
Chapter 2
Fourier Analysis of Signals

As we have seen in the last chapter, music signals are generally complex sound

mixtures that consist of a multitude of different sound components. Because of this

complexity, the extraction of musically relevant information from a waveform con-

stitutes a difficult problem. A first step in better understanding a given signal is to

decompose it into building blocks that are more accessible for the subsequent pro-

cessing steps. In the case that these building blocks consist of sinusoidal functions,

such a process is also called Fourier analysis. Sinusoidal functions are special in

the sense that they possess an explicit physical meaning in terms of frequency. As

a consequence, the resulting decomposition unfolds the frequency spectrum of the

signal—similar to a prism that can be used to break light up into its constituent

spectral colors. The Fourier transform converts a signal that depends on time into

a representation that depends on frequency. Being one of the most important tools

in signal processing, we will encounter the Fourier transform in a variety of music

processing tasks.

In Section 2.1, we introduce the main ideas of the Fourier transform and sum-

marize the most important facts that are needed for understanding the subsequent

chapters of the book. Furthermore, we introduce the required mathematical notions.

A good understanding of Section 2.1 is essential for the various music processing

tasks to be discussed. In Section 2.2 to Section 2.5, we cover the Fourier transform

in greater mathematical depth. The reader who is mainly interested in the music

processing applications may skip these more technical sections on a first reading.

In Section 2.2, we take a closer look at signals and discuss their properties from

a more abstract perspective. In particular, we consider two classes of signals: ana-

log signals that give us the right physical interpretation and digital signals that

are needed for actual digital processing by computers. The different signal classes

lead to different versions of the Fourier transform, which we introduce with math-

� Springer International Publishing Switzerland 2015
M. Müller, Fundamentals of Music Processing,
DOI 10.1007/978-3-319-21945-5_2

39



40 2 Fourier Analysis of Signals

ematical rigor along with intuitive explanations and numerous illustrating exam-

ples (Section 2.3). In particular, we explain how the different versions are interre-

lated and how they can be approximated by means of the discrete Fourier transform

(DFT). The DFT can be computed efficiently by means of the fast Fourier transform

(FFT), which will be discussed in Section 2.4. Finally, we introduce the short-time

Fourier transform (STFT), which is a local variant of the Fourier transform yielding

a time–frequency representation of a signal (Section 2.5). By presenting this mate-

rial from a different perspective as typically encountered in an engineering course,

we hope to refine and sharpen the understanding of these important and beautiful

concepts.

2.1 The Fourier Transform in a Nutshell

Let us start with an audio signal that represents the sound of some music. For ex-

ample, let us analyze the sound of a single note played on a piano (see Figure 2.1a).

How can we find out which note has actually been played? Recall from Section 1.3.2

that the pitch of a musical tone is closely related to its fundamental frequency, the

frequency of the lowest partial of the sound. Therefore, we need to determine the

frequency content, the main periodic oscillations of the signal. Let us zoom into

the signal considering only a 10-ms section (see Figure 2.1b). The figure shows that

the signal behaves in a nearly periodic way within this section. In particular, one

can observe three main crests of a sinusoidal-like oscillation (see also Figure 2.1c).

Having approximately three oscillation cycles within a 10-ms section means that the

signal contains a frequency component of roughly 300 Hz.

The main idea of Fourier analysis is to compare the signal with sinusoids of

various1 frequencies ω ∈R (measured in Hz). Each such sinusoid or pure tone may

be thought of as a prototype oscillation. As a result, we obtain for each considered

frequency parameter ω ∈ R a magnitude coefficient dω ∈ R≥0 (along with a phase

coefficient ϕω ∈ R, the role of which is explained later). In the case that the coef-

ficient dω is large, there is a high similarity between the signal and the sinusoid of

frequency ω , and the signal contains a periodic oscillation at that frequency (see

Figure 2.1c). In the case that dω is small, the signal does not contain a periodic

component at that frequency (see Figure 2.1d).

Let us plot the coefficients dω over the various frequency parameters ω ∈R. This

yields a graph as shown in Figure 2.1f. In this graph, the highest value is assumed for

the frequency parameter ω = 262 Hz. By (1.1), this is roughly the center frequency

of the pitch p = 60 or the note C4. Indeed, this is exactly the note played in our

piano example. Furthermore, as illustrated by Figure 2.1e, one can also observe a

1 In the following, we also consider negative frequencies for mathematical reasons without explain-
ing this concept in more detail. In our musical context, negative frequencies are redundant (having
the same interpretation as positive frequencies), but simplify the mathematical formulation of the
Fourier transform.
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Fig. 2.1 (a) Waveform of a note C4 (261.6 Hz) played on a piano. (b) Zoom into a 10-ms section
starting at time position t = 1 sec. (c–e) Comparison of the waveform with sinusoids of various
frequencies ω . (f) Magnitude coefficients dω in dependence on the frequency ω .

high similarity between the signal and the sinusoid of frequency ω = 523 Hz. This

is roughly the frequency for the second partial of the tone C4.

With this example, we have already seen the main idea behind the Fourier trans-
form. The Fourier transform breaks up a signal into its frequency components. For

each frequency ω ∈ R, the Fourier transforms yields a coefficient dω (and a phase

ϕω ) that tells us to which extent the given signal matches a sinusoidal prototype

oscillation of that frequency.

One important property of the Fourier transform is that the original signal can be

reconstructed from the coefficients dω (along with the coefficients ϕω ). To this end,

one basically superimposes the sinusoids of all possible frequencies, each weighted

by the respective coefficient dω (and shifted by ϕω ). This weighted superposition is

also called the Fourier representation of the original signal. The original signal and

the Fourier transform contain the same amount of information. This information,

however, is represented in different ways. While the signal displays the information

across time, the Fourier transform displays the information across frequency. As

put by Hubbard [9], the signal tells us when certain notes are played in time, but

hides the information about frequencies. In contrast, the Fourier transform of music

displays which notes (frequencies) are played, but hides the information about when

the notes are played.

In the following sections, we take a more detailed look at the Fourier transform

and some of its main properties.
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2.1.1 Fourier Transform for Analog Signals

In Section 1.3.1, we saw that a signal or sound wave yields a function that assigns

to each point in time the deviation of the air pressure from the average air pressure

at a specific location. Let us consider the case of an analog signal, where both the

time as well as the amplitude (or deviation) are continuous, real-valued parameters.

In this case, a signal can be modeled as a function f : R→R, which assigns to each

time point t ∈R an amplitude value f (t) ∈R. Plotting the amplitude over time, one

obtains a graph of this function that corresponds to the waveform of the signal (see

Figure 1.17).

The term function may need some explanation. In mathematics, a function yields

a relation between a set of input elements and a set of output elements, where each

input element is related to exactly one output element. For example, a function can

be a polynomial f : R → R that assigns for each input element t ∈ R an output

element f (t) = t2 ∈ R. At this point, we want to emphasize that one needs to dif-

ferentiate between a function f and its output element f (t) (also referred to as the

value) at a particular input element t (also referred to as the argument). In other

words, mathematicians think of a function f in an abstract way, where the symbol

or physical meaning of the argument does not matter. As opposed to this, engineers

often like to emphasize the meaning of the input argument and loosely speak of a

function f (t), even though this is strictly speaking an output value. In this book, we

assume the viewpoint of a mathematician.

2.1.1.1 The Role of the Phase

After this side note, let us turn towards the spectral analysis of a given analog signal

f : R→R. As explained in our introductory example, we compare the signal f with

prototype oscillations that are given in the form of sinusoids. In Section 1.3.2 and

Figure 1.19, we have already encountered such sinusoidal signals. Mathematically,

a sinusoid is a function g : R→ R defined by

g(t) := Asin(2π(ωt −ϕ)) (2.1)

for t ∈ R. The parameter A corresponds to the amplitude, the parameter ω to the

frequency (measured in Hz), and the parameter ϕ to the phase (measured in nor-

malized radians with 1 corresponding to an angle of 360◦). In Fourier analysis, we

consider prototype oscillations that are normalized with regard to their power (av-

erage energy) by setting A =
√

2. Thus for each frequency parameter ω and phase

parameter ϕ we obtain a sinusoid cosω,ϕ : R→ R given by

cosω,ϕ(t) :=
√

2cos(2π(ωt −ϕ)) (2.2)
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Fig. 2.2 (a–d) Waveform and different sinusoids of a fixed frequency ω = 262 Hz but different
phases ϕ ∈ {0.05,0.24,0.45,0.6}. (e) Values that express the degree of similarity between the
waveform and the four different sinusoids.

for t ∈ R. Since the cosine function is periodic, the parameters ϕ and ϕ + k for

integers k ∈ Z yield the same function. Therefore, the phase parameter only needs

to be considered for ϕ ∈ [0,1).
When measuring how well the given signal coincides with a sinusoid of fre-

quency ω , we have the freedom of shifting the sinusoid in time. This degree of

freedom is expressed by the phase parameter ϕ . As illustrated by Figure 2.2, the

degree of similarity between the signal and the sinusoid of fixed frequency crucially

depends on the phase. What have we done with the phase when computing the coef-

ficients dω as illustrated by Figure 2.1? The procedure outlined in the introduction

was only half the story. When comparing the signal f with a sinusoid cosω,ϕ of

frequency ω , we have implicitly used the phase ϕω that yields the maximal possi-

ble similarity. To understand this better, we first need to explain how we actually

compare the signal and a sinusoid or, more generally, how we compare two given

functions.

2.1.1.2 Computing Similarity with Integrals

Let us assume that we are given two functions of time f : R → R and g : R → R.

What does it mean for f and g to be similar? Intuitively, one may agree that f and g
are similar if they show a similar behavior over time: if f assumes positive values,

then so should g, and if f becomes negative, the same should happen to g. The joint

behavior of these functions can be captured by forming the integral of the product

of the two functions: ∫
t∈R

f (t) ·g(t)dt. (2.3)
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Fig. 2.3 Measuring the similarity of two functions f (top) and g (middle) by computing the integral
of the product (bottom). (a) Two functions having high similarity. (b) Two functions having low
similarity.

The integral measures the area delimited by the graph of the product f ·g, where the

negative area (below the horizontal axis) is subtracted from the positive area (above

the horizontal axis) (see Figure 2.3). In the case that f and g are either both posi-

tive or both negative at most time instances, the product is positive for most of the

time and the integral becomes large (see Figure 2.3a). However, if the two functions

are dissimilar, then the overall positive and the overall negative areas cancel out,

yielding a small overall integral (see Figure 2.3b). Further examples are discussed

in Exercise 2.1.

There are many more ways for comparing two given signals. For example, the

integral of the absolute difference between the functions also yields a notion of how

similar the signals are. In the formulation of the Fourier transform, however, one

encounters the measure as considered in (2.3), which generalizes the inner product
known from linear algebra (see 2.37). We continue this discussion in Section 2.2.3.

2.1.1.3 First Definition of the Fourier Transform

Based on the similarity measure (2.3), we compare the original signal f with sinu-

soids g = cosω,ϕ as defined in (2.2). For a fixed frequency ω ∈ R, we define

dω := max
ϕ∈[0,1)

(∫
t∈R

f (t)cosω,ϕ(t)dt
)
, (2.4)

ϕω := argmax
ϕ∈[0,1)

(∫
t∈R

f (t)cosω,ϕ(t)dt
)
. (2.5)

As previously discussed, the magnitude coefficient dω expresses the intensity of

frequency ω within the signal f . Additionally, the phase coefficient ϕω ∈ [0,1) tells
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Fig. 2.4 (a) Polar coordinate representation of a complex number c = a+ ib. (b) Definition of the
exponential function.

us how the sinusoid of frequency ω needs to be displaced in time to best fit the signal

f . The Fourier transform of a function f : R→ R is defined to be the “collection”

of all coefficients dω and ϕω for ω ∈ R. Shortly, we will state this definition in a

more formal way.

The computation of dω and ϕω feels a bit awkward, since it involves an opti-

mization step. The good news is that there is a simple solution to this optimization

problem, which results from the existence of certain trigonometric identities that

relate phases and amplitudes of certain sinusoidal functions. Using the concept of

complex numbers, these trigonometric identities become simple and lead to an ele-

gant formulation of the Fourier transform. We discuss such issues in more detail in

Section 2.3. In the following, we introduce the standard complex-valued formula-

tion of the Fourier transform without giving any proofs.

2.1.1.4 Complex Numbers

Let us first review the concept of complex numbers. The complex numbers extend

the real numbers by introducing the imaginary number i :=
√
−1 with the property

i2 =−1. Each complex number can be written as c = a+ ib, where a ∈R is the real

part and b ∈ R the imaginary part of c. The set of all complex numbers is written as

C, which can be thought of as a two-dimensional plane: the horizontal dimension

corresponds to the real part, and the vertical dimension to the imaginary part. In

this plane, the number c = a+ ib is specified by the Cartesian coordinates (a,b). As

illustrated by Figure 2.4a, there is another way of representing a complex number,

which is known as the polar coordinate representation. In this case, a complex

number c is described by its absolute value |c| (distance from the origin) and the

angle γ between the positive horizontal axis and the line from the origin and c. The

polar coordinates |c| ∈ R≥0 and γ ∈ [0,2π) (given in radians) can be derived from

the coordinates (a,b) via the following formulas:
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|c| :=
√

a2 +b2, (2.6)

γ := atan2(b,a). (2.7)

Further details on polar coordinates and the function atan2, which is a variant of

the inverse of the tangent function, are explained in Section 2.3.2.2. To regain the

complex number c from its polar coordinates, one uses the exponential function,

which maps an angle γ ∈ R (given in radians) to a complex number defined by

exp(iγ) := cos(γ)+ isin(γ) (2.8)

(see also Figure 2.4b). The values of this function turn around the unit circle of the

complex plane with a period of 2π (see Section 2.3.2.1). From this, we obtain the

following polar coordinate representation for a complex number c:

c = |c| · exp(iγ). (2.9)

2.1.1.5 Complex Definition of the Fourier Transform

What have we gained by bringing complex numbers into play? Recall that we

have obtained a positive coefficient dω ∈ R≥0 from (2.4) and a phase coefficient

ϕω ∈ [0,1) from (2.5). The basic idea is to use these coefficients as polar coordi-

nates and to encode both coefficients by a single complex number. Because of some

technical reasons (a normalization issue that becomes clearer when discussing the

mathematical details), one introduces some additional factors and a sign in the phase

to yield the complex coefficient

cω :=
dω√

2
· exp(2πi(−ϕω)). (2.10)

This complex formulation directly leads us to the Fourier transform of a real-valued

function f : R→ R. For each frequency ω ∈ R, we obtain a complex-valued coef-

ficient cω ∈ C as defined by (2.4), (2.5), and (2.10). This collection of coefficients

can be encoded by a complex-valued function f̂ : R → C (called “ f hat”), which

assigns to each frequency parameter the coefficient cω :

f̂ (ω) := cω . (2.11)

The function f̂ is referred to as the Fourier transform of f , and its values f̂ (ω) =
cω are called the Fourier coefficients. One main result in Fourier analysis is that

the Fourier transform can be computed via the following compact formula:

f̂ (ω) =
∫

t∈R
f (t)exp(−2πiωt)dt (2.12)

=
∫

t∈R
f (t)cos(−2πωt)dt + i

∫
t∈R

f (t)sin(−2πωt)dt. (2.13)
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In other words, the real part of the complex coefficient f̂ (ω) is obtained by compar-

ing the original signal f with a cosine function of frequency ω , and the imaginary

part is obtained by comparing with a sine function of frequency ω . The absolute

value | f̂ (ω)| is also called the magnitude of the Fourier coefficient. Similarly, the

real-valued function | f̂ | : R→ R, which assigns to each frequency parameter ω the

magnitude | f̂ (ω)|, is called the magnitude Fourier transform of f .

In the standard literature on signal processing, the formula (2.12) is often used to

define the Fourier transform f̂ and, then, the physical interpretation of the Fourier

coefficients is discussed. In particular, the real-valued coefficients dω in (2.4) and

ϕω in (2.5) can be derived from f̂ (ω). Using (2.10), one obtains

dω =
√

2| f̂ (ω)|, (2.14)

ϕω = − γω

2π
, (2.15)

where | f̂ (ω)| and γω are the polar coordinates of f̂ (ω).

2.1.1.6 Fourier Representation

As mentioned above, the original signal f can be reconstructed from its Fourier

transform. In principle, the reconstruction is straightforward: one superimposes the

sinusoids of all possible frequency parameters ω ∈R, each weighted by the respec-

tive coefficient dω and shifted by ϕω . Both kinds of information are encoded in the

complex Fourier coefficient cω . In the analog case considered so far, we are deal-

ing with a continuum of frequency parameters, where the superposition becomes an

integration over the parameter space. The reconstruction is given by the formulas

f (t) =
∫

ω∈R≥0

dω
√

2cos(2π(ωt −ϕω))dω (2.16)

=
∫

ω∈R
cω exp(2πiωt)dω, (2.17)

first given in the real-valued formulation, and then given in the complex-valued

formulation with cω = f̂ (ω). As said before, the representation of a signal in terms

of a weighted superposition of sinusoidal prototype oscillations is also called the

Fourier representation of the signal. Notice that the formula (2.12) for the Fourier

transform and the formula (2.17) for the Fourier representation are nearly identical.

The main difference is that the roles of the time parameter t and frequency parameter

ω are interchanged. The beautiful relationship between these two formulas will be

further discussed in later sections of this chapter.
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Fig. 2.5 Waveform and magnitude Fourier transform of a tone C4 (261.6 Hz) played by different
instruments (see also Figure 1.23). (a) Piano. (b) Trumpet. (c) Violin. (d) Flute.

2.1.2 Examples

Let us consider some examples including the one introduced in Figure 2.1.

Figure 2.5 shows the waveform and the magnitude Fourier transform for some audio

signals, where a single note C4 is played on different instruments: a piano, a trum-

pet, a violin, and a flute. We have already encountered this example in Figure 1.23

of Section 1.3.4, where we discussed the aspect of timbre. Recall that the existence

of certain partials and their relative strengths have a crucial influence on the timbre

of a musical tone. In the case of the piano tone (Figure 2.5a), the Fourier transform

has a sharp peak at 262 Hz, which reveals that most of the signal’s energy is con-

tained in the first partial or the fundamental frequency of the note C4. Further peaks

(also beyond the shown frequency range from 0 to 1000 Hz) can be found at integer

multiples of the fundamental frequency corresponding to the higher partials.

Figure 2.5b shows that the same note played on a trumpet results in a similar

frequency spectrum, where the peaks appear again at integer multiples of the fun-

damental frequency. However, most of the energy is now contained in the third par-

tial, and the relative heights of the peaks are different compared with the piano.

This is one reason why a trumpet sounds different from a piano. For a violin, as

shown by Figure 2.5c, most energy is again contained in the first partial. Observe

that the peaks are blurred in frequency, which is the result of the vibrato (see also

Figure 1.23b). The time-dependent frequency modulations of the vibrato are aver-
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Fig. 2.6 Missing time information of the Fourier transform illustrated by two different signals and
their magnitude Fourier transforms. (a) Two subsequent sinusoids of frequency 1 Hz and 5 Hz.
(b) Superposition of the same sinusoids.

aged by the Fourier transform. This yields a single coefficient for each frequency

independent of spectro-temporal fluctuations. A similar explanation holds for the

flute tone shown in Figure 2.5d.

We have seen that the magnitude of the Fourier transform tells us about the sig-

nal’s overall frequency content, but it does not tell us at which time the frequency

content occurs. Figure 2.6 illustrates this fact, showing the waveform and the mag-

nitude Fourier transform for two signals. The first signal consists of two parts with

a sinusoid of ω = 1 Hz and amplitude A = 1 in the first part and a sinusoid of

ω = 5 Hz and amplitude A = 0.7 in the second part. Furthermore, the signal is zero

outside the interval [0,10]. In contrast, the second signal is a superposition of these

two sinusoids, being zero outside the interval [0,5]. Even though the two signals

are different in nature, the resulting magnitude Fourier transforms are more or less

the same. This demonstrates the drawbacks of the Fourier transform when analyz-

ing signals with changing characteristics over time. In Section 2.1.4 and Section 2.5

we discuss a short-time version of the Fourier transform, where time information

is recovered at least to some degree. Besides the two peaks, one can observe in

Figure 2.6 a large number of small “ripples.” Such phenomena as well as further

properties of the Fourier transform are discussed in Section 2.3.3.

2.1.3 Discrete Fourier Transform

When using digital technology, only a finite number of parameters can be stored

and processed. To this end, analog signals need to be converted into finite

representations—a process commonly referred to as digitization. One step that is

often applied in an analog-to-digital conversion is known as equidistant sampling.

Given an analog signal f : R→ R and a positive real number T > 0, one defines a

function x : Z→ R by setting
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Fig. 2.7 Illustration of the
sampling process using a
sampling rate of Fs = 32. The
waveforms of the analog sig-
nals are shown as curves and
the sampled versions as stem
plots. (a) Signal f . (b) Sinu-
soid cosω,ϕ with ω = 2 and
ϕ = 0. (c) Product f · cosω,ϕ
and its area. (d) Approxi-
mation of the integral by a
Riemann sum obtained from
the sampled version.
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x(n) := f (n ·T ). (2.18)

Since x is only defined on a discrete set of time points, it is also referred to as a

discrete-time (DT) signal (see Section 2.2.2.1). The value x(n) is called a sample
taken at time t = n ·T of the original analog signal f . This procedure is also known

as T -sampling, where the number T is referred to as the sampling period. The

inverse

Fs := 1/T (2.19)

of the sampling period is also called the sampling rate of the process. It specifies

the number of samples per second and is measured in Hertz (Hz). Figure 2.7a shows

an example of sampling an analog signal using Fs = 32 Hz.

In general, one loses information in the sampling process. The famous sampling
theorem says that the original analog signal f can be reconstructed perfectly from

its sampled version x, if f does not contain any frequencies higher than

Ω := Fs/2 = 1/(2T ) Hz. (2.20)

In this case, we also say that f is an Ω -bandlimited signal, where the frequency Ω
is known as the Nyquist frequency. In the case that f contains higher frequencies,

sampling may cause artifacts referred to as aliasing (see Section 2.2.2 for details).

The sampling theorem will be further discussed in Exercise 2.28.

In the following, we assume that the analog signal f satisfies suitable require-

ments so that the sampled signal x does not contain major artifacts. Now, having a

discrete number of samples to represent our signal, how do we calculate the Fourier

transform? Recall that the idea of the Fourier transform is to compare the signal

with a sinusoidal prototype oscillation by computing the integral over the point-
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wise product (see (2.12)). Therefore, in the digital domain, it seems reasonable to

sample the sinusoidal prototype oscillation in the same fashion as the signal (see

Figure 2.7b). By multiplying the two sampled functions in a pointwise fashion, we

obtain a sampled product (see Figure 2.7c). Finally, integration in the analog case

becomes summation in the discrete case, where the summands need to be weighted

by the sampling period T . As a result, one obtains the following approximation:

∑
n∈Z

T f (nT )exp(−2πiωnT )≈ f̂ (ω). (2.21)

In mathematical terms, the sum can be interpreted as the overall area of rectangular

shapes that approximates the area corresponding to the integral (see Figure 2.7d).

Such an approximation is also known as a Riemann sum. As we will show in

Section 2.3.4, the quality of the approximation is good for “well-behaved” signals

f and “small” frequency parameters ω .

One defines a discrete version of the Fourier transform for a given DT-signal

x : Z→ R by setting

x̂(ω) := ∑
n∈Z

x(n)exp(−2πiωn). (2.22)

In this definition, where a simple 1-sampling (i.e., T -sampling with T = 1) of the

exponential function is used, one does not assume that one knows the relation be-

tween x and the original signal f . If one is interested in recovering the relation to

the Fourier transform f̂ , one needs to know the sampling period T . Based on (2.21),

an easy calculation shows that

x̂(ω)≈ 1

T
f̂
(ω

T

)
. (2.23)

In this approximation, the frequency parameter ω used for x̂ corresponds to the fre-

quency ω/T for f̂ . In particular, ω = 1/2 for x̂ corresponds to the Nyquist frequency

Ω = 1/(2T ) of the sampling process. Therefore, assuming that f is bandlimited by

Ω = 1/(2T ), one needs to consider only the frequencies with 0 ≤ ω ≤ 1/2 for x̂. In

the digital case, all other frequency parameters are redundant and yield meaningless

approximations.

For doing computations on digital machines, we still have some problems. One

problem is that the sum in (2.22) involves an infinite number of summands. Another

problem is that the frequency parameter ω is a continuous parameter. For both prob-

lems, there are some pragmatic solutions. Regarding the first problem, we assume

that most of the relevant information of f is limited to a certain duration in time.2

For example, a music recording of a song hardly lasts for more than ten minutes.

Having a finite duration means that the analog signal f is assumed to be zero outside

a compact interval. By possibly shifting the signal, we may assume that this interval

starts at time t = 0. This means that we only need to consider a finite number of

2 Strictly speaking, this assumption is problematic since it conflicts with the requirement of f
being bandlimited. A mathematical fact states that there are no functions that are both limited in
frequency (bandlimited) and limited in time (having finite duration).
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samples x(0),x(1), . . . ,x(N − 1) for some suitable number N ∈ N. As a result, the

sum in (2.22) becomes finite.

Regarding the second problem, one computes the Fourier transform only for a

finite number of frequencies. Similar to the sampling of the time axis, one typi-

cally samples the frequency axis by considering the frequencies ω = k/M for some

suitable M ∈ N and k ∈ [0 : M−1]. In practice, one often couples the number N
of samples and the number M that determines the frequency resolution by setting

N = M. Note that the two numbers N and M refer to different aspects. However,

the coupling is convenient. It not only makes the resulting transform invertible, but

also leads to a computationally efficient algorithm, as we will see in Section 2.4.3.

Setting X(k) := x̂(k/N) and assuming that x(0),x(1), . . . ,x(N − 1) are the relevant

samples (all others being zero), we obtain from (2.22) the formula

X(k) = x̂(k/N) =
N−1

∑
n=0

x(n)exp(−2πikn/N) (2.24)

for integers k ∈ [0 : M−1] = [0 : N −1]. This transform is also known as the dis-
crete Fourier transform (DFT), which is covered in Section 2.4.

Next, let us have a look at the frequency information supplied by the Fourier co-

efficient X(k). By (2.23) the frequency ω of x̂ corresponds to ω/T of f̂ . Therefore,

the index k of X(k) corresponds to the physical frequency

Fcoef(k) :=
k

N ·T =
k ·Fs

N
(2.25)

given in Hertz. As we will discuss in Section 2.4.4, the coefficients X(k) need to be

taken with care. First, the approximation quality in (2.23) may be rather poor, in par-

ticular for frequencies close to the Nyquist frequency. Second, for a real-valued sig-

nal x, the Fourier transform fulfills certain symmetry properties (see Exercise 2.24).

As a result, the upper half of the Fourier coefficients are redundant, and one only

needs to consider the coefficients X(k) for k ∈ [0 : �N/2�]. Note that, in the case of

an even number N, the index k = N/2 corresponds to Fcoef(k) = Fs/2, which is the

Nyquist frequency of the sampling process.

Finally, we consider some efficiency issues when computing the DFT. To com-

pute a single Fourier coefficient X(k), one requires a number of multiplications and

additions linear in N. Therefore, to compute all coefficients X(k) for k ∈ [0 : N/2]
one after another, one requires a number of operations on the order of N2. Despite

being a finite number of operations, such a computational approach is too slow for

many practical applications, in particular when N is large.

The number of operations can be reduced drastically by using an efficient algo-

rithm known as the fast Fourier transform (FFT). The FFT algorithm, which was

discovered by Gauss and Fourier two hundred years ago, has changed whole indus-

tries and is now being used in billions of telecommunication and other devices. The

FFT exploits redundancies across sinusoids of different frequencies to jointly com-

pute all Fourier coefficients by a recursion. This recursion works particularly well in

the case that N is a power of two. As a result, the FFT reduces the overall number of
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operations from the order of N2 to the order of N log2 N. The savings are enormous.

For example, using N = 210 = 1024, the FFT requires roughly N log2 N = 10240 in-

stead of N2 = 1048576 operations in the naive approach—a savings factor of about

100. In the case of N = 220, the savings amount to a factor of about 50000 (see

Exercise 2.6). In Section 2.4.3, we discuss the algorithmic details of the FFT.

2.1.4 Short-Time Fourier Transform

The Fourier transform yields frequency information that is averaged over the entire

time domain. However, the information on when these frequencies occur is hidden

in the transform. We have already seen this phenomenon in Figure 2.6a, where the

change in frequency is not revealed when looking at the magnitude of the Fourier

transform. To recover the hidden time information, Dennis Gabor introduced in the

year 1946 the short-time Fourier transform (STFT). Instead of considering the

entire signal, the main idea of the STFT is to consider only a small section of the

signal. To this end, one fixes a so-called window function, which is a function that

is nonzero for only a short period of time (defining the considered section). The

original signal is then multiplied with the window function to yield a windowed
signal. To obtain frequency information at different time instances, one shifts the

window function across time and computes a Fourier transform for each of the re-

sulting windowed signals.

This idea is illustrated by Figure 2.8, which continues our example from

Figure 2.6a. To obtain local sections of the original signal, one multiplies the sig-

nal with suitably shifted rectangular window functions. In Figure 2.8b, the resulting

local section only contains frequency content at 1 Hz, which leads to a single main

peak in the Fourier transform at ω = 1. Further shifting the time window to the right,

the resulting section contains 1 Hz as well as 5 Hz components (see Figure 2.8c).

These components are reflected by the two peaks at ω = 1 and ω = 5. Finally, the

section shown in Figure 2.8d only contains frequency content at 5 Hz.

Already at this point, we want to emphasize that the STFT reflects not only the

properties of the original signal but also those of the window function. First of all,

the STFT depends on the length of the window, which determines the size of the

section. Then, the STFT is influenced by the shape of the window function. For

example, the sharp edges of the rectangular window typically introduce “ripple”

artifacts. In Section 2.5.1, we discuss such issues in more detail. In particular, we

introduce more suitable, bell-shaped window functions, which typically reduce such

artifacts.

In Section 2.5, one finds a detailed treatment of the analog and discrete versions

of the STFT and their relationship. In the following, we only consider the discrete

case and specify the most important mathematical formulas as needed in practi-

cal applications. Let x : Z→ R be a real-valued DT-signal obtained by equidistant

sampling with respect to a fixed sampling rate Fs given in Hertz. Furthermore, let

w : [0 : N −1] → R be a sampled window function of length N ∈ N. For example,
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Fig. 2.8 Signal and Fourier transform consisting of two subsequent sinusoids of frequency 1 Hz
and 5 Hz (see Figure 2.6a). (a) Original signal. (b) Windowed signal centered at t = 3. (c) Win-
dowed signal centered at t = 5. (d) Windowed signal centered at t = 7.

in the case of a rectangular window one has w(n) = 1 for n ∈ [0 : N −1]. Implicitly,

one assumes that w(n) = 0 for all other time parameters n ∈ Z \ [0 : N −1] outside

this window. The length parameter N determines the duration of the considered sec-

tions, which amounts to N/Fs seconds. One also introduces an additional parameter

H ∈ N, which is referred to as the hop size. The hop size parameter is specified in

samples and determines the step size in which the window is to be shifted across the

signal.

With regard to these parameters, the discrete STFT X of the signal x is given by

X (m,k) :=
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (2.26)

with m ∈ Z and k ∈ [0 : K]. The number K = N/2 (assuming that N is even) is

the frequency index corresponding to the Nyquist frequency. The complex number

X (m,k) denotes the kth Fourier coefficient for the mth time frame. Note that for

each fixed time frame m, one obtains a spectral vector of size K + 1 given by the

coefficients X (m,k) for k ∈ [0 : K]. The computation of each such spectral vector

amounts to a DFT of size N as in (2.24), which can be done efficiently using the

FFT.
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What have we actually computed in (2.26) in relation to the original analog signal

f ? As for the temporal dimension, each Fourier coefficient X (m,k) is associated

with the physical time position

Tcoef(m) :=
m ·H

Fs
(2.27)

given in seconds. For example, for the smallest possible hop size H = 1, one obtains

Tcoef(m) = m/Fs = m · T sec. In this case, one obtains a spectral vector for each

sample of the DT-signal x, which results in a huge increase in data volume. Further-

more, considering sections that are only shifted by one sample generally yields very

similar spectral vectors. To reduce this type of redundancy, one typically relates the

hop size to the length N of the window. For example, one often chooses H = N/2,

which constitutes a good trade-off between a reasonable temporal resolution and

the data volume comprising all generated spectral coefficients. As for the frequency

dimension, we have seen in (2.25) that the index k of X (m,k) corresponds to the

physical frequency

Fcoef(k) :=
k ·Fs

N
(2.28)

given in Hertz.

Before we look at some concrete examples, we first introduce the concept of a

spectrogram, which we denote by Y . The spectrogram is a two-dimensional repre-

sentation of the squared magnitude of the STFT:

Y(m,k) := |X (m,k)|2. (2.29)

It can be visualized by means of a two-dimensional image, where the horizontal

axis represents time and the vertical axis represents frequency. In this image, the

spectrogram value Y(m,k) is represented by the intensity or color in the image at

the coordinate (m,k). Note that in the discrete case, the time axis is indexed by the

frame indices m and the frequency axis is indexed by the frequency indices k.

Continuing our running example from Figure 2.8, we now consider a sampled

version of the analog signal using a sampling rate of Fs = 32 Hz. Having a physical

duration of 10 sec, this results in 320 samples (see Figure 2.9a). Using a window

length of N = 64 samples and a hop size of H = 8 samples, we obtain the spectro-

gram as shown in Figure 2.9b. In the image, the shade of gray encodes the magnitude

of a spectral coefficient, where darker colors correspond to larger values. By (2.27),

the mth frame corresponds to the physical time Tcoef(m) = m/4 sec. In other words,

the STFT has a time resolution of four frames per second. Furthermore, by (2.28),

the kth Fourier coefficient corresponds to the physical frequency Fcoef(k) := k/2 Hz.

In other words, one obtains a frequency resolution of two coefficients per Hertz.

The plots of the waveform and the spectrogram with the physically correct time and

frequency axes are shown in Figure 2.9c and Figure 2.9d, respectively.

Let us consider some typical settings as encountered when processing music

signals. For example, in the case of CD recordings one has a sampling rate of

Fs = 44100 Hz. Using a window length of N = 4096 and a hop size of H = N/2,
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Fig. 2.9 DT-signal sampled with Fs = 32 Hz and STFT using a window length of N = 64 and a
hop size of H = 8. (a) DT-signal with time axis given in samples. (b) STFT with time axis given in
frames and frequency axis given in indices. (c) DT-signal with time axis given in seconds. (d) STFT
with time axis given in seconds and frequency axis given in Hertz.

this results in a time resolution of H/Fs ≈ 46.4 ms by (2.27) and a frequency res-

olution of Fs/N ≈ 10.8 Hz by (2.28). To obtain a better frequency resolution, one

may increase the window length N. This, however, leads to a poorer localization in

time so that the resulting STFT loses its capability of capturing local phenomena

in the signal. This kind of trade-off is further discussed in Section 2.5.2 and in the

exercises.

We close this section with a further example shown in Figure 2.10, which is

a recording of a C-major scale played on a piano. The first note of this scale is

C4, which we have already considered in Figure 2.1. In Figure 2.10c, the spectro-

gram representation of the recording is shown, where the time and frequency axes

are labeled in a physically meaningful way. The spectrogram reveals the frequency

information of the played notes over time. For each note, one can observe hori-

zontal lines that are stacked on top of each other. As discussed in Section 1.3.4,

these equally spaced lines correspond to the partials, the integer multiples of the

fundamental frequency of a note. Obviously, the higher partials contain less and

less of the signal’s energy. Furthermore, the decay of each note over time is re-

flected by the fading out of the horizontal lines. To enhance small sound compo-

nents that may still be perceptually relevant, one often uses a logarithmic dB scale

(see Section 1.3.3). Figure 2.10d illustrates the effect when applying the dB scale to

the values of the spectrogram. Besides an enhancement of the higher partials, one

can now observe vertical structures at the notes’ onset positions. These structures

correspond to the noise-like transients that occur in the attack phase of the piano

sound (see Section 1.3.4).

This concludes our “nutshell section” covering the most important definitions

and properties of the Fourier transform as needed for the subsequent chapters of this

book. In particular, the formula (2.26) of the discrete STFT as well as the physical

interpretation of the time parameter (2.27) and the frequency parameter (2.28) are



2.2 Signals and Signal Spaces 57

(b)

(c)

(d)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(a)

Fig. 2.10 Waveform and spectrogram of a music recording of a C-major scale played on a piano.
(a) The recording’s underlying musical score. (b) Waveform. (c) Spectrogram. (d) Spectrogram
with the magnitudes given in dB.

of central importance for most music processing applications to be discussed. As

said in the introduction, we provide in the subsequent sections of this chapter some

deeper insights into the mathematics underlying the Fourier transform. In particular,

we explain in more detail the connection between the various kinds of signals and

associated Fourier transforms.

2.2 Signals and Signal Spaces

In technical fields such as engineering or computer science, a signal is a function

that conveys information about the state or behavior of a physical system. For ex-

ample, a signal may describe the time-varying sound pressure at some place, the

motion of a particle through some space, the distribution of light on a screen rep-

resenting an image, or the sequence of images as in the case of a video signal. In

the following, we consider the case of audio signals as discussed in Section 1.3. We

have seen that such a signal can be graphically represented by its waveform, which
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Fig. 2.11 The sinusoid f (t) = Asin(2π(ωt −ϕ)) displayed for t ∈ [0,2] and for various values of
A, ω , and ϕ . (a) A = 1, ω = 1,ϕ = 0. (b) A = 1, ω = 3, ϕ = 0. (c) A = 1.4, ω = 1, ϕ = 0.25.
(d) A = 0.8, ω = 3, ϕ = 0.5.

depicts the amplitude of the air pressure over time. In the following, we introduce

the mathematical notation that is necessary to formally model such a signal. Doing

so, we distinguish between two different types of signals: analog signals as occur

around us in the real world and digital signals as are processed by computers. We

show how signals can be modified and combined to yield new signals by applying

mathematical operations. Some operations can be applied only if the involved sig-

nals satisfy certain properties. This leads us to the concept of signal spaces, a kind

of universe that comprises signals that share a certain property.

2.2.1 Analog Signals

As already defined in Section 2.1.1, an analog signal is a function f : R→R, which

assigns an amplitude value f (t)∈R to each time point t ∈R. In the analog case, both

the time domain as well as the range of the amplitude values are represented by the

set R of real numbers, which is a continuous range of values. This makes it possible

to model infinitesimally small changes in both time and amplitude. In the case of

having a continuous time axis (given by R), one also speaks of continuous-time
(CT) signals. A signal f is called periodic with period λ ∈ R>0 if f (t) = f (t +λ )
holds for all t ∈ R. If there exists a least positive constant with this property, it is

called the prime period of the signal (see Exercise 2.7 and Exercise 2.8).

In Section 1.3.2 and Section 2.1.1.1, we have already encountered an entire class

of analog signals: the sinusoids. Recall from (2.1) that a sinusoid is a periodic func-

tion f defined by f (t) := Asin(2π(ωt −ϕ)), t ∈ R. The parameter A describes the

amplitude, the parameter ω the frequency, and the parameter ϕ the phase. The
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Fig. 2.12 Superposition of three analog signals.

frequency parameter ω determines the period of the sinusoid, which is λ = 1/ω .

In other words, a sinusoid of frequency ω repeats every λ = 1/ω unit times. In the

following, we use seconds as the units of time if not specified otherwise. Figure 2.11

shows various sinusoids resulting from different parameter settings.

Besides having a compact description, sinusoids also have an explicit physical

meaning with a perceptual correspondence: the amplitude A corresponds to the loud-

ness and the frequency ω to the pitch of a sinusoidal sound. Only the phase ϕ , which

indicates the relative position of an oscillation within its cycle, does not have a di-

rect perceptual correspondence. Note that, because of the periodicity of a sinusoid,

a phase shift by ϕ + 1 has the same effect as a phase shift by ϕ . In other words,

integer shifts leave a sinusoid unaltered and the parameter ϕ needs to be considered

only in the interval [0,1).
Regarding a signal as a mathematical function is convenient, since this allows us

to express modifications of signals in terms of mathematical operations. For exam-

ple, the superposition of two signals f and g can be expressed by the sum f + g
defined as pointwise addition

( f +g)(t) := f (t)+g(t) (2.30)

for t ∈R. Similarly, the scaling of a signal f by a real factor a is the scalar multiple

a f , which is also defined pointwise by

(a f )(t) := a · f (t). (2.31)

Figure 2.12 shows an example of a superposition of three signals. We have seen in

Section 2.1 that the Fourier transform can be regarded as a kind of inverse operation,

where a given signal is decomposed into a weighted superposition of elementary

signals.
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2.2.2 Digital Signals

Analog signals have a continuous range of values in both time and amplitude, which

generally leads to an infinite number of values. Since a computer can only store and

process a finite number of values, one has to convert the waveform into some dis-
crete representation—a process commonly referred to as digitization. Some analog

signals such as sinusoids are already characterized by a small number of parameters,

which can be used to represent the signal, but for general analog signals one needs

other ways for deriving a model that can be described by a finite number of param-

eters. Furthermore, it should be possible to perform signal manipulations directly

in the parameter domain such that computations become feasible and efficient. The

most common approach for digitizing audio signals consists of two steps called

sampling and quantization (see Figure 2.13 for an illustration). We now explain

these two steps in more detail.

2.2.2.1 Sampling

In signal processing, the term sampling refers to the process of reducing a

continuous-time (CT) signal to a discrete-time (DT) signal, which is defined only

on a discrete subset of the time axis. By means of a suitable encoding, one often

assumes that this discrete set is a subset I of the set Z of integers. Then a DT-signal

is defined to be a function x : I → R, where the domain I corresponds to points in

time. Since one can extend any DT-signal from the domain I to the domain Z simply

by setting all values to zeros for points in Z \ I, we may assume I = Z. The most

common sampling procedure to transform a CT-signal f : R→ R into a DT-signal

x : Z→ R is known as equidistant sampling. For convenience, we repeat the defi-

nitions from Section 2.1.3. Fixing a positive real number T > 0, the DT-signal x is

obtained by setting

x(n) := f (n ·T ) (2.32)

for n ∈ Z. The value x(n) is called the sample taken at time t = n ·T of the original

analog signal f . In short, this procedure is also called T -sampling. The number T is

referred to as the sampling period and the inverse Fs := 1/T as the sampling rate.

The sampling rate specifies the number of samples per second and is measured in

Hertz (Hz).

Figure 2.13 shows an illustrative example, where the DT-signal x is represented

by the red stem plot. In this example, one has 13 samples in the first two seconds.

Thus, the sampling rate is roughly 6.5 Hz and the sampling period 0.154 seconds.

In practical applications, typical sampling rates are 8 kHz (8,000 Hz) for telephony,

32 kHz for digital radio, 44.1 kHz for CD recordings, and 48 kHz up to 96 kHz for

professional studio technology.

In general, sampling is a lossy operation in the sense that information is lost in

this process and that the original analog signal cannot be recovered from its sampled

version. Only if the analog signal has additional properties in terms of its frequency
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Fig. 2.13 Two steps of a digitization process to transform an analog signal (solid curve) into a
digital signal (stem plot). (a) Sampling. (b) Quantization.

spectrum is a perfect reconstruction possible. This is the assertion of the famous

sampling theorem, which we discuss in Exercise 2.28 in more detail. Without such

additional properties, sampling may cause an effect known as aliasing, where cer-

tain frequency components of the signal become indistinguishable. This effect is

illustrated by Figure 2.14, which shows an analog signal that is the superposition of

two sinusoids. Using a high sampling rate as in Figure 2.14a, the analog signal can

be reconstructed with high accuracy. However, when decreasing the sampling rate,

the higher-frequency component is not captured well and only a coarse approxima-

tion of the original signal remains (see Figure 2.14c).

2.2.2.2 Quantization

We have seen how sampling transforms a continuous time axis (encoded by R)

into a discrete time axis (encoded by Z). This is only the first step in an analog-to-

digital conversion of a signal. In the second step, one needs to replace the continuous

range of possible amplitudes (again encoded by R) by a discrete range of possible

values (encoded by a discrete set Γ ⊂ R). This process is commonly known as

quantization. Such a quantization can be modeled by a function Q :R→Γ , referred

to as the quantizer, which assigns to each amplitude value a ∈R a value Q(a) ∈ Γ .

Many of the quantizers used simply round off or truncate the analog value to some

units of precision. For example, a typical uniform quantizer with a quantization
step size equal to some value Δ can be defined by

Q(a) := sgn(a) ·Δ ·
⌊ |a|

Δ
+

1

2

⌋
(2.33)
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Fig. 2.14 Illustration of the aliasing effect when reducing the sampling rate. The figures show the
original analog signal (solid curve), the sampled version (stem plot), and the reconstructed analog
signal (dotted curve) for sampling rates of (a) 12 Hz, (b) 6 Hz, and (b) 3 Hz.

for a∈R, were sgn(·) is the signum function that yields the sign of a real number and

the brackets �·� truncate a real number to yield the largest integer below this number.

Note that, in the case of Δ = 1, the quantizer Q is simple rounding to the nearest

integer. Like sampling, quantization is generally a lossy operation, because different

analog values may be mapped to the same digital value. The difference between

the actual analog value and the quantized value is called the quantization error
(see Exercise 2.9). Reducing the quantization step size Δ typically leads to smaller

quantization errors. However, at the same time, the number of quantized values

(and therefore also the number of bits needed to encode these values) increases.

Figure 2.13b shows the result after sampling and quantizing an analog signal. In

this example, the quantization step size Δ = 1/3 is used, resulting in 8 different

quantization values for the given signal. Hence, a 3-bit coding scheme may be used

to represent the quantized values. For CD recordings, a 16-bit coding scheme is

used, which allows representation of 65536 possible values.

In summary, after using an analog-to-digital conversion based on sampling and

quantization, it is generally not possible to reconstruct the original waveform from

the digital representation. Aliasing and quantization may introduce audible sound

artifacts such as harsh buzzing sounds or noise. For digital representations as used

for CDs, however, the sampling rate as well as the quantization resolution are chosen
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in such ways that the degradation of the waveform is not noticeable by the human

ear.

2.2.3 Signal Spaces

In the previous sections, we considered analog and digital signals, which were mod-

eled as CT-signals f : R→ R and as DT-signals x : Z→ R, respectively. In the fol-

lowing discussion, we use the symbols f and g to denote CT-signals and the symbols

x and y to denote DT-signals. For the time parameter, we typically use the parameter

t in the CT case and the parameter n in the DT case.

2.2.3.1 Complex Numbers

In view of the complex-valued formulation of the Fourier transform one needs to ex-

tend the range R of real numbers to the range C of complex numbers. Recall from

Section 2.1.1.4 that each complex number c∈C can be regarded as a pair (a,b)∈R
2

of real numbers, where a = Re(c) denotes the real part and b = Im(c) the imaginary

part of c. One also often writes c = a+ ib, where i is the imaginary unit. The com-

plex number field C possesses a multiplication that extends the multiplication of the

real number field R. Given two complex numbers c1 = a1 + ib1,c2 = a2 + ib2 ∈ C,

the product is defined by

c1 · c2 = a1a2 −b1b2 + i(a1b2 +a2b1). (2.34)

Furthermore, the complex conjugate c of a complex number c = a + ib ∈ C is

defined as

c = a− ib. (2.35)

Various computation rules for complex numbers are discussed in Exercise 2.12. Ex-

tending the notion of real-valued signals, a complex-valued CT-signal is a function

f : R → C and a complex-valued DT-signal a function x : Z → C. As is the case

with complex numbers, each complex-valued signal can be considered as a pair of

two real-valued signals. Furthermore, each real-valued signal can be regarded as a

complex-valued signal simply by defining the imaginary part to be zero. In the fol-

lowing, we therefore only consider the more general complex-valued case, which

includes the real-valued case.

2.2.3.2 Vector Spaces

A general principle in mathematics is to form suitable spaces that comprise all ob-

jects under consideration. These spaces can then be equipped with additional struc-

tures that can be used to manipulate and organize the objects. For example, for a
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given natural number N ∈ N, one may consider the space R
N consisting of all real-

valued N-tuples. This space can be equipped with an addition and a scalar multipli-

cation such that RN becomes a vector space over R. Similarly, one can define the

space C
N , which consists of all complex-valued N-tuples. In our case, the objects

under consideration are complex-valued CT- and DT-signals. The resulting signal

spaces are defined as

C
R := { f | f : R→ C} and C

Z := {x|x : Z→ C}, (2.36)

for the CT and DT case, respectively. We have already seen in (2.30) and (2.31)

how one can define an addition of two signals and a scalar multiplication of a real

factor and a signal. These definitions directly carry over to the case of complex-

valued signals using complex summation and multiplication, which makes C
R a

vector space over C. Similarly, one can define addition and scalar multiplication in

the DT case, making C
Z a vector space over C.

One may need to get used to the fact that elements (the “points”) of a space such

as C
R or C

Z can be entire signals. As opposed to the case C
N , which defines a

vector space of (complex) dimension N, the vector spaces CR and C
Z have infinite

dimension. Still, many of the geometric structures known for the finite-dimensional

space C
N can be transferred to suitably defined infinite-dimensional subspaces of

C
R and C

Z. This is what we show next.

2.2.3.3 Inner Products

We start by reviewing some concepts from linear algebra. Usually, an element

x ∈ C
N is thought of as a column vector of size N. The transposed vector, which

we denote by x
, is then the corresponding row vector. The vector space C
N can

be equipped with an additional structure called an inner product. This additional

structure associates to each pair of vectors a scalar quantity which is called the inner

product of the two vectors. Mathematically, the inner product of CN is a mapping

〈·|·〉 : CN ×C
N → C defined by

〈x|y〉 :=
N−1

∑
n=0

x(n)y(n) (2.37)

for x = (x(0),x(1), . . . ,x(N −1))
 ∈ C
N and y = (y(0),y(1), . . . ,y(N −1))
 ∈ C

N .

The inner product satisfies three mathematical properties, which are also used for

an axiomatic definition of general inner products. First, it is positive definite; i.e.,

〈x|x〉 ≥ 0 and 〈x|x〉= 0 if and only if x is the all-zero vector. Second, it is conjugate
symmetric; i.e., 〈x|y〉 = 〈y|x〉. And third, it is C-linear in the first argument; i.e.,

〈x1 + x2|y〉= 〈x1|y〉+ 〈x2|y〉 and 〈cx|y〉= c〈x|y〉 for any x1,x2,x,y ∈ C
N and c ∈ C.

The importance of inner products is that they allow the introduction of intuitive

geometrical notions such as the length of a vector, the angle between two vectors,

and orthogonality between vectors (see Figure 2.15 for an illustration). More pre-
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(a) (b) (c)

Fig. 2.15 Geometrical notions defined in terms of the inner product. (a) Length of a vector. (b) An-
gle between two vectors. (b) Orthogonality of two vectors.

cisely, the inner product induces a norm on C
N via

||x|| :=
√
〈x|x〉. (2.38)

In general, a norm satisfies ||x|| = 0 if and only if x = 0, ||ax|| = |a|||x|| for any

a∈C (positive scalability), and ||x+ y|| ≤ ||x||+ ||y|| for any vectors x and y (triangle
inequality). The positive number ||x− y|| is also called the distance between the

vectors x and y. The relation between the inner product and the angle ϕ between

two vectors x and y is given by

cos(ϕ) =
|〈x|y〉|
||x|| · ||y|| . (2.39)

In other words, the angle ϕ is determined by the inner product: it is given by taking

the inverse of the cosine of the absolute value of the inner product of the normalized

vectors. The basis for this relation is the Cauchy–Schwarz inequality

|〈x|y〉| ≤ ||x||||y||, (2.40)

which is an indispensable mathematical tool for many estimations. Finally, two vec-

tors x,y ∈C
N are said to be orthogonal if 〈x|y〉= 0 (see Figure 2.15c). This concept

can then be used to define orthogonal subspaces, orthogonal complements, projec-

tion operators, and so on.

2.2.3.4 The Space �2(Z)

Given an arbitrary vector space, one can introduce the same geometric concepts

once one has an inner product. It turns out that the signal spaces CR or CZ are too

general. One strategy is to only consider signals with certain properties by passing

over to suitable signal subspaces. We make this point clearer by first considering the

space C
Z of DT-signals. One idea for defining an inner product on this space is to

simply extend the definition of (2.37) for CN . However, in contrast to C
N , there may

be an infinite number of nonzero summands in the case of CZ, with the consequence
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that the sum may be infinite. This leads to the following definitions: First, we define

the energy E(x) of a signal x ∈ C
Z to be

E(x) := ∑
n∈Z

|x(n)|2. (2.41)

Then the space �2(Z)⊂C
Z is defined to be the set of all signals having finite energy:

�2(Z) := {x : Z→ C | E(x)< ∞}. (2.42)

In mathematical terms, �2(Z) is also referred to as the space of square-summable
sequences. Obviously, there are many DT-signals that do not have finite energy.

For example, the sampled sinusoid x given by x(n) = sin(πn/16) is not square-

summable since it assumes the value 1 for infinitely many n. On the other hand, any

DT-signal with a finite number of nonzero entries obviously has finite energy. The

space CN for arbitrary N ∈N can be regarded as a subspace of �2(Z) by extending a

vector x = (x(0),x(1), . . . ,x(N−1))
 ∈C
N to a sequence by setting x(n) = 0 for all

n < 0 and n ≥ N. Furthermore, it is not hard to show that �2(Z) is a vector space (see

Exercise 2.13). For the restricted space �2(Z)⊂ C
Z, it is now possible to introduce

an inner product that extends the one for CN . Indeed, one can show that

〈x|y〉 := ∑
n∈Z

x(n)y(n) (2.43)

is finite and hence well defined for any two signals x,y ∈ �2(Z) (see again

Exercise 2.13). From this point on, everything works as in the finite-dimensional

case CN . The inner product satisfies the Cauchy–Schwarz inequality (2.40), one can

define an angle as in (2.39), one can talk about signals being orthogonal, and so on.

2.2.3.5 The Space L2(R)

For the space C
R of CT-signals, an inner product is defined in a similar fashion.

However, technically, the definitions become more sophisticated in the continuous

case, where summation becomes integration. In order to define an integral for a

signal f ∈ C
R, it needs to fulfill certain integrability conditions, which in turn de-

pend on the notion of integration to be used. For example, the notion of the well-

known Riemann integral turns out to be too weak for many mathematical construc-

tions. The technical deficiencies in Riemann integration can be remedied with the

Lebesgue integral, which can be defined for a class of signals called measurable.

At this point, since we may assume that basically all signals that we encounter are

measurable, we do not want to go further into this issue. Similarly to the case of

DT-signals, the energy E( f ) of a measurable signal f ∈ C
R is defined by

E( f ) :=
∫

t∈R
| f (t)|2dt. (2.44)
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Furthermore, the space L2(R) ⊂ C
R is defined to be the set of all signals of finite

energy:

L2(R) := { f : R→ C | f measurable and E( f )< ∞}. (2.45)

In mathematical terms, L2(R) is also referred to as the Lebesgue space3 of square-

integrable functions. Again, there are many CT-signals that do not have finite energy.

For example, any nonzero sinusoid has infinite energy. As with the DT case, it is not

hard to show that L2(R) is a vector space. In the CT case, the inner product is defined

by

〈 f |g〉 :=
∫

t∈R
f (t)g(t)dt (2.46)

for any f ,g ∈ L2(R). Again this makes it possible to introduce the geometric con-

cepts known from linear algebra.

2.2.3.6 The Space L2([0,1))

Finally, we want to consider another class of CT-signals of fundamental impor-

tance: the class of periodic signals. As already mentioned above, nonzero periodic

functions4 are not contained in L2(R). However, also for periodic functions one

can define a suitable signal subspace of C
R that possesses an inner product. Re-

call from Section 2.2.1 that a signal f : R → C is periodic with period λ ∈ R>0 if

f (t) = f (t +λ ) holds for all t ∈R. A λ -periodic signal f can be transformed into a

1-periodic signal t �→ f (λ ·t) by applying the linear transform t �→ λ ·t. Hence, in the

following discussion, we only consider the case λ = 1. Obviously, any 1-periodic

function f is already known when restricted to the interval [0,1). In contrast, any

function g : [0,1)→ C can be extended in an obvious fashion to a 1-periodic func-

tion f : R → C. In other words, there is a one-to-one correspondence between the

1-periodic functions in C
R and the signal space C

[0,1) := { f : [0,1)→ C}. Similar

to the nonperiodic case, one can define the energy E[0,1)( f ) by

E[0,1)( f ) :=
∫

t∈[0,1)
| f (t)|2dt (2.47)

and the space L2([0,1))⊂ C
[0,1) by

L2([0,1)) := { f : [0,1)→ C | f measurable and E[0,1)( f )< ∞}. (2.48)

Furthermore, one can show that the inner product

〈 f |g〉 :=
∫

t∈[0,1)
f (t)g(t)dt (2.49)

3 From a strict technical point of view, L2(R) is defined as a quotient space, where all functions
that are zero almost everywhere are identified.
4 Strictly speaking, we mean here periodic functions that are not zero almost everywhere.



68 2 Fourier Analysis of Signals

is well defined for any f ,g ∈ L2([0,1)). Generalizing these definitions, one can in-

troduce a space L2([a,b)) with an inner product for any a,b ∈ R, a < b, which

consists of λ -periodic signals with λ = b−a.

2.2.3.7 Hilbert Spaces

In summary, we have introduced the signal spaces �2(Z), L2(R), and L2([0,1)),
which all possess an inner product similar to the one of the finite-dimensional vec-

tor space C
N . All of these spaces are special cases of what is known as Hilbert

space. By definition, a Hilbert space is a vector space H equipped with an inner

product 〈·|·〉 : H×H → C satisfying the three axiomatic conditions mentioned in

Section 2.2.3. Furthermore, one requires that a Hilbert space is complete in the

sense that every Cauchy sequence5 in H converges in H. Intuitively, a space is com-

plete if no points are missing from it. For example, the set of rational numbers is not

complete, because there are numbers such as
√

2 missing from it, even though one

can construct Cauchy sequences of rational numbers that converge to such irrational

numbers. As one can show, this nontrivial completeness condition is satisfied for the

signal spaces �2(R), L2(R), and L2([0,1)). As we will see in the next sections, the

geometric concepts provided by the inner product help to develop our intuition and

to simplify the formulation of the Fourier transform.

A particularly important concept that generalizes from the finite-dimensional

space C
N to arbitrary Hilbert spaces is the existence of orthonormal bases. Let I

be a countable set, then a subset (xi)i∈I of H is called an orthonormal basis (ON-

basis) if the following three conditions hold:

〈xi|x j〉= 0 for i, j ∈ I, i �= j, (2.50)

||xi||2 = 1 for i ∈ I, (2.51)

x = ∑
i∈I

〈x|xi〉xi for x ∈ X . (2.52)

The first condition means that any two distinct elements xi and x j are orthogonal,

and the second one that each of the elements xi has unit energy. The third condition,

also referred to as the completeness condition, requires that any element of x ∈
H can be represented as a weighted superposition of the basis vectors xi, i ∈ I.

Intuitively, completeness means that everything in H can be captured by the basis

vectors. Furthermore, the weights are given by the inner products 〈x|xi〉. One can

show that for a Hilbert space there always exists an ON-basis and, in general, even

a very large number of different ON-bases. As we will see, the Fourier transforms

for DT-signals and periodic CT-signals are based on very specific choices of such

ON-bases.

5 A Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the
sequence progresses. More precisely, given any small positive distance, all but a finite number of
elements of the sequence are less than that given distance from each other.



2.3 Fourier Transform 69

2.3 Fourier Transform

The Fourier transform is the most important mathematical tool in audio signal

processing. As discussed in Section 2.1, the Fourier transform converts a time-

dependent signal into a frequency-dependent function. The inverse process is re-

alized by the Fourier representation, which represents a signal as a weighted su-

perposition of independent elementary functions. Each of the weights expresses the

extent to which the corresponding elementary function contributes to the original

signal, thus revealing a certain aspect of the signal. Because of their explicit physical

interpretation in terms of frequency, sinusoids are particularly suited to serve as el-

ementary functions. Each of the weights is then associated to a frequency value and

expresses the degree to which the signal contains a periodic oscillation of that fre-

quency. The Fourier transform can be regarded as a way to compute the frequency-

dependent weights.

In the following, depending on the underlying signal space, we introduce sev-

eral variants of the Fourier transform and its inverse, the Fourier representation.

We start with the signal space L2([0,1)) consisting of 1-periodic finite-energy CT-

signals (Section 2.3.1). We continue by showing how the formulation of the Fourier

transform in terms of complex-valued exponential functions (instead of real-valued

sinusoids) makes the mathematical handling much more convenient (Section 2.3.2).

We then discuss the Fourier transform for the signal space L2(R) (Section 2.3.3)

as well as for the signal space �2(Z) (Section 2.3.4). It is important to note that

each of these signal spaces possesses its own Fourier transform and the mathemati-

cal concepts needed to prove the existence and properties of the respective Fourier

transform are different for the variants. While giving mathematically rigorous defi-

nitions of the various Fourier transforms, we do not provide the proofs. In particular

for the analog case, the proofs require results from measure and integration theory,

which are outside the scope of this book. Instead, we will try to give some intuitive

explanations while highlighting the meaning and the interrelations of the various

variants.

2.3.1 Fourier Transform for Periodic CT-Signals

We start our discussion by considering the case of all real-valued signals in

L2([0,1)). Let us denote this subspace by L2
R
([0,1)) ⊂ L2([0,1)). Note that any

constant as well as any (1/k)-periodic function for an integer k ∈ N is 1-periodic

too. The sinusoid t �→
√

2cos(2πkt) may be regarded as the archetype of a (1/k)-
periodic function, which represents a pure tone of k Hz. The factor

√
2 is introduced

to normalize the sinusoid to have unit energy or, equivalently, to have norm one (see

Exercise 2.14). Of course, also the sinusoid t �→
√

2sin(2πkt) or all phase-shifted

versions t �→
√

2cos(2π(kt −ϕ)) have the same interpretation. One important the-

orem in Fourier analysis is that any real-valued signal f ∈ L2
R
([0,1)) can be written

as a superposition
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Fig. 2.16 (a) Analog 1-periodic signal. (b) Decomposition of the signal into three sinusoids.
(c) Magnitude and phase coefficients of the Fourier transform.

f (t) = d0 + ∑
k∈N

dk
√

2cos(2π(kt −ϕk)) (2.53)

of 1-periodic sinusoids with suitable amplitudes dk ∈ R≥0 and phases ϕk ∈ [0,1).
The superposition exhibits the frequency content of f as follows: the coefficient dk,

also referred to as the magnitude, reflects the contribution of the sinusoid of k Hz,

whereas the coefficient ϕk, also referred to as the phase, shows how the sinusoid has

to be shifted to best “explain” or “match” the original signal. Note that the phase co-

efficients are determined only up to an integer and can therefore be assumed to lie in

the interval [0,1). Figure 2.16 shows an example of a 1-periodic signal and the re-

sulting magnitude and phase coefficients. The superposition in (2.53) is the Fourier
representation of the signal f , whereas the magnitude and phase coefficients are

called the Fourier coefficients.

In our first reformulation, we exploit the fact that any sinusoid with arbitrary

phase can be represented as a weighted sum of two specific sinusoids of the same

frequency having fixed phases. Indeed, using the trigonometric identity cos(α −
β ) = cos(α)cos(β )+ sin(α)sin(β ) for arbitrary angles α and β , one obtains

cos(2π(kt −ϕ)) = cos(2πkt)cos(2πϕ)+ sin(2πkt)sin(2πϕ) (2.54)

when setting α = 2πkt and β = 2πϕ . Let cosk,sink ∈ L2
R
([0,1)) be the two specific

sinusoids defined by

cosk(t) :=
√

2cos(2πkt), (2.55)

sink(t) :=
√

2sin(2πkt), (2.56)

for k ∈ N. Then plugging (2.54) into (2.53), one obtains the following Fourier rep-

resentation, which is also known as the Fourier series:

f (t) = a0 + ∑
k∈N

akcosk(t)+ ∑
k∈N

bksink(t). (2.57)
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It readily follows that the Fourier coefficients a0, ak, and bk are given by

a0 = d0, (2.58)

ak = cos(2πϕk)dk, (2.59)

bk = sin(2πϕk)dk (2.60)

for k ∈ N. Vice versa, the magnitudes and phases can be computed from the ak and

bk via

dk =
√

a2
k +b2

k , (2.61)

ϕk =
1

2π
atan2(bk,ak). (2.62)

The atan2 function, which is a variant of the inverse of the tangent function, will be

explained in Section 2.3.2.2. A nice property of the Fourier representation in (2.57)

is that its Fourier coefficients can be easily computed using Hilbert space theory. To

this end, one needs to show that the set

{1,cosk,sink|k ∈ N} , (2.63)

is an ON-basis of the Hilbert space L2
R
([0,1)), where 1 denotes the all-one signal

(i.e., 1(t) = 1 for t ∈ [0,1)). The two conditions specified in (2.50) and (2.51) follow

from trigonometric identities (see Exercise 2.14). Only the completeness condition

specified in (2.52) is harder to show and requires some more involved mathematical

tools that are outside the scope of this book. From (2.52), one not only recovers the

Fourier series in (2.57), but also a formula for how to compute the Fourier coeffi-

cients as inner products of the signal f with the basis functions of the ON-basis:

a0 = 〈 f |1〉=
∫

t∈[0,1)
f (t)dt, (2.64)

ak = 〈 f |cosk〉=
√

2

∫
t∈[0,1)

f (t)cos(2πkt)dt, (2.65)

bk = 〈 f |sink〉=
√

2

∫
t∈[0,1)

f (t)sin(2πkt)dt. (2.66)

2.3.2 Complex Formulation of the Fourier Transform

As often in mathematics, the transfer of a problem from the real into the complex

world can lead to significant simplifications. A famous example is the problem of

finding solutions of polynomial equations. The equation z2 − 1 = 0 has the two

solutions z = +1 and z = −1, however the equation z2 + 1 = 0 does not have any

solution when only considering real numbers. Extending R to C, however, one also

finds for the second equation two solutions given by z = +i and z = −i, where
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Fig. 2.17 Illustration of the complex exponential function.

i denotes the complex unit. Considering polynomial equations over C makes the

problem much easier to understand. In general, an extension of the real numbers

to the complex numbers not only gives a broader view but also provides additional

tools and structures. For example, the complex multiplication as defined by (2.34),

which extends the usual multiplication of real numbers, yields such a powerful tool.

Also, the trigonometric identities are considerably simplified when using a complex

formulation.

2.3.2.1 Exponential Function

Converting the Fourier transform from the real into the complex domain has several

advantages. First, the concept of Fourier series can be naturally generalized from

real-valued to complex-valued signals. Second, one obtains compact and elegant

formulas, where the magnitude and phase are naturally expressed by a single com-

plex Fourier coefficient. Recall from Section 2.1.1.4 that the exponential function
combines the two real-valued sinusoids given by the cosine and sine into a single

complex-valued function:

exp(iγ) = cos(γ)+ isin(γ). (2.67)

This equation, which can be used as a defining relation, is also known as Euler’s for-
mula. However, there are many other ways in which the exponential function may

be characterized, e.g., in terms of a power series expansion or by means of a differ-

ential equation. The exponential function has some important properties, which are

also illustrated by Figure 2.17:

exp(iγ) = exp(i(γ +2π)), (2.68)

|exp(iγ)| = 1, (2.69)

exp(iγ) = exp(−iγ), (2.70)

exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2) (2.71)
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for γ,γ1,γ2 ∈R. For a proof of these properties, we refer to Exercise 2.15. The prop-

erty (2.68) means that the exponential function is 2π-periodic. The property (2.69)

implies that all values of this function live on the unit circle of C. By successively in-

creasing the angle γ starting with γ = 0 and ending with γ = 2π , one travels exactly

once along the unit circle in a counterclockwise fashion. The property (2.70) shows

that complex conjugation results in changing the direction of this travel. Finally, the

property (2.71) is the complex formulation of the real-valued trigonometric identi-

ties that hold for the cosine and sine functions (see also Exercise 2.15).

2.3.2.2 Polar Coordinates

A complex number c = a+ ib ∈ C is specified by its Cartesian coordinates (a,b) ∈
R

2 in the two-dimensional plane. The complex exponential function makes it pos-

sible to represent a complex number in the form of polar coordinates, which we

discussed in Section 2.1.1.4. In the polar coordinate system, the point c = a+ ib
is determined by the distance |c| from the origin and the angle γ (in radians) be-

tween the positive horizontal axis and the point given by the coordinates (a,b) (see

Figure 2.4). Repeating the formulas from (2.6) and (2.7), we obtain the following

relations between Cartesian and polar coordinates:

|c| =
√

a2 +b2, (2.72)

γ = atan2(b,a), (2.73)

a = |c| Re(exp(iγ)) = |c| cos(γ), (2.74)

b = |c| Im(exp(iγ)) = |c| sin(γ). (2.75)

The atan2 function is a generalization of the arctangent function (denoted as

arctan), which is the inverse of the principal branch of the tangent function (see

Figure 2.18b). The arctan function requires a real-valued argument v ∈ R and com-

putes an angle arctan(v) ∈ (−π/2,π/2) (given in radians), which is called the prin-

cipal value. As opposed to the arctan function, the atan2 function has two real-

valued arguments. This makes it possible to capture the quadrant of the computed

angle, which is not possible for the single-argument arctan function. In terms of the

standard arctan function, the atan2 function is given by

atan2(b,a) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan(b/a), a > 0,
arctan(b/a)+π, b ≥ 0, a < 0,
arctan(b/a)−π, b < 0, a < 0,
+π/2, b > 0, a = 0,
−π/2, b < 0, a = 0,
undefined b = 0, a = 0

(2.76)

for (a,b) ∈R
2 (see Figure 2.18c). The angle computed by the atan2 function is pos-

itive for complex numbers c = a+ ib with positive imaginary part b > 0 (upper half-

plane) and negative for those with negative imaginary part b < 0 (lower half-plane).
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Fig. 2.18 (a) Tangent function with different branches. (b) Arctangent function inverting the prin-
cipal branch of the tangent function. (c) Illustration of the values assumed by the atan2 function.

The range (−π,π] of angles can be mapped to [0,2π) by adding 2π to negative

values. Further properties of the atan2 function are discussed in Exercise 2.17.

2.3.2.3 Complex Fourier Series

We are now ready for the complex formulation of the Fourier series. To this end,

we replace in (2.57) the real-valued sinusoids cosk and sink defined for k ∈N by the

complex-valued exponential functions expk : [0,1)→ C defined by

expk(t) := exp(2πikt). (2.77)

Obviously, expk is a (1/k)-periodic signal for k �= 0 and expk is the all-one signal 1
for k = 0. Furthermore, as in (2.63), it can be shown that the set

{expk | k ∈ Z} (2.78)

is an ON-basis of the (complex) Hilbert space L2[0,1). The properties ||expk|| = 1

for k ∈Z and 〈expk|exp�〉= 0 for k �= �, k, �∈Z, are shown in Exercise 2.16. Again,
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as in the real-valued case, the completeness property is more difficult to prove and

is not discussed in this book. The resulting expansion of a signal f ∈ L2([0,1)) with

respect to this ON-basis leads to the equality6

f (t) = ∑
k∈Z

ckexpk(t) = ∑
k∈Z

ck exp(2πikt), (2.79)

which is also referred to as the (complex) Fourier series. The corresponding (com-

plex) Fourier coefficients ck ∈ C are given by

ck = 〈 f |expk〉=
∫

t∈[0,1)
f (t)exp(2πikt)dt =

∫
t∈[0,1)

f (t)exp(−2πikt)dt, (2.80)

where we used (2.70) in the last equation. As in (2.11), the function

f̂ : Z→ C, f̂ (k) := ck (2.81)

is called the Fourier transform of f ∈ L2([0,1)). Note that, in this case, a 1-periodic

continuous-time signal f is mapped to a discrete-time signal f̂ . Furthermore, one can

show that the Fourier transform is energy preserving in the sense that the energy of

f̂ is the same as the energy of f :

|| f ||L2([0,1)) = || f̂ ||�2(Z). (2.82)

At this point, using the signal spaces as subscripts of the norms, we want to em-

phasize that the energy of f̂ is measured in the space �2(Z) and the energy of f
is measured in L2([0,1)). Mathematically, such an energy-preserving map between

Hilbert spaces is also called an isometry. As a consequence, the inverse mapping

f̂ �→ f given by the Fourier series (2.79) is again an isometry. We will see that the

Fourier transforms for the other finite-energy signal spaces have similar properties.

2.3.2.4 Relation Between Complex and Real Fourier Series

Note that the complex Fourier series can be used to represent complex-valued sig-

nals, thus extending the Fourier series of (2.57) for real-valued signals. Being a

special case of a complex-valued function, a real-valued signal f ∈ L2
R
([0,1)) ⊂

L2([0,1)) can also be represented using a complex Fourier series. In this case, each

signal value f (t) coincides with its complex conjugate f (t). Using the computation

rules for complex numbers (see Exercise 2.12) and (2.70), one obtains

∑
k∈Z

ckexpk(t) = f (t) = f (t) = ∑
k∈Z

ckexpk(t) = ∑
k∈Z

ckexp−k(t). (2.83)

6 Strictly speaking, this equality only holds for almost all t ∈ [0,1). In the following, even though
a bit sloppy in a strict mathematical sense, we do not further mention such issues.
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This implies c−k = ck for k ∈ Z. In other words, for real-valued signals, the coeffi-

cients with negative indices are redundant. Furthermore, the complex coefficients ck
of a real-valued signal relate to the real coefficients ak and bk of the Fourier series

in (2.57) in the following way:

a0 = c0, (2.84)

ak =
√

2Re(ck), (2.85)

bk = −
√

2Im(ck) (2.86)

for k ∈ N. To see this, one needs to use c−k = ck and the definitions (2.77) of expk,

(2.55) of cosk, and (2.56) of sink. Since the proof is an instructive example of how

to compute with complex numbers, we conduct the calculation in detail:

f (t) = ∑
k∈Z

ckexpk(t)

= c0 +
∞

∑
k=1

ckexpk(t)+
∞

∑
k=1

c−kexp−k(t)

= c0 +
∞

∑
k=1

(
ckexpk(t)+ ckexpk(t)

)
(2.87)

= c0 +
∞

∑
k=1

2Re
(
ckexpk(t)

)
= c0 +

∞

∑
k=1

(
2Re(ck)cos(2πkt)−2Im(ck)sin(2πkt)

)
= c0 +

∞

∑
k=1

√
2Re(ck)cosk(t)+

∞

∑
k=1

(
−
√

2Im(ck)
)
sink(t).

Comparing coefficients with (2.57) yields the assertion.

Finally, let us come back to our first version of the Fourier series in (2.53), where

we introduced the magnitude coefficients dk and phase coefficients ϕk. How are

these coefficients related to the complex Fourier coefficients ck in the case of real-

valued signals? This question can be easily answered when using (2.61) and (2.62)

in combination with the polar coordinate representation ck = |ck|exp(iγk) and the

above identities:

dk =
√

a2
k +b2

k =
√

2Re(ck)2 +2Im(ck)2 =
√

2 |ck|, (2.88)

ϕk =
1

2π
atan2(bk,ak) =

1

2π
atan2(−

√
2Im(ck),

√
2Re(ck))

=
1

2π
atan2(−Im(ck),Re(ck)) =− γk

2π
. (2.89)

In the last equations, we used the fact that atan2 is invariant under scaling with a

nonzero constant and assumes the negative angle for the conjugate of a complex

number (see Exercise 2.17). These identities correspond to (2.14) and (2.15).
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2.3.3 Fourier Transform for CT-Signals

The general idea of the Fourier transform carries over from the case of periodic

to the case of nonperiodic signals in L2(R). In the nonperiodic case, however, the

exponential functions expk of integer frequency k ∈ Z do not suffice to “describe” a

signal. Instead, one needs exponential functions

expω : R→ C, expω(t) := exp(2πiωt) (2.90)

for all frequencies ω ∈R. Then, replacing summation by integration one obtains the

following nonperiodic analog of the Fourier representation:

f (t) =
∫

ω∈R
cω expω(t)dω =

∫
ω∈R

cω exp(2πiωt)dω (2.91)

for t ∈R. The coefficients cω have the same interpretation as the Fourier coefficients

ck. The frequency-dependent function f̂ : R→ C defined by

f̂ (ω) := cω =
∫

t∈R
f (t)expω(t)dt =

∫
t∈R

f (t)exp(−2πiωt)dt (2.92)

is called the Fourier transform of f . Again, it can be shown that the Fourier

transform is energy preserving. In other words, if f ∈ L2(R), then f̂ ∈ L2(R) and

|| f ||L2(R) = || f̂ ||L2(R).

Strictly speaking, there are some mathematical issues that need to be considered

for the nonperiodic case. Recall that, in the periodic case, the elementary func-

tions expk have finite energy over the interval [0,1) and are therefore elements

of L2([0,1)). This is the reason why the Fourier transform and the Fourier repre-

sentation can be expressed by means of inner products. Unfortunately, this is no

longer the case for the nonperiodic case, since the elementary functions expω do

not have finite energy over the real time axis R and are therefore not elements in

the space L2(R). As a consequence, the inner product is not defined between a sig-

nal f ∈ L2(R) and expω . Furthermore, the integrals in (2.91) and (2.92) need to be

defined as limits over increasing finite integration domains. For example,

f̂ (ω) := lim
N→∞

∫
t∈[−N,N]

f (t)exp(−2πiωt)dt. (2.93)

Similarly, one has to define the Fourier representation. However, these technical

issues will not play any further role in this book. Furthermore, most of the signals we

consider in this book have compact support; i.e., they are zero outside an interval

of finite length. For such signals, no problems occur in the integrals even from a

strict mathematical point of view.

The Fourier representation in (2.91) yields a quite surprising result. It states that

every nonperiodic function of finite energy can be represented as a weighted (in-

finitesimal) superposition of periodic elementary frequency functions expω that

continue out to infinity without decaying. For example, even noise-like short-
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Time (seconds)

(a) (b)

Time (seconds)

Fig. 2.19 Interference of two sinusoids of similar frequency. (a) Constructive interference. (b) De-
structive interference.

duration sounds such as transients, which often occur in the attack phase of a tone,

can be represented by ceaselessly oscillating sinusoids.

2.3.3.1 Interference

In Section 2.1.2, we have already discussed some real as well as synthetic signals

to illustrate important properties of the Fourier transform. In the following, we take

a closer look at some of the encountered phenomena. Let us start with the example

from Figure 2.6b. Besides the two peaks, we could observe in the magnitude Fourier

transform | f̂ | a number of “ripples” of decreasing amplitude. Where do these rip-

ples come from? In the figure, the analog signal f is shown only for the time interval

[0,5] and is (implicitly) assumed to be zero outside this compact interval. The rip-

ples in the spectrum come from a phenomenon known as destructive interference,

where many different frequency components are involved for generating the com-

pact support of f .

In general, interference occurs when a wave is superimposed with another wave

of similar frequency. When a crest of one wave meets a crest of the other wave

at some point, then the individual magnitudes add up for a certain period of time,

which is known as constructive interference (see Figure 2.19a). Vice versa, when

a crest of one wave meets a trough of the other wave, then the magnitudes cancel

out for a certain period of time, which is known as destructive interference (see

Figure 2.19b).

Coming back to Figure 2.6b, one needs the sinusoids of frequency ω = 1 Hz and

ω = 5 Hz to generate the main components of the signal f within the interval [0,5].
Note that these two sinusoids also oscillate outside the visualized interval [0,5],
where the signal is assumed to be zero. Therefore, to cancel out these oscillations
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Frequency (Hz)Time (seconds)

(a)

(b)

Fig. 2.20 (a) Gaussian function (left) and its Fourier transform (right). (b) Dirac sequence (left)
with corresponding Fourier transforms (right).

outside [0,5] by destructive interference, one needs to add many more sinusoids

of different frequencies and weights. These additional sinusoidal components are

reflected by the ripples. Interference effects are further discussed in Exercise 2.19

and in the subsequent examples.

2.3.3.2 Fourier Transform for Impulses

The synthetic signals shown in Figure 2.20 illustrate further properties of the Fourier

transform. First of all, the Gaussian function defined by the formula

f (t) = (2π)−
1
2 π− 1

4 exp(−πt2) (2.94)

has the remarkable property that it coincides with its Fourier transform (see

Figure 2.20a). In particular, its Fourier transform is real-valued and positive. There-

fore, it agrees with its magnitude Fourier transform. The Fourier representation

(2.91) tells us that the Gaussian function is obtained as an (infinitesimal) weighted

superposition of periodic sine waves, where the weights are again given by the Gaus-

sian function. The next question we consider is how the Fourier transform behaves,

if we start to make the Gaussian function somewhat narrower (see Figure 2.20b).

This leads to the notion of a Dirac sequence, which is a sequence of functions

( fn)n∈N of norm || fn|| = 1 such that for increasing n the functions fn “concentrate”

more and more around the point t = 0. The limit of this sequence is the Dirac
delta function or impulse function (often denoted by the symbol δ ), which can

be thought of as a function that is zero everywhere except for t = 0. At t = 0, it

has an infinitely narrow spike of infinite height, which integrates to a value of one.

Strictly speaking, this impulse is not a function, but a so-called distribution. As

illustrated by Figure 2.20b, the magnitude Fourier transform of a Dirac sequence

becomes broader and broader. This scaling property of the Fourier transform is

shown in Exercise 2.20. In the limit case, the Fourier transform approaches a con-
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Frequency (Hz)Time (seconds)

(a)

(b)

Fig. 2.21 Waveform and its magnitude Fourier transform for (a) a clapping sound and (b) white
noise.

stant function, where the magnitudes of all frequency components have the same,

yet infinitesimally small value.

The interpretation of this property is important in view of practical applications.

It says that impulse-like sounds such as a drum hit or a transient as occurring in the

attack phase of a musical tone (see Section 1.3.4) lead to a flat magnitude Fourier

transform with many small, yet nonzero Fourier coefficients. In other words, for

a sudden sharp sound, the signal’s energy is spread across the entire spectrum of

frequencies. This is also illustrated by Figure 2.21a, which shows the waveform and

its magnitude Fourier transform for a real clapping sound. Another type of sound

that results in an energy spread across the entire frequency spectrum are noise-like

signals. Generally speaking, random signals such as white noise also remain random

when transformed into the Fourier domain. For example, Figure 2.21b shows white

Gaussian noise and its magnitude Fourier transform, which also looks like noise that

is equally spread over the entire frequency range.

2.3.3.3 Translation and Modulation

As a final example, which is shown in Figure 2.22, we consider the rectangular
function

f (t) :=

{
1, if −0.5 ≤ t ≤ 0.5,

0, otherwise.
(2.95)

Its Fourier transform is the sinc function, which is defined by

sinc(t) :=

{
sinπt

πt , if t �= 0,

1, if t = 0.
(2.96)

For the proof of this fact, we refer to Exercise 2.21. The rectangular and the sinc

function play an important role in the sampling theorem (see Exercise 2.28). In the

case that the rectangular function is centered around t = 0, its Fourier transform is
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Frequency (Hz)Time (seconds)

(a)

(b)

(c)

Frequency (Hz) Frequency (Hz)

Fig. 2.22 Behavior of Fourier transform under translations. From left to right, the signal as well as
the magnitude, real part, and imaginary part of the Fourier transform are shown. (a) Rectangular
function. (b) Translation by one second. (c) Translation by five seconds.

a real-valued function (see Figure 2.22a). However, this is no longer the case if we

start to shift the rectangle in time. For example, translating the rectangular function

one second to the right, as illustrated by Figure 2.22b, leaves the magnitude of the

Fourier transform unchanged. However, the translation has a significant impact on

the phase as well as on the real and imaginary parts of the Fourier transform. This

again demonstrates that time information is not revealed by the magnitude, but that

it is encoded in the phase of the Fourier transform. Let us have a more general look

at this phenomenon. Let f ∈ L2(R) be a signal, then the function ft0 defined by

ft0(t) := f (t − t0) (2.97)

is called the translation of f by t0 ∈ R, and the function f ω0 defined by

f ω0(t) := exp(2πiω0t) f (t) (2.98)

is called the modulation of f by ω0 ∈ R. It is not hard to show (Exercise 2.22) that

for the Fourier transform one obtains

f̂t0(ω) = exp(−2πiωt0) f̂ (ω) (2.99)

and

f̂ ω0(ω) = f̂ (ω +ω0). (2.100)

In other words, a translation of the signal in the time domain leads to a modulation

in the Fourier domain, and vice versa.
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2.3.4 Fourier Transform for DT-Signals

We finally introduce the Fourier transform for the signal space �2(Z), which consists

of the finite-energy DT-signals. Recall from (2.32) that the most common discretiza-

tion procedure to transform a CT-signal f : R → R into a DT-signal x : Z → R is

equidistant sampling, where the samples are defined by x(n) = f (n ·T ), n ∈ Z, for a

given sampling rate Fs = 1/T and sampling period T > 0.

Let x ∈ �2(Z) be an arbitrary DT-signal of finite energy, then the Fourier repre-
sentation of x is

x(n) =
∫

ω∈[0,1)
cω expω(n)dω =

∫
ω∈[0,1)

cω exp(2πiωn)dω (2.101)

for n ∈ Z. Furthermore, the coefficients cω are given by the frequency-dependent

function x̂ : [0,1)→ C defined by

cω = x̂(ω) := ∑
n∈Z

x(n)expω(n) = ∑
n∈Z

x(n)exp(−2πiωn), (2.102)

which is called the Fourier transform of x. Both the Fourier representation as well

as the Fourier transform are nontrivial facts that require mathematical proofs. Al-

though similar in nature, the Fourier transform for DT-signals cannot be directly

derived from the Fourier transform for CT-signals. However, as we will see, the

case of DT-signals can be regarded to be dual to the case of periodic CT-signals.

Also, the Fourier transform of a sampled analog signal can be regarded as a kind of

approximation of the Fourier transform of the analog signal.

2.3.4.1 Periodicity and Aliasing

The Fourier representation (2.101) says that the signal x can be represented as an in-

finitesimal superposition of the elementary frequency functions expω sampled with

T = 1 (see (2.32)). In this case, only the frequencies ω ∈ [0,1) are needed. Intu-

itively, the restriction of the frequency parameters to the set [0,1) can be explained

as follows: For an integer frequency parameter k ∈ Z and sampling points n ∈ Z one

has exp(2πikn) = 1. Therefore,

expω+k(n) = exp(2πi(ω + k)n) = exp(2πiωn)exp(2πikn) = expω(n). (2.103)

In other words, two exponential functions with an integer difference in their fre-

quency parameter coincide on the set of sampling points n ∈ Z. Consequently, they

cannot be distinguished when considered as 1-sampled DT-signals. We have en-

countered this aliasing phenomenon already in Figure 2.14 of Section 2.2.2. Using

a sampling rate of 1 Hz, the Nyquist frequency is ω = 0.5 Hz. All oscillations

with a frequency above this rate are not captured by 1-sampling and lead to the
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Fig. 2.23 Sinusoids of differ-
ent frequencies ω sampled at
a rate of Fs = 1 Hz. (a) ω =
0.3 Hz. (b) ω = 0.5 Hz.
(c) ω = 0.7 Hz.

Time (seconds)

(a)

(b)

(c)

same samples as oscillations of lower frequencies. This fact is also illustrated by

Figure 2.23.

Next, let us have a closer look at the Fourier transform (2.102). Note that (2.103)

implies that the function ω �→ exp(−2πiωn) is 1-periodic for all n ∈ Z. Being a

superposition of 1-periodic functions, also the Fourier transform x̂ is 1-periodic.

Furthermore, one can show that the Fourier transform is energy preserving, i.e.,

||x||�2(Z) = ||x̂||L2([0,1)). Note that this is exactly the reverse of the situation we have

seen for 1-periodic signals f ∈ L2([0,1)), where the Fourier transform was a DT-

signal f̂ ∈ �2(Z). Replacing the frequency parameter ω by the time parameter t,
the formula (2.102) for the Fourier transform of �2(Z) becomes (up to a sign in the

exponential function) the formula (2.79) for the Fourier representation of L2([0,1)).
A similar relation holds between the Fourier representation (2.101) for �2(Z) and

the Fourier transform (2.80) for L2([0,1)). From this it also follows that the Fourier

transform for �2(Z) applied to the Fourier transform f̂ of a signal f ∈ L2([0,1)) gives

back the 1-periodic signal f up to a sign, i.e., ˆ̂f (t) = f (−t). In mathematics, the

close relation between the spaces �2(Z) and L2([0,1)) and their Fourier transforms

is also referred to as duality.

2.3.4.2 Riemann Approximation

Let us now investigate the relation between the Fourier transform of L2([0,1)) and

the one of �2(Z). Starting with a CT-signal f ∈ L2(R), let x be its T -sampled version.

Then one obtains
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Fig. 2.24 Approximation
of the integral of an analog
signal by a Riemann sum
obtained from a 1-sampling.
(a) Integral. (b) Riemann
sum.

Time (seconds)
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(a)

(b)

x̂(ω) = ∑
n∈Z

x(n) exp(−2πiωn)

= ∑
n∈Z

f (nT ) exp(−2πiωn)

≈
∫

t∈R
f (tT )exp(−2πiωt)dt (2.104)

=
1

T

∫
t∈R

f (t)exp

(−2πiωt
T

)
dt

=
1

T
f̂
(ω

T

)
,

where we have used the substitution rule for indefinite integrals to replace tT by t.
The approximation sign expresses that the value x̂(ω) obtained by a sum has roughly

the same size as the value f̂ (ω/T )/T obtained by an integral. This is a special case

of the Riemann sum approximation, which we explain next.

Recall that the integral of a function is the (weighted) area determined by the

function’s graph and the time axis. In case of a complex-valued function, the

complex-valued integral is defined by the integral of the real part and of the imag-

inary part of the function. For many functions, the integral can be approximated

by partitioning the time axis into small intervals, picking the function value at the

mid-point of each interval, and then summing up the interval lengths weighted by

the respective value (see Figure 2.24). The resulting sum is also called the Riemann
sum for the integral. The accuracy of the approximation very much depends on the

resolution of the partition (the finer, the better the approximation) and the properties

of the integrand (the slower it oscillates, the better the approximation).

In our case, the intervals of the partitioning have length one. Furthermore, the

integrand is the function h : R→ C defined by h(t) := f (tT )exp(−2πiωt), which

basically is the product of the signal and an exponential function. Because of alias-

ing effects, in particular arising from the factor exp(−2πiωt), the Riemann sum

does not yield a meaningful approximation for ω ∈R\
[
− 1

2 ,
1
2

]
. In particular, while

x̂ is 1-periodic, the function ω �→ f̂ (ω/T )/T is nonperiodic and approaches zero for

ω →±∞. Within the interval
[
− 1

2 ,
1
2

]
, however, in particular when approaching the
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Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.25 Relation between the Fourier transform of a CT-signal and that of the DT-signal ob-
tained by 1-sampling. Each row shows a signal (left) and its magnitude Fourier transform (right).
(a) Analog chirp signal with λ = 0.003 and (b) its 1-sampled version. (c) Analog chirp signal
with λ = 0.004 and (d) its 1-sampled version showing strong aliasing artifacts around the Nyquist
frequency.

frequency ω = 0, the Riemann sum x̂(ω) approximates the value f̂ (ω/T )/T with

increasing accuracy.

2.3.4.3 Chirp Signal Example

To further illustrate the relation between CT- and DT-signals and their Fourier trans-

forms, we consider a signal in which the frequency increases with time. Such a sig-

nal is also called a chirp signal or sweep signal. In particular, for a given positive

constant λ > 0, the function

f (t) :=

{
sin(λ ·πt2), for t ≥ 0,

0, for t < 0,
(2.105)

defines a linear chirp, which is a sinusoidal wave that increases in frequency lin-

early over time. It can be shown that the instantaneous frequency at time t = t0
is ω0 = λ t0, which is the derivative of the phase divided by 2π . Figure 2.25 shows

two chirp signals for different values of λ . In the first case (Figure 2.25a), the main

frequencies are below ω ≤ 0.4, which is also shown by the magnitude Fourier trans-

form. As a result, there is little aliasing when 1-sampling the signal (Figure 2.25b).
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The Fourier transform x̂ of the resulting DT-signal x yields a good approximation

of the Fourier transform f̂ in the range [0,0.5). Note that x̂ is 1-periodic whereas

f̂ is not. Now, increasing the constant λ results in a chirp signal with frequency

components above the Nyquist frequency of 0.5 (Figure 2.25c). Therefore, when

1-sampling the signal, there are aliasing artifacts where frequencies 0.5 + ω are

identified with frequencies 0.5−ω (see Figure 2.25d). In this case, the Riemann

sum (2.104) yields a poor approximation of the actual integral.

2.4 Discrete Fourier Transform (DFT)

Computing the Fourier transform of signals involves the evaluation of integrals or in-

finite sums, which is, in general, computationally infeasible. In practice, as we have

already discussed in Section 2.1.3, one typically approximates the Fourier transform

by finite sums. Furthermore, the Fourier transform is evaluated only for a finite num-

ber of frequencies. In this section, we show how the finite sums and the Fourier co-

efficients must be chosen to obtain a linear transform known as the discrete Fourier
transform (DFT). The important point is that the DFT can be computed efficiently

by means of an algorithm, the famous fast Fourier transform (FFT). The FFT is

considered one of the most important algorithms, being widely used for many ap-

plications in engineering and mathematics. In the following, we introduce the case

of finite-length signals and their Fourier transform, which can then be formulated

in terms of the DFT. We then describe in detail the FFT algorithm and discuss its

computational complexity.

2.4.1 Signals of Finite Length

To derive the DFT, we start to reinvestigate the Fourier transform for a DT-signal

x ∈ �2(Z). We assume that the energy of x is concentrated in the interval [0 : N −1],
i.e., x(n)≈ 0 for n ∈ Z\ [0 : N −1]. Then we obtain from (2.102)

x̂(ω) = ∑
n∈Z

x(n)expω(n)≈
N−1

∑
n=0

x(n)expω(n) (2.106)

for a frequency parameter ω . Recall that since x̂ is 1-periodic only the frequencies

ω ∈ [0,1) need to be considered. In practice, one often computes the Fourier trans-

form only for a finite subset of frequencies. In particular, fixing a number K ∈ N,

one considers the frequencies ω = k/K for k ∈ [0 : K −1], which corresponds to a

1/K-sampling of the frequency space [0,1). Even though the number N of points

in time and the number K of frequencies are not related at all, it is convenient to

assume N = K. This assumption, as we will see, leads to a compact matrix-theoretic
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formulation of the Fourier transform along with an efficient algorithm for computing

the transform.

In the following, we assume N = K. Furthermore, let x ∈ �2(Z) be a sig-

nal that is zero outside the interval [0 : N −1] so that one obtains equality in

(2.106). Such DT-signals are also referred to as finite-length signals, where N
is the length of the signal. Each such signal x can be identified with a vector

x := (x(0),x(1), . . . ,x(N−1))
 ∈C
N . This way, we can regard C

N as a subspace of

�2(Z), where the inner product (2.43) of �2(Z) reduces to the inner product (2.37)

of CN . Not all frequencies ω ∈ [0,1) are needed to characterize a signal of length N.

Indeed, only the frequencies k/N for k ∈ [0 : N −1] suffice to represent such signals.

To see this, we define a vector uk ∈ C
N for each k ∈ [0 : N −1] by setting

uk(n) := expk/N(n) = exp(2πikn/N), (2.107)

n ∈ [0 : N −1]. In other words, the vector uk consists of the first N samples of the

exponential function expk/N . Then (2.106) can be expressed as

x̂(k/N) =
N−1

∑
n=0

x(n)expk/N(n) = x
uk = 〈x|uk〉. (2.108)

Thus, the Fourier transform of a signal of length N can be obtained by inner prod-

ucts with the sampled and truncated exponential functions uk. We now show that

these exponential functions (after rescaling) form an ON-basis of the Hilbert space

C
N . First, we define the number ρ := exp(2πi/N). Obviously, ρN = 1 and ρk �= 1

for k ∈ [1 : N −1]. Such a number is also called a primitive Nth root of unity (see

also Exercise 2.23). Using the properties (2.70) and (2.71) of the exponential func-

tion, one obtains

〈uk|u�〉 =
N−1

∑
n=0

exp(2πikn/N)exp(2πi�n/N) (2.109)

=
N−1

∑
n=0

exp(2πi(k− �)n/N) =
N−1

∑
n=0

ρ(k−�)n. (2.110)

for k, � ∈ [0 : N −1]. In the case k = �, this implies ||uk||2 = 〈uk|uk〉= N. In the case

k �= �, one has ρ(k−�) �= 1. Therefore, one can apply the sum formula

N−1

∑
n=0

an = (1−aN)/(1−a) (2.111)

for geometric series, which holds for any complex number a �= 1 (see Exercise 2.18).

Setting a = ρ(k−�), one obtains

〈uk|u�〉=
1−ρN(k−�)

1−ρ(k−�)
= 0. (2.112)
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This shows that

{uk/
√

N|k ∈ [0 : N −1]} (2.113)

is an ON-basis of the complex Hilbert space C
N . In particular, from (2.52), one

obtains the Fourier representation

x =
1

N

N−1

∑
k=0

〈x|uk〉uk. (2.114)

In other words, a finite-length signal can be represented as a weighted superposi-

tion of sampled and truncated exponential functions uk, where the weights are the

Fourier coefficients given by (2.108). Next, we show how the Fourier transform and

Fourier representation for finite-length signals relate to the discrete Fourier trans-

form (DFT).

2.4.2 Definition of the DFT

Recall from (2.108) that the Fourier coefficients of a signal x of finite length N are

given by

X(k) := 〈x|uk〉=
N−1

∑
n=0

x(n)exp(−2πikn/N) (2.115)

for k ∈ [0 : N −1]. Let X := (X(0),X(1), . . . ,X(N − 1))
 ∈ C
N denote the vector

of Fourier coefficients. By definition, the discrete Fourier transform (DFT) is the

mapping C
N →C

N that maps the input vector x to the output vector X. From (2.115)

it is clear that this is a linear mapping, which can be described by the (N×N) matrix

DFTN given by

DFTN(n,k) = exp(−2πikn/N). (2.116)

One crucial observation is that there are many relations between the num-

bers exp(2πikn/N) for k,n ∈ [0,N − 1]. Using the primitive Nth root of unity

ρ = exp(2πi/N) as well as the relations ρkn = exp(2πikn/N) and ω := ρ =
exp(−2πi/N), one obtains DFTN(n,k) = ωkn. This yields the famous matrix

DFTN =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎞⎟⎟⎟⎟⎟⎠ . (2.117)

Obviously, DFTN is a symmetric matrix. Its columns are given by uk and its rows

by uk

. In summary, we have seen that the Fourier transform x̂ of a DT-signal x of

finite length N can be computed for frequencies ω = k/N, k ∈ [0 : N −1] by a single

matrix–vector product X = DFTN ·x.
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The Fourier representation given by (2.114) is the inverse of the Fourier trans-

form. For a spectral vector X, it outputs the original signal x. Again, being a linear

mapping C
N → C

N , the Fourier representation is given by a matrix, the inverse of

the matrix DFTN . From (2.113) it directly follows that

DFT−1
N =

1

N
DFTN



=

1

N

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1

1 ρ ρ2 · · · ρN−1

1 ρ2 ρ4 · · · ρ2(N−1)

...
...

...
. . .

...

1 ρN−1 ρ2(N−1) · · · ρ(N−1)(N−1)

⎞⎟⎟⎟⎟⎟⎠ . (2.118)

In other words, the inverse essentially coincides with the DFT matrix up to some

normalizing factor and complex conjugation.

2.4.3 Fast Fourier Transform (FFT)

Note that the usual computation of the matrix–vector product X = DFTN ·x requires

O(N2) multiplications and additions, which is too many for most applications. For

example, having a signal with one thousand samples (N = 103) would require al-

ready a number of operations on the order of a million (N2 = 106). In many cases

one has to deal with much larger N � 105, which makes a naive computation of a

DFT infeasible. The good news is that the DFT matrix is highly structured, which

can be exploited when computing a matrix–vector product. The main idea lies in a

factorization of the DFT matrix into a product of O(logN) sparse matrices, each of

which can be evaluated with O(N) operations. This leads to an efficient algorithm,

the so-called fast Fourier transform (FFT), which only requires O(N logN) multi-

plications and additions. The FFT algorithm was originally found by Gauss in about

1805 and then rediscovered by Cooley and Tukey in 1965.

The FFT algorithm is based on the observation that applying a DFT of even

size N = 2M can be expressed in terms of applying two DFTs of half the size

M. Let ωN = exp(−2πi/N) be the primitive root of unity used in DFTN so that

DFTN(n,k) = ωkn
N for n,k ∈ [0 : N −1]. Similarly, we define ωM = exp(−2πi/M)

so that DFTM(n,k) = ωkn
M for n,k ∈ [0 : M−1]. Obviously, ρM = ρ2

N . Let x ∈ C
N

be an input vector and X = DFTN · x as before. Then for the first M entries X(k),
k ∈ [0 : M−1] one has
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X(k) =
N−1

∑
n=0

x(n)ωkn
N (2.119)

=
M−1

∑
n=0

x(2n)ωk2n
N +

M−1

∑
n=0

x(2n+1)ωk(2n+1)
N (2.120)

=
M−1

∑
n=0

x(2n)ωkn
M +ωk

N

M−1

∑
n=0

x(2n+1)ωkn
M . (2.121)

In other words, the first M entries of X are obtained by first applying a DFTM on

the even-indexed entries of x as well as a DFTM on the odd-indexed entries of x.

The final result is then obtained by adding up the two output vectors, where the

second one is adjusted by the factors ωk
N , which are also known as twiddle factors.

Similarly, for the last M entries X(M+ k), k ∈ [M−1] one has

X(M+ k) =
N−1

∑
n=0

x(n)ω(M+k)n
N (2.122)

=
M−1

∑
n=0

x(2n)ω(M+k)2n
N +

M−1

∑
n=0

x(2n+1)ω(M+k)(2n+1)
N (2.123)

=
M−1

∑
n=0

x(2n)ωkn
M −ωk

N

M−1

∑
n=0

x(2n+1)ωkn
M , (2.124)

where we have used ωM(2n+1)
N = −1. This shows that the last M entries of X are

obtained by the same computation scheme as the first M ones, except for using the

twiddle factors −ωk
N instead of ωk

N . The following matrix factorization summarizes

this result:

DFTN ·

⎛⎜⎜⎜⎝
x(0)
x(1)

...

x(N −1)

⎞⎟⎟⎟⎠=

(
idM ΔM
idM −ΔM

)(
DFTM 0

0 DFTM

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(0)
x(2)

...

x(N −2)

x(1)
x(3)

...

x(N −1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.125)

The matrix idM = diag(1,1, . . . ,1) denotes the (M ×M) identity matrix and ΔM =
diag(1,ωN , . . . ,ωM−1

N ) the (M×M) diagonal matrix containing the twiddle factors.

The rearrangement of the input vector into components with an even and compo-

nents with an odd index can be expressed by an additional permutation matrix. Al-

together, this leads to a factorization of the DFTN matrix into a product of sparse

matrices (having only few nonzero coefficients) and DFTM matrices of half the size.
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Algorithm: FFT

Input: The length N = 2L with N being a power of two

The vector (x(0), . . . ,x(N −1))
 ∈ C
N

Output: The vector (X(0), . . . ,X(N −1))
 = DFTN · (x(0), . . . ,x(N −1))


Procedure: Let (X(0), . . . ,X(N −1)) = FFT(N,x(0), . . . ,x(N −1)) denote the general form
of the FFT algorithm.
If N = 1 then

X(0) = x(0).
Otherwise compute recursively:

(A(0), . . . ,A(N/2−1)) = FFT(N/2,x(0),x(2),x(4) . . . ,x(N −2)),

(B(0), . . . ,B(N/2−1)) = FFT(N/2,x(1),x(3),x(5), . . . ,x(N −1)),

C(k) = ωk
N ·B(k) for k ∈ [0 : N/2−1],

X(k) = A(k)+C(k) for k ∈ [0 : N/2−1],

X(N/2+ k) = A(k)−C(k) for k ∈ [0 : N/2−1].

Table 2.1 Recursive version of the FFT algorithm.

The FFT algorithm is again summarized by the compact recursive version shown in

Table 2.1.

What have we gained when evaluating the DFTN by means of this procedure?

Let μ(N) be the number of multiplications and additions7 needed to compute the

matrix–vector product DFTN · x. By (2.125), one needs to evaluate two DFTM ,

which takes 2μ(M) operations. Furthermore, at first sight, one seems to require

2M = N multiplications for the twiddle factors and 2M = N additions to sum up the

output vectors from the DFTM step. A closer look shows that one can do even better.

First note that the first twiddle factor (k = 1) is ωk
N = 1, thus causing no multiplica-

tion cost. Furthermore, multiplication with the other twiddle factors (k ∈ [1 : M−1])
needs to be done only once, but can be used twice (see C(k) in Table 2.1, where it

is used once in X(k) = A(k)+C(k) and once in X(N/2+ k) = A(k)−C(k)). As a

result, one requires only M − 1 multiplications for the twiddle factors (instead of

2M = N). Altogether, one obtains the estimate

μ(N)≤ 2μ(N/2)+1.5N. (2.126)

Now, this procedure unfolds its full effect when applied recursively. To this end, one

assumes that N = 2L is a power of two. Obviously μ(1) = 0, since in the case N = 1

nothing has to be done. This leads to the following overall estimate:

7 In the following, subtractions are counted as additions.
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μ(N) ≤ 2 ·μ(N/2)+1.5N (2.127)

≤ 4 ·μ(N/4)+1.5N +1.5N (2.128)

≤ . . . (2.129)

≤ 2L ·μ(1)+1.5N +1.5N + . . .+1.5N︸ ︷︷ ︸
L=log2(N) times

(2.130)

= 1.5N log2(N). (2.131)

This equation can also be formally shown by a simple induction (see Exercise 2.26).

The savings obtained from the FFT algorithm are huge, in particular for large N. For

example, in the case N = 103, the FFT algorithm requires 2 ·104 operations instead

of 106 as needed for the naive approach, which is a reduction of operations by a

factor of 50. For N = 105, this factor is already 3,000, and for N = 106, it reaches

25,000. In this case, if the FFT requires a second of computing time, the naive

approach would require 7 hours.

2.4.4 Interpretation of the DFT

Let us summarize the results obtained so far. We started with a CT-signal f ∈ L2(R)
and derived a DT-signal x by T -sampling. Fixing a number N ∈ N of samples, we

computed X = DFTN · x for x = (x(0), . . .x(N − 1))
. What is the meaning of the

Fourier coefficients X = (X(0), . . .X(N−1))
 in relation to the original analog sig-

nal f ? To answer this question, we need to combine the results induced by the DFT

approximation (2.106) and the Riemann approximation (2.104):

X(k)≈ x̂
(

k
N

)
≈ 1

T
f̂
(

k
N
· 1

T

)
. (2.132)

In other words, to obtain the “correct” physical interpretation of the coefficient X(k)
one needs to know the window size N and the sampling rate 1/T . First, X(k) needs

to be scaled by the factor T . Second, the index k corresponds to the frequency ω =
k/(NT ). In other words, the DFT computes the frequencies only on a linear grid of

frequencies with a resolution of 1/(NT ) Hz.

However, the approximations in (2.132) need to be taken with care. The first ap-

proximation is only good if the samples of x(n) are close to zero outside the interval

[0 : N − 1]. Obviously, this is the case if the analog signal f is close to zero out-

side the interval [0,(N − 1)/T ]. Furthermore, recall that the second approximation

is only good if f does not contain frequency components above the Nyquist fre-

quency 1/(2T ) Hz. Also, the approximation becomes poor for large k correspond-

ing to high frequencies of the exponential functions. Assuming that f is real-valued,

one can easily check that f̂ (ω) = f̂ (−ω), x̂(ω) = x̂(−ω), and X(k) = X(N − k)
(see (2.83) and Exercise 2.24). Therefore, the coefficients X(k) are redundant for
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IndexIndex

(a)

(b)

(c)

Frequency (Hz)Time (seconds)

IndexIndex

Fig. 2.26 DFT approximation of the Fourier transform. (a) Analog chirp signal and its Fourier
transform. (b) Sampled signal using T = 1/32 and DFT coefficients using N = 64. (c) Interpolation
of sampled signal and of DFT coefficients.

k = �N
2 �+ 1, . . . ,N − 1, and one only needs to consider the coefficients X(k) for

k = 0,1, . . . ,�N
2 �.

As an example, let us consider the analog chirp signal shown in Figure 2.26a,

where we assume that the signal is zero outside the shown interval [0,2]. The

Fourier transform is shown for frequencies ω ∈ [0,15]. Next, we sample the chirp

signal using a sampling rate of Fs = 32 Hz and obtain a finite-length signal x of

length N = 64. Applying a DFTN results in a complex-valued vector X = DFTN ·x,

the magnitude values of which are shown in Figure 2.26b. By (2.132), we obtain

X(k)/32 ≈ f̂ (k/2). For example, the index k = 30 corresponds to the frequency

ω = 15 (see Figure 2.26c). The resulting frequency resolution is 0.5 Hz.

2.5 Short-Time Fourier Transform (STFT)

The Fourier transform f̂ of a signal f ∈ L2(R) describes the frequency content of the

signal. Comparing the signal with a periodic exponential function t �→ exp(2πiωt)
results in a coefficient f̂ (ω) that exhibits the overall intensity of oscillations at ω Hz

occurring in the signal. However, because of the nonlocal nature of the analysis

function, the frequency information is always averaged over the entire time domain.

Sudden changes and local variations of the signal such as the beginning and the

end of events cannot be detected well by the Fourier transform. Local phenomena

of the signal become global phenomena in the Fourier transform. In contrast, small
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changes in the phase of the Fourier transform can have considerable effects in the

time domain.

To remedy the drawbacks of the Fourier transform, as we have already discussed

in Section 2.1.4, Dennis Gabor introduced in the year 1946 the modified Fourier

transform, now known as the short-time Fourier transform (STFT). This trans-

form is a compromise between a time- and a frequency-based representation, deter-

mining the sinusoidal frequency and phase content of local sections of a signal as it

changes over time. In this way, the STFT does not only tell which frequencies are

“contained” in the signal but also at which points of times or, to be more precise,

in which time intervals these frequencies appear. In the following, we start by in-

troducing the STFT for the case of analog signals. From the STFT one can derive a

spectrogram, which visually represents the time–frequency content of a signal. Fi-

nally, we introduce a discrete version of the STFT as it is typically used in practice.

This is the version of the STFT we have already encountered in Section 2.1.4.

2.5.1 Definition of the STFT

For a given signal, we want to find a transform that exhibits the frequency content

of f in a neighborhood of each point in time t. The basic idea is to consider only a

small section of the signal around a point t, where the influence of a point within the

section decreases with increasing distance from t. Mathematically, this weighting is

modeled by multiplying the signal with a window function, which can be thought of

as a weighting (often bell-shaped) function that localizes around t. Instead of using

a different window function for each point t, one uses a single window function

that localizes around the point t = 0. This function is then shifted across time. If

f ∈ L2(R) is a signal and g : R → R is such a window function, then the function

fg,t localized at point t is defined by

fg,t(u) := f (u)g(u− t). (2.133)

Figure 2.27 shows a chirp signal f as well as the resulting localized signals fg,t
when using a bell-like window function g centered at zero for the shift parameters

t = 0.5, t = 1, and t = 1.5, respectively.

In view of a general mathematical formulation, one often admits complex-valued

window functions g : R→C and requires g ∈ L2(R) as well as ||g||2 �= 0. Extending

(2.133), the function fg,t is defined by

fg,t(u) := f (u)g(u− t). (2.134)

Note that the complex conjugate does not play any role in case of a real-valued win-

dow g, which will always be the case in this book. Also, note that from a technical

point of view, g does not need to have a particular shape.

Given a signal f ∈ L2(R) as well as a window function g ∈ L2(R), the

(continuous-time) short-time Fourier transform (STFT) is a function f̃g :R×R→
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Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.27 Chirp signal and windowed versions along with their magnitude Fourier transforms.
(a) Original signal. (b) Window centered at t = 0.5. (c) Window centered at t = 1.0. (d) Window
centered at t = 1.5.

C defined by

f̃g(t,ω) := f̂g,t(ω) =
∫

u∈R
f (u)g(u− t)exp(−2πiωu)du. (2.135)

In other words, f̃g(t, ·) coincides with the Fourier transform of the localized signal

fg,t for a fixed time instance t ∈ R.

As an illustration, let us continue with the example of Figure 2.27, which shows

the chirp signal f (t) = sin(20 · πt2) for t ∈ [0,2]. As we mentioned after (2.105),

the instantaneous frequency at time t is ω = 20t. Therefore, when considering the

localized signal fg,t one may expect frequencies around ω = 20t Hz. Indeed, the

Fourier transform f̂g,t reveals a peak at 10 Hz for t = 0.5 (Figure 2.27b), a peak at

20 Hz for t = 1 (Figure 2.27c), and a peak at 30 Hz for t = 1.5 (Figure 2.27d).

2.5.1.1 Alternative Definition of the STFT

When considering the short-time Fourier transform, one can assume a different

viewpoint, which leads to a sightly different definition. In the above definition,

we first windowed the original signal f with the time-shifted window gt to obtain

the localized signal fg,t , which was then compared against the exponential func-
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Fig. 2.28 Illustration of four
different “musical notes” gt,ω
located in the time–frequency
plane: (t,ω) = (1,4), (t,ω) =
(2,12), (t,ω) = (4,8), and
(t,ω) = (6,4).
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tions expω . A different viewpoint is to construct localized elementary functions

gt,ω : R→ C by defining

gt,ω(u) := exp(2πiω(u− t))g(u− t), (2.136)

u ∈ R. In other words, gt,ω is obtained by first modulating the window g by ω Hz,

which is a frequency shift in the Fourier domain (see (2.100)). The resulting mod-

ulated window is then shifted in time by t sec (see (2.97)). Intuitively, gt,ω may be

thought of as a “musical note” of frequency ω that is active in a neighborhood of

t. The parameters t and ω allow for shifting the musical note in the time–frequency

plane (see Figure 2.28).

It is not hard to see that ||gt,ω || = ||g|| for a window function g ∈ L2(R) (see

Exercise 2.22). Therefore, as opposed to the exponential functions expω , which do

not have finite energy, one has gt,ω ∈ L2(R). Therefore, we can define a function

f̃ g : R×R→ C by setting

f̃ g(t,ω) = 〈 f |gt,ω〉=
∫

u∈R
f (u)g(u− t)exp(−2πiω(u− t))du. (2.137)

The inner product 〈 f |gt,ω〉 measures the similarity between the signal f and the mu-

sical note gt,ω . If f and gt,ω oscillate with the same frequency within the window,

the inner product 〈 f |gt,ω〉 has a large absolute value. Vice versa, if f has no fre-

quency components around ω , the inner product is close to zero and f and gt,ω are

more or less orthogonal. The signal

u �→ 〈 f |gt,ω〉gt,ω(u) (2.138)

can be considered as the “projection” of the signal f in the direction of the musical

note gt,ω (see Figure 2.15).

The original STFT f̃g defined by (2.135) and the version f̃ g defined by (2.137)

coincide up to some time-dependent modulation factor:

f̃g(t,ω) = f̃ g(t,ω)exp(2πiωt). (2.139)

In the first version only the window is shifted, whereas in the second version also the

exponential function is shifted along with the window. Often f̃g is used for the ana-
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Fig. 2.29 Window func-
tions and their Fourier trans-
forms. (a) Rectangular win-
dow. (b) Triangular window.
(c) Hann window.

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

log case, whereas f̃ g corresponds to what is used for the discrete Fourier transform

(see for example (2.26)). We will come back to this issues in Section 2.5.3.

2.5.1.2 Role of the Window Function

We now discuss the role of the window function g, which plays an important role

from a signal processing point of view. Typically, a window function is chosen to

be zero-valued outside of some chosen section, so that when a signal is multiplied

by the window function, the product is also zero-valued outside the section. The

finite-length signal that is left can be regarded as a “view through the window.” The

definition (2.135) shows that the STFT depends on both the signal as well as the

window function, although one is typically interested only in the signal’s properties.

The design of suitable window functions and their influence is a science by itself,

which is outside the scope of this book. In the following, we discuss some examples

that illustrate how the window may affect the spectral estimate computed by the

STFT.

The seemingly simplest way to obtain a local view on the signal f is to leave it

unaltered within the desired section and to set all values to zero outside the section.

Such a localization is realized by a rectangular window as defined in (2.95) and

again shown in Figure 2.29a. However, using the rectangular window has major

drawbacks, since it generally leads to discontinuities at the section’s boundaries in

the localized signal fg,t . As we have discussed before, such abrupt changes lead to

artifacts due to interferences which are spread over the entire frequency spectrum.

Rather than being part of the original signal f , these frequency components come

from the properties of the rectangular window (see Figure 2.29a). Recall that the

Fourier transform of the rectangular window is the sinc function defined in (2.96),

which shows slowly decaying ripples across the entire spectrum. These ripples also

become visible in the STFT of a chirp signal as demonstrated by Figure 2.30a.
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Frequency (Hz)Time (seconds)

(a)

(b)

(c)

Fig. 2.30 Windowed chirp signal and its magnitude Fourier transform using different window
functions. (a) Rectangular window. (b) Triangular window. (c) Hann window.

To attenuate the boundary effects, one often uses windows that are nonnegative

within the desired section and continuously fall to zero towards the section’s bound-

aries. One such example is the triangular window (Figure 2.29b), which leads to

much smaller ripple artifacts (Figure 2.30b). A window often used in signal process-

ing is the Hann window (also known as the Hanning window) named after Julius

von Hann. The Hann window g is a raised cosine window defined by

g(u) :=

{
(1+ cos(πu))/2 if −0.5 ≤ u ≤ 0.5

0 otherwise
(2.140)

(see Figure 2.29c). Dropping smoothly to zero at the section boundaries, the above-

mentioned artifacts in the Fourier transform of the windowed signal are softened.

This is also illustrated by Figure 2.30c. However, on the downside, the Hann win-

dow introduces some smearing of frequencies. As a result, the Fourier transform of

a signal’s windowed section may look smoother than the signal’s properties sug-

gest. In other words, the reduction of ripple artifacts introduced by the window is

achieved at the expense of a poorer spectral localization. Similarly, as we will see in

the next section, the size of the window crucially affects the STFT.

2.5.2 Spectrogram Representation

The STFT of a signal f yields for each point in time t and frequency ω a complex

number f̃g(t,ω). This information is often visualized by means of a spectrogram,

which is a two-dimensional representation of the squared magnitude:
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Spec(t,ω) = | f̃g(t,ω)|2 = | f̃ g(t,ω)|2. (2.141)

For the definition of the spectrogram, the version of the STFT in (2.139) does not

matter, since the modulation factor has a magnitude of one. When generating an

image of a spectrogram, the horizontal axis represents time, the vertical axis is

frequency, and the dimension indicating the spectrogram value of a particular fre-

quency at a particular time is represented by the intensity or color in the image.

There are many variations in visualizing a spectrogram. Sometimes the vertical and

horizontal axes are switched, so time runs up and down. Sometimes the amplitude is

represented as the height of a 3D surface instead of color or intensity. To emphasize

musical or tonal relationships, the frequency axis is often plotted in a logarithmic

fashion, which yields a log-frequency representation as we will encounter in the

subsequent chapters. A logarithmic frequency axis also accounts for the fact that

human perception of pitch is logarithmic in nature (see Section 1.3.2). Finally, in

the case of audio signals, the amplitude values are also often visualized using a log-

arithmic scale, for example, by using a decibel scale. In this way, small intensity

values of perceptual relevance become visible in the image. In the following, if not

specified otherwise, we use in our visualizations a linear frequency axis and a log-

arithmic scale to represent amplitudes. The specific scale is not of importance, but

only serves the purpose of enhancing the qualitative properties of the visualization.

In our first example, we again consider a chirp signal f defined by f (t) =
sin(400πt2) for t ∈ [0,1], which is smoothly faded out towards t = 1 (see

Figure 2.31a). For this chirp, the instantaneous frequency linearly raises from ω =
0 Hz at t = 0 to ω = 400 Hz at t = 1. For computing the STFT, we use a Hann win-

dow having a size of 62.5 ms. The resulting spectrogram is shown in Figure 2.31b.

The logarithmic amplitude values are encoded by different gray levels, which are

lighter for small values and darker for large values. Note that each column of the

spectrogram corresponds to a plot of a Fourier transform as, for example, shown in

Figure 2.30c.

The image of the spectrogram shows a strong diagonal stripe starting at the time–

frequency point (t,ω) = (0,0) and ending at (t,ω) = (1,400), which reveals the

linear frequency increase of the chirp signal. This diagonal stripe has a substantial

width (roughly 40 Hz), which can be explained as follows: First, recall that at a

given point t the STFT exhibits the frequency content of an entire neighborhood

(a windowed section of the signal) around t, and the STFT averages the frequency

information across this section. Second, as discussed in Section 2.5.1, the window

introduces some additional smearing of frequencies in the Fourier domain. The ar-

tifacts introduced by the window function also explain the weaker diagonal stripes

that run below and above the strong diagonal stripe. These weaker stripes corre-

spond to the ripples occurring in the Fourier transform of the window function. As

opposed to Figure 2.30c, where no such ripples can be seen for the Hann window,

the ripples become visible in the visualization of the spectrogram only because we

have used a logarithmic magnitude scale. We have already seen in Figure 2.30a that

the ripple artifacts become much stronger when using a rectangular window instead

of a Hann window. This phenomenon is illustrated by Figure 2.31c, which shows
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Fig. 2.31 Spectrogram of a chirp signal using two different window types. (a) Signal. (b) Spec-
trogram with Hann window of size 62.5 ms. (c) Spectrogram with rectangular window of size
62.5 ms.

a corresponding spectrogram. This visualization demonstrates the importance of

choosing a suitable window function. In general, it is not easy to distinguish the

characteristics of the signal and the effects introduced by the window function.

With the next example, we discuss the role of the size of the window function g.

To this end, we consider the signal f shown in Figure 2.32a, which is defined by

f (t) = sin(800πt)+ sin(900πt)+δ (t −0.45)+δ (t −0.5) (2.142)

for t ∈ [0,1]. In this interval, f is a superposition of two sinusoids of frequency 400

and 450 Hz, respectively. Furthermore, two impulses are added at the points t = 0.45

and t = 0.5 sec. Again we assume that f is zero outside the shown interval [0,1].
This signal is interesting since it contains two components that are close in time (the

two impulses that are 50 ms apart) and two components that are close in frequency

(the two sinusoids that are 50 Hz apart). Figure 2.32b shows the spectrogram when

using a Hann window of size 32 ms. The image contains a horizontal stripe in the

region between 375 and 475 Hz, which corresponds to the sinusoids, as well as two

vertical stripes at t = 0.45 and t = 0.5 sec, which correspond to the impulses. As

illustrated by Figure 2.20b, each of the impulses results in many nonzero Fourier
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Fig. 2.32 Spectrogram using different window sizes. (a) Signal. (b) Spectrogram with short Hann
window (32 ms). (c) Spectrogram with long Hann window (128 ms).

coefficients spread across the entire spectrum, which explains the vertical stripes.

Since the window size of 32 ms implies that in each window there is at most one

of the impulses, the two impulses can be clearly separated by the STFT. However,

the STFT is not able to separate the two frequency components at ω = 400 Hz and

ω = 450 Hz. The reason is that the chosen window introduces frequency smearing.

The scaling property of the Fourier transform (Exercise 2.20) says that reducing the

size by temporally compressing the window leads to a broadening of its Fourier

transform. This, in turn, implies that the frequency smearing becomes more severe.

Therefore, to separate the two frequency components, one strategy is to increase

the window size, thus reducing the frequency smearing. Indeed, using a Hann win-

dow of size 128 ms results in a clear separation as shown by the two horizontal

stripes (see Figure 2.32c). However, increasing the window size goes along with an

increased smearing in the time domain. As a result, the two impulses are not sep-

arated any longer. As a side remark, we want to point to the two vertical stripes

showing up at t = 0 and t = 1. An explanation is to be given in Exercise 2.27.

In summary, using a large window size results in a good localization in frequency,

but a poor localization in time, whereas using a small window size has the opposite

effect. Increasing the window size leads to an STFT which averages the frequencies

of the signal over a greater time interval, resulting in a loss of time information. In
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the limit case of an “infinite window size” one ends up with the usual Fourier trans-

form, which averages the frequencies over the entire time domain R. Vice versa,

successively decreasing the window size results in a Dirac sequence, where, in the

limit case of g being an impulse, the STFT gives back the original signal: perfect

time localization, no frequency localization.

The time localization property of the STFT depends on the temporal spread of

the window function g, whereas the frequency localization property of the STFT

depends on the spectral spread of the Fourier transform ĝ. We want to mention

that one cannot have both properties at the same time. A variant of the Heisenberg
uncertainty principle says that there is no window function that simultaneously

localizes in time and frequency with arbitrary precision.

2.5.3 Discrete Version of the STFT

So far, we have discussed the STFT and spectrogram in the case of analog signals.

In practice, one uses sampled signals and computes the STFT only on a finite time–

frequency grid. Because of efficiency issues, one typically employs DFTs which

can be computed by means of the FFT algorithm. As before, let x be a DT-signal

obtained from a CT-signal f by T -sampling. Furthermore, let w be a sampled version

of an analog window function g. In the discrete case, the window can be shifted only

in a sample-wise fashion. Because of efficiency issues, one often shifts the window

in even larger steps, which are specified by some hop size parameter H ∈N (given in

samples). Following the alternative definition (2.137) in the analog case, we define

the (discrete-time) STFT x̃w of the DT-signal x with respect to the window function

w by

x̃w(m,ω) := ∑
n∈Z

x(n)w(n−mH)exp(−2πiω(n−mH)) (2.143)

= ∑
n∈Z

x(n+mH)w(n)exp(−2πiωn) (2.144)

for m ∈ Z and ω ∈ [0,1). Now, if the sampled window function w is a finite signal,

the sum in (2.144) becomes finite, and we can apply the DFT to compute the discrete

STFT for certain frequencies.

In the analog case, we assumed that the window function g was centered at time

zero. To simplify the formulas in the discrete case, we assume that the support of

the window function is contained only in the positive part of the time axis centered

at half the window length (i.e., the window is shifted by half a window length to the

right compared with the zero-centered case). The zero-centered case can be easily

restored by also shifting the original signal by half a window length.

Having said this, we assume that the nonzero samples of the discrete window

w are w(n) for n ∈ [0 : N − 1]. For each frame index m ∈ Z, we define the vector

xm = (xm(0), . . . ,xm(N −1))
 ∈ C
N with
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xm(n) = x(n+mH)w(n) (2.145)

for n ∈ [0 : N −1] and compute the vector Xm = (Xm(0), . . .Xm(N −1))
 ∈ C
N via

a DFT of size N:

Xm = DFTN ·xm. (2.146)

Then one obtains

x̃w(m,k/N) =
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N)

=
N−1

∑
n=0

xm(n)exp(−2πikn/N) (2.147)

= Xm(k)

for k ∈ [0 : N − 1]. Thus, we have shown that, for each time frame m ∈ Z, one can

compute the discrete STFT at frequencies ω = k/N for k ∈ [0 : N −1] by means of

a DFTN . In the case that N is a power of two, this can be done efficiently using the

FFT.

2.5.3.1 Summary

Altogether, we have reached exactly the version of the discrete STFT already in-

troduced in Section 2.1.4. Let us again summarize the main results. Let x be a DT-

signal obtained by T -sampling. Furthermore, let w be a discrete window of finite

length N with coefficients w(n) for n ∈ [0 : N −1]. Then

X (m,k) = x̃w(m,k/N) =
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (2.148)

is the discrete STFT or simply the STFT of x (see also (2.26)). Each spectral vector

for some time frame m ∈ Z can be computed by using a DFTN , which can be eval-

uated efficiently by using an FFT if N is a power of two. The coefficients X (m,k)
have a similar interpretation as discussed in Section 2.4.4. First recall that the up-

per half of the frequency coefficients are redundant if x and w are real-valued. In

this case, one only considers the coefficients k ∈ [0 : N/2]. By (2.132), the index k
corresponds to the frequency

Fcoef(k) :=
k ·Fs

N
(2.149)

(see also (2.28)). In particular, the index k = N/2 corresponds to the Nyquist fre-

quency ω = 1/(2T ).
Next, we discuss how the index m is to be interpreted. The interpretation is not

straightforward since m refers to an entire windowed section of the signal rather than

a specific point in time. In signal processing, such a windowed section is also called
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Fig. 2.33 Spectrogram representation of Discrete STFT. Shown are the original indices (left) and
their physical interpretation (right). (a) Signal using 1/T = 1000 Hz. (b) Spectrogram using N = 32
and H = 16. (c) Spectrogram using N = 256 and H = 128.

a frame and m is called the frame index. The physical duration of a frame is NT
seconds. There are no strict conventions for associating a physical time position to a

frame. When assuming that the window is centered at zero, as we did in the case of

the continuous-time version of the STFT, one should take the center of the frame as

a physical reference point. When assuming that the window starts at time position

zero centered at half the window length, one may take the start of the frame as a

physical reference point. As said before, the second convention can be transferred

into the first one by shifting the original signal by half a window length. In the

following, we want to adapt the second convention such that the frame index m is

associated to the physical time position

Tcoef(m) :=
m ·H

Fs
(2.150)

(see also (2.27)). Using this convention, the index m = 0 is associated with t = 0.

2.5.3.2 Examples

In Figure 2.9 we have already seen an example of how to interpret the frame and

frequency indices in terms of physical units such as seconds and Hertz. Let us

consider a second example to illustrate the effect of different parameter settings.
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Figure 2.33a shows a DT-signal based on a sampling rate of Fs = 1/T = 1000 Hz.

To compute the spectrogram of Figure 2.33b, a window length of N = 32 and a

hop size of H = 16 were used. This yields a frame size of NT = 32 ms and the

frame index m corresponds to time Tcoef(m) = mT H = m · 16 ms, which is also

the time resolution of the STFT. In particular, frame index m = 62 corresponds to

Tcoef(m) = 0.992 ≈ 1 sec. Furthermore, the frequency index k corresponds to fre-

quency Fcoef(k) = k/(NT ) = k ·31.25 Hz. In particular k = 16 yields the Nyquist fre-

quency Fcoef(16) = 500 Hz. A second parameter setting using N = 256 and H = 128

is shown in Figure 2.33c.

2.6 Further Notes

In this chapter, we have studied fundamental techniques for analyzing signals by

means of elementary sinusoidal functions, which possess an explicit physical mean-

ing in terms of frequency. We have considered various types of signals including

analog or CT-signals as well as DT-signals or more general digital signals, which

were obtained by sampling and quantization. Generally speaking, the CT-domain

gives the “right” interpretation of physical phenomena, whereas the DT-domain is

used to do the actual computations. Being the most important tool for processing

audio signals, we have introduced different variants of the Fourier transform for

the CT- as well as for the DT-domain. The Fourier transform converts a time-

dependent signal into frequency-dependent coefficients, each of which indicates the

strength of the respective elementary exponential function. The process of decom-

posing a signal into frequency components is also called Fourier analysis. In con-

trast, we have seen that the Fourier representation rebuilds a signal from the ele-

mentary functions, a process also called Fourier synthesis. The Fourier transform

and the Fourier representation are closely related, leading to very similar formulas

(see Table 2.2 for an overview). Many of these formulas can be expressed by in-

ner products, which makes it also possible to use the same geometric language one

knows from finite-dimensional Euclidean spaces.

We now give some references and pointers to literature for further reading. This

chapter is a vastly expanded version of a summary on the Fourier transform given in

[12, Section 2.2]. The basic definitions and main properties of the Fourier trans-

form are covered in most introductory books on signal processing. As example

references, we want to mention the classical textbook on Signals and Systems by

Oppenheim et al. [13] or the book on Digital Signal Processsing by Proakis and

Manolakis [14]. Most signal processing software contains implementations of the

Fourier transform. For example, all figures shown in this chapter have been gen-

erated using MATLAB [11]. An entertaining and nontechnical introduction to the

main ideas of time–frequency analysis can be found in the book The World Accord-
ing to Wavelets by Hubbard [9]. Also Wikipedia contains many interesting articles,

which have served as a source of inspiration for this chapter.



106 2 Fourier Analysis of Signals

Signal space L2(R) L2([0,1)) �2(Z)

Inner product 〈 f |g〉= ∫
t∈R

f (t)g(t)dt 〈 f |g〉= ∫
t∈[0,1)

f (t)g(t)dt 〈x|y〉= ∑
n∈Z

x(n)y(n)

Norm || f ||2 =
√

〈 f | f 〉 || f ||2 =
√

〈 f | f 〉 ||x||2 =
√

〈x|x〉

Definition
L2(R) :=

{ f : R→ C | || f ||2 < ∞}
L2([0,1)) :=

{ f : [0,1)→ C | || f ||2 < ∞}
�2(Z) :=

{ f : Z→ C | ||x||2 < ∞}
Elementary
frequency
function

R→ C

t �→ exp(2πiωt)
[0,1)→ C

t �→ exp(2πikt)

Z→ C

n �→ exp(2πiωn)

Frequency
parameter

ω ∈ R k ∈ Z ω ∈ [0,1)

Fourier
representation

f (t) =∫
ω∈R

cω exp(2πiωt)dω

f (t) =

∑
k∈Z

ck exp(2πikt)

x(n) =∫
ω∈[0,1)

cω exp(2πiωn)dω

Fourier
transform

f̂ : R→ C

f̂ (ω) = cω =∫
t∈R

f (t)exp(−2πiωt)dt

f̂ : Z→ C

f̂ (k) = ck =∫
t∈[0,1)

f (t)exp(−2πikt)dt

x̂ : [0,1)→ C

x̂(ω) = cω =

∑
n∈Z

x(n)exp(−2πiωn)

Table 2.2 Overview of the signal spaces L2(R), L2([0,1)), and �2(Z) and their respective Fourier
representation and Fourier transform.

In this chapter, we have used clear mathematical modeling which is necessary

when one wants to understand the relation between the CT- and DT-domain. Ad-

ditional mathematical structures such as the inner products or the complex formu-

lation of the Fourier transform lead to compact and intuitive formulas. A geomet-

ric approach to signal processing can be found in the two recent books by Vetterli

et al. [16, 17], which build on each other. Although we have used the notion of

Lebesgue spaces, we have not introduced them with rigor. In particular in the case

of CT-signals, the definition of Lebesgue spaces becomes a bit tricky, since one

needs the notion of measurability of the functions in order for the integrals to be de-

fined. For a mathematically rigorous treatment of measure and Lebesgue theory, we

refer to the book Real Analysis by Folland [5]. As we have already indicated before,

the spaces L2(R) and L2([0,1)) are actually quotient spaces where two functions f
and g are considered to coincide if || f −g||2 = 0, i.e., if they differ only up to a null

set. The equality in the Fourier representation and in the Fourier transform is just an

equality in the L2-sense, which is a weaker notion than pointwise equality. Under

additional assumptions on f one also obtains pointwise equality. For example, if f
is a continuously differentiable periodic CT-signal, the Fourier series converges uni-

formly to f on the interval [0,1) and one obtains pointwise equality. We have also

mentioned before that the integral in the definition (2.92) of the Fourier transform

of a signal f ∈ L2(R) does not exist in general. Instead, one needs to define the inte-

gral by some limit process (2.93). The existence of the limit is based on the so-called
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Hahn–Banach theorem [5]. One main problem in the CT case is that the exponen-

tial functions expω : R → C are not contained in L2(R). Therefore, the integral in

(2.92) cannot be written as an inner product as is possible for the Fourier coeffi-

cients (2.80). Finally, note that we have not given any proofs for the existence and

correctness of the considered Fourier transforms and Fourier representations. These

proofs are outside the scope of this book and can be found in Folland [5]. In particu-

lar, in the case of periodic signals and DT-signals, the completeness property (2.52)

is more difficult to prove and requires some quite technical machinery.

In this chapter, we have only scratched the topics of sampling and aliasing, which

are of crucial importance for digital signal processing. In general, there are many

ways to approximate a CT-signal and to describe it by a finite number of discrete

parameters. For example, the discrete set of parameters could be the Fourier coef-

ficients (for periodic signals), the coefficients of polynomials (when representing

a function by its Taylor series), or the values of a CT-signal at a finite number of

points in time. In all cases there are certain requirements on the original CT-signal,

e.g., periodicity or differentiability, to guarantee certain bounds on the approxima-

tion error. In the case of sampling, these requirements concern the frequency content

of the original signal. The famous sampling theorem says that an Ω -bandlimited
signal f ∈ L2(R) (i.e., where the Fourier transform f̂ vanishes for |ω| > Ω for a

real number Ω > 0) can be reconstructed perfectly from the T -sampling of f with

T := 1/(2Ω) (see [13, 14]). In Exercise 2.28, we cover this important result in more

detail. The sampling theorem is often associated with the names Harry Nyquist and

Claude Shannon. It is interesting to note that the theorem was also discovered inde-

pendently by Edmund Taylor Whittaker, Vladimir Kotelnikov, and others (see [1, 8]

for an overview and historical notes).

There also exists a vast literature on the discrete Fourier transform (DFT) and

its companion algorithm, the fast Fourier transform (FFT). In the original article by

Cooley and Tukey [3], the authors describe an algorithm that works in case that the

length N of the DFT is a power of two. By applying several tricky modifications of

the FFT, this result can be extended to an algorithm for evaluating a DFT of arbitrary

length N ∈ N with time complexity of O(N logN). A detailed description of this

result can be found in the book Fast Fourier Transforms by Clausen and Baum [2],

which treats this topic from an algebraic point of view. In particular, Section 2.4.3

closely follows [2, Section 1.3].

The short-time Fourier transform (STFT), which is also often referred to as the

windowed Fourier transform, was pioneered in the year 1946 by Dennis Gabor

for use in communication theory [6]. We have seen that the STFT is a compromise

between a time- and a frequency-based representation of the signal. For a detailed

discussion of the role of the window function used in the STFT calculation, we refer

to [7]. One main drawback of the STFT is that the window function g implies a kind

of rigid time–frequency resolution. As a result, properties of a signal that are much

shorter than the window size are “synthesized” in the frequency domain, whereas

properties of the signal that are much longer than the window size are “synthesized”

in the time domain. In both cases many of the “notes” gω,t are needed to repre-

sent the phenomena of the signal. To remedy this problem, numerous alternatives
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have been suggested, including time–frequency representations based on wavelets.

For further reading and links on this topic, we refer to [4, 10, 15, 17]. Parts of

Section 2.5 including the notation and the association of gω,t to “musical notes”

were inspired by [10, Chapter 2]. Finally, we want to mention that so far we have

mainly looked at the magnitude of the Fourier coefficients. In the later chapters, we

will also have a closer look at the phase information, which can be used to refine the

frequency estimation. Furthermore, the phase becomes important when reconstruct-

ing a signal from a modified STFT.
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Exercises

Exercise 2.1. Let 〈 f |g〉 :=
∫

t∈R f (t) ·g(t)dt be the similarity measure for two functions f : R→R

and g : R→ R as defined in (2.3). Consider the following six functions fn : R→ R for n ∈ [1 : 6],
which are defined to be zero outside the shown interval:

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

1 2 3

4 5 6

Determine the similarity values 〈 fn| fm〉 for all pairs (n,m) ∈ [1 : 6]× [1 : 6].

Exercise 2.2. Sketch the magnitude Fourier transform of the following signals assuming that the
signals are zero outside the shown intervals (see Figure 2.6 for similar examples):

(a)

(b)

(c)

Time (seconds)

Exercise 2.3. Based on (2.27) and (2.28), compute the time resolution (in ms) and frequency res-
olution (in Hz) of a discrete STFT based on the following parameter settings:

(a) Fs = 22050, N = 1024, H = 512

(b) Fs = 48000, N = 1024, H = 256

(c) Fs = 4000, N = 4096, H = 1024

What are the respective Nyquist frequencies?

Exercise 2.4. Let Fs = 44100, N = 2048, and H = 1024 be the parameter settings of a dis-
crete STFT X as defined in (2.26). What is the physical meaning of the Fourier coefficients
X (1000,1000), X (17,0), and X (56,1024), respectively? Why is the coefficient X (56,1024)
problematic?
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Exercise 2.5. Sketch the magnitude Fourier transform (as in Figure 2.9) for each of the three sig-
nals shown in Exercise 2.2. Assume a window length that corresponds to a physical duration of
about one second.

Exercise 2.6. The naive approach for computing a DFT requires about N2 operations, while the
FFT requires about N log2 N operations. Compute the factor for the savings when using the FFT
for various N. In particular, consider N = 2n for n = 5,10,15,20,25,30.

Exercise 2.7. Let f1 and f2 be two periodic analog signals with integer periods λ1 ∈N and λ2 ∈N,
respectively. Show that g = f1 + f2 is periodic with periods that are integer multiples of λ1 as
well as λ2. In general, g may have additional periods not necessarily being integer multiples of λ1

and λ2. As an example, specify two signals f1 and f2 with prime period λ1 = λ2 = 2 such that
g = f1 + f2 is periodic with prime period λ = 1.

Exercise 2.8. In this exercise, we show that there are periodic functions that do not have a prime
period (i.e., that do not have a least positive constant being a period). The easiest example of such
a function is a constant function. Show that the function f : R→ R defined by

f (t) :=

{
1, for t ∈Q,
0, for t ∈ R\Q

is also periodic without having a prime period.
[Hint: In this exercise, we assume that the reader is familiar with the properties of rational numbers
(Q) and irrational numbers (R\Q).]

Exercise 2.9. Sketch the graph of the quantization function Q : R→ R defined by

Q(a) := sgn(a) ·Δ ·
⌊ |a|

Δ
+

1

2

⌋
for a ∈ R and some fixed quantization step size Δ > 0 (see (2.33)). Furthermore, sketch the graph
of the absolute quantization error.

Exercise 2.10. In mathematics, the term “operator” is used to denote a mapping from one vector
space to another. Let V and W be two vector spaces over R. An operator M : V → W is called
linear if M[a1v1 + a2v2] = a1M[v1]+ a2M[v2] for any v1,v2 ∈ V and a1,a2 ∈ R. Show that V :=
{ f | f : R → R} and W := {x | x : Z → R} are vector spaces. Fixing a sampling period T > 0,
consider the operator M that maps a CT-signal f ∈V to the DT-signal M[ f ] := x ∈W obtained by
T -sampling as defined in (2.32). Show that this defines a linear operator.

Exercise 2.11. Show that the quantization operator Q :R→R as defined in Exercise 2.9 and (2.33)
is not a linear operator.

Exercise 2.12. In this exercise we discuss various computation rules for complex numbers and
their conjugates. The complex multiplication is defined by c1 · c2 = a1a2 − b1b2 + i(a1b2 + a2b1)
for two complex numbers c1 = a1 + ib1,c2 = a2 + ib2 ∈ C (see (2.34)). Furthermore, complex
conjugation is defined by c = a− ib for a complex number c = a+ ib ∈C (see (2.35)). Finally, the
absolute value of a complex number c is defined by |c|=

√
a2 +b2. Prove the following identities:

(a) Re(c) = (c+ c)/2

(b) Im(c) = (c− c)/(2i)
(c) c1 + c2 = c1 + c2

(d) c1 · c2 = c1 · c2

(e) cc = a2 +b2 = |c|2
(f) 1/c = c/(cc) = c/(a2 +b2) = c/(|c|2)
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Exercise 2.13. We have seen in Section 2.2.3.2 that the set CZ = {x|x : Z→C} of complex-valued
DT-signals defines a vector space. Show that the subset �2(Z)⊂ C

Z of DT-signals of finite energy
is a linear subspace. To this end, you need to show that x+ y ∈ �2(Z) and ax ∈ �2(Z) for any
x,y ∈ �2(Z) and a ∈ C.

Exercise 2.14. In Section 2.3.1, we defined the set {1,sink,cosk | k ∈ N} ⊂ L2
R
([0,1)). Prove that

this set is an orthonormal set in L2
R
([0,1)), i.e., that it satisfies (2.50) and (2.51).

[Hint: Use the following trigonometric identities:

(a) cos(α)2 + sin(α)2 = 1

(b) cos(α)cos(β ) = (cos(α +β )+ cos(α −β ))/2

(c) sin(α)sin(β ) = (cos(α −β )− cos(α +β ))/2

(d) sin(α)cos(β ) = (sin(α +β )+ sin(α −β ))/2

To show (2.51), use (a) and the fact that cos2
k and sin2

k have the same area over a full period. The
proof of (2.50) is a bit cumbersome, but not difficult when using (b), (c), and (d).]

Exercise 2.15. Let exp(iγ) := cos(γ) + isin(γ), γ ∈ R, be the complex exponential function as
defined in (2.67). Prove the following properties (see (2.68) to (2.71)):

(a) exp(iγ) = exp(i(γ +2π))
(b) |exp(iγ)|= 1

(c) exp(iγ) = exp(−iγ)
(d) exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2)

(e)
d exp(iγ)

dγ
= iexp(iγ)

[Hint: To prove (d), you need the trigonometric identities cos(α + β ) = cos(α)cos(β ) −
sin(α)sin(β ) and sin(α + β ) = cos(α)sin(β )+ sin(α)cos(β ). In (e), note that the real (imagi-
nary) part of a derivative of a complex-valued function is obtained by computing the derivative of
the real (imaginary) part of the function.]

Exercise 2.16. In (2.77), we defined for each k ∈Z the complex-valued exponential function expk :
[0,1) → C by expk(t) := cos(2πkt) + isin(2πkt), t ∈ R. As in Exercise 2.14, show that the set
{expk | k ∈ Z} ⊂ L2([0,1)) is an orthonormal set, i.e., ||expk||2 = 1 for k ∈ Z (see (2.51)) and
〈expk|exp�〉= 0 for k �= �, k, � ∈ Z (see (2.50)).
[Hint: Use the properties of the exponential function introduced in Exercise 2.15. Furthermore,
note that the real (imaginary) part of an integral of a complex-valued function is obtained by
integrating the real (imaginary) part of the function.]

Exercise 2.17. Let atan2 be the function as defined in (2.76). For a complex number c= a+ ib∈C,
we set atan2(c) := atan2(b,a). Show that atan2(λ ·c) = atan2(c) for any positive constant λ ∈R>0.
Furthermore, show that atan2(c) =−atan2(c).
[Hint: Use the fact that the arctan function is an odd function, i.e., arctan(−v) = −arctan(v) for
v ∈ R.]

Exercise 2.18. In this exercise, we consider the geometric series for compex numbers, which is
needed in (2.112). Prove that ∑N−1

n=0 an = (1−aN)/(1−a) for any complex number a �= 1.
[Hint: For the proof, use mathematical induction on N.]

Exercise 2.19. We have seen that two sinusoids of similar frequency may add up (constructive
interference) or cancel out (destructive interference); see Figure 2.19. Let f1(t) = sin(2πω1t) and
f2(t) = sin(2πω2t) be two such sinusoids with distinct but nearby frequencies ω1 ≈ ω2. In the
following figure, for example, ω1 = 1 and ω2 = 1.1 is used.
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Time (seconds)

Beating period

The figure also shows that the superposition f1 + f2 of these two sinusoids results in a function
that looks like a single sine wave with a slowly varying amplitude, a phenomenon also known as
beating. Determine the rate (reciprocal of the period) of the beating in dependency on ω1 and ω2.
Compare this result with the plot of f1 + f2 in the figure.

[Hint: Use the trigonometric identity sin(α)+ sin(β ) = 2cos
(

α−β
2

)
sin

(
α+β

2

)
for α,β ∈ R.]

Exercise 2.20. Let f ∈ L2(R) be a signal of unit energy || f ||2 = 1. Show that the scaled signal g
defined by g(t) := s1/2 f (s · t) also has unit energy for a positive real scaling factor s > 0. Further-
more show that ĝ(ω) = s−1/2 f̂ (ω/s) for ω ∈ R. Discuss this result. Describe how one can obtain
a Dirac sequence by changing the parameter s (see Section 2.3.3.2).

Exercise 2.21. Show that the Fourier transform of the rectangular function in (2.95) is the sinc
function in (2.96). Also prove that the sinc function is continuous at t = 0.
[Hint: Use the fact that the derivative of t �→ exp(−2πiωt) is given by t �→ −2πiω exp(−2πiωt);
see Exercise 2.15. From this, one can derive the indefinite integral of the exponential function. To
prove the continuity at t = 0, look at the first terms of the Taylor series of the sine function.]

Exercise 2.22. For a signal f ∈ L2(R), consider the translation ft0 defined by ft0 (t) := f (t − t0)
for t ∈R (see (2.97)) and the modulation f ω0 defined by f ω0 (t) := exp(2πiω0t) f (t) for t ∈R (see
(2.98)). Show that || f ||= || ft0 ||= || f ω0 ||. Furthermore, prove the properties (2.99) and (2.100):

f̂t0 (ω) = exp(−2πiωt0) f̂ (ω) and f̂ ω0 (ω) = f̂ (ω +ω0)

for ω ∈ R.

Exercise 2.23. Any complex number c ∈ C with cN = 1 for a given N ∈ N is called an Nth root
of unity. If in addition ck �= 1 for 1 < k < N, the root c is called primitive. Show that ρN :=
exp(−2πi/N) defines a primitive Nth root of unity. Furthermore, describe all Nth roots of unity.
Which of these roots are primitive? Determine for N ∈ {4,7,12} all primitive Nth roots of unity.
[Hint: In this exercise, one needs to know that a (nonzero) polynomial of degree N has at most N
different roots, where a root of a function is an input value that produces an output of zero.]

Exercise 2.24. Let x = (x(0), . . .x(N−1))
 be a real-valued vector consisting of samples x(n)∈R

for n ∈ [0 : N −1]. Show that
X = DFTN ·x

with X = (X(0), . . .X(N − 1))
 fulfills the symmetry property X(k) = X(N − k) for all k ∈
[1 : N −1] and X(0)∈R. This shows that the upper half of the frequency coefficients are redundant
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if x is real-valued. Furthermore, show the converse. Given a spectral vector X with X(0) ∈ R and

X(k) = X(N − k) for all k ∈ [1 : N −1], then

x = DFT−1
N ·X

is a real-valued vector (see (2.118)).
[Hint: Use the computation rules for complex numbers from Exercise 2.12.]

Exercise 2.25. Specify the DFTN matrix explicitly for N ∈ {1,2,4}. Count the number of multi-
plications and additions when performing the usual matrix–vector product DFT4 · x for a vector
x = (x1,x2,x3,x4)


. Then conduct all steps of the FFT algorithm (two recursions are needed) and
again count the overall number of multiplications and additions needed to compute DFT4 ·x.

Exercise 2.26. Let N = 2n be a power of two. In (2.127), we derived the estimate μ(N) ≤
2μ(N/2)+ 1.5N for the number of multiplications and additions needed to compute the matrix–
vector product DFTN ·x. Using μ(1) = 0 (the case n = 0), show by a mathematical induction on n
that this implies μ(N)≤ 1.5N log2(N).

Exercise 2.27. In the spectrograms shown in Figure 2.32 one can notice vertical stripes at t = 0
and t = 1. Why?

Exercise 2.28. In this exercise, we prove the sampling theorem. A CT-signal f ∈ L2(R) is called
Ω -bandlimited if the Fourier transform f̂ vanishes for |ω| > Ω , i.e., f̂ (ω) = 0 for |ω| > Ω . Let
f ∈ L2(R) be an Ω -bandlimited function and let x be the T -sampled version of f with T := 1/(2Ω),
i.e., x(n) = f (nT ), n ∈ Z. Then f can be reconstructed from x by

f (t) = ∑
n∈Z

x(n)sinc

(
t −nT

T

)
= ∑

n∈Z
f
( n

2Ω

)
sinc(2Ω t −n) ,

where the sinc function is defined in (2.96). In other words, the CT-signal f can be perfectly re-
constructed from the DT-signal obtained by equidistant sampling if the bandlimit is no greater than
half the sampling rate.
[Hint: Note that one may assume Ω = 1/2 (and T = 1) by considering the scaled function
t �→ f (t/Ω). In this case, f is 1/2-bandlimited and can be extended to a 1-periodic function g.
Represent g by its Fourier series (2.79) and compute the Fourier coefficients cn = 〈g|expn〉, n ∈ Z.
Compare these coefficients with the Fourier representation (2.91) of f evaluated at t = n for n ∈ Z

(again using the fact that f is 1/2-bandlimited). As a result, one obtains cn = f (−n). Finally,
reconstruct f from the Fourier series of g. To this end, you need the result of Exercise 2.21.]
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