

parts are played in different tempi (even though the representation does not reveal

the exact tempi). Furthermore, there are sections where the tempogram features do

not have any dominating entries, which may indicate that there is no clear notion

of a tempo in the recording. This kind of information is also important and can be

used for segmentation purposes. As this example indicates, a tempogram may yield

information that is complementary to the information obtained by chroma-based or

MFCC-based feature representations.

Besides the various musical dimensions, there is another aspect one should keep

in mind when looking for suitable feature representations: the temporal dimension.

In all of the above-mentioned feature representations, an analysis window is shifted

over the music signal. As we have already seen for the STFT in Section 2.5.2, the

length of the analysis window as well as the hop size parameter have a crucial in-

fluence on the quality of the feature representation. For example, long window sizes

and large hop sizes may be beneficial for smoothing out irrelevant local variations,
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which is often a desired property in homogeneity-based segmentation. On the down-

side, the temporal resolution decreases and important details may get lost, which can

lead to problems when locating the exact segmentation boundaries.

In summary, a suitable choice of feature representations and parameter settings

very much depends on the application context. Humans constantly and often un-

consciously adapt themselves to the musical and acoustic characteristics of what

they listen to. The richness and variety of musical structures make computational

structure analysis a challenging problem.

4.2 Self-Similarity Matrices

We have seen that the principles of repetition, homogeneity, and novelty are funda-

mental for partitioning a given audio recording into musically meaningful structural

elements. To study musical structures and their mutual relations, one general idea is

to convert the music signal into a suitable feature sequence and then to compare each

element of the feature sequence with all other elements of the sequence. This results

in a self-similarity matrix (SSM), a tool which is of fundamental importance not

only for music structure analysis but also for the analysis of many kinds of time se-

ries. In this section, we look at these matrices in detail. As we will see, one crucial

property of self-similarity matrices is that repetitions typically yield path-like struc-

tures, whereas homogeneous regions yield block-like structures. These structural

elements are exploited by most algorithms for visualizing, analyzing, and comput-

ing musical structures in one way or another. In Section 4.2.1, we introduce the

concept of self-similarity matrices and discuss their basic structural properties. For

applications, the improvement of these properties at an early state of the processing

pipeline is of great importance, which is the topic of Section 4.2.2.

4.2.1 Basic Definitions and Properties

As said before, the concept of self-similarity matrices is fundamental for capturing

structural properties of music recordings. Generally, one starts with a feature space

F containing the elements of the feature sequence under consideration as well as

with a similarity measure

s : F ×F → R (4.1)

that makes it possible to compare these elements. Typically, the value s(x,y) is high

in case the elements x,y ∈ F are similar and small otherwise. Given a feature se-

quence X = (x1,x2, . . . ,xN), the idea is to compare all elements of the sequence with

each other. This results in an N-square self-similarity matrix S ∈R
N×N defined by

S(n,m) := s(xn,xm), (4.2)
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where xn,xm ∈ F , n,m ∈ [1 : N]. In the following, a tuple (n,m) ∈ [1 : N]× [1 : N]
is also called a cell of S, and the value S(n,m) is referred to as the score of the cell

(n,m).
Obviously, the concept of self-similarity matrices is closely related to the concept

of cost matrices, which we have already encountered in Section 3.2.1. However,

instead of a cost measure c as in (3.12), we now use a similarity measure s. And

instead of comparing two sequences X and Y with each other, we now compare a

single sequence X with itself. Depending on the application context and notion that

is used to compare the data, there are many related concepts known under different

names such as recurrence plot or self-distance matrix just to name a few. In this

chapter, we only consider self-similarity matrices, but the techniques to be explained

can easily be transferred to other types of matrices.

In the following discussion, we assume that the feature space is a Euclidean space

F =R
D of some dimension D ∈N. For simplicity and illustration purposes, we use

as similarity measure s the absolute value of the inner product defined by

s(x,y) := |〈x|y〉| (4.3)

for two vectors x,y∈F (see (2.37)). With this similarity measure, the score between

two orthogonal feature vectors is zero and otherwise it is positive. In the case that

the feature vectors are normalized with respect to the Euclidean norm, the similarity

values s(x,y) lie in the interval [0,1]. Obviously, there are many more possibilities to

define a similarity measure (see Exercise 4.1). The suitability of a similarity measure

depends on the properties of the considered features and vice versa.

Given a feature sequence X = (x1,x2, . . . ,xN), it seems reasonable to require that

an element xn should be maximally similar to itself. Using normalized features and

the similarity measure from (4.3), the similarity measure assumes its maximal value

s(xn,xn) = 1 for all n ∈ N. Therefore, the resulting SSM has a diagonal with large

values. More generally, recurring patterns of the given feature sequence become vis-

ible in the SSM in the form of structures with large similarity values. The two most

prominent structures induced by such patterns are often referred to as blocks and

paths (see Figure 4.7a for an illustration). First, if the feature sequence captures mu-

sical properties that stay somewhat constant over the duration of an entire musical

part, each of the feature vectors is similar to all other feature vectors within this seg-

ment. As a result, an entire block of large values appears in the SSM. In other words,

homogeneity properties correspond to block-like structures. Second, if the feature

sequence contains two repeating subsequences (e.g., two segments corresponding

to the same musical part), the corresponding elements of the two subsequences are

similar to each other. As a result, a path (or stripe) of high similarity running par-

allel to the main diagonal becomes visible in the SSM. In other words, repetitive

properties correspond to path-like structures.

Before we further formalize these properties, let us have a look at Figure 4.7,

which shows different self-similarity matrices for our Brahms example. Figure 4.7a

shows an idealized SSM. For example, assuming that the three repeating A-part

segments are homogeneous, the SSM has a quadratic block relating the segment
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(b)(a)

(d)(c)

Fig. 4.7 Self-similarity matrices for the Hungarian Dance No. 5 by Johannes Brahms derived from
various feature representations shown in Figure 4.6. (a) Idealized SSM. (b) SSM using chroma-
based features. (c) SSM using MFCC-based features. (d) SSM using tempo-based features.

corresponding to A1A2 to itself and another quadratic block relating the A3-part

segment to itself. Furthermore, there are two rectangular blocks, one relating the

A1A2-part segment to the A3-part segment and the other relating the A3-part segment

to the A1A2-part segment. In case that the three repeating A-part segments are not

homogeneous, the SSM reveals path structures that run (more or less) parallel to the

main diagonal. For example, there is a path with large similarity values relating A1

with A2 and one relating A1 with A3.

How are such structures reflected in the case of “real” SSMs? Besides the ideal-

ized SSM, Figure 4.7 shows different self-similarity matrices for our Brahms exam-

ple obtained from the three conceptually different feature sequences of Figure 4.6.

In the visualization, large values of S are indicated by dark gray and small values by

light gray. First, one can notice that properties of a self-similarity matrix crucially

depend on the respective feature type. The SSM in Figure 4.7b, which is obtained
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from chroma-based features, resembles the idealized SSM to a large extent. The

block-like structures corresponding to A-part segments indicate that these segments

are quite homogeneous with respect to harmony. The same holds for the C-part seg-

ment. Furthermore, the small similarity values outside the C-part block (i.e., all cells

relating the C-part frames to frames of other segments) show that the C-part segment

is harmonically more or less unrelated to all other parts. For the B-part segments,

there are path-like structures and no block-like structures. This shows that the B-

part segments share the same harmonic progression (i.e., are repetitions with regard

to harmony), but are not homogeneous with respect to harmony. An interesting ob-

servation is that, even though repeating, the B-part segments are played in different

tempi and therefore have different lengths. For example, the shorter B2-section is

played faster than the B1-section. As a result, the corresponding path does not run

exactly parallel to the main diagonal. The gradient of the path indicates the relative

tempo difference between the two related segments. Recall that we have discussed

a similar issue already in the music synchronization context, where we derived a

tempo curve from a warping path (see Section 3.3.2).

Looking at the other two self-similarity matrices the structures are not so clear.

The SSM of Figure 4.7c, which results from MFCC-based features, mainly pos-

sesses block-like structures. In particular, the C-part segment has a low similarity to

all other segments, which indicates a difference in timbre or instrumentation. Now,

let us have a look at the tempogram-based SSM shown in Figure 4.7d. Again the

C-part segment stands out, thus emphasizing its contrasting role. Furthermore, the

SSM indicates the many tempo changes occurring in this music recording. In sum-

mary, the musical structure of the Brahms example can be best explained by the

repetitive structure of the chroma-based SSM. Since this is the case with many mu-

sical works, in particular for melodic and harmonic Western music, we will mainly

focus on this type of SSM in the subsequent sections.

We now formalize the concept of paths and blocks (see Figure 4.8). Let X =
(x1,x2, . . . ,xN) be a feature sequence and S the resulting self-similarity matrix. We

formally define a segment to be a set α = [s : t] ⊆ [1 : N] specified by its starting

point s and its end point t (given in terms of feature indices). Let

|α| := t − s+1 (4.4)

denote the length of α . Next, a path over α of length L is a sequence

P = ((n1,m1), . . . ,(nL,mL)) (4.5)

of cells (n�,m�)∈ [1 : N]2, �∈ [1 : L], satisfying m1 = s and mL = t (boundary condi-

tion) and (n�+1,m�+1)− (n�,m�) ∈ Σ (step size condition), where Σ denotes a set of

admissible step sizes. Note that this definition is very similar to the one of a warp-

ing path (see Section 3.2.1.1). In the case of Σ = {(1,1)}, one obtains paths that are

strictly diagonal. In the following, we typically use the set

Σ = {(2,1),(1,2),(1,1)}, (4.6)
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Fig. 4.8 Schematic view of self-similarity matrix with (a) a path and (b) a block.

which is the step size condition introduced in (3.30). For a path P, one can associate

two segments defined by the projections

π1(P) := [n1 : nL] and π2(P) := [m1 : mL], (4.7)

respectively (see Figure 4.8a). The boundary condition enforces π2(P) = α . The

other segment π1(P) is referred to as the induced segment. The score σ(P) of P is

defined as

σ(P) :=
L

∑
�=1

S(n�,m�). (4.8)

Note that each path over the segment α encodes a relation between α and an induced

segment, where the score σ(P) yields a quality measure for this relation.

For blocks, we also introduce corresponding notions. A block over a segment

α = [s : t] is a subset

B = α ′ ×α ⊆ [1 : N]× [1 : N] (4.9)

for some segment α ′ = [s′ : t ′]. Similar as for a path, we define the two projections

π1(B) = α ′ and π2(B) = α for the block B and call α ′ the induced segment (see

Figure 4.8b). Furthermore, we define the score of block B by

σ(B) = ∑
(n,m)∈B

S(n,m). (4.10)

Based on paths and blocks, we can now consider different kinds of similarity

relations between segments. We say that a segment α1 is path-similar to a segment

α2, if there is a path P of high score with π1(P) = α1 and π2(P) = α2. Similarly,

α1 is block-similar to α2, if there is a block B of high score with π1(B) = α1 and

π2(B) = α2. Obviously, in case that the similarity measure s is symmetric, both the

self-similarity matrix S and the above-defined similarity relations between segments

are symmetric as well. Another important property of a similarity relation is tran-
sitivity, i.e., if a segment α1 is similar to a segment α2 and segment α2 is similar



4.2 Self-Similarity Matrices 183

to a segment α3, then α1 should also be similar to α3 (at least to a certain degree).

Also this property holds for path- and block-similarity in case that the similarity

measure s has this property. As a consequence, path and block structures often ap-

pear in groups that fulfill certain symmetry and transitivity properties—at least in

the ideal case. For example, if there is a block B = α ′ ×α of high score, then the

symmetry property implies that there is also a block α ×α ′ of high score. Further-

more, if every frame belonging to α is similar to every other frame of α ′, then also

the frames within the segments α and α ′ are similar to each other. This leads to

additional blocks α ×α and α ′ ×α ′ (see Figure 4.8b). Figure 4.7 shows that such

groups of similarity relations also appear in “real” SSMs.

Most computational approaches to music structure analysis exploit path- and

block-like structures of SSMs in one way or another, and the overall algorithmic

pipelines typically contain the following general steps:

1. The music signal is transformed into a suitable feature sequence.

2. A self-similarity matrix is computed from the feature sequence based on a simi-

larity measure.

3. Blocks and paths of high overall score are derived from the SSM. Each block or

path defines a pair of similar segments.

4. Entire groups of mutually similar segments are formed from the pairwise rela-

tions by applying a clustering step.

The last step can be considered as forming a kind of transitive closure of the pairwise

segment relations induced by block and path structures. For example, in the case

of Brahms’ Hungarian Dance No. 5 (see Figure 4.7), the objective of the last step

would be to find one group that contains all A-part segments and another group that

contains all B-part segments.

In practice, this general processing pipeline leaves a lot of freedom and needs to

be adjusted to account for particular properties of the underlying type of music and

the requirements of the intended application. Furthermore, as mentioned before, ma-

jor challenges arise from the fact that musical parts are rarely repeated in precisely

the same way. Instead, audio segments that are considered as repetitions may differ

significantly in aspects such as dynamics, orchestration, articulation, tempo, har-

mony, melody, or any combination of these. As a result, structure analysis becomes

a hard and often ill-posed task. In particular, musical and acoustic variations may

cause significant deteriorations in the path and block structures and their induced re-

lations. This makes both steps, i.e., the block and path extraction step as well as the

grouping step, error-prone and fragile. In the following, we discuss various strate-

gies to cope with such challenges, e.g., by enhancing structural properties of SSMs

(Section 4.2.2) or by jointly performing the two error-prone steps of path extraction

and grouping within a joint optimization scheme (Section 4.3).
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Fig. 4.9 Overview of the similarity matrix computation.

4.2.2 Enhancement Strategies

In this section, we describe various strategies for enhancing structural properties

of self-similarity matrices (see Figure 4.9 for an overview). In particular, we focus

on augmenting path-like structures, which play a central role in repetition-based

structure analysis. Even though all the enhancement strategies are described for self-

similarity matrices, similar strategies can be applied for more general similarity or

cost matrices.

4.2.2.1 Feature Representation

In the first step, the given waveform-based audio recording is transformed into a

suitable feature representation, which captures specific acoustic and musical prop-

erties. As we have already discussed in Section 4.2.1 and as illustrated by Figure 4.7,

the structural properties of an SSM decisively depend on the feature type used. For

example, MFCC-based and related spectral-based features may be suitable to cap-

ture aspects such as instrumentation and timbre. Other features based on onset infor-

mation or tempograms are used to capture beat, tempo, and rhythmic information.

In the following, we only consider the case of chroma-based audio features, which

relate to harmonic and melodic properties as discussed in Section 3.1.2.

By considering a family of modified chroma representations similar to the ones

used in Figure 3.9, we now demonstrate the influence of different parameter settings

on the properties of the resulting SSM. Starting with a chroma representation of a

given feature rate, this family comes along with two parameters: a length parameter

� ∈ N (given in frames), which is used to smooth or average the feature values over

� consecutive frames, as well as a downsampling parameter d, which reduces the

feature rate by a factor of d. For a more detailed description of such a procedure, we

refer to Section 7.2.1 and Figure 7.10.
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Fig. 4.10 Various chroma representations and resulting SSMs for the Hungarian Dance No. 5 by
Johannes Brahms. (a) Usage of original normalized chroma features (10 Hz). (b) Applying �= 40
and d = 10 (1 Hz). (c) Applying � = 160 and d = 20 (0.5 Hz). (d) Applying � = 480 and d = 50
(0.2 Hz).

As an example, we start with normalized chroma features with a feature rate of

10 Hz. Figure 4.10a shows the resulting SSM, which yields a very detailed descrip-

tion of repetitive structures. Even though the path structures that correspond to the

repeating A-part and B-part segments are visible, the SSM looks quite noisy and

many of the shown details are irrelevant when only the overall musical structure is

of interest.

Using a smoothing length of � = 40 (corresponding to four seconds of audio)

and a downsampling by d = 10 (resulting in a feature rate of 1 Hz), one obtains the

SSM shown in Figure 4.10b. Many of the details have been smoothed out, and some

of the structurally relevant path and block structures have become more prominent.
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In particular, this holds for the paths that relate to the B-part segments. Moreover,

reducing the feature rate improves the computational efficiency for subsequent pro-

cessing steps.

Further increasing the smoothing length and reducing the feature rate results in

an emphasis of the rough harmonic content. In particular, neighboring elements

in the feature sequence come closer together, which leads to an enhancement of

block-like structures. For example, Figure 4.10c shows the SSM when using �= 160

(16 seconds) and d = 20 (feature rate of 0.5 Hz) and Figure 4.10d the SSM using

� = 480 (48 seconds) and d = 50 (feature rate of 0.2 Hz). Using large smoothing

windows, relevant path structures may be smeared out and lost for the subsequent

steps. For other applications such as homogeneity-based structure analysis, however,

averaging over large windows may be beneficial.

In summary, this example shows the importance not only of the feature type but

also of the size of the analysis window and the feature rate. Knowing the temporal

level of the music processing task is of great help for choosing suitable parame-

ters. For example, for tasks such as extracting the musical structure from a given

audio recording, smoothing and downsampling already on the feature level can lead

to substantial improvements, not to speak of computational benefits in subsequent

analysis steps. In particular, running time and memory requirements are important

issues when employing concepts such as SSMs, which are quadratic in the length of

the input feature sequence. As already mentioned in Section 4.1.3, another impor-

tant strategy for adjusting and reducing the feature rate is based on adaptive win-
dowing, where the analysis windows are determined by previously extracted onset

and beat positions. This strategy will be discussed in more detail in Section 6.3.3.

4.2.2.2 Path Smoothing

We have seen that important structural elements of similarity matrices are paths of

high similarity that run parallel to the main diagonal. Even though it is often easy for

humans to recognize these structures, the automated extraction of paths constitutes

a difficult problem due to significant distortions that are caused by variations in

parameters such as dynamics, timbre, execution of note groups (e.g., grace notes,

trills, arpeggios), modulation, articulation, or tempo progression. As an example, let

us have a look at Figure 4.11a, which shows the SSM of a recording of the Waltz

No. 2 from Dimitri Shostakovich’s Suite for Variety Orchestra No. 1. This piece has

the (rough) musical structure A1A2BC1C2A3A4D, where the theme, represented by

the A-part, appears four times. However, there are significant variations in the four

A-parts concerning instrumentation, articulation, as well as dynamics. For example,

in A1 the theme is played by a clarinet, in A2 by strings, in A3 by a trombone,

and in A4 by the full orchestra. As is illustrated by Figure 4.11a, these variations

result in a rather poor and fragmented path structure. This makes it hard to identify

the musically similar segments α1 = [4 : 40], α2 = [43 : 78], α3 = [145 : 179], and

α4 = [182 : 217] corresponding to A1, A2, A3, and A4, respectively. In particular, as
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(a) (b)

(c) (d)

Fig. 4.11 Variants of SSMs for a recording of the Waltz No. 2 from Dimitri Shostakovich’s Suite
for Variety Orchestra No. 1. (a) Original SSM using chroma features (resolution of 1 Hz). (b) En-
largement of the submatrix indicated by the rectangular frame in (a). The path corresponding to
segments α1 (part A1) and α3 (part A3) is highlighted by the oval. (c) SSM after applying diagonal
smoothing. (d) Enlargement of the submatrix indicated by the rectangular frame in (c).

can be seen in the enlargement shown in Figure 4.11b, the path corresponding to the

segments α1 and α3 is quite problematic.

To some extent, as we have seen above, structural properties of the SSM may be

augmented by using longer analysis windows in the feature computation step. This,

however, may also smooth out important details. As an alternative, we now show

how to enhance the path structure of an SSM by applying image processing tech-

niques. Recall that the relevant paths run along the direction of the main diagonal

in the case that repeating parts are played in the same tempo. Therefore, in order

to augment such paths, the general idea is to apply an averaging filter (or low-pass

filter) in the direction of the main diagonal, which results in an emphasis of diagonal

information and a softening of other, nondiagonal structures.

We now give a mathematical description of this procedure. Let S be an SSM

of size N ×N and let L ∈ N be a length parameter. Then we define the smoothed

self-similarity matrix SL by setting
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Fig. 4.12 Variants of SSMs for the Hungarian Dance No. 5 by Johannes Brahms. The path cor-
responding to the B1-part and B2-part segments is highlighted. (a) Original SSM using chroma
features (resolution of 2 Hz). (b) SSM after applying diagonal smoothing. (c) SSM after applying
tempo-invariant smoothing. (d) SSM after applying forward–backward smoothing.

SL(n,m) :=
1

L

L−1

∑
�=0

S(n+ �,m+ �) (4.11)

for n,m∈ [1 : N −L+1]. In other words, the value SL(n,m) is obtained by averaging

the similarity values of two subsequences of length L, one starting at index n and

the other at index m. By suitably extending S (e.g., by zero-padding where zero

columns and rows are added), we may assume in the following that SL(n,m) is

defined for n,m ∈ [1 : N].
The averaging procedure results in a smoothing effect along the main di-

agonal, which is also illustrated by our Shostakovich example of Figure 4.11.

Using the length parameter L = 10, the resulting self-similarity matrix S10

(Figure 4.11c) reveals the desired path structure much better than the original ma-

trix S (Figure 4.11a). For example, the enhanced path highlighted in Figure 4.11d

reveals the relation between the segments α1 and α3 much better than before (see

Figure 4.11b).
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A simple filtering along the main diagonal only works well if there are no relative

tempo differences between the segments to be compared. However, this assumption

is violated when a part is repeated with a faster or slower tempo. We have seen such a

case in our Brahms example from Figure 4.7, where the shorter B2-section is played

much faster than the B1-section. It is only the beginning of the B2-section that is

played much faster than the beginning of the B1-section, whereas the two sections

have roughly the same tempo towards the end of the part. This results in a path that

does not run exactly parallel to the main diagonal (in particular at the beginning), so

that applying an averaging filter in the direction of the main diagonal destroys some

of the path structure (see Figure 4.12b). To deal with such relative tempo differ-

ences, one idea is to apply a multiple filtering approach, where the SSM is smoothed

along various directions that lie in a neighborhood of the direction defined by the

main diagonal. Each such direction corresponds to a tempo difference and results in

a separate filtered matrix. The final self-similarity matrix is obtained by taking the

cell-wise maximum over all these matrices. In this way, the path structure is also

enhanced in the presence of local tempo variations as illustrated in Figure 4.12c.

To better understand the details of this procedure, first assume that we have two

repeating segments α1 and α2 played at the same tempo. Then the direction of the

resulting path is given by the gradient (1,1). Next, assume that the second segment

α2 is played at half the tempo compared with α1. Then the direction of the resulting

path is given by the gradient (1,2). In general, if the tempo difference between

the two segments is given by a real number θ > 0 (the second segment played θ
times slower than the first one), the resulting gradient is (1,θ). We define the self-

similarity matrix smoothed in the direction of (1,θ) by

SL,θ (n,m) :=
1

L

L−1

∑
�=0

S(n+ �,m+[� ·θ ]), (4.12)

where [� ·θ ] denotes the integer closest to the real number � ·θ . Again, by suitably

zero-padding the matrix S, we may assume that SL,θ is defined for n,m ∈ [1 : N].
Now, in practice, one does not know the local tempo difference that may occur in

a given music recording. Also, the relative tempo difference between two repeating

sections may change over time (as is the case with our Brahms example). Therefore,

the idea is to consider a (finite) set Θ consisting of tempo parameters θ ∈ Θ for

different relative tempo differences. Then, we compute for each such θ a matrix

SL,θ and obtain a final matrix SL,Θ by a cell-wise maximization over all θ ∈Θ :

SL,Θ (n,m) := max
θ∈Θ

SL,θ (n,m). (4.13)

In practice, one can use prior information on the expected relative tempo differ-

ences to determine the set Θ . For example, it rarely happens that the relative

tempo difference between repeating segments is larger than 50 percent, so that Θ
can be chosen to cover tempo variations of roughly −50 to +50 percent. Further-

more, in practice, the tempo range can be covered well by considering only a rel-

atively small number of tempo parameters. For example, a typical choice could be
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Θ = {0.66,0.81,1.00,1.22,1.50} (see Exercise 4.4). Note that choosing Θ = {1}
reduces to the case SL,Θ = SL.

This smoothing procedure works in the forward direction, which results in a fad-

ing out of the paths, particularly when using a large length parameter. To avoid

this fading out, one idea is to additionally apply the averaging filter in a back-

ward direction. The final self-similarity matrix is then obtained by taking the cell-

wise maximum over the forward-smoothed and backward-smoothed matrices (see

Exercise 4.2). The effect is illustrated in Figure 4.12d by means of the Brahms ex-

ample.

4.2.2.3 Transposition Invariance

It is often the case that certain musical parts are repeated in a transposed form, where

the melody is moved up or down in pitch by a constant interval. As an example,

let us consider the song “In the year 2525” by Zager and Evans, which has the

musical structure IV1V2V3V4V5V6V7BV8O. The song starts with a slow intro, which

is represented by the I-part. The verse of the song, which is represented by the

V -part, is repeated eight times. While the first four verse sections are in the same

musical key, V5 and V6 are transposed by one semitone upwards, and V7 and V8 are

transposed by two semitones upwards. Figure 4.13b shows a path-enhanced version

of the resulting self-similarity matrix based on some chroma feature representation.

This matrix shows path structures that relate the first four V -sections with each

other as well as V5 with V6 and V7 with V8. Because of the transpositions, however,

the relation between the first four sections and the last four sections is not reflected

in the SSM.

In the following, we show how repetitive structures can be made visible in

the SSM even in the presence of key transpositions. We have already seen in

Section 3.1.2 that such transpositions can be simulated by cyclically shifting chroma

features. Mathematically, we modeled such shifts by the cyclic shift operator ρ :

R
12 → R

12 defined in (3.11). Now, let X = (x1,x2, . . . ,xN) be the chroma feature

sequence. We then define the i-transposed self-similarity matrix ρ i(S) by

ρ i(S)(n,m) := s(ρ i(xn),xm) (4.14)

for n,m ∈ [1 : N] and i ∈ Z. Obviously, one has ρ12(S) = S. Intuitively, ρ i(S) de-

scribes the similarity relations between the original music recording (represented

by X = (x1,x2, . . . ,xN)) and the music recording transposed by i semitones up-

wards (represented by ρ i(X) = (ρ i(x1),ρ i(x2), . . . ,ρ i(xN))). Since one does not

know in general the kind of transpositions occurring in the music recording, we

apply a similar strategy as before when dealing with relative tempo deviations. Tak-

ing a cell-wise maximum over the twelve different cyclic shifts, we obtain a single

transposition-invariant self-similarity matrix STI defined by

STI(n,m) := max
i∈[0:11]

ρ i(S)(n,m). (4.15)
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Fig. 4.13 Variants of SSMs for the song “In the year 2525” by Zager and Evans. (a) Original
SSM using chroma features (resolution of 1 Hz). (b) Path-enhanced SSM. (c) 1-transposed SSM.
(d) 2-transposed SSM. (e) Transposition-invariant SSM. (f) Transposition index matrix.

Furthermore, we store the maximizing shift indices in an additional N-square matrix

I, which we refer to as the transposition index matrix:

I(n,m) := argmax
i∈[0:11]

ρ i(S)(n,m). (4.16)
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We illustrate the definitions by continuing the example shown in Figure 4.13 (see

Exercise 4.3). Recall from above that shifting the sections V1 to V4 by one semitone

upwards makes them similar to the original sections V5 and V6. This fact is revealed

by the 1-transposed self-similarity matrix shown in Figure 4.13c. Similarly, shifting

the sections V1 to V4 by two semitones upwards makes them similar to the origi-

nal sections V7 and V8 (see Figure 4.13d). Putting together the information of all

i-transposed self-similarity matrices by the maximization in (4.15), one obtains the

transposition-invariant self-similarity matrix STI shown in Figure 4.13e, where all

pairwise similarity relations between the eight V -part segments become visible.

The resulting transposition index matrix is shown in Figure 4.13f in a color-coded

form. We first discuss the case that the matrix I assumes the value i = 0 (white color

in Figure 4.13f). The value i= 0 for a cell (n,m) indicates that s(ρ i(xn),xm) assumes

a maximal value for i = 0. In other words, the chroma vector xm is closer to xn than

to any other shifted version of xn. Note, however, that this does not necessarily

mean that xm is close to xn in absolute terms. As may be expected, the maximizing

index is i = 0 at all positions where the conventional self-similarity matrix shown in

Figure 4.13b reveals paths of low cost. Next, we consider the case that the matrix I
assumes the value i= 1 (black color in Figure 4.13f). The value i= 1 for a cell (n,m)
indicates that xn becomes most similar to xm when shifted one semitone upwards.

Thus the strong path relations shown in Figure 4.13c correspond to cells assuming

the value i = 1, and so on.

At this point, we want to note that introducing transposition invariance by cell-

wise maximization over several matrices may increase the noise level in the resulting

similarity matrix. Therefore, the transposition-invariant matrix should be computed

on the basis of smoothed matrices, since the smoothing typically goes along with

a suppression of unwanted noise. The definitions in (4.14) and (4.15) can be easily

combined with the averaging approaches described by (4.11) and (4.12) to yield

matrices ρ i
L,Θ (S) and STI

L,Θ . Such matrices are shown in Figure 4.13.

4.2.2.4 Thresholding

In many music analysis applications, self-similarity matrices are further processed

by suppressing all values that fall below a given threshold. On the one hand, such

a step often leads to a substantial reduction of unwanted noise-like components

while leaving only the most significant structures. On the other hand, weaker but

still relevant information may be lost. The thresholding strategy used may have a

significant impact on the final result and has to be carefully chosen in the context of

the considered application. Figure 4.14 shows some examples obtained by different

thresholding settings as explained below.

The simplest strategy is to apply global thresholding, where all values S(n,m)
of a similarity matrix S below a given threshold parameter τ > 0 are set to zero:

Sτ(n,m) :=

{
S(n,m) if S(n,m)≥ τ ,

0, otherwise.
(4.17)
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Fig. 4.14 Thresholding strategies applied to an SSM for the Hungarian Dance No. 5 by Johannes
Brahms. (a) SSM from Figure 4.12d. (b) SSM after thresholding and binarization (τ = 0.75).
(c) SSM after thresholding and scaling (ρ = 0.2). (d) SSM after thresholding and scaling (ρ =
0.05).

Also, binarization of the similarity matrix can be applied by setting all values above

or equal to the threshold to one and all others to zero. Instead of binarization, one

may perform a scaling where the range [τ,μ] is linearly scaled to [0,1] in the case

that μ := maxn,m{S(n,m)} > τ , otherwise all entries are set to zero. Sometimes it

may be beneficial to introduce an additional penalty parameter δ ≤ 0, setting all

original values below the threshold to the value δ (see Section 4.3 for an application

of this variant).

The global threshold τ can also be chosen in a relative fashion by keeping ρ ·
100% of the cells with the highest values using a relative threshold parameter ρ ∈
[0,1]. Finally, thresholding can also be performed using a more local strategy by

thresholding in a column- and rowwise fashion. To this end, for each cell (n,m), the

value S(n,m) is kept if it is among the ρ ·100% of the largest cells in row n and at

the same time among the ρ ·100% of the largest cells in column m, all other values

being set to zero (see Exercise 4.5). As said before, the suitability of a thresholding

setting depends on the respective music material and the application in mind. Often,

suitable thresholds are learned and optimized using supervised learning procedures.
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Fig. 4.15 Variants of similarity matrices for the same audio recording. (a) Original SSM using
chroma features of 2 Hz resolution. (b) SSM after applying diagonal smoothing. (c) SSM af-
ter applying tempo-invariant and forward–backward smoothing. (d) Transposition-invariant SSM.
(e) Transposition index matrix. (f) SSM after thresholding with penalty and scaling (ρ = 0.2,
δ =−2).

To conclude this section, Figure 4.15 summarizes the various enhancement and

processing steps applied to a music recording having the musical structure A1A2BA3.

In this example, A2 is a modulation of A1 transposed by one semitone upwards,

whereas A3 is a repetition of A1, however played much faster. Figure 4.15 shows

a typical processing pipeline for computing an SSM as used in structure analysis

applications. First, the music recording is converted into a sequence of normal-

ized and smoothed chroma features as in Figure 3.9. Then, based on the similar-

ity measure (4.3), an enhanced transposition-invariant self-similarity matrix STI
L,Θ is

computed (see Figure 4.15d). In the next step, global thresholding is applied using

a threshold parameter τ and a penalty parameter δ . Furthermore, the range [τ,1]
is linearly scaled to [0,1]. As a result, the relevant path structure tends to lie in

the positive part of the resulting SSM, whereas all other cells are given a negative

score. Finally, setting S(n,n) = 1 for n ∈ [1 : N], one can introduce a normalization

property, which may have been lost in the smoothing process due to boundary ef-

fects. The SSM shown in Figure 4.15f is obtained in this way using a feature rate

of 2 Hz. Settings for the enhancement are L = 20 for the length parameter and

Θ = {0.50,0.63,0.79,1.26,1.59,2.00} for the set of relative tempo differences (see

Exercise 4.4). In this example, the threshold is chosen in a relative fashion by using

the relative threshold ρ = 0.2 and the penalty parameter is set to δ =−2.
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