Chapter 4
Music Structure Analysis

One of the attributes distinguishing music from random sound sources is the hi-
erarchical structure in which music is organized. At the lowest level, one has events
such as individual notes, which are characterized by the way they sound, their tim-
bre, pitch, and duration. Combining various sound events, one obtains larger struc-
tures such as motifs, phrases, and sections, and these structures again form larger
constructs that determine the overall layout of the composition. This higher struc-
tural level is also referred to as the musical structure of the piece, which is specified
in terms of musical parts and their mutual relations. For example, in popular music
such parts can be the intro, the chorus, and the verse sections of the song. Or in
classical music, they can be the exposition, the development, and the recapitulation
of a movement. The general goal of music structure analysis is to divide a given
music representation into temporal segments that correspond to musical parts and
to group these segments into musically meaningful categories.

Let us consider a concrete example. Figure 4.1a shows a sheet music represen-
tation of the Mazurka Op. 6, No. 4 by the Polish composer Frédéric Chopin. This
piano piece can be subdivided into five sections, where the third and fifth sections
are repetitions of the first section. Therefore, these sections belong to the same cat-
egory denoted by the symbol A. Similarly, the fourth section is a repetition of the
second one. These two sections belong to another group labeled by the symbol B.
Hence, at an abstract level, the overall musical structure can be described by the
sequence A1B1A2B>A3 (see Figure 4.1d). Instead of using the musical score, one
typical scenario is to derive structural information from a given audio recording
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Fig. 4.1 Musical structure of the Mazurka Op. 6, No. 4 by Chopin. (a) Sheet music representation.
(b) Waveform of an audio recording. (¢) Chroma representation derived from (b). (d) Manually
annotated segmentation of the audio recording.

(see Figure 4.1b). To this end, one needs to convert the waveform into a suitable
feature representation that captures musical properties relevant for the structure of
interest. In our example, as shown by Figure 4.1c, the repetition-based structure can
be seen in a chroma representation that captures harmonic information.

As demonstrated by the previous example, the musical structure is often related
to recurring patterns such as repeating sections. In general, however, there are many
more criteria for segmenting and structuring music. For example, certain musical
sections may be characterized by some homogeneity property such as a consistent
timbre, the presence of a specific instrument, or the usage of certain harmonies.
Furthermore, segment boundaries may go along with sudden changes in musical
properties such as tempo, dynamics, or the musical key. These various segmenta-
tion principles require different methods, which may be loosely categorized into
repetition-based, homogeneity-based, and novelty-based approaches.

In this chapter, we study general techniques for deriving structural information
from a given music recording. In Section 4.1, we start by giving an overview of dif-
ferent segmentation principles, while introducing a working definition of the struc-
ture analysis problem as used in the subsequent sections. Furthermore, we discuss
some feature representations that account for different musical dimensions. The con-
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cept of self-similarity matrices, which we study in Section 4.2, is of fundamental im-
portance in computational music structure. In particular, we show how the various
segmentation principles are reflected in such matrices and how this can be exploited
for deriving structural information. As a first application of self-similarity matrices,
we discuss in Section 4.3 a subproblem of music structure analysis known as audio
thumbnailing. The goal of this problem is to determine the audio segment that best
represents a given music recording. Providing a compact preview, such audio seg-
ments are useful for music navigation applications similar to visual thumbnails that
help in organizing and accessing large photo collections. While we apply repetition-
based principles for audio thumbnailing, we discuss in Section 4.4 some segmen-
tation procedures that rely on novelty-based principles. The objective of such pro-
cedures is to specify points within a given audio recording where a human listener
would recognize a change, a sudden event, or the transition between two contrast-
ing parts. Finally, in Section 4.5, we address the issue of evaluating analysis results,
which itself constitutes a nontrivial problem.

4.1 General Principles

Music structure analysis is a multifaceted and often ill-defined problem that de-
pends on many different aspects. First of all, the complexity of the problem depends
on the kind of music representation to be analyzed. For example, while it is compar-
atively easy to detect certain structures such as repeating melodies in sheet music,
it is often much harder to automatically identify such structures in audio represen-
tations. Second, there are various principles including homogeneity, repetition, and
novelty that a segmentation may be based on. While the musical structure of the
piano piece shown in Figure 4.1 is based on repetition, musical parts in other mu-
sic may be characterized by a certain instrumentation or tempo. Third, one also has
to account for different musical dimensions, such as melody, harmony, rhythm, or
timbre. For example, in Beethoven’s Fifth Symphony the “fate motif™ is repeated in
various ways—sometimes the motif is shifted in pitch; sometimes only the rhyth-
mic pattern is preserved. Finally, the segmentation and structure largely depend on
the musical context and the temporal hierarchy to be considered. For example, the
recapitulation of a sonata may be considered a kind of repetition of the exposition
on a coarse temporal level even though there may be significant modifications in
melody and harmony on a finer temporal level. Figure 4.2 gives an overview of var-
ious aspects that need to be considered when dealing with musical structures. In the
following, we discuss these aspects in more detail. In particular, our goal is to raise
the awareness that computational procedures as described in the subsequent sections
are often based on simplifying model assumptions that only reflect certain aspects
of the complex structural properties of music.
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Fig. 4.2 Overview of various segmentation and structure principles.

4.1.1 Segmentation and Structure Analysis

The tasks of segmenting and structuring multimedia documents are of fundamental
importance not only for the processing of music signals but also for general audio-
visual content. Segmentation typically refers to the process of partitioning a given
document into multiple segments with the goal of simplifying the representation into
something that is more meaningful and easier to analyze than the original document.
For example, in image processing the goal is to partition a given image into a set of
regions such that each region is similar with respect to some characteristic such as
color, intensity, or texture (see Figure 4.3 for an illustration). Region boundaries can
often be described by contour lines or edges at which the image brightness or other
properties change sharply and reveal discontinuities. In music, the segmentation
task is to decompose a given audio stream into acoustically meaningful sections
each corresponding to a continuous time interval that is specified by a start and end
boundary. At a fine level, the segmentation may aim to find the boundaries between
individual notes or to find the beat intervals specified by beat positions. At a coarser
level, the goal may be to detect changes in instrumentation or harmony or to find
the boundaries between verse and chorus sections. Also, discriminating between
silence, speech, and music, finding the actual beginning of a music recording, or
separating the applause at the end of a performance are typical segmentation tasks.
Going beyond mere segmentation, the goal of structure analysis is to also find
and understand the relationships between the segments. For example, certain seg-
ments may be characterized by the instrumentation. There may be sections played
only by strings. Sections played by the full orchestra may be followed by solo sec-
tions. The verse sections with a singing voice may be alternated with purely in-
strumental sections. Or a soft and slow introductory section may precede the main
theme played in a much faster tempo. Furthermore, sections are often repeated. Most
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Fig. 4.3 Examples for segmentation results for image and 3D data. (a) Novelty-based image seg-
mentation using edge detection. (b) Homegeneity-based texture segmentation. (¢) Repetition-based
segmentation of 3D geometry (from [66]).

events of musical relevance are repeated in a musical work in one way or another.
However, repetitions are rarely identical copies of the original section, but undergo
modifications in aspects such as the lyrics, the instrumentation, or the melody. One
main task of structure analysis is to not only segment the given music recording, but
to also group the segments into musically meaningful categories (e.g., intro, chorus,
verse, outro).

The challenge in computational music structure analysis is that structure in mu-
sic arises from many different kinds of relationships including repetition, contrast,
variation, and homogeneity [53]. As we have already noted, repetitions play a par-
ticularly important role in music, where sounds or sequences of notes are often
repeated [39]. Recurrent patterns can be of rhythmic, harmonic, or melodic nature.
On the other hand, contrast is the difference between successive musical sections of
different character. For example, a quiet passage may be contrasted by a loud one,
a slow section by a rapid one, or an orchestral part by a solo. A further principle
is that of variation, where motifs and parts are picked up again in a modified or
transformed form. Finally, a section is often characterized by some sort of inherent
homogeneity; for example, the instrumentation, the tempo, or the harmonic mate-
rial may be similar within the section. All these principles need to be considered in
the temporal context. Music happens in time (as opposed to, say, a painting), and
it is the temporal order of events that is essential for building up musically and
perceptually meaningful entities such as melodies or harmonic progressions [3].

In view of the various principles that crucially influence the musical structure,
a large number of different approaches to music structure analysis have been de-
veloped. In this chapter, we want to roughly distinguish three different classes of



172 4 Music Structure Analysis

methods. First, repetition-based methods are used to identify recurring patterns.
Second, novelty-based methods are employed to detect transitions between con-
trasting parts. Third, homogeneity-based methods are used to determine passages
that are consistent with respect to some musical property. Note that novelty-based
and homogeneity-based approaches are two sides of a coin: novelty detection is
based on observing some surprising event or change after a more homogeneous
segment. While the aim of novelty detection is to locate the changes’ time posi-
tions, the focus of homogeneity analysis lies in the identification of longer passages
that are coherent with respect to some musical property. In the following section,
we will study various procedures for structure analysis following one or several of
these paradigms.

4.1.2 Musical Structure

As already mentioned in the introduction of this chapter, our focus is to analyze a
given music recording on a rather coarse structural level. This level corresponds to
what is often referred to as the musical structure, which describes the overall struc-
tural layout of a piece of music. In particular for Western classical music, one also
encounters the term musical form, which refers to specific structural categories ex-
ploiting the principles of contrast and variety in one way or another. In this chapter,
we use the term “musical structure” loosely, including with it the concept of musical
form.

To specify musical structures, we now introduce some terminology as used in
the remainder of this book. First of all, we want to distinguish between a piece of
music (in an abstract sense) and a particular audio recording (an actual performance)
of the piece. The term part is used in the context of the abstract music domain,
whereas the term segment is used for the audio domain. Furthermore, we use the
term section in a rather vague way for both domains to denote either a segment or a
part. Musical parts are typically denoted by the capital letters A, B, C, ... in the order
of their first occurrence, where numbers (often written as subscripts) indicate the
order of repeated occurrences. For example, the sequence A;BjA;ByA3z describes
the musical structure of the piano piece shown in Figure 4.1, which consists of three
repeating A-parts and two repeating B-parts. Hence, given a recording of this piece
of music, the goal of the structure analysis problem (as considered in this chapter)
is to find the segments within the recording that correspond to the A- and B-parts.

In Western music, the musical structure often follows certain structural patterns
(see Figure 4.4). The simplest of these patterns is the strophic form, which basi-
cally consists of a sequence of a part being repeated over and over again. The form
A1A2A3A4 ... is, for example, used in folk songs or nursery rhymes, where the A-
parts correspond to the stanzas of the underlying poem. Another structural pattern
is referred to as chain form, which is simply a sequence of self-contained and unre-
lated parts (ABCD. . .), sometimes with repeats (A1A2B1B2C1C>D1D; . ..). This form
is often used in a composition that consists of a concatenation of favorite tunes from
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Fig. 4.4 Examples for musical structures as encountered in Western music. (a) Strophic form.
(b) Chain form with repetitions. (¢) Rondo form. (d) Sonata form. (e) Beatles song “Tell Me Why.”
(f) Beatles song “Yesterday.”

popular songs, dances, or operettas. Examples are medleys or potpourris, which
are pieces composed from parts of existing pieces that are simply juxtaposed with
no strong connection or relationship. Another form is the rondo form, where a re-
curring theme alternates with contrasting sections, yielding the musical structure
A1BA,CA3DA, . . ..

In Western classical music, one of the most important musical structures is known
as the sonata form, which is a large-scale musical structure typically used in the first
movements of sonatas and symphonies. The basic sonata form consists of an expo-
sition (E), a development (D), and a recapitulation (R), where the exposition is
repeated once. Sometimes, one can find an additional introduction (/) and a clos-
ing coda (C), thus yielding the form /E| E,DRC. In particular, the exposition and the
recapitulation stand in close relation to each other, both containing two subsequent
contrasting subject groups (often simply referred to as the first and second theme)
connected by some transition. As previously noted, at least at a coarse level, the
recapitulation can be regarded as a kind of repetition of the exposition. However, at
a finer level, there are significant differences. For example, the subject groups and
transition in the recapitulation are musically altered and can be quite different from
their corresponding occurrences in the exposition. Finally, we want to discuss some
typical structural elements one finds in popular music. As with the sonata form, one
sometimes uses generic names to denote the musical parts instead of using capital
letters. The most important parts of a pop song are the verse (V') and the chorus (C)
sections. Each verse usually employs the same melody (possibly with slight modifi-
cations), while the lyrics change for each verse. The chorus (sometimes also called
the refrain) typically consists of a melodic and lyrical phrase which is repeated.
Sometimes, pop songs may start with an intro (/) and close with an outro (O).
Finally, verse and chorus sections may be connected by an additional part called
a bridge (B). The verse and chorus are usually repeated throughout a song, while
the intro and the outro appear only once. Some pop songs may have a solo section,
where one or more instruments play a melodic line, typically following the melody
previously introduced by the singer.

We have presented only a small selection of musical structures. In practice, there
are many more structures as well as variations and deviations from standard forms as
illustrated by the last two examples of Figure 4.4. A musical structure can be rather
vague, and even music experts may argue about the construction of a given compo-
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Fig. 4.5 Sheet music representation and musical structure of the Hungarian Dance No. 5 by Jo-
hannes Brahms. Only the voice for the violin of an arrangement for full orchestra is shown.

sition. In particular, what we call a repetition of a musical section is often far from
being an exact copy. Segments that are considered to correspond to the same musi-
cal part may differ in instrumentation and tempo, or a segment may be transposed to
another key, the melody may be changed while only the underlying harmonic pro-
gression is kept, and so on. Furthermore, musical structure is typically ordered in
hierarchies, and it is often not clear which level should be considered when specify-
ing the musical structure. For example, in the piece shown in Figure 4.1, the A-part
can be further subdivided into substructures consisting of two or even four subparts.
Similarly, the B-part can be regarded as a repetition of two subparts. These repeating
substructures also become visible in the chroma representation derived from the mu-
sic recording (see Figure 4.1c). In music notation, such subparts are often indicated
using small letters a,b,c, .. ..

As a final example, we want to consider the Hungarian Dance No. 5 by Johannes
Brahms, which will also serve as our running example in the next sections. This
piece is part of a set of 21 dance tunes composed by Brahms up to 1869 and based
mostly on traditional Hungarian themes. Each dance has been arranged for a wide
variety of instruments and ensembles, ranging from piano versions to versions for
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full orchestra. Figure 4.5 shows a sheet music representation for the violin voice of
an arrangement for full orchestra. The musical structure as indicated in the figure
is A1A2B1B2CA3B3B4D, which consists of three repeating A-parts, four repeating
B-parts, as well as a C-part and a short closing D-part. The A-part has a substructure
consisting of two more or less repeating subparts. Furthermore, as becomes apparent
when looking at the musical score, the middle C-part may be further subdivided into
a substructure that may be described by djdyeezezes (see Figure 4.28).

The overall musical structure of this piece can be explained in terms of repeat-
ing elements. However, there are also many other musical cues that reinforce the
musical structure. For example, the C-part stands in contrast to the remaining parts.
First, there is a change of the musical key in the C-part (changing from G minor to
G major). Then, there is a change in the notated tempo (changing from ‘Allegro’
to “Vivace’). While the A- and B-parts have catchy tunes, there is no such melody
in the C-part. Instead, the entire C-part is rather homogeneous with regard to har-
mony. However, this does not hold for other musical properties such as dynamics
and tempo. For example, while the d-part segments are played in forte, the e-part
segments are played in piano. Also there are many sudden tempo changes within the
C-part. Therefore, in this case, a novelty-based segmentation procedure using tempo
cues may be used to reveal the substructures of the C-part, whereas a homogeneity-
based segmentation procedure using harmonic properties may be suited to distin-
guish the C-part from the other parts. We further develop this example in the next
sections.

4.1.3 Musical Dimensions

We have already seen that the applicability of the different segmentation principles
very much depends on the musical and acoustic properties of the audio signal to be
analyzed. Since the sampled waveform of an audio signal is relatively uninformative
by itself, the first step in automated structure analysis is to transform the given music
recording into a suitable feature representation. As explained in the music synchro-
nization scenario (Section 3.1), finding such a representation constitutes a delicate
trade-off between robustness and expressiveness. Also, it is often unclear which mu-
sical properties are actually relevant for the given music signal and the considered
segmentation scenario. For example, structural boundaries may be based on changes
in harmony, timbre, or tempo. One major task in music processing is to transform a
given audio signal into feature representations that correlate to the various musical
aspects. In the following, we discuss this issue in more detail by considering three
conceptually different feature representations (see Figure 4.6 for an overview).

As a first representation, we consider chroma features as introduced in
Section 3.1.2. Recall that a normalized chroma vector describes the signal’s local
energy distribution over an analysis window (frame) across the twelve pitch classes
of the equal-tempered scale (ignoring octave information). Capturing pitched con-
tent, a chroma-based feature sequence relates to harmonic and melodic properties
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Fig. 4.6 Feature representations for a recording of the Hungarian Dance No. 5 by Johannes
Brahms. (a) Waveform. (b) Chroma-based features. (¢) MFCC-based features. (d) Tempo-based
features. (e) Manually generated annotation.

of the music recording. Figure 4.6b shows a chroma representation derived from
a recorded performance of our Brahms example, the Hungarian Dance No. 5. The
patterns visible in the chromagram reveal important structural information. For ex-
ample, the four repeating B-part segments are clearly visible as four similar char-
acteristic subsequences in the chromagram. Furthermore, the C-part segment stands
out in the chromagram by showing a high degree of homogeneity throughout the
entire section. Indeed, for all chroma features of this segment, most of the signal’s
energy is contained in the G-, B-, and D-bands (which is not surprising since the
C-part is in G major). In contrast, as for the A-part segments, many chroma vectors
have dominant entries in the G-, Bb—, and D-bands (which nicely reflects that this
part is in G minor).

Besides melody and harmony, the instrumentation and timbral characteristics are
of great importance for the human perception of music structure. As we have dis-
cussed in Section 1.3.4, timbre is a rather vaguely defined perceptual property of
sound, which is hard to describe and to extract from a music recording. For exam-
ple, the automated recognition of musical instruments within polyphonic music sig-
nals is an extremely difficult problem. In applications such as structure analysis, it is
often unnecessary to determine such information explicitly. Instead, mid-level rep-
resentations that somehow correlate to aspects such as instrumentation and timbre
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may be sufficient. In the context of timbre-based structure analysis, one often uses
mel-frequency cepstral coefficients (MFCCs), which were originally developed
for automated speech recognition. Parametrizing the rough shape of the spectral en-
velope, MFCC-based features capture timbral properties of the signal. At this point,
we do not want to give a technical description on how these features are computed.
Instead, let us have a look at Figure 4.6¢, which shows an MFCC-based feature rep-
resentation for our Brahms example. One can recognize that MFCC features within
the A-part segments are different from the ones in the B-part and C-part segments.
For many music recordings such as pop songs, where sections with singing voice
alternate with purely instrumental or percussive sections, MFCC-based feature rep-
resentations are well suited for novelty-based and homogeneity-based segmentation.

As a third musical dimension, we consider properties that are related to beat,
tempo, and rhythmic information. Estimation of the tempo and beat positions is
one of the central topics in music processing, which we cover in Chapter 6. In
the music segmentation context, such techniques are often applied to derive beat-
synchronous feature representations, where the time axis is segmented according
to musically meaningful beat positions. Such beat-synchronous representations are
very useful to compensate for tempo changes in repeating parts. On the downside,
beat tracking errors introduced by automated procedures may have negative conse-
quences for the subsequent music processing tasks to be solved (see Section 6.3.3
for more details).

In music structure analysis, tempo and beat information may also be used in
combination with homogeneity-based segmentation approaches. Instead of extract-
ing such information explicitly, a mid-level feature representation that correlates to
tempo and rhythm may suffice for deriving a meaningful segmentation at a higher
structural level. As an example, Figure 4.6d shows such a mid-level representation,
a tempogram, which encodes local tempo information. More precisely, a cyclic
variant of a tempogram is shown, where tempi differing by a power of two are
identified—similar to cyclic chroma features, where pitches differing by octaves are
identified. Technical details on how to compute such tempograms can be found in
Section 6.2.4. Having a look at Figure 4.6d, one can notice that the different musical
parts are played in different tempi (even though the representation does not reveal
the exact tempi). Furthermore, there are sections where the tempogram features do
not have any dominating entries, which may indicate that there is no clear notion
of a tempo in the recording. This kind of information is also important and can be
used for segmentation purposes. As this example indicates, a tempogram may yield
information that is complementary to the information obtained by chroma-based or
MFCC-based feature representations.

Besides the various musical dimensions, there is another aspect one should keep
in mind when looking for suitable feature representations: the temporal dimension.
In all of the above-mentioned feature representations, an analysis window is shifted
over the music signal. As we have already seen for the STFT in Section 2.5.2, the
length of the analysis window as well as the hop size parameter have a crucial in-
fluence on the quality of the feature representation. For example, long window sizes
and large hop sizes may be beneficial for smoothing out irrelevant local variations,
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which is often a desired property in homogeneity-based segmentation. On the down-
side, the temporal resolution decreases and important details may get lost, which can
lead to problems when locating the exact segmentation boundaries.

In summary, a suitable choice of feature representations and parameter settings
very much depends on the application context. Humans constantly and often un-
consciously adapt themselves to the musical and acoustic characteristics of what
they listen to. The richness and variety of musical structures make computational
structure analysis a challenging problem.

4.2 Self-Similarity Matrices

We have seen that the principles of repetition, homogeneity, and novelty are funda-
mental for partitioning a given audio recording into musically meaningful structural
elements. To study musical structures and their mutual relations, one general idea is
to convert the music signal into a suitable feature sequence and then to compare each
element of the feature sequence with all other elements of the sequence. This results
in a self-similarity matrix (SSM), a tool which is of fundamental importance not
only for music structure analysis but also for the analysis of many kinds of time se-
ries. In this section, we look at these matrices in detail. As we will see, one crucial
property of self-similarity matrices is that repetitions typically yield path-like struc-
tures, whereas homogeneous regions yield block-like structures. These structural
elements are exploited by most algorithms for visualizing, analyzing, and comput-
ing musical structures in one way or another. In Section 4.2.1, we introduce the
concept of self-similarity matrices and discuss their basic structural properties. For
applications, the improvement of these properties at an early state of the processing
pipeline is of great importance, which is the topic of Section 4.2.2.

4.2.1 Basic Definitions and Properties

As said before, the concept of self-similarity matrices is fundamental for capturing
structural properties of music recordings. Generally, one starts with a feature space
F containing the elements of the feature sequence under consideration as well as
with a similarity measure

s:FxF—=R 4.1

that makes it possible to compare these elements. Typically, the value s(x,y) is high
in case the elements x,y € F are similar and small otherwise. Given a feature se-
quence X = (x,x2,...,xy), the idea is to compare all elements of the sequence with
each other. This results in an N-square self-similarity matrix S € RV*V defined by

S(n,m) := s(xp,Xm), 4.2)
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where x,,x, € F, n,m € [1: N]. In the following, a tuple (n,m) € [1 : N] x [1 : N]
is also called a cell of S, and the value S(n,m) is referred to as the score of the cell
(n,m).

Obviously, the concept of self-similarity matrices is closely related to the concept
of cost matrices, which we have already encountered in Section 3.2.1. However,
instead of a cost measure ¢ as in (3.12), we now use a similarity measure s. And
instead of comparing two sequences X and Y with each other, we now compare a
single sequence X with itself. Depending on the application context and notion that
is used to compare the data, there are many related concepts known under different
names such as recurrence plot or self-distance matrix just to name a few. In this
chapter, we only consider self-similarity matrices, but the techniques to be explained
can easily be transferred to other types of matrices.

In the following discussion, we assume that the feature space is a Euclidean space
F =RP of some dimension D € N. For simplicity and illustration purposes, we use
as similarity measure s the absolute value of the inner product defined by

s(x,y) == [(x[y)] 4.3)

for two vectors x,y € F (see (2.37)). With this similarity measure, the score between
two orthogonal feature vectors is zero and otherwise it is positive. In the case that
the feature vectors are normalized with respect to the Euclidean norm, the similarity
values s(x,y) lie in the interval [0, 1]. Obviously, there are many more possibilities to
define a similarity measure (see Exercise 4.1). The suitability of a similarity measure
depends on the properties of the considered features and vice versa.

Given a feature sequence X = (x1,x2,...,Xy), it seems reasonable to require that
an element x, should be maximally similar to itself. Using normalized features and
the similarity measure from (4.3), the similarity measure assumes its maximal value
$(xp,x,) = 1 for all n € N. Therefore, the resulting SSM has a diagonal with large
values. More generally, recurring patterns of the given feature sequence become vis-
ible in the SSM in the form of structures with large similarity values. The two most
prominent structures induced by such patterns are often referred to as blocks and
paths (see Figure 4.7a for an illustration). First, if the feature sequence captures mu-
sical properties that stay somewhat constant over the duration of an entire musical
part, each of the feature vectors is similar to all other feature vectors within this seg-
ment. As a result, an entire block of large values appears in the SSM. In other words,
homogeneity properties correspond to block-like structures. Second, if the feature
sequence contains two repeating subsequences (e.g., two segments corresponding
to the same musical part), the corresponding elements of the two subsequences are
similar to each other. As a result, a path (or stripe) of high similarity running par-
allel to the main diagonal becomes visible in the SSM. In other words, repetitive
properties correspond to path-like structures.

Before we further formalize these properties, let us have a look at Figure 4.7,
which shows different self-similarity matrices for our Brahms example. Figure 4.7a
shows an idealized SSM. For example, assuming that the three repeating A-part
segments are homogeneous, the SSM has a quadratic block relating the segment
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Fig. 4.7 Self-similarity matrices for the Hungarian Dance No. 5 by Johannes Brahms derived from
various feature representations shown in Figure 4.6. (a) Idealized SSM. (b) SSM using chroma-
based features. (¢) SSM using MFCC-based features. (d) SSM using tempo-based features.

corresponding to AjA; to itself and another quadratic block relating the Az-part
segment to itself. Furthermore, there are two rectangular blocks, one relating the
A1Aj-part segment to the Az-part segment and the other relating the Az-part segment
to the AjA,-part segment. In case that the three repeating A-part segments are not
homogeneous, the SSM reveals path structures that run (more or less) parallel to the
main diagonal. For example, there is a path with large similarity values relating A;
with A, and one relating A; with A3.

How are such structures reflected in the case of “real” SSMs? Besides the ideal-
ized SSM, Figure 4.7 shows different self-similarity matrices for our Brahms exam-
ple obtained from the three conceptually different feature sequences of Figure 4.6.
In the visualization, large values of S are indicated by dark gray and small values by
light gray. First, one can notice that properties of a self-similarity matrix crucially
depend on the respective feature type. The SSM in Figure 4.7b, which is obtained
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from chroma-based features, resembles the idealized SSM to a large extent. The
block-like structures corresponding to A-part segments indicate that these segments
are quite homogeneous with respect to harmony. The same holds for the C-part seg-
ment. Furthermore, the small similarity values outside the C-part block (i.e., all cells
relating the C-part frames to frames of other segments) show that the C-part segment
is harmonically more or less unrelated to all other parts. For the B-part segments,
there are path-like structures and no block-like structures. This shows that the B-
part segments share the same harmonic progression (i.e., are repetitions with regard
to harmony), but are not homogeneous with respect to harmony. An interesting ob-
servation is that, even though repeating, the B-part segments are played in different
tempi and therefore have different lengths. For example, the shorter B;-section is
played faster than the Bj-section. As a result, the corresponding path does not run
exactly parallel to the main diagonal. The gradient of the path indicates the relative
tempo difference between the two related segments. Recall that we have discussed
a similar issue already in the music synchronization context, where we derived a
tempo curve from a warping path (see Section 3.3.2).

Looking at the other two self-similarity matrices the structures are not so clear.
The SSM of Figure 4.7c, which results from MFCC-based features, mainly pos-
sesses block-like structures. In particular, the C-part segment has a low similarity to
all other segments, which indicates a difference in timbre or instrumentation. Now,
let us have a look at the tempogram-based SSM shown in Figure 4.7d. Again the
C-part segment stands out, thus emphasizing its contrasting role. Furthermore, the
SSM indicates the many tempo changes occurring in this music recording. In sum-
mary, the musical structure of the Brahms example can be best explained by the
repetitive structure of the chroma-based SSM. Since this is the case with many mu-
sical works, in particular for melodic and harmonic Western music, we will mainly
focus on this type of SSM in the subsequent sections.

We now formalize the concept of paths and blocks (see Figure 4.8). Let X =
(x1,x2,...,xn) be a feature sequence and S the resulting self-similarity matrix. We
formally define a segment to be a set o = [s:¢] C [l : N] specified by its starting
point s and its end point 7 (given in terms of feature indices). Let

lal:=t—s+1 (4.4)
denote the length of o. Next, a path over « of length L is a sequence
P=((n1,m),...,(nL,mg)) 4.5)

of cells (ng,my) € [1: N>, £ € [1 : L], satisfying m; = s and my, = (boundary condi-
tion) and (ngy1,mes1) — (ng,my) € X (step size condition), where X denotes a set of
admissible step sizes. Note that this definition is very similar to the one of a warp-
ing path (see Section 3.2.1.1). In the case of X = {(1, 1)}, one obtains paths that are
strictly diagonal. In the following, we typically use the set

I={(2,1),(1,2),(1, 1)}, (4.6)
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Fig. 4.8 Schematic view of self-similarity matrix with (a) a path and (b) a block.

which is the step size condition introduced in (3.30). For a path P, one can associate
two segments defined by the projections

m (P) = [n1 :nL] and 7(2(P) = [m1 :mL], “4.7)

respectively (see Figure 4.8a). The boundary condition enforces m,(P) = . The
other segment 7 (P) is referred to as the induced segment. The score 6 (P) of P is
defined as

M=

G(P) = S(ng,m@. (4.8)

(=1

Note that each path over the segment & encodes a relation between ¢ and an induced
segment, where the score o(P) yields a quality measure for this relation.
For blocks, we also introduce corresponding notions. A block over a segment
o = [s :1] is a subset
B=a' xaC[l:N]x[l:N] (4.9)

for some segment o’ = [s' : ¢']. Similar as for a path, we define the two projections
71 (B) = &’ and m(B) = « for the block B and call ' the induced segment (see
Figure 4.8b). Furthermore, we define the score of block B by

o(B)= Y S(nm). (4.10)

(n,m)eB

Based on paths and blocks, we can now consider different kinds of similarity
relations between segments. We say that a segment ¢ is path-similar to a segment
0y, if there is a path P of high score with 7 (P) = ; and m(P) = . Similarly,
o is block-similar to oy, if there is a block B of high score with 7 (B) = o and
m(B) = a. Obviously, in case that the similarity measure s is symmetric, both the
self-similarity matrix S and the above-defined similarity relations between segments
are symmetric as well. Another important property of a similarity relation is tran-
sitivity, i.e., if a segment ¢ is similar to a segment o and segment ¢ is similar



4.2 Self-Similarity Matrices 183

to a segment 03, then ¢ should also be similar to o (at least to a certain degree).
Also this property holds for path- and block-similarity in case that the similarity
measure s has this property. As a consequence, path and block structures often ap-
pear in groups that fulfill certain symmetry and transitivity properties—at least in
the ideal case. For example, if there is a block B = &’ x a of high score, then the
symmetry property implies that there is also a block a x @’ of high score. Further-
more, if every frame belonging to @ is similar to every other frame of @, then also
the frames within the segments & and o’ are similar to each other. This leads to
additional blocks o x o and o x o’ (see Figure 4.8b). Figure 4.7 shows that such
groups of similarity relations also appear in “real” SSMs.

Most computational approaches to music structure analysis exploit path- and
block-like structures of SSMs in one way or another, and the overall algorithmic
pipelines typically contain the following general steps:

1. The music signal is transformed into a suitable feature sequence.

2. A self-similarity matrix is computed from the feature sequence based on a simi-
larity measure.

3. Blocks and paths of high overall score are derived from the SSM. Each block or
path defines a pair of similar segments.

4. Entire groups of mutually similar segments are formed from the pairwise rela-
tions by applying a clustering step.

The last step can be considered as forming a kind of transitive closure of the pairwise
segment relations induced by block and path structures. For example, in the case
of Brahms’ Hungarian Dance No. 5 (see Figure 4.7), the objective of the last step
would be to find one group that contains all A-part segments and another group that
contains all B-part segments.

In practice, this general processing pipeline leaves a lot of freedom and needs to
be adjusted to account for particular properties of the underlying type of music and
the requirements of the intended application. Furthermore, as mentioned before, ma-
jor challenges arise from the fact that musical parts are rarely repeated in precisely
the same way. Instead, audio segments that are considered as repetitions may differ
significantly in aspects such as dynamics, orchestration, articulation, tempo, har-
mony, melody, or any combination of these. As a result, structure analysis becomes
a hard and often ill-posed task. In particular, musical and acoustic variations may
cause significant deteriorations in the path and block structures and their induced re-
lations. This makes both steps, i.e., the block and path extraction step as well as the
grouping step, error-prone and fragile. In the following, we discuss various strate-
gies to cope with such challenges, e.g., by enhancing structural properties of SSMs
(Section 4.2.2) or by jointly performing the two error-prone steps of path extraction
and grouping within a joint optimization scheme (Section 4.3).
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Fig. 4.9 Overview of the similarity matrix computation.

4.2.2 Enhancement Strategies

In this section, we describe various strategies for enhancing structural properties
of self-similarity matrices (see Figure 4.9 for an overview). In particular, we focus
on augmenting path-like structures, which play a central role in repetition-based
structure analysis. Even though all the enhancement strategies are described for self-
similarity matrices, similar strategies can be applied for more general similarity or
cost matrices.

4.2.2.1 Feature Representation

In the first step, the given waveform-based audio recording is transformed into a
suitable feature representation, which captures specific acoustic and musical prop-
erties. As we have already discussed in Section 4.2.1 and as illustrated by Figure 4.7,
the structural properties of an SSM decisively depend on the feature type used. For
example, MFCC-based and related spectral-based features may be suitable to cap-
ture aspects such as instrumentation and timbre. Other features based on onset infor-
mation or tempograms are used to capture beat, tempo, and rhythmic information.
In the following, we only consider the case of chroma-based audio features, which
relate to harmonic and melodic properties as discussed in Section 3.1.2.

By considering a family of modified chroma representations similar to the ones
used in Figure 3.9, we now demonstrate the influence of different parameter settings
on the properties of the resulting SSM. Starting with a chroma representation of a
given feature rate, this family comes along with two parameters: a length parameter
¢ € N (given in frames), which is used to smooth or average the feature values over
¢ consecutive frames, as well as a downsampling parameter d, which reduces the
feature rate by a factor of d. For a more detailed description of such a procedure, we
refer to Section 7.2.1 and Figure 7.10.
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Fig. 4.10 Various chroma representations and resulting SSMs for the Hungarian Dance No. 5 by
Johannes Brahms. (a) Usage of original normalized chroma features (10 Hz). (b) Applying ¢ = 40
and d = 10 (1 Hz). (¢) Applying ¢ = 160 and d = 20 (0.5 Hz). (d) Applying ¢ =480 and d = 50
(0.2 Hz).

As an example, we start with normalized chroma features with a feature rate of
10 Hz. Figure 4.10a shows the resulting SSM, which yields a very detailed descrip-
tion of repetitive structures. Even though the path structures that correspond to the
repeating A-part and B-part segments are visible, the SSM looks quite noisy and
many of the shown details are irrelevant when only the overall musical structure is
of interest.

Using a smoothing length of ¢ = 40 (corresponding to four seconds of audio)
and a downsampling by d = 10 (resulting in a feature rate of 1 Hz), one obtains the
SSM shown in Figure 4.10b. Many of the details have been smoothed out, and some
of the structurally relevant path and block structures have become more prominent.
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In particular, this holds for the paths that relate to the B-part segments. Moreover,
reducing the feature rate improves the computational efficiency for subsequent pro-
cessing steps.

Further increasing the smoothing length and reducing the feature rate results in
an emphasis of the rough harmonic content. In particular, neighboring elements
in the feature sequence come closer together, which leads to an enhancement of
block-like structures. For example, Figure 4.10c shows the SSM when using £ = 160
(16 seconds) and d = 20 (feature rate of 0.5 Hz) and Figure 4.10d the SSM using
¢ = 480 (48 seconds) and d = 50 (feature rate of 0.2 Hz). Using large smoothing
windows, relevant path structures may be smeared out and lost for the subsequent
steps. For other applications such as homogeneity-based structure analysis, however,
averaging over large windows may be beneficial.

In summary, this example shows the importance not only of the feature type but
also of the size of the analysis window and the feature rate. Knowing the temporal
level of the music processing task is of great help for choosing suitable parame-
ters. For example, for tasks such as extracting the musical structure from a given
audio recording, smoothing and downsampling already on the feature level can lead
to substantial improvements, not to speak of computational benefits in subsequent
analysis steps. In particular, running time and memory requirements are important
issues when employing concepts such as SSMs, which are quadratic in the length of
the input feature sequence. As already mentioned in Section 4.1.3, another impor-
tant strategy for adjusting and reducing the feature rate is based on adaptive win-
dowing, where the analysis windows are determined by previously extracted onset
and beat positions. This strategy will be discussed in more detail in Section 6.3.3.

4.2.2.2 Path Smoothing

We have seen that important structural elements of similarity matrices are paths of
high similarity that run parallel to the main diagonal. Even though it is often easy for
humans to recognize these structures, the automated extraction of paths constitutes
a difficult problem due to significant distortions that are caused by variations in
parameters such as dynamics, timbre, execution of note groups (e.g., grace notes,
trills, arpeggios), modulation, articulation, or tempo progression. As an example, let
us have a look at Figure 4.11a, which shows the SSM of a recording of the Waltz
No. 2 from Dimitri Shostakovich’s Suite for Variety Orchestra No. 1. This piece has
the (rough) musical structure A1A>,BC1C2A3A4D, where the theme, represented by
the A-part, appears four times. However, there are significant variations in the four
A-parts concerning instrumentation, articulation, as well as dynamics. For example,
in A; the theme is played by a clarinet, in A, by strings, in Az by a trombone,
and in A4 by the full orchestra. As is illustrated by Figure 4.11a, these variations
result in a rather poor and fragmented path structure. This makes it hard to identify
the musically similar segments o = [4:40], ap = [43: 78], oz = [145: 179], and
oy = [182:217] corresponding to Ay, Aa, A3, and Ay, respectively. In particular, as
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Fig. 4.11 Variants of SSMs for a recording of the Waltz No. 2 from Dimitri Shostakovich’s Suite
for Variety Orchestra No. 1. (a) Original SSM using chroma features (resolution of 1 Hz). (b) En-
largement of the submatrix indicated by the rectangular frame in (a). The path corresponding to
segments ¢ (part Aj) and a3 (part A3) is highlighted by the oval. (¢) SSM after applying diagonal
smoothing. (d) Enlargement of the submatrix indicated by the rectangular frame in (c).

can be seen in the enlargement shown in Figure 4.11b, the path corresponding to the
segments ¢ and 03 is quite problematic.

To some extent, as we have seen above, structural properties of the SSM may be
augmented by using longer analysis windows in the feature computation step. This,
however, may also smooth out important details. As an alternative, we now show
how to enhance the path structure of an SSM by applying image processing tech-
niques. Recall that the relevant paths run along the direction of the main diagonal
in the case that repeating parts are played in the same tempo. Therefore, in order
to augment such paths, the general idea is to apply an averaging filter (or low-pass
filter) in the direction of the main diagonal, which results in an emphasis of diagonal
information and a softening of other, nondiagonal structures.

We now give a mathematical description of this procedure. Let S be an SSM
of size N x N and let L € N be a length parameter. Then we define the smoothed
self-similarity matrix Sy by setting
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Fig. 4.12 Variants of SSMs for the Hungarian Dance No. 5 by Johannes Brahms. The path cor-
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features (resolution of 2 Hz). (b) SSM after applying diagonal smoothing. (¢) SSM after applying
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L—-1
Sr(n,m) = % Y S(n+t,m+10) 4.11)
(=0

forn,m € [1 : N— L+ 1]. In other words, the value Sy (n,m) is obtained by averaging
the similarity values of two subsequences of length L, one starting at index n and
the other at index m. By suitably extending S (e.g., by zero-padding where zero
columns and rows are added), we may assume in the following that Sz (n,m) is
defined for n,m € [1 : N].

The averaging procedure results in a smoothing effect along the main di-
agonal, which is also illustrated by our Shostakovich example of Figure 4.11.
Using the length parameter L = 10, the resulting self-similarity matrix S
(Figure 4.11c¢) reveals the desired path structure much better than the original ma-
trix S (Figure 4.11a). For example, the enhanced path highlighted in Figure 4.11d
reveals the relation between the segments ¢ and oz much better than before (see
Figure 4.11b).
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A simple filtering along the main diagonal only works well if there are no relative
tempo differences between the segments to be compared. However, this assumption
is violated when a part is repeated with a faster or slower tempo. We have seen such a
case in our Brahms example from Figure 4.7, where the shorter B;-section is played
much faster than the Bj-section. It is only the beginning of the B,-section that is
played much faster than the beginning of the B;-section, whereas the two sections
have roughly the same tempo towards the end of the part. This results in a path that
does not run exactly parallel to the main diagonal (in particular at the beginning), so
that applying an averaging filter in the direction of the main diagonal destroys some
of the path structure (see Figure 4.12b). To deal with such relative tempo differ-
ences, one idea is to apply a multiple filtering approach, where the SSM is smoothed
along various directions that lie in a neighborhood of the direction defined by the
main diagonal. Each such direction corresponds to a tempo difference and results in
a separate filtered matrix. The final self-similarity matrix is obtained by taking the
cell-wise maximum over all these matrices. In this way, the path structure is also
enhanced in the presence of local tempo variations as illustrated in Figure 4.12c.

To better understand the details of this procedure, first assume that we have two
repeating segments o and oy played at the same tempo. Then the direction of the
resulting path is given by the gradient (1,1). Next, assume that the second segment
o, is played at half the tempo compared with ;. Then the direction of the resulting
path is given by the gradient (1,2). In general, if the tempo difference between
the two segments is given by a real number 8 > 0 (the second segment played 6
times slower than the first one), the resulting gradient is (1,0). We define the self-
similarity matrix smoothed in the direction of (1,6) by

L—1
Sr.0(n,m) := % Y S(n+t,m+[t-6)), (4.12)
(=0

where [¢- 6] denotes the integer closest to the real number ¢- 0. Again, by suitably
zero-padding the matrix S, we may assume that S; g is defined for n,m € [1: N].
Now, in practice, one does not know the local tempo difference that may occur in
a given music recording. Also, the relative tempo difference between two repeating
sections may change over time (as is the case with our Brahms example). Therefore,
the idea is to consider a (finite) set ® consisting of tempo parameters 6 € © for
different relative tempo differences. Then, we compute for each such 6 a matrix
S; . and obtain a final matrix S; g by a cell-wise maximization over all 6 € ©:

Sie(n,m) := maxS; g(n,m). (4.13)
CISIO

In practice, one can use prior information on the expected relative tempo differ-
ences to determine the set ®. For example, it rarely happens that the relative
tempo difference between repeating segments is larger than 50 percent, so that @
can be chosen to cover tempo variations of roughly —50 to 450 percent. Further-
more, in practice, the tempo range can be covered well by considering only a rel-
atively small number of tempo parameters. For example, a typical choice could be
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© = {0.66,0.81,1.00,1.22,1.50} (see Exercise 4.4). Note that choosing ® = {1}
reduces to the case Sy ¢ = Sy.

This smoothing procedure works in the forward direction, which results in a fad-
ing out of the paths, particularly when using a large length parameter. To avoid
this fading out, one idea is to additionally apply the averaging filter in a back-
ward direction. The final self-similarity matrix is then obtained by taking the cell-
wise maximum over the forward-smoothed and backward-smoothed matrices (see
Exercise 4.2). The effect is illustrated in Figure 4.12d by means of the Brahms ex-
ample.

4.2.2.3 Transposition Invariance

It is often the case that certain musical parts are repeated in a transposed form, where
the melody is moved up or down in pitch by a constant interval. As an example,
let us consider the song “In the year 2525 by Zager and Evans, which has the
musical structure V1 V,V3V4VsVeV7BV3O. The song starts with a slow intro, which
is represented by the I-part. The verse of the song, which is represented by the
V-part, is repeated eight times. While the first four verse sections are in the same
musical key, V5 and Vg are transposed by one semitone upwards, and V7 and Vg are
transposed by two semitones upwards. Figure 4.13b shows a path-enhanced version
of the resulting self-similarity matrix based on some chroma feature representation.
This matrix shows path structures that relate the first four V-sections with each
other as well as V5 with Vg and V; with Vg. Because of the transpositions, however,
the relation between the first four sections and the last four sections is not reflected
in the SSM.

In the following, we show how repetitive structures can be made visible in
the SSM even in the presence of key transpositions. We have already seen in
Section 3.1.2 that such transpositions can be simulated by cyclically shifting chroma
features. Mathematically, we modeled such shifts by the cyclic shift operator p :
R!2 — R!? defined in (3.11). Now, let X = (x1,x2,...,xy) be the chroma feature
sequence. We then define the i-transposed self-similarity matrix p’(S) by

P (S)(n,m) := s(p"(xn),%m) (4.14)

for n,m € [1 : N] and i € Z. Obviously, one has p'?(S) = S. Intuitively, p’(S) de-
scribes the similarity relations between the original music recording (represented
by X = (x1,x2,...,xy)) and the music recording transposed by i semitones up-
wards (represented by p'(X) = (p’(x1),p"(x2),...,p (xn))). Since one does not
know in general the kind of transpositions occurring in the music recording, we
apply a similar strategy as before when dealing with relative tempo deviations. Tak-
ing a cell-wise maximum over the twelve different cyclic shifts, we obtain a single
transposition-invariant self-similarity matrix S™! defined by

S™(n,m) := max p'(S)(n,m). (4.15)
i€[0:11]



4.2 Self-Similarity Matrices

-0 (xw))

G(X)=(o(x1),0(x2),...

9|

o AL vs vl 8 [

I |vi|vz|va|va||vs|ve|vr| B |vs|o]

1 [vi{v2[vs]va][vs]ve vz B [vso

X= xw)

(X122,

[ ‘1‘v2‘v3|v4H5‘vsHv7‘ 8 [vsfo

L T

0.8
08
07
08
05
0.4
03
02
0.1

‘:UZ(IN))

(0'2()?1),0'2()(2),..

o*(X)

(w0

[0t [ve | va |wa [ s e | e |

i
4

v

F 4

s
P

r
7

1 vi[vz[vs]va][vs|ve] v7] B va[o]

X= (xl,xz,...,xN)

(d)

1 [vi]v2[vs]va][vs]ve vz B [vso

X = (x1,%2,..,N)

‘V1‘V2‘V3‘V4HV5 N3 ‘V7

=

”‘f‘/

191

0.8
08
07
08
0.5

03

02
0.1
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Furthermore, we store the maximizing shift indices in an additional N-square matrix
I, which we refer to as the transposition index matrix:

I(n,m) := argmax p'(S) (n,m).

ic0:11]

(4.16)
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We illustrate the definitions by continuing the example shown in Figure 4.13 (see
Exercise 4.3). Recall from above that shifting the sections V; to V4 by one semitone
upwards makes them similar to the original sections Vs and V;. This fact is revealed
by the 1-transposed self-similarity matrix shown in Figure 4.13c. Similarly, shifting
the sections Vi to V4 by two semitones upwards makes them similar to the origi-
nal sections V7 and Vg (see Figure 4.13d). Putting together the information of all
i-transposed self-similarity matrices by the maximization in (4.15), one obtains the
transposition-invariant self-similarity matrix ST shown in Figure 4.13e, where all
pairwise similarity relations between the eight V-part segments become visible.

The resulting transposition index matrix is shown in Figure 4.13f in a color-coded
form. We first discuss the case that the matrix I assumes the value i = 0 (white color
in Figure 4.13f). The value i = 0 for a cell (n,m) indicates that s(p’(x,),x,,) assumes
a maximal value for i = 0. In other words, the chroma vector x,, is closer to x,, than
to any other shifted version of x,. Note, however, that this does not necessarily
mean that x,, is close to x, in absolute terms. As may be expected, the maximizing
index is i = 0 at all positions where the conventional self-similarity matrix shown in
Figure 4.13b reveals paths of low cost. Next, we consider the case that the matrix I
assumes the value i = 1 (black color in Figure 4.13f). The value i = 1 for a cell (n,m)
indicates that x,, becomes most similar to x,, when shifted one semitone upwards.
Thus the strong path relations shown in Figure 4.13c correspond to cells assuming
the value i = 1, and so on.

At this point, we want to note that introducing transposition invariance by cell-
wise maximization over several matrices may increase the noise level in the resulting
similarity matrix. Therefore, the transposition-invariant matrix should be computed
on the basis of smoothed matrices, since the smoothing typically goes along with
a suppression of unwanted noise. The definitions in (4.14) and (4.15) can be easily
combined with the averaging approaches described by (4.11) and (4.12) to yield
matrices p; (S) and S}'g. Such matrices are shown in Figure 4.13.

4.2.2.4 Thresholding

In many music analysis applications, self-similarity matrices are further processed
by suppressing all values that fall below a given threshold. On the one hand, such
a step often leads to a substantial reduction of unwanted noise-like components
while leaving only the most significant structures. On the other hand, weaker but
still relevant information may be lost. The thresholding strategy used may have a
significant impact on the final result and has to be carefully chosen in the context of
the considered application. Figure 4.14 shows some examples obtained by different
thresholding settings as explained below.

The simplest strategy is to apply global thresholding, where all values S(n,m)
of a similarity matrix S below a given threshold parameter 7 > 0 are set to zero:

__[S(n,m) ifS(n,m)>r,
Sz (n,m) = {0, otherwise. @17
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Fig. 4.14 Thresholding strategies applied to an SSM for the Hungarian Dance No. 5 by Johannes
Brahms. (a) SSM from Figure 4.12d. (b) SSM after thresholding and binarization (7 = 0.75).
(c) SSM after thresholding and scaling (p = 0.2). (d) SSM after thresholding and scaling (p =
0.05).

Also, binarization of the similarity matrix can be applied by setting all values above
or equal to the threshold to one and all others to zero. Instead of binarization, one
may perform a scaling where the range |7, i] is linearly scaled to [0, 1] in the case
that  := max, ,,{S(n,m)} > 7, otherwise all entries are set to zero. Sometimes it
may be beneficial to introduce an additional penalty parameter 6 < 0, setting all
original values below the threshold to the value J (see Section 4.3 for an application
of this variant).

The global threshold 7 can also be chosen in a relative fashion by keeping p -
100% of the cells with the highest values using a relative threshold parameter p €
[0,1]. Finally, thresholding can also be performed using a more local strategy by
thresholding in a column- and rowwise fashion. To this end, for each cell (n,m), the
value S(n,m) is kept if it is among the p - 100% of the largest cells in row n and at
the same time among the p - 100% of the largest cells in column m, all other values
being set to zero (see Exercise 4.5). As said before, the suitability of a thresholding
setting depends on the respective music material and the application in mind. Often,
suitable thresholds are learned and optimized using supervised learning procedures.
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Fig. 4.15 Variants of similarity matrices for the same audio recording. (a) Original SSM using
chroma features of 2 Hz resolution. (b) SSM after applying diagonal smoothing. (¢) SSM af-
ter applying tempo-invariant and forward—backward smoothing. (d) Transposition-invariant SSM.
(e) Transposition index matrix. (f) SSM after thresholding with penalty and scaling (p = 0.2,
6 =-2).

To conclude this section, Figure 4.15 summarizes the various enhancement and
processing steps applied to a music recording having the musical structure AjA; BA3.
In this example, A, is a modulation of A; transposed by one semitone upwards,
whereas A3 is a repetition of Ay, however played much faster. Figure 4.15 shows
a typical processing pipeline for computing an SSM as used in structure analysis
applications. First, the music recording is converted into a sequence of normal-
ized and smoothed chroma features as in Figure 3.9. Then, based on the similar-
ity measure (4.3), an enhanced transposition-invariant self-similarity matrix SE@ is
computed (see Figure 4.15d). In the next step, global thresholding is applied using
a threshold parameter T and a penalty parameter 8. Furthermore, the range [7,1]
is linearly scaled to [0,1]. As a result, the relevant path structure tends to lie in
the positive part of the resulting SSM, whereas all other cells are given a negative
score. Finally, setting S(n,n) = 1 for n € [1 : N], one can introduce a normalization
property, which may have been lost in the smoothing process due to boundary ef-
fects. The SSM shown in Figure 4.15f is obtained in this way using a feature rate
of 2 Hz. Settings for the enhancement are L = 20 for the length parameter and
® ={0.50,0.63,0.79,1.26,1.59,2.00} for the set of relative tempo differences (see
Exercise 4.4). In this example, the threshold is chosen in a relative fashion by using
the relative threshold p = 0.2 and the penalty parameter is set to 6 = —2.
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