Chapter 2
Fourier Analysis of Signals

As we have seen in the last chapter, music signals are generally complex sound
mixtures that consist of a multitude of different sound components. Because of this
complexity, the extraction of musically relevant information from a waveform con-
stitutes a difficult problem. A first step in better understanding a given signal is to
decompose it into building blocks that are more accessible for the subsequent pro-
cessing steps. In the case that these building blocks consist of sinusoidal functions,
such a process is also called Fourier analysis. Sinusoidal functions are special in
the sense that they possess an explicit physical meaning in terms of frequency. As
a consequence, the resulting decomposition unfolds the frequency spectrum of the
signal—similar to a prism that can be used to break light up into its constituent
spectral colors. The Fourier transform converts a signal that depends on time into
a representation that depends on frequency. Being one of the most important tools
in signal processing, we will encounter the Fourier transform in a variety of music
processing tasks.

In Section 2.1, we introduce the main ideas of the Fourier transform and sum-
marize the most important facts that are needed for understanding the subsequent
chapters of the book. Furthermore, we introduce the required mathematical notions.
A good understanding of Section 2.1 is essential for the various music processing
tasks to be discussed. In Section 2.2 to Section 2.5, we cover the Fourier transform
in greater mathematical depth. The reader who is mainly interested in the music
processing applications may skip these more technical sections on a first reading.

In Section 2.2, we take a closer look at signals and discuss their properties from
a more abstract perspective. In particular, we consider two classes of signals: ana-
log signals that give us the right physical interpretation and digital signals that
are needed for actual digital processing by computers. The different signal classes
lead to different versions of the Fourier transform, which we introduce with math-
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40 2 Fourier Analysis of Signals

ematical rigor along with intuitive explanations and numerous illustrating exam-
ples (Section 2.3). In particular, we explain how the different versions are interre-
lated and how they can be approximated by means of the discrete Fourier transform
(DFT). The DFT can be computed efficiently by means of the fast Fourier transform
(FFT), which will be discussed in Section 2.4. Finally, we introduce the short-time
Fourier transform (STFT), which is a local variant of the Fourier transform yielding
a time—frequency representation of a signal (Section 2.5). By presenting this mate-
rial from a different perspective as typically encountered in an engineering course,
we hope to refine and sharpen the understanding of these important and beautiful
concepts.

2.1 The Fourier Transform in a Nutshell

Let us start with an audio signal that represents the sound of some music. For ex-
ample, let us analyze the sound of a single note played on a piano (see Figure 2.1a).
How can we find out which note has actually been played? Recall from Section 1.3.2
that the pitch of a musical tone is closely related to its fundamental frequency, the
frequency of the lowest partial of the sound. Therefore, we need to determine the
frequency content, the main periodic oscillations of the signal. Let us zoom into
the signal considering only a 10-ms section (see Figure 2.1b). The figure shows that
the signal behaves in a nearly periodic way within this section. In particular, one
can observe three main crests of a sinusoidal-like oscillation (see also Figure 2.1c¢).
Having approximately three oscillation cycles within a 10-ms section means that the
signal contains a frequency component of roughly 300 Hz.

The main idea of Fourier analysis is to compare the signal with sinusoids of
various' frequencies @ € R (measured in Hz). Each such sinusoid or pure tone may
be thought of as a prototype oscillation. As a result, we obtain for each considered
frequency parameter ® € R a magnitude coefficient d, € R>0 (along with a phase
coefficient ¢, € R, the role of which is explained later). In the case that the coef-
ficient dy, is large, there is a high similarity between the signal and the sinusoid of
frequency w, and the signal contains a periodic oscillation at that frequency (see
Figure 2.1c). In the case that d, is small, the signal does not contain a periodic
component at that frequency (see Figure 2.1d).

Let us plot the coefficients d, over the various frequency parameters @ € R. This
yields a graph as shown in Figure 2.1f. In this graph, the highest value is assumed for
the frequency parameter @ = 262 Hz. By (1.1), this is roughly the center frequency
of the pitch p = 60 or the note C4. Indeed, this is exactly the note played in our
piano example. Furthermore, as illustrated by Figure 2.1e, one can also observe a

! In the following, we also consider negative frequencies for mathematical reasons without explain-
ing this concept in more detail. In our musical context, negative frequencies are redundant (having
the same interpretation as positive frequencies), but simplify the mathematical formulation of the
Fourier transform.
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Fig. 2.1 (a) Waveform of a note C4 (261.6 Hz) played on a piano. (b) Zoom into a 10-ms section
starting at time position # = 1 sec. (c—e) Comparison of the waveform with sinusoids of various
frequencies @. (f) Magnitude coefficients d, in dependence on the frequency @.

high similarity between the signal and the sinusoid of frequency @ = 523 Hz. This
is roughly the frequency for the second partial of the tone C4.

With this example, we have already seen the main idea behind the Fourier trans-
form. The Fourier transform breaks up a signal into its frequency components. For
each frequency € R, the Fourier transforms yields a coefficient dg, (and a phase
(@) that tells us to which extent the given signal matches a sinusoidal prototype
oscillation of that frequency.

One important property of the Fourier transform is that the original signal can be
reconstructed from the coefficients dg, (along with the coefficients ¢,). To this end,
one basically superimposes the sinusoids of all possible frequencies, each weighted
by the respective coefficient dy, (and shifted by ¢,). This weighted superposition is
also called the Fourier representation of the original signal. The original signal and
the Fourier transform contain the same amount of information. This information,
however, is represented in different ways. While the signal displays the information
across time, the Fourier transform displays the information across frequency. As
put by Hubbard [9], the signal tells us when certain notes are played in time, but
hides the information about frequencies. In contrast, the Fourier transform of music
displays which notes (frequencies) are played, but hides the information about when
the notes are played.

In the following sections, we take a more detailed look at the Fourier transform
and some of its main properties.
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2.1.1 Fourier Transform for Analog Signals

In Section 1.3.1, we saw that a signal or sound wave yields a function that assigns
to each point in time the deviation of the air pressure from the average air pressure
at a specific location. Let us consider the case of an analog signal, where both the
time as well as the amplitude (or deviation) are continuous, real-valued parameters.
In this case, a signal can be modeled as a function f: R — R, which assigns to each
time point 7 € R an amplitude value f(¢) € R. Plotting the amplitude over time, one
obtains a graph of this function that corresponds to the waveform of the signal (see
Figure 1.17).

The term function may need some explanation. In mathematics, a function yields
a relation between a set of input elements and a set of output elements, where each
input element is related to exactly one output element. For example, a function can
be a polynomial f: R — R that assigns for each input element ¢t € R an output
element f(z) = > € R. At this point, we want to emphasize that one needs to dif-
ferentiate between a function f and its output element f(¢) (also referred to as the
value) at a particular input element ¢ (also referred to as the argument). In other
words, mathematicians think of a function f in an abstract way, where the symbol
or physical meaning of the argument does not matter. As opposed to this, engineers
often like to emphasize the meaning of the input argument and loosely speak of a
function f (), even though this is strictly speaking an output value. In this book, we
assume the viewpoint of a mathematician.

2.1.1.1 The Role of the Phase

After this side note, let us turn towards the spectral analysis of a given analog signal
f: R—R. As explained in our introductory example, we compare the signal f with
prototype oscillations that are given in the form of sinusoids. In Section 1.3.2 and
Figure 1.19, we have already encountered such sinusoidal signals. Mathematically,
a sinusoid is a function g: R — R defined by

g(t) :=Asin(2n (ot — @)) 2.1

for t € R. The parameter A corresponds to the amplitude, the parameter ® to the
frequency (measured in Hz), and the parameter ¢ to the phase (measured in nor-
malized radians with 1 corresponding to an angle of 360°). In Fourier analysis, we
consider prototype oscillations that are normalized with regard to their power (av-
erage energy) by setting A = /2. Thus for each frequency parameter ® and phase
parameter ¢ we obtain a sinusoid €0sg o : R — R given by

€08 (1) := V2cos(2m(or — ) (2.2)
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Fig. 2.2 (a-d) Waveform and different sinusoids of a fixed frequency @ = 262 Hz but different
phases @ € {0.05,0.24,0.45,0.6}. (e) Values that express the degree of similarity between the
waveform and the four different sinusoids.

for + € R. Since the cosine function is periodic, the parameters ¢ and ¢ + k for
integers k € Z yield the same function. Therefore, the phase parameter only needs
to be considered for ¢ € [0, 1).

When measuring how well the given signal coincides with a sinusoid of fre-
quency ®, we have the freedom of shifting the sinusoid in time. This degree of
freedom is expressed by the phase parameter ¢. As illustrated by Figure 2.2, the
degree of similarity between the signal and the sinusoid of fixed frequency crucially
depends on the phase. What have we done with the phase when computing the coef-
ficients d, as illustrated by Figure 2.1? The procedure outlined in the introduction
was only half the story. When comparing the signal f with a sinusoid ¢0sq, y of
frequency @, we have implicitly used the phase @, that yields the maximal possi-
ble similarity. To understand this better, we first need to explain how we actually
compare the signal and a sinusoid or, more generally, how we compare two given
functions.

2.1.1.2 Computing Similarity with Integrals

Let us assume that we are given two functions of time f: R —+ R and g: R — R.
What does it mean for f and g to be similar? Intuitively, one may agree that f and g
are similar if they show a similar behavior over time: if f assumes positive values,
then so should g, and if f becomes negative, the same should happen to g. The joint
behavior of these functions can be captured by forming the integral of the product
of the two functions:

| r@-gloyar. (23)
teR
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Fig. 2.3 Measuring the similarity of two functions f (top) and g (middle) by computing the integral
of the product (bottom). (a) Two functions having high similarity. (b) Two functions having low
similarity.

The integral measures the area delimited by the graph of the product f - g, where the
negative area (below the horizontal axis) is subtracted from the positive area (above
the horizontal axis) (see Figure 2.3). In the case that f and g are either both posi-
tive or both negative at most time instances, the product is positive for most of the
time and the integral becomes large (see Figure 2.3a). However, if the two functions
are dissimilar, then the overall positive and the overall negative areas cancel out,
yielding a small overall integral (see Figure 2.3b). Further examples are discussed
in Exercise 2.1.

There are many more ways for comparing two given signals. For example, the
integral of the absolute difference between the functions also yields a notion of how
similar the signals are. In the formulation of the Fourier transform, however, one
encounters the measure as considered in (2.3), which generalizes the inner product
known from linear algebra (see 2.37). We continue this discussion in Section 2.2.3.

2.1.1.3 First Definition of the Fourier Transform

Based on the similarity measure (2.3), we compare the original signal f with sinu-
soids g = €0Sg ¢ as defined in (2.2). For a fixed frequency o € R, we define

dy = (plg[%ﬁ) (/teRf(t)cosww(t)dt) , (2.4)
@ := argmax (/ f(t)cosa,,(p(t)dt) . (2.5)
0el0,1) teR

As previously discussed, the magnitude coefficient dy expresses the intensity of
frequency @ within the signal f. Additionally, the phase coefficient @ € [0, 1) tells
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Fig. 2.4 (a) Polar coordinate representation of a complex number ¢ = a + ib. (b) Definition of the
exponential function.

us how the sinusoid of frequency w needs to be displaced in time to best fit the signal
f. The Fourier transform of a function f : R — R is defined to be the “collection”
of all coefficients dy and @4 for @ € R. Shortly, we will state this definition in a
more formal way.

The computation of dg, and ¢ feels a bit awkward, since it involves an opti-
mization step. The good news is that there is a simple solution to this optimization
problem, which results from the existence of certain trigonometric identities that
relate phases and amplitudes of certain sinusoidal functions. Using the concept of
complex numbers, these trigonometric identities become simple and lead to an ele-
gant formulation of the Fourier transform. We discuss such issues in more detail in
Section 2.3. In the following, we introduce the standard complex-valued formula-
tion of the Fourier transform without giving any proofs.

2.1.1.4 Complex Numbers

Let us first review the concept of complex numbers. The complex numbers extend
the real numbers by introducing the imaginary number i := v/—1 with the property
i = —1. Each complex number can be written as ¢ = a+ ib, where a € R is the real
part and b € R the imaginary part of c. The set of all complex numbers is written as
C, which can be thought of as a two-dimensional plane: the horizontal dimension
corresponds to the real part, and the vertical dimension to the imaginary part. In
this plane, the number ¢ = a+ ib is specified by the Cartesian coordinates (a,b). As
illustrated by Figure 2.4a, there is another way of representing a complex number,
which is known as the polar coordinate representation. In this case, a complex
number c is described by its absolute value |¢| (distance from the origin) and the
angle v between the positive horizontal axis and the line from the origin and c. The
polar coordinates |c| € R>o and y € [0,27) (given in radians) can be derived from
the coordinates (a,b) via the following formulas:
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le| := Va%+ b2, (2.6)

y := atan2(b,a). 2.7)

Further details on polar coordinates and the function atan2, which is a variant of
the inverse of the tangent function, are explained in Section 2.3.2.2. To regain the
complex number ¢ from its polar coordinates, one uses the exponential function,
which maps an angle y € R (given in radians) to a complex number defined by

exp(iy) := cos(y) +isin(y) (2.8)

(see also Figure 2.4b). The values of this function turn around the unit circle of the
complex plane with a period of 27 (see Section 2.3.2.1). From this, we obtain the
following polar coordinate representation for a complex number c:

c=lc| -exp(iy). (2.9)

2.1.1.5 Complex Definition of the Fourier Transform

What have we gained by bringing complex numbers into play? Recall that we
have obtained a positive coefficient d,, € R>o from (2.4) and a phase coefficient
Qp € [0,1) from (2.5). The basic idea is to use these coefficients as polar coordi-
nates and to encode both coefficients by a single complex number. Because of some
technical reasons (a normalization issue that becomes clearer when discussing the
mathematical details), one introduces some additional factors and a sign in the phase
to yield the complex coefficient

Co = % -exp(27i(—g))- (2.10)
This complex formulation directly leads us to the Fourier transform of a real-valued
function f : R — R. For each frequency @ € R, we obtain a complex-valued coef-
ficient ¢ € C as defined by (2.4), (2.5), and (2.10). This collection of coefficients
can be encoded by a complex-valued function f : R — C (called “f hat”), which
assigns to each frequency parameter the coefficient c,:

fo) :=cp. (2.11)

The function f is referred to as the Fourier transform of f, and its values f(®) =
¢ are called the Fourier coefficients. One main result in Fourier analysis is that
the Fourier transform can be computed via the following compact formula:

flw) = . f(t)exp(—2miot)dt (2.12)
re

_ / F(t) cos(—2men)dt +i / F()sin(—2zondi.  (2.13)
JtreR JteR
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In other words, the real part of the complex coefficient f (w) is obtained by compar-
ing the original signal f with a cosine function of frequency ®, and the imaginary
part is obtained by comparing with a sine function of frequency @. The absolute
value |f(®)] is also called the magnitude of the Fourier coefficient. Similarly, the
real-valued function | f | : R — R, which assigns to each frequency parameter @ the
magnitude | f(®)], is called the magnitude Fourier transform of f.

In the standard literature on signal processing, the formula (2.12) is often used to
define the Fourier transform f and, then, the physical interpretation of the Fourier
coefficients is discussed. In particular, the real-valued coefficients dg in (2.4) and
@ in (2.5) can be derived from f (w). Using (2.10), one obtains

do = V2|f(®)], (2.14)
_ Y
Oy = Tk (2.15)

where | f(®)| and ¥, are the polar coordinates of f().

2.1.1.6 Fourier Representation

As mentioned above, the original signal f can be reconstructed from its Fourier
transform. In principle, the reconstruction is straightforward: one superimposes the
sinusoids of all possible frequency parameters @ € R, each weighted by the respec-
tive coefficient d and shifted by @,. Both kinds of information are encoded in the
complex Fourier coefficient cg. In the analog case considered so far, we are deal-
ing with a continuum of frequency parameters, where the superposition becomes an
integration over the parameter space. The reconstruction is given by the formulas

1) = ./wdR Odwﬁcos(ZE(a)t—(pw))da) (2.16)

= coexp(2mion)do, 2.17)
weR

first given in the real-valued formulation, and then given in the complex-valued
formulation with ¢ = f (). As said before, the representation of a signal in terms
of a weighted superposition of sinusoidal prototype oscillations is also called the
Fourier representation of the signal. Notice that the formula (2.12) for the Fourier
transform and the formula (2.17) for the Fourier representation are nearly identical.
The main difference is that the roles of the time parameter # and frequency parameter
o are interchanged. The beautiful relationship between these two formulas will be
further discussed in later sections of this chapter.
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Fig. 2.5 Waveform and magnitude Fourier transform of a tone C4 (261.6 Hz) played by different
instruments (see also Figure 1.23). (a) Piano. (b) Trumpet. (¢) Violin. (d) Flute.

2.1.2 Examples

Let us consider some examples including the one introduced in Figure 2.1.
Figure 2.5 shows the waveform and the magnitude Fourier transform for some audio
signals, where a single note C4 is played on different instruments: a piano, a trum-
pet, a violin, and a flute. We have already encountered this example in Figure 1.23
of Section 1.3.4, where we discussed the aspect of timbre. Recall that the existence
of certain partials and their relative strengths have a crucial influence on the timbre
of a musical tone. In the case of the piano tone (Figure 2.5a), the Fourier transform
has a sharp peak at 262 Hz, which reveals that most of the signal’s energy is con-
tained in the first partial or the fundamental frequency of the note C4. Further peaks
(also beyond the shown frequency range from 0 to 1000 Hz) can be found at integer
multiples of the fundamental frequency corresponding to the higher partials.

Figure 2.5b shows that the same note played on a trumpet results in a similar
frequency spectrum, where the peaks appear again at integer multiples of the fun-
damental frequency. However, most of the energy is now contained in the third par-
tial, and the relative heights of the peaks are different compared with the piano.
This is one reason why a trumpet sounds different from a piano. For a violin, as
shown by Figure 2.5¢, most energy is again contained in the first partial. Observe
that the peaks are blurred in frequency, which is the result of the vibrato (see also
Figure 1.23b). The time-dependent frequency modulations of the vibrato are aver-
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Fig. 2.6 Missing time information of the Fourier transform illustrated by two different signals and
their magnitude Fourier transforms. (a) Two subsequent sinusoids of frequency 1 Hz and 5 Hz.
(b) Superposition of the same sinusoids.

aged by the Fourier transform. This yields a single coefficient for each frequency
independent of spectro-temporal fluctuations. A similar explanation holds for the
flute tone shown in Figure 2.5d.

We have seen that the magnitude of the Fourier transform tells us about the sig-
nal’s overall frequency content, but it does not tell us at which time the frequency
content occurs. Figure 2.6 illustrates this fact, showing the waveform and the mag-
nitude Fourier transform for two signals. The first signal consists of two parts with
a sinusoid of @ = 1 Hz and amplitude A = 1 in the first part and a sinusoid of
o = 5 Hz and amplitude A = 0.7 in the second part. Furthermore, the signal is zero
outside the interval [0, 10]. In contrast, the second signal is a superposition of these
two sinusoids, being zero outside the interval [0,5]. Even though the two signals
are different in nature, the resulting magnitude Fourier transforms are more or less
the same. This demonstrates the drawbacks of the Fourier transform when analyz-
ing signals with changing characteristics over time. In Section 2.1.4 and Section 2.5
we discuss a short-time version of the Fourier transform, where time information
is recovered at least to some degree. Besides the two peaks, one can observe in
Figure 2.6 a large number of small “ripples.” Such phenomena as well as further
properties of the Fourier transform are discussed in Section 2.3.3.

2.1.3 Discrete Fourier Transform

When using digital technology, only a finite number of parameters can be stored
and processed. To this end, analog signals need to be converted into finite
representations—a process commonly referred to as digitization. One step that is
often applied in an analog-to-digital conversion is known as equidistant sampling.
Given an analog signal f: R — R and a positive real number 7" > 0, one defines a
function x : Z — R by setting



50 2 Fourier Analysis of Signals

Fig. 2.7 Illustration of the 05 : - - :

sampling process using a /m /DT\ m

sampling rate of Fy = 32. The (@ o W{\W WAW

waveforms of the analog sig-

nals are shown as curves and 08, 02 04 06 08 1

the sampled versions as stem i ' ! !

plots. (a) Signal f. (b) Sinu- b)) o 7\

soid €08y, With @ =2 and w

¢ = 0. (c) Product f - cosg ¢ T ‘ ‘ . .

and its area. (d) Approxi- . o2 04 08 08 !

mation of the integral by a 04 q\h\ |

Riemann sum obtained from (c) o2 ./H\h 1

the sampled version. 0 Avm s VM
(d)

Time (seconds)

x(n):=f(n-T). (2.18)

Since x is only defined on a discrete set of time points, it is also referred to as a
discrete-time (DT) signal (see Section 2.2.2.1). The value x(n) is called a sample
taken at time r = n- T of the original analog signal f. This procedure is also known
as T-sampling, where the number 7 is referred to as the sampling period. The
inverse

Fy:=1/T (2.19)

of the sampling period is also called the sampling rate of the process. It specifies
the number of samples per second and is measured in Hertz (Hz). Figure 2.7a shows
an example of sampling an analog signal using F; = 32 Hz.

In general, one loses information in the sampling process. The famous sampling
theorem says that the original analog signal f can be reconstructed perfectly from
its sampled version x, if f does not contain any frequencies higher than

Q:=F/2=1/(2T) Hz. (2.20)

In this case, we also say that f is an 2-bandlimited signal, where the frequency 2
is known as the Nyquist frequency. In the case that f contains higher frequencies,
sampling may cause artifacts referred to as aliasing (see Section 2.2.2 for details).
The sampling theorem will be further discussed in Exercise 2.28.

In the following, we assume that the analog signal f satisfies suitable require-
ments so that the sampled signal x does not contain major artifacts. Now, having a
discrete number of samples to represent our signal, how do we calculate the Fourier
transform? Recall that the idea of the Fourier transform is to compare the signal
with a sinusoidal prototype oscillation by computing the integral over the point-
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wise product (see (2.12)). Therefore, in the digital domain, it seems reasonable to
sample the sinusoidal prototype oscillation in the same fashion as the signal (see
Figure 2.7b). By multiplying the two sampled functions in a pointwise fashion, we
obtain a sampled product (see Figure 2.7c). Finally, integration in the analog case
becomes summation in the discrete case, where the summands need to be weighted
by the sampling period T. As a result, one obtains the following approximation:

Y. Tf(nT)exp(—27ionT) ~ f(). (2.21)

nez

In mathematical terms, the sum can be interpreted as the overall area of rectangular
shapes that approximates the area corresponding to the integral (see Figure 2.7d).
Such an approximation is also known as a Riemann sum. As we will show in
Section 2.3.4, the quality of the approximation is good for “well-behaved” signals
f and “small” frequency parameters @.

One defines a discrete version of the Fourier transform for a given DT-signal
x : Z — R by setting

£(w) := ) x(n)exp(—27mion). (2.22)
nez

In this definition, where a simple 1-sampling (i.e., 7-sampling with 7" = 1) of the
exponential function is used, one does not assume that one knows the relation be-
tween x and the original signal f. If one is interested in recovering the relation to
the Fourier transform £, one needs to know the sampling period 7'. Based on (2.21),
an easy calculation shows that

Ho) ~ %f (?) . (2.23)

In this approximation, the frequency parameter @ used for £ corresponds to the fre-
quency /T for f.In particular, ® = 1/2 for £ corresponds to the Nyquist frequency
Q = 1/(2T) of the sampling process. Therefore, assuming that f is bandlimited by
Q =1/(2T), one needs to consider only the frequencies with 0 < @ < 1/2 for £. In
the digital case, all other frequency parameters are redundant and yield meaningless
approximations.

For doing computations on digital machines, we still have some problems. One
problem is that the sum in (2.22) involves an infinite number of summands. Another
problem is that the frequency parameter @ is a continuous parameter. For both prob-
lems, there are some pragmatic solutions. Regarding the first problem, we assume
that most of the relevant information of £ is limited to a certain duration in time.>
For example, a music recording of a song hardly lasts for more than ten minutes.
Having a finite duration means that the analog signal f is assumed to be zero outside
a compact interval. By possibly shifting the signal, we may assume that this interval
starts at time r = 0. This means that we only need to consider a finite number of

2 Strictly speaking, this assumption is problematic since it conflicts with the requirement of f
being bandlimited. A mathematical fact states that there are no functions that are both limited in
frequency (bandlimited) and limited in time (having finite duration).
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samples x(0),x(1),...,x(N — 1) for some suitable number N € N. As a result, the
sum in (2.22) becomes finite.

Regarding the second problem, one computes the Fourier transform only for a
finite number of frequencies. Similar to the sampling of the time axis, one typi-
cally samples the frequency axis by considering the frequencies @ = k/M for some
suitable M € N and k € [0: M — 1]. In practice, one often couples the number N
of samples and the number M that determines the frequency resolution by setting
N = M. Note that the two numbers N and M refer to different aspects. However,
the coupling is convenient. It not only makes the resulting transform invertible, but
also leads to a computationally efficient algorithm, as we will see in Section 2.4.3.
Setting X (k) := %(k/N) and assuming that x(0),x(1),...,x(N — 1) are the relevant
samples (all others being zero), we obtain from (2.22) the formula

X (k) = #(k/N) = Zx n)exp(—2mikn/N) (2.24)

for integers k € [0: M — 1] = [0 : N — 1]. This transform is also known as the dis-
crete Fourier transform (DFT), which is covered in Section 2.4.

Next, let us have a look at the frequency information supplied by the Fourier co-
efficient X (k). By (2.23) the frequency ® of £ corresponds to @/T of f. Therefore,
the index k of X (k) corresponds to the physical frequency

k k- F
N-T N

Feoet(k) := (2.25)
given in Hertz. As we will discuss in Section 2.4.4, the coefficients X (k) need to be
taken with care. First, the approximation quality in (2.23) may be rather poor, in par-
ticular for frequencies close to the Nyquist frequency. Second, for a real-valued sig-
nal x, the Fourier transform fulfills certain symmetry properties (see Exercise 2.24).
As a result, the upper half of the Fourier coefficients are redundant, and one only
needs to consider the coefficients X (k) for k € [0: |[N/2]]. Note that, in the case of
an even number N, the index k = N /2 corresponds to Fyoer(k) = Fy/2, which is the
Nyquist frequency of the sampling process.

Finally, we consider some efficiency issues when computing the DFT. To com-
pute a single Fourier coefficient X (k), one requires a number of multiplications and
additions linear in N. Therefore, to compute all coefficients X (k) for k € [0: N/2]
one after another, one requires a number of operations on the order of N?. Despite
being a finite number of operations, such a computational approach is too slow for
many practical applications, in particular when N is large.

The number of operations can be reduced drastically by using an efficient algo-
rithm known as the fast Fourier transform (FFT). The FFT algorithm, which was
discovered by Gauss and Fourier two hundred years ago, has changed whole indus-
tries and is now being used in billions of telecommunication and other devices. The
FFT exploits redundancies across sinusoids of different frequencies to jointly com-
pute all Fourier coefficients by a recursion. This recursion works particularly well in
the case that N is a power of two. As a result, the FFT reduces the overall number of
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operations from the order of N2 to the order of N log, N. The savings are enormous.
For example, using N = 2!9 = 1024, the FFT requires roughly N log, N = 10240 in-
stead of N2 = 1048576 operations in the naive approach—a savings factor of about
100. In the case of N = 2?0, the savings amount to a factor of about 50000 (see
Exercise 2.6). In Section 2.4.3, we discuss the algorithmic details of the FFT.

2.1.4 Short-Time Fourier Transform

The Fourier transform yields frequency information that is averaged over the entire
time domain. However, the information on when these frequencies occur is hidden
in the transform. We have already seen this phenomenon in Figure 2.6a, where the
change in frequency is not revealed when looking at the magnitude of the Fourier
transform. To recover the hidden time information, Dennis Gabor introduced in the
year 1946 the short-time Fourier transform (STFT). Instead of considering the
entire signal, the main idea of the STFT is to consider only a small section of the
signal. To this end, one fixes a so-called window function, which is a function that
is nonzero for only a short period of time (defining the considered section). The
original signal is then multiplied with the window function to yield a windowed
signal. To obtain frequency information at different time instances, one shifts the
window function across time and computes a Fourier transform for each of the re-
sulting windowed signals.

This idea is illustrated by Figure 2.8, which continues our example from
Figure 2.6a. To obtain local sections of the original signal, one multiplies the sig-
nal with suitably shifted rectangular window functions. In Figure 2.8b, the resulting
local section only contains frequency content at 1 Hz, which leads to a single main
peak in the Fourier transform at @ = 1. Further shifting the time window to the right,
the resulting section contains 1 Hz as well as 5 Hz components (see Figure 2.8c).
These components are reflected by the two peaks at @ = 1 and @ = 5. Finally, the
section shown in Figure 2.8d only contains frequency content at 5 Hz.

Already at this point, we want to emphasize that the STFT reflects not only the
properties of the original signal but also those of the window function. First of all,
the STFT depends on the length of the window, which determines the size of the
section. Then, the STFT is influenced by the shape of the window function. For
example, the sharp edges of the rectangular window typically introduce “ripple”
artifacts. In Section 2.5.1, we discuss such issues in more detail. In particular, we
introduce more suitable, bell-shaped window functions, which typically reduce such
artifacts.

In Section 2.5, one finds a detailed treatment of the analog and discrete versions
of the STFT and their relationship. In the following, we only consider the discrete
case and specify the most important mathematical formulas as needed in practi-
cal applications. Let x : Z — R be a real-valued DT-signal obtained by equidistant
sampling with respect to a fixed sampling rate F; given in Hertz. Furthermore, let
w:[0:N—1] — R be a sampled window function of length N € N. For example,
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Fig. 2.8 Signal and Fourier transform consisting of two subsequent sinusoids of frequency 1 Hz
and 5 Hz (see Figure 2.6a). (a) Original signal. (b) Windowed signal centered at r = 3. (¢) Win-
dowed signal centered at t = 5. (d) Windowed signal centered at t = 7.

in the case of a rectangular window one has w(n) = 1 for n € [0 : N — 1]. Implicitly,
one assumes that w(n) = 0 for all other time parameters n € Z \ [0 : N — 1] outside
this window. The length parameter N determines the duration of the considered sec-
tions, which amounts to N /F; seconds. One also introduces an additional parameter
H € N, which is referred to as the hop size. The hop size parameter is specified in
samples and determines the step size in which the window is to be shifted across the
signal.

With regard to these parameters, the discrete STFT X of the signal x is given by

N-1
X(m,k) := Z x(n+mH)w(n)exp(—2mikn/N) (2.26)
n=0

with m € Z and k € [0: K]. The number K = N/2 (assuming that N is even) is
the frequency index corresponding to the Nyquist frequency. The complex number
X (m,k) denotes the k™ Fourier coefficient for the m™ time frame. Note that for
each fixed time frame m, one obtains a spectral vector of size K + 1 given by the
coefficients X' (m, k) for k € [0: K]. The computation of each such spectral vector
amounts to a DFT of size N as in (2.24), which can be done efficiently using the
FFT.
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What have we actually computed in (2.26) in relation to the original analog signal
Sf? As for the temporal dimension, each Fourier coefficient X (m,k) is associated
with the physical time position

m-H
Fs

Tooer(m) == (2.27)
given in seconds. For example, for the smallest possible hop size H = 1, one obtains
Teoet(m) = m/Fy = m - T sec. In this case, one obtains a spectral vector for each
sample of the DT-signal x, which results in a huge increase in data volume. Further-
more, considering sections that are only shifted by one sample generally yields very
similar spectral vectors. To reduce this type of redundancy, one typically relates the
hop size to the length N of the window. For example, one often chooses H = N /2,
which constitutes a good trade-off between a reasonable temporal resolution and
the data volume comprising all generated spectral coefficients. As for the frequency
dimension, we have seen in (2.25) that the index k of X (m,k) corresponds to the

physical frequency
k- F
Fcoef(k) = N :

(2.28)

given in Hertz.

Before we look at some concrete examples, we first introduce the concept of a
spectrogram, which we denote by ). The spectrogram is a two-dimensional repre-
sentation of the squared magnitude of the STFT:

V(m,k) := | X (m,k)|>. (2.29)

It can be visualized by means of a two-dimensional image, where the horizontal
axis represents time and the vertical axis represents frequency. In this image, the
spectrogram value ) (m, k) is represented by the intensity or color in the image at
the coordinate (m, k). Note that in the discrete case, the time axis is indexed by the
frame indices m and the frequency axis is indexed by the frequency indices k.

Continuing our running example from Figure 2.8, we now consider a sampled
version of the analog signal using a sampling rate of F; = 32 Hz. Having a physical
duration of 10 sec, this results in 320 samples (see Figure 2.9a). Using a window
length of N = 64 samples and a hop size of H = 8 samples, we obtain the spectro-
gram as shown in Figure 2.9b. In the image, the shade of gray encodes the magnitude
of a spectral coefficient, where darker colors correspond to larger values. By (2.27),
the m™ frame corresponds to the physical time Tyoer(11) = m/4 sec. In other words,
the STFT has a time resolution of four frames per second. Furthermore, by (2.28),
the k™ Fourier coefficient corresponds to the physical frequency Fuoer(k) := k/2 Hz.
In other words, one obtains a frequency resolution of two coefficients per Hertz.
The plots of the waveform and the spectrogram with the physically correct time and
frequency axes are shown in Figure 2.9c and Figure 2.9d, respectively.

Let us consider some typical settings as encountered when processing music
signals. For example, in the case of CD recordings one has a sampling rate of
F, = 44100 Hz. Using a window length of N = 4096 and a hop size of H = N/2,
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Fig. 2.9 DT-signal sampled with F; = 32 Hz and STFT using a window length of N = 64 and a
hop size of H = 8. (a) DT-signal with time axis given in samples. (b) STFT with time axis given in
frames and frequency axis given in indices. (¢) DT-signal with time axis given in seconds. (d) STFT
with time axis given in seconds and frequency axis given in Hertz.

this results in a time resolution of H/Fs ~ 46.4 ms by (2.27) and a frequency res-
olution of Fy/N ~ 10.8 Hz by (2.28). To obtain a better frequency resolution, one
may increase the window length N. This, however, leads to a poorer localization in
time so that the resulting STFT loses its capability of capturing local phenomena
in the signal. This kind of trade-off is further discussed in Section 2.5.2 and in the
exercises.

We close this section with a further example shown in Figure 2.10, which is
a recording of a C-major scale played on a piano. The first note of this scale is
C4, which we have already considered in Figure 2.1. In Figure 2.10c, the spectro-
gram representation of the recording is shown, where the time and frequency axes
are labeled in a physically meaningful way. The spectrogram reveals the frequency
information of the played notes over time. For each note, one can observe hori-
zontal lines that are stacked on top of each other. As discussed in Section 1.3.4,
these equally spaced lines correspond to the partials, the integer multiples of the
fundamental frequency of a note. Obviously, the higher partials contain less and
less of the signal’s energy. Furthermore, the decay of each note over time is re-
flected by the fading out of the horizontal lines. To enhance small sound compo-
nents that may still be perceptually relevant, one often uses a logarithmic dB scale
(see Section 1.3.3). Figure 2.10d illustrates the effect when applying the dB scale to
the values of the spectrogram. Besides an enhancement of the higher partials, one
can now observe vertical structures at the notes’ onset positions. These structures
correspond to the noise-like transients that occur in the attack phase of the piano
sound (see Section 1.3.4).

This concludes our “nutshell section” covering the most important definitions
and properties of the Fourier transform as needed for the subsequent chapters of this
book. In particular, the formula (2.26) of the discrete STFT as well as the physical
interpretation of the time parameter (2.27) and the frequency parameter (2.28) are
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Fig. 2.10 Waveform and spectrogram of a music recording of a C-major scale played on a piano.
(a) The recording’s underlying musical score. (b) Waveform. (¢) Spectrogram. (d) Spectrogram
with the magnitudes given in dB.

of central importance for most music processing applications to be discussed. As
said in the introduction, we provide in the subsequent sections of this chapter some
deeper insights into the mathematics underlying the Fourier transform. In particular,
we explain in more detail the connection between the various kinds of signals and
associated Fourier transforms.

2.2 Signals and Signal Spaces

In technical fields such as engineering or computer science, a signal is a function
that conveys information about the state or behavior of a physical system. For ex-
ample, a signal may describe the time-varying sound pressure at some place, the
motion of a particle through some space, the distribution of light on a screen rep-
resenting an image, or the sequence of images as in the case of a video signal. In
the following, we consider the case of audio signals as discussed in Section 1.3. We
have seen that such a signal can be graphically represented by its waveform, which
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depicts the amplitude of the air pressure over time. In the following, we introduce
the mathematical notation that is necessary to formally model such a signal. Doing
so, we distinguish between two different types of signals: analog signals as occur
around us in the real world and digital signals as are processed by computers. We
show how signals can be modified and combined to yield new signals by applying
mathematical operations. Some operations can be applied only if the involved sig-
nals satisfy certain properties. This leads us to the concept of signal spaces, a kind
of universe that comprises signals that share a certain property.

2.2.1 Analog Signals

As already defined in Section 2.1.1, an analog signal is a function f: R — R, which
assigns an amplitude value f(¢) € R to each time point ¢ € R. In the analog case, both
the time domain as well as the range of the amplitude values are represented by the
set R of real numbers, which is a continuous range of values. This makes it possible
to model infinitesimally small changes in both time and amplitude. In the case of
having a continuous time axis (given by R), one also speaks of continuous-time
(CT) signals. A signal f is called periodic with period A € R~ if f(r) = f(r+ 1)
holds for all ¢ € R. If there exists a least positive constant with this property, it is
called the prime period of the signal (see Exercise 2.7 and Exercise 2.8).

In Section 1.3.2 and Section 2.1.1.1, we have already encountered an entire class
of analog signals: the sinusoids. Recall from (2.1) that a sinusoid is a periodic func-
tion f defined by f(¢) := Asin(2n(wr — ¢)), t € R. The parameter A describes the
amplitude, the parameter @ the frequency, and the parameter ¢ the phase. The
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Fig. 2.12 Superposition of three analog signals.

frequency parameter @ determines the period of the sinusoid, which is A = 1/ .
In other words, a sinusoid of frequency @ repeats every A = 1/ unit times. In the
following, we use seconds as the units of time if not specified otherwise. Figure 2.11
shows various sinusoids resulting from different parameter settings.

Besides having a compact description, sinusoids also have an explicit physical
meaning with a perceptual correspondence: the amplitude A corresponds to the loud-
ness and the frequency  to the pitch of a sinusoidal sound. Only the phase ¢, which
indicates the relative position of an oscillation within its cycle, does not have a di-
rect perceptual correspondence. Note that, because of the periodicity of a sinusoid,
a phase shift by ¢ + 1 has the same effect as a phase shift by ¢. In other words,
integer shifts leave a sinusoid unaltered and the parameter ¢ needs to be considered
only in the interval [0, 1).

Regarding a signal as a mathematical function is convenient, since this allows us
to express modifications of signals in terms of mathematical operations. For exam-
ple, the superposition of two signals f and g can be expressed by the sum f+ g
defined as pointwise addition

(f+8)(t) == f(t) +g(t) (2.30)

for t € R. Similarly, the scaling of a signal f by a real factor a is the scalar multiple
af, which is also defined pointwise by

(@f)(t) ==a-f(1). 231

Figure 2.12 shows an example of a superposition of three signals. We have seen in
Section 2.1 that the Fourier transform can be regarded as a kind of inverse operation,
where a given signal is decomposed into a weighted superposition of elementary
signals.
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2.2.2 Digital Signals

Analog signals have a continuous range of values in both time and amplitude, which
generally leads to an infinite number of values. Since a computer can only store and
process a finite number of values, one has to convert the waveform into some dis-
crete representation—a process commonly referred to as digitization. Some analog
signals such as sinusoids are already characterized by a small number of parameters,
which can be used to represent the signal, but for general analog signals one needs
other ways for deriving a model that can be described by a finite number of param-
eters. Furthermore, it should be possible to perform signal manipulations directly
in the parameter domain such that computations become feasible and efficient. The
most common approach for digitizing audio signals consists of two steps called
sampling and quantization (see Figure 2.13 for an illustration). We now explain
these two steps in more detail.

2.2.2.1 Sampling

In signal processing, the term sampling refers to the process of reducing a
continuous-time (CT) signal to a discrete-time (DT) signal, which is defined only
on a discrete subset of the time axis. By means of a suitable encoding, one often
assumes that this discrete set is a subset / of the set Z of integers. Then a DT-signal
is defined to be a function x: I — R, where the domain / corresponds to points in
time. Since one can extend any DT-signal from the domain / to the domain Z simply
by setting all values to zeros for points in Z \ I, we may assume I = Z. The most
common sampling procedure to transform a CT-signal f: R — R into a DT-signal
x: Z — R is known as equidistant sampling. For convenience, we repeat the defi-
nitions from Section 2.1.3. Fixing a positive real number 7" > 0, the DT-signal x is
obtained by setting

x(n):=f(n-T) (2.32)

for n € Z. The value x(n) is called the sample taken at time # = n- T of the original
analog signal f. In short, this procedure is also called 7-sampling. The number 7 is
referred to as the sampling period and the inverse F; := 1/T as the sampling rate.
The sampling rate specifies the number of samples per second and is measured in
Hertz (Hz).

Figure 2.13 shows an illustrative example, where the DT-signal x is represented
by the red stem plot. In this example, one has 13 samples in the first two seconds.
Thus, the sampling rate is roughly 6.5 Hz and the sampling period 0.154 seconds.
In practical applications, typical sampling rates are 8 kHz (8,000 Hz) for telephony,
32 kHz for digital radio, 44.1 kHz for CD recordings, and 48 kHz up to 96 kHz for
professional studio technology.

In general, sampling is a lossy operation in the sense that information is lost in
this process and that the original analog signal cannot be recovered from its sampled
version. Only if the analog signal has additional properties in terms of its frequency
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Fig. 2.13 Two steps of a digitization process to transform an analog signal (solid curve) into a
digital signal (stem plot). (a) Sampling. (b) Quantization.

spectrum is a perfect reconstruction possible. This is the assertion of the famous
sampling theorem, which we discuss in Exercise 2.28 in more detail. Without such
additional properties, sampling may cause an effect known as aliasing, where cer-
tain frequency components of the signal become indistinguishable. This effect is
illustrated by Figure 2.14, which shows an analog signal that is the superposition of
two sinusoids. Using a high sampling rate as in Figure 2.14a, the analog signal can
be reconstructed with high accuracy. However, when decreasing the sampling rate,
the higher-frequency component is not captured well and only a coarse approxima-
tion of the original signal remains (see Figure 2.14c).

2.2.2.2 Quantization

We have seen how sampling transforms a continuous time axis (encoded by R)
into a discrete time axis (encoded by Z). This is only the first step in an analog-to-
digital conversion of a signal. In the second step, one needs to replace the continuous
range of possible amplitudes (again encoded by R) by a discrete range of possible
values (encoded by a discrete set I" C R). This process is commonly known as
quantization. Such a quantization can be modeled by a function Q : R — I', referred
to as the quantizer, which assigns to each amplitude value a € R a value Q(a) € I
Many of the quantizers used simply round off or truncate the analog value to some
units of precision. For example, a typical uniform quantizer with a quantization
step size equal to some value A can be defined by

lal

0(a) = sgn(a) - A - { - +;J (2.33)
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Fig. 2.14 Illustration of the aliasing effect when reducing the sampling rate. The figures show the
original analog signal (solid curve), the sampled version (stem plot), and the reconstructed analog
signal (dotted curve) for sampling rates of (a) 12 Hz, (b) 6 Hz, and (b) 3 Hz.

fora € R, were sgn(+) is the signum function that yields the sign of a real number and
the brackets | -] truncate a real number to yield the largest integer below this number.
Note that, in the case of A = 1, the quantizer Q is simple rounding to the nearest
integer. Like sampling, quantization is generally a lossy operation, because different
analog values may be mapped to the same digital value. The difference between
the actual analog value and the quantized value is called the quantization error
(see Exercise 2.9). Reducing the quantization step size A typically leads to smaller
quantization errors. However, at the same time, the number of quantized values
(and therefore also the number of bits needed to encode these values) increases.
Figure 2.13b shows the result after sampling and quantizing an analog signal. In
this example, the quantization step size A = 1/3 is used, resulting in 8 different
quantization values for the given signal. Hence, a 3-bit coding scheme may be used
to represent the quantized values. For CD recordings, a 16-bit coding scheme is
used, which allows representation of 65536 possible values.

In summary, after using an analog-to-digital conversion based on sampling and
quantization, it is generally not possible to reconstruct the original waveform from
the digital representation. Aliasing and quantization may introduce audible sound
artifacts such as harsh buzzing sounds or noise. For digital representations as used
for CDs, however, the sampling rate as well as the quantization resolution are chosen
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in such ways that the degradation of the waveform is not noticeable by the human
ear.

2.2.3 Signal Spaces

In the previous sections, we considered analog and digital signals, which were mod-
eled as CT-signals f: R — R and as DT-signals x: Z — R, respectively. In the fol-
lowing discussion, we use the symbols f and g to denote CT-signals and the symbols
x and y to denote DT-signals. For the time parameter, we typically use the parameter
t in the CT case and the parameter n in the DT case.

2.2.3.1 Complex Numbers

In view of the complex-valued formulation of the Fourier transform one needs to ex-
tend the range R of real numbers to the range C of complex numbers. Recall from
Section 2.1.1.4 that each complex number ¢ € C can be regarded as a pair (a, b) € R?
of real numbers, where a = Re(c) denotes the real part and b = Im(c) the imaginary
part of c. One also often writes ¢ = a + ib, where i is the imaginary unit. The com-
plex number field C possesses a multiplication that extends the multiplication of the
real number field R. Given two complex numbers ¢; = a; +iby,c; = ay +iby € C,
the product is defined by

cl~62zalaz—b1b2+i(a1b2—|—a2b1). (2.34)

Furthermore, the complex conjugate ¢ of a complex number ¢ = a+ib € C is
defined as
c=a—ib. (2.35)

Various computation rules for complex numbers are discussed in Exercise 2.12. Ex-
tending the notion of real-valued signals, a complex-valued CT-signal is a function
f: R — C and a complex-valued DT-signal a function x: Z — C. As is the case
with complex numbers, each complex-valued signal can be considered as a pair of
two real-valued signals. Furthermore, each real-valued signal can be regarded as a
complex-valued signal simply by defining the imaginary part to be zero. In the fol-
lowing, we therefore only consider the more general complex-valued case, which
includes the real-valued case.

2.2.3.2 Vector Spaces

A general principle in mathematics is to form suitable spaces that comprise all ob-
jects under consideration. These spaces can then be equipped with additional struc-
tures that can be used to manipulate and organize the objects. For example, for a
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given natural number N € N, one may consider the space R" consisting of all real-
valued N-tuples. This space can be equipped with an addition and a scalar multipli-
cation such that RY becomes a vector space over R. Similarly, one can define the
space CV, which consists of all complex-valued N-tuples. In our case, the objects
under consideration are complex-valued CT- and DT-signals. The resulting signal
spaces are defined as

CR:={f|f:R—C} and CZ:={x]x:Z—C}, (2.36)

for the CT and DT case, respectively. We have already seen in (2.30) and (2.31)
how one can define an addition of two signals and a scalar multiplication of a real
factor and a signal. These definitions directly carry over to the case of complex-
valued signals using complex summation and multiplication, which makes CF a
vector space over C. Similarly, one can define addition and scalar multiplication in
the DT case, making CZ a vector space over C.

One may need to get used to the fact that elements (the “points”) of a space such
as CR or C” can be entire signals. As opposed to the case CV, which defines a
vector space of (complex) dimension N, the vector spaces C® and CZ have infinite
dimension. Still, many of the geometric structures known for the finite-dimensional
space CV can be transferred to suitably defined infinite-dimensional subspaces of
CR and CZ. This is what we show next.

2.2.3.3 Inner Products

We start by reviewing some concepts from linear algebra. Usually, an element
xeCVis thought of as a column vector of size N. The transposed vector, which
we denote by x', is then the corresponding row vector. The vector space CV can
be equipped with an additional structure called an inner product. This additional
structure associates to each pair of vectors a scalar quantity which is called the inner
product of the two vectors. Mathematically, the inner product of CV is a mapping
(:]): C¥ x CN — C defined by

N-1 o
(xly) == Zox(n)ym) (2.37)

for x = (x(0),x(1),...,.x(N—1))" € CY and y = (y(0),y(1),...,y(N—1))" € CV.
The inner product satisfies three mathematical properties, which are also used for
an axiomatic definition of general inner products. First, it is positive definite; i.c.,
(x]x) > 0 and (x|x) = 0 if and only if x is the all-zero vector. Second, it is conjugate
symmetric; i.e., (x|y) = (y|x). And third, it is C-linear in the first argument; i.e.,
(x1 +x2]y) = (x1]y) + (x2]y) and {(cx|y) = c(x|y) for any x1,x,x,y € CN and ¢ € C.

The importance of inner products is that they allow the introduction of intuitive
geometrical notions such as the length of a vector, the angle between two vectors,
and orthogonality between vectors (see Figure 2.15 for an illustration). More pre-
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Fig. 2.15 Geometrical notions defined in terms of the inner product. (a) Length of a vector. (b) An-
gle between two vectors. (b) Orthogonality of two vectors.

cisely, the inner product induces a norm on CV via

[lx] ==/ {x]x). (2.38)

In general, a norm satisfies ||x| = 0 if and only if x = 0, ||ax|| = |a||x| for any
a € C (positive scalability), and [x+y|| < [x| + [y| for any vectors x and y (triangle
inequality). The positive number |x —y|| is also called the distance between the
vectors x and y. The relation between the inner product and the angle ¢ between
two vectors x and y is given by

cos(p) = ‘ [y (2.39)

el - Iyl

In other words, the angle ¢ is determined by the inner product: it is given by taking
the inverse of the cosine of the absolute value of the inner product of the normalized
vectors. The basis for this relation is the Cauchy—Schwarz inequality

[y | < [l Il (2.40)

which is an indispensable mathematical tool for many estimations. Finally, two vec-
tors x,y € CV are said to be orthogonal if (x|y) = 0 (see Figure 2.15c¢). This concept
can then be used to define orthogonal subspaces, orthogonal complements, projec-
tion operators, and so on.

2.2.3.4 The Space /*(7Z)

Given an arbitrary vector space, one can introduce the same geometric concepts
once one has an inner product. It turns out that the signal spaces C* or C? are too
general. One strategy is to only consider signals with certain properties by passing
over to suitable signal subspaces. We make this point clearer by first considering the
space CZ of DT-signals. One idea for defining an inner product on this space is to
simply extend the definition of (2.37) for CN. However, in contrast to CV, there may
be an infinite number of nonzero summands in the case of C%, with the consequence
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that the sum may be infinite. This leads to the following definitions: First, we define
the energy E (x) of a signal x € CZ to be

E(x):= Y |x(n)* (2.41)

nez
Then the space ¢?(Z) C C% is defined to be the set of all signals having finite energy:
(Z) := {x: Z — C| E(x) < o}. (2.42)

In mathematical terms, £2(Z) is also referred to as the space of square-summable
sequences. Obviously, there are many DT-signals that do not have finite energy.
For example, the sampled sinusoid x given by x(n) = sin(7n/16) is not square-
summable since it assumes the value 1 for infinitely many n. On the other hand, any
DT-signal with a finite number of nonzero entries obviously has finite energy. The
space CV for arbitrary N € N can be regarded as a subspace of £2(7Z) by extending a
vector x = (x(0),x(1),...,x(N—1))T € CN to a sequence by setting x(n) = 0 for all
n < 0and n > N. Furthermore, it is not hard to show that EZ(Z) is a vector space (see
Exercise 2.13). For the restricted space ¢>(Z) C CZ, it is now possible to introduce
an inner product that extends the one for CV. Indeed, one can show that

(x[y) := Y x(n)y(n) (2.43)

nez

is finite and hence well defined for any two signals x,y € ZZ(Z) (see again
Exercise 2.13). From this point on, everything works as in the finite-dimensional
case CV. The inner product satisfies the Cauchy—Schwarz inequality (2.40), one can
define an angle as in (2.39), one can talk about signals being orthogonal, and so on.

2.2.3.5 The Space L*(R)

For the space C® of CT-signals, an inner product is defined in a similar fashion.
However, technically, the definitions become more sophisticated in the continuous
case, where summation becomes integration. In order to define an integral for a
signal f € CR, it needs to fulfill certain integrability conditions, which in turn de-
pend on the notion of integration to be used. For example, the notion of the well-
known Riemann integral turns out to be too weak for many mathematical construc-
tions. The technical deficiencies in Riemann integration can be remedied with the
Lebesgue integral, which can be defined for a class of signals called measurable.
At this point, since we may assume that basically all signals that we encounter are
measurable, we do not want to go further into this issue. Similarly to the case of
DT-signals, the energy E(f) of a measurable signal f € C® is defined by

E(f) = /l o |f(2)|%dt. (2.44)
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Furthermore, the space L?>(R) C CF is defined to be the set of all signals of finite
energy:
L*(R):={f: R — C| f measurable and E(f) < oo}. (2.45)

In mathematical terms, L?(R) is also referred to as the Lebesgue space? of square-
integrable functions. Again, there are many CT-signals that do not have finite energy.
For example, any nonzero sinusoid has infinite energy. As with the DT case, it is not
hard to show that L?(R) is a vector space. In the CT case, the inner product is defined
by

(flg) = /teRf(’)m‘” (2.46)

for any f,g € L?(R). Again this makes it possible to introduce the geometric con-
cepts known from linear algebra.

2.2.3.6 The Space L?([0,1))

Finally, we want to consider another class of CT-signals of fundamental impor-
tance: the class of periodic signals. As already mentioned above, nonzero periodic
functions* are not contained in L?(R). However, also for periodic functions one
can define a suitable signal subspace of CR that possesses an inner product. Re-
call from Section 2.2.1 that a signal f: R — C is periodic with period A € R if
f(t) = f(t+ 1) holds for all # € R. A A-periodic signal f can be transformed into a
I-periodic signal t — f(A -1) by applying the linear transform ¢ — A -7. Hence, in the
following discussion, we only consider the case A = 1. Obviously, any 1-periodic
function f is already known when restricted to the interval [0, 1). In contrast, any
function g: [0,1) — C can be extended in an obvious fashion to a 1-periodic func-
tion f: R — C. In other words, there is a one-to-one correspondence between the
1-periodic functions in C® and the signal space C/%!) := {f: [0,1) — C}. Similar
to the nonperiodic case, one can define the energy Eg ) (f) by

Boa(f)i= [ 1f0)Pd (2.47)

1el0,1)
and the space L*([0,1)) C clo.D py
L*([0,1)) :={f:[0,1) = C| f measurable and Ejg 1)(f) < eo}. (2.48)

Furthermore, one can show that the inner product

(1) = | oy /80 (2.49)

3 From a strict technical point of view, L?(R) is defined as a quotient space, where all functions
that are zero almost everywhere are identified.

4 Strictly speaking, we mean here periodic functions that are not zero almost everywhere.
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is well defined for any f,g € L*([0,1)). Generalizing these definitions, one can in-
troduce a space L?([a,b)) with an inner product for any a,b € R, a < b, which
consists of A-periodic signals with A = b —a.

2.2.3.7 Hilbert Spaces

In summary, we have introduced the signal spaces ¢*(Z), L*(R), and L*([0,1)),
which all possess an inner product similar to the one of the finite-dimensional vec-
tor space CV. All of these spaces are special cases of what is known as Hilbert
space. By definition, a Hilbert space is a vector space H equipped with an inner
product (-|-): H x H — C satisfying the three axiomatic conditions mentioned in
Section 2.2.3. Furthermore, one requires that a Hilbert space is complete in the
sense that every Cauchy sequence’ in # converges in 7. Intuitively, a space is com-
plete if no points are missing from it. For example, the set of rational numbers is not
complete, because there are numbers such as v/2 missing from it, even though one
can construct Cauchy sequences of rational numbers that converge to such irrational
numbers. As one can show, this nontrivial completeness condition is satisfied for the
signal spaces ¢%(R), L*>(R), and L*([0,1)). As we will see in the next sections, the
geometric concepts provided by the inner product help to develop our intuition and
to simplify the formulation of the Fourier transform.

A particularly important concept that generalizes from the finite-dimensional
space CN to arbitrary Hilbert spaces is the existence of orthonormal bases. Let 1
be a countable set, then a subset (x;);c; of H is called an orthonormal basis (ON-
basis) if the following three conditions hold:

() =0 for i jelis ], (2.50)

l|>=1 for iel, 2.51)

x= Z<x|x,~)x,~ for xeX. (2.52)
il

The first condition means that any two distinct elements x; and x; are orthogonal,
and the second one that each of the elements x; has unit energy. The third condition,
also referred to as the completeness condition, requires that any element of x €
‘H can be represented as a weighted superposition of the basis vectors x;, i € I.
Intuitively, completeness means that everything in 4 can be captured by the basis
vectors. Furthermore, the weights are given by the inner products (x|x;). One can
show that for a Hilbert space there always exists an ON-basis and, in general, even
a very large number of different ON-bases. As we will see, the Fourier transforms
for DT-signals and periodic CT-signals are based on very specific choices of such
ON-bases.

5 A Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the
sequence progresses. More precisely, given any small positive distance, all but a finite number of
elements of the sequence are less than that given distance from each other.
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2.3 Fourier Transform

The Fourier transform is the most important mathematical tool in audio signal
processing. As discussed in Section 2.1, the Fourier transform converts a time-
dependent signal into a frequency-dependent function. The inverse process is re-
alized by the Fourier representation, which represents a signal as a weighted su-
perposition of independent elementary functions. Each of the weights expresses the
extent to which the corresponding elementary function contributes to the original
signal, thus revealing a certain aspect of the signal. Because of their explicit physical
interpretation in terms of frequency, sinusoids are particularly suited to serve as el-
ementary functions. Each of the weights is then associated to a frequency value and
expresses the degree to which the signal contains a periodic oscillation of that fre-
quency. The Fourier transform can be regarded as a way to compute the frequency-
dependent weights.

In the following, depending on the underlying signal space, we introduce sev-
eral variants of the Fourier transform and its inverse, the Fourier representation.
We start with the signal space L>([0,1)) consisting of 1-periodic finite-energy CT-
signals (Section 2.3.1). We continue by showing how the formulation of the Fourier
transform in terms of complex-valued exponential functions (instead of real-valued
sinusoids) makes the mathematical handling much more convenient (Section 2.3.2).
We then discuss the Fourier transform for the signal space L?(R) (Section 2.3.3)
as well as for the signal space ¢*>(Z) (Section 2.3.4). It is important to note that
each of these signal spaces possesses its own Fourier transform and the mathemati-
cal concepts needed to prove the existence and properties of the respective Fourier
transform are different for the variants. While giving mathematically rigorous defi-
nitions of the various Fourier transforms, we do not provide the proofs. In particular
for the analog case, the proofs require results from measure and integration theory,
which are outside the scope of this book. Instead, we will try to give some intuitive
explanations while highlighting the meaning and the interrelations of the various
variants.

2.3.1 Fourier Transform for Periodic CT-Signals

We start our discussion by considering the case of all real-valued signals in
L*([0,1)). Let us denote this subspace by L2([0,1)) C L?([0,1)). Note that any
constant as well as any (1/k)-periodic function for an integer k € N is 1-periodic
too. The sinusoid ¢ +— v/2cos(27kt) may be regarded as the archetype of a (1/k)-
periodic function, which represents a pure tone of k Hz. The factor v/2 is introduced
to normalize the sinusoid to have unit energy or, equivalently, to have norm one (see
Exercise 2.14). Of course, also the sinusoid ¢ + \/2sin(27kt) or all phase-shifted
versions 7 — v/2cos(27(kt — ¢)) have the same interpretation. One important the-
orem in Fourier analysis is that any real-valued signal f € L% ([0, 1)) can be written
as a superposition
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Fig. 2.16 (a) Analog 1-periodic signal. (b) Decomposition of the signal into three sinusoids.
(c) Magnitude and phase coefficients of the Fourier transform.

f(t)=do+ Y. div/2cos(2m(kt — ) (2.53)
keN

of 1-periodic sinusoids with suitable amplitudes d; € R>o and phases ¢ € [0,1).
The superposition exhibits the frequency content of f as follows: the coefficient dy,
also referred to as the magnitude, reflects the contribution of the sinusoid of k Hz,
whereas the coefficient ¢, also referred to as the phase, shows how the sinusoid has
to be shifted to best “explain” or “match” the original signal. Note that the phase co-
efficients are determined only up to an integer and can therefore be assumed to lie in
the interval [0, 1). Figure 2.16 shows an example of a 1-periodic signal and the re-
sulting magnitude and phase coefficients. The superposition in (2.53) is the Fourier
representation of the signal f, whereas the magnitude and phase coefficients are
called the Fourier coefficients.

In our first reformulation, we exploit the fact that any sinusoid with arbitrary
phase can be represented as a weighted sum of two specific sinusoids of the same
frequency having fixed phases. Indeed, using the trigonometric identity cos(o —
B) = cos(a)cos(f) + sin(er) sin(fB) for arbitrary angles a and 3, one obtains

cos(2x(kt — @)) = cos(2mkt) cos(2m ) + sin(27wkt ) sin(27w @) (2.54)

when setting o = 27kt and 8 = 27¢. Let cosy, sin; € L2 ([0, 1)) be the two specific
sinusoids defined by

cosy (1) := V2cos(2mkt), (2.55)
sing (1) := V/2sin(27kr), (2.56)

for k € N. Then plugging (2.54) into (2.53), one obtains the following Fourier rep-
resentation, which is also known as the Fourier series:

fO)=ap+ Z areosy(t) + Z bysing(r). (2.57)
feN keN
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It readily follows that the Fourier coefficients «, a;, and by are given by

ap = dy, (2.58)
ax = cos(2m ey )dy, (2.59)
by = sin(Zn(pk)dk (2.60)

for k € N. Vice versa, the magnitudes and phases can be computed from the a; and

by via
dp = \/a? + b2, (2.61)

1
= —atan2(b . 2.62
Pr = 5 -atan (br, ax) (2.62)
The atan2 function, which is a variant of the inverse of the tangent function, will be
explained in Section 2.3.2.2. A nice property of the Fourier representation in (2.57)
is that its Fourier coefficients can be easily computed using Hilbert space theory. To
this end, one needs to show that the set

{1, cosy,sin |k € N}, (2.63)

is an ON-basis of the Hilbert space L2([0,1)), where 1 denotes the all-one signal
(i.e., 1(z) = 1 forz € [0,1)). The two conditions specified in (2.50) and (2.51) follow
from trigonometric identities (see Exercise 2.14). Only the completeness condition
specified in (2.52) is harder to show and requires some more involved mathematical
tools that are outside the scope of this book. From (2.52), one not only recovers the
Fourier series in (2.57), but also a formula for how to compute the Fourier coeffi-
cients as inner products of the signal f with the basis functions of the ON-basis:

ao = {fI1) = /tqo,uf(’)‘”’ (2.64)

a = (fleos;) = V2 / (8 cos(27kt)dr, (2.65)
t€[0,1)

b = (flsing) = V2 / f(t)sin(27mke )dt. (2.66)
t€l0,1)

2.3.2 Complex Formulation of the Fourier Transform

As often in mathematics, the transfer of a problem from the real into the complex
world can lead to significant simplifications. A famous example is the problem of
finding solutions of polynomial equations. The equation z> — 1 = 0 has the two
solutions z = +1 and z = —1, however the equation z> + 1 = 0 does not have any
solution when only considering real numbers. Extending R to C, however, one also
finds for the second equation two solutions given by z = +i and z = —i, where
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Fig. 2.17 Illustration of the complex exponential function.

i denotes the complex unit. Considering polynomial equations over C makes the
problem much easier to understand. In general, an extension of the real numbers
to the complex numbers not only gives a broader view but also provides additional
tools and structures. For example, the complex multiplication as defined by (2.34),
which extends the usual multiplication of real numbers, yields such a powerful tool.
Also, the trigonometric identities are considerably simplified when using a complex
formulation.

2.3.2.1 Exponential Function

Converting the Fourier transform from the real into the complex domain has several
advantages. First, the concept of Fourier series can be naturally generalized from
real-valued to complex-valued signals. Second, one obtains compact and elegant
formulas, where the magnitude and phase are naturally expressed by a single com-
plex Fourier coefficient. Recall from Section 2.1.1.4 that the exponential function
combines the two real-valued sinusoids given by the cosine and sine into a single
complex-valued function:

exp(iy) = cos(y) +isin(y). (2.67)

This equation, which can be used as a defining relation, is also known as Euler’s for-
mula. However, there are many other ways in which the exponential function may
be characterized, e.g., in terms of a power series expansion or by means of a differ-
ential equation. The exponential function has some important properties, which are
also illustrated by Figure 2.17:

exp(iy) = exp(i(y+2n)), (2.68)
lexp(iy)| = 1, (2.69)
exp(iy) = exp(—iy), (2.70)

exp(i(y1 + 7)) = exp(iv) exp(iys) (2.71)
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for v, 71,7 € R. For a proof of these properties, we refer to Exercise 2.15. The prop-
erty (2.68) means that the exponential function is 27-periodic. The property (2.69)
implies that all values of this function live on the unit circle of C. By successively in-
creasing the angle ¥ starting with ¥ = 0 and ending with 7 = 27, one travels exactly
once along the unit circle in a counterclockwise fashion. The property (2.70) shows
that complex conjugation results in changing the direction of this travel. Finally, the
property (2.71) is the complex formulation of the real-valued trigonometric identi-
ties that hold for the cosine and sine functions (see also Exercise 2.15).

2.3.2.2 Polar Coordinates

A complex number ¢ = a+ib € C is specified by its Cartesian coordinates (a,b) €
R? in the two-dimensional plane. The complex exponential function makes it pos-
sible to represent a complex number in the form of polar coordinates, which we
discussed in Section 2.1.1.4. In the polar coordinate system, the point ¢ = a + ib
is determined by the distance |c| from the origin and the angle ¥ (in radians) be-
tween the positive horizontal axis and the point given by the coordinates (a,b) (see
Figure 2.4). Repeating the formulas from (2.6) and (2.7), we obtain the following
relations between Cartesian and polar coordinates:

| = Va®+1?, (2.72)

y = atan2(b,a), (2.73)
a = |e| Re(exp(iy)) = |¢| cos(), (2.74)
b = |c| Im(exp(iy)) = || sin(7). (2.75)

The atan2 function is a generalization of the arctangent function (denoted as
arctan), which is the inverse of the principal branch of the tangent function (see
Figure 2.18b). The arctan function requires a real-valued argument v € R and com-
putes an angle arctan(v) € (—m/2,7/2) (given in radians), which is called the prin-
cipal value. As opposed to the arctan function, the atan2 function has two real-
valued arguments. This makes it possible to capture the quadrant of the computed
angle, which is not possible for the single-argument arctan function. In terms of the
standard arctan function, the atan2 function is given by

arctan(b/a), a>0,
arctan(b/a) + 7, b>0,a<0,
arctan(b/a) — 7, b<0,a<0,
atan2(b,a) := —|—7r/2( /a) b>0 a=0 (2.76)
—r/2, b<0,a=0,
undefined b=0,a=0

for (a,b) € R? (see Figure 2.18c). The angle computed by the atan2 function is pos-
itive for complex numbers ¢ = a + ib with positive imaginary part b > 0 (upper half-
plane) and negative for those with negative imaginary part b < 0 (lower half-plane).
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Fig. 2.18 (a) Tangent function with different branches. (b) Arctangent function inverting the prin-
cipal branch of the tangent function. (c) Illustration of the values assumed by the atan2 function.

The range (—m, 7] of angles can be mapped to [0,27) by adding 27 to negative
values. Further properties of the atan2 function are discussed in Exercise 2.17.

2.3.2.3 Complex Fourier Series

We are now ready for the complex formulation of the Fourier series. To this end,
we replace in (2.57) the real-valued sinusoids cos; and sin; defined for k € N by the
complex-valued exponential functions expy, : [0,1) — C defined by

exp, (1) := exp(2mikt). 2.77)

Obviously, expy, is a (1/k)-periodic signal for k # 0 and exp, is the all-one signal 1
for k = 0. Furthermore, as in (2.63), it can be shown that the set

{exp, | k€ Z} (2.78)

is an ON-basis of the (complex) Hilbert space L2[0,1). The properties |exp;| = 1
for k € Z and (expy|exp,) = 0 for k # ¢, k,{ € Z, are shown in Exercise 2.16. Again,
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as in the real-valued case, the completeness property is more difficult to prove and
is not discussed in this book. The resulting expansion of a signal f € L>([0,1)) with
respect to this ON-basis leads to the equality®

=Y crexpi(t) = Y crexp(2mike), (2.79)
keZ keZ

which is also referred to as the (complex) Fourier series. The corresponding (com-
plex) Fourier coefficients ¢, € C are given by

cr = (flexpy) = /{Em F(t)exp(2rikt)di = / F(t)exp(—2miki)dr, (2.80)

t€[0,1)
where we used (2.70) in the last equation. As in (2.11), the function
fiz—C, fk):=c (2.81)

is called the Fourier transform of f € L>([0,1)). Note that, in this case, a 1-periodic
continuous-time signal f is mapped to a discrete-time signal f. Furthermore, one can
show that the Fourier transform is energy preserving in the sense that the energy of
f is the same as the energy of f:

£ llz2(p0,1)) = ||f||52(z)- (2.82)

At this point, using the s1gna1 spaces as subscripts of the norms, we want to em-
phasize that the energy of f is measured in the space (Z ) and the energy of f
is measured in L%([0, 1)). Mathematically, such an energy-preserving map between
Hilbert spaces is also called an isometry. As a consequence, the inverse mapping
f +— f given by the Fourier series (2.79) is again an isometry. We will see that the
Fourier transforms for the other finite-energy signal spaces have similar properties.

2.3.2.4 Relation Between Complex and Real Fourier Series

Note that the complex Fourier series can be used to represent complex-valued sig-
nals, thus extending the Fourier series of (2.57) for real-valued signals. Being a
special case of a complex-valued function, a real-valued signal f € L2([0,1)) C
L*([0,1)) can also be represented using a complex Fourier series. In this case, each
signal value f(¢) coincides with its complex conjugate f(¢). Using the computation
rules for complex numbers (see Exercise 2.12) and (2.70), one obtains

Y aexp(t) = f(t) = f(1) = ) crexpy(t) = Y crexp_(1). (2.83)

keZ keZ keZ

6 Strictly speaking, this equality only holds for almost all # € [0, 1). In the following, even though
a bit sloppy in a strict mathematical sense, we do not further mention such issues.
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This implies c¢_; = ¢ for k € Z. In other words, for real-valued signals, the coeffi-
cients with negative indices are redundant. Furthermore, the complex coefficients c
of a real-valued signal relate to the real coefficients a; and by of the Fourier series
in (2.57) in the following way:

ap = co, (2.84)
ar = V2Re(cy), (2.85)
by = —V2Im(cy) (2.86)

for k € N. To see this, one needs to use c_; = ¢ and the definitions (2.77) of expy,
(2.55) of cosy, and (2.56) of sin;. Since the proof is an instructive example of how
to compute with complex numbers, we conduct the calculation in detail:

1) =Y crexpy(t)

keZ

=co+ Y crexpy(r)+ Y c_rexp_(r)

k=1 k=1
= co+ Y, (cxexpy(r) + crexpy(r)) (2.87)
k=1

8

=co+ Y 2Re(crexpy (1))
k=1

Ms

=co+ Y (2Re(cx)cos(2mkr) — 2Im(cy) sin(27kr))

~

g |l

=co+ Z \[Re (ci)cosy(t Z —/2Im( (ck) smk(t)

k=1

Comparing coefficients with (2.57) yields the assertion.

Finally, let us come back to our first version of the Fourier series in (2.53), where
we introduced the magnitude coefficients dj and phase coefficients ¢. How are
these coefficients related to the complex Fourier coefficients ¢ in the case of real-
valued signals? This question can be easily answered when using (2.61) and (2.62)
in combination with the polar coordinate representation ¢; = |ci|exp(i};) and the
above identities:

dy

@+ b = \[2Re(cr)? +21m(cr)? = V2 ey, (2.88)

o = iatanz(bbak) — iatanz(—\fZIm(Ck),\f2Re(C1<))
21 27
Yk

= % atan2(—Im(c;),Re(cy)) = — =~

oo (2.89)

In the last equations, we used the fact that atan2 is invariant under scaling with a
nonzero constant and assumes the negative angle for the conjugate of a complex
number (see Exercise 2.17). These identities correspond to (2.14) and (2.15).
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2.3.3 Fourier Transform for CT-Signals

The general idea of the Fourier transform carries over from the case of periodic
to the case of nonperiodic signals in L?(IR). In the nonperiodic case, however, the
exponential functions exp, of integer frequency k € Z do not suffice to “describe” a
signal. Instead, one needs exponential functions

exp, :R—C, exp,(t):=exp(2miot) (2.90)

for all frequencies w € R. Then, replacing summation by integration one obtains the
following nonperiodic analog of the Fourier representation:

£(1) = / cuexpy(1)do = / _coexp(2miondw .91
wc wc

fort € R. The coefficients ¢, have the same interpretation as the Fourier coefficients
¢x- The frequency-dependent function f : R — C defined by

F(0) = co = /t s = /teR F()exp(—2mion)di (2.92)

is called the Fourier transform of f. Again, it can be shown that the Fourier
transform is energy preserving. In other words, if f € L*(R), then f € L*(R) and
1£2g) = 1l 2z

Strictly speaking, there are some mathematical issues that need to be considered
for the nonperiodic case. Recall that, in the periodic case, the elementary func-
tions exp, have finite energy over the interval [0,1) and are therefore elements
of L2([0,1)). This is the reason why the Fourier transform and the Fourier repre-
sentation can be expressed by means of inner products. Unfortunately, this is no
longer the case for the nonperiodic case, since the elementary functions exp, do
not have finite energy over the real time axis R and are therefore not elements in
the space L?>(R). As a consequence, the inner product is not defined between a sig-
nal f € L*(R) and exp,,. Furthermore, the integrals in (2.91) and (2.92) need to be
defined as limits over increasing finite integration domains. For example,

f(®) := lim f(t)exp(—2miot)dt. (2.93)
N—oo Jte[-N,N]

Similarly, one has to define the Fourier representation. However, these technical
issues will not play any further role in this book. Furthermore, most of the signals we
consider in this book have compact support; i.e., they are zero outside an interval
of finite length. For such signals, no problems occur in the integrals even from a
strict mathematical point of view.

The Fourier representation in (2.91) yields a quite surprising result. It states that
every nonperiodic function of finite energy can be represented as a weighted (in-
finitesimal) superposition of periodic elementary frequency functions exp,, that
continue out to infinity without decaying. For example, even noise-like short-
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Fig. 2.19 Interference of two sinusoids of similar frequency. (a) Constructive interference. (b) De-
structive interference.

duration sounds such as transients, which often occur in the attack phase of a tone,
can be represented by ceaselessly oscillating sinusoids.

2.3.3.1 Interference

In Section 2.1.2, we have already discussed some real as well as synthetic signals
to illustrate important properties of the Fourier transform. In the following, we take
a closer look at some of the encountered phenomena. Let us start with the example
from Figure 2.6b. Besides the two peaks, we could observe in the magnitude Fourier
transform | f | a number of “ripples” of decreasing amplitude. Where do these rip-
ples come from? In the figure, the analog signal f is shown only for the time interval
[0,5] and is (implicitly) assumed to be zero outside this compact interval. The rip-
ples in the spectrum come from a phenomenon known as destructive interference,
where many different frequency components are involved for generating the com-
pact support of f.

In general, interference occurs when a wave is superimposed with another wave
of similar frequency. When a crest of one wave meets a crest of the other wave
at some point, then the individual magnitudes add up for a certain period of time,
which is known as constructive interference (see Figure 2.19a). Vice versa, when
a crest of one wave meets a trough of the other wave, then the magnitudes cancel
out for a certain period of time, which is known as destructive interference (see
Figure 2.19b).

Coming back to Figure 2.6b, one needs the sinusoids of frequency @ = 1 Hz and
® = 5 Hz to generate the main components of the signal f within the interval [0, 5].
Note that these two sinusoids also oscillate outside the visualized interval [0,5],
where the signal is assumed to be zero. Therefore, to cancel out these oscillations
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Fig. 2.20 (a) Gaussian function (left) and its Fourier transform (right). (b) Dirac sequence (left)
with corresponding Fourier transforms (right).

outside [0,5] by destructive interference, one needs to add many more sinusoids
of different frequencies and weights. These additional sinusoidal components are
reflected by the ripples. Interference effects are further discussed in Exercise 2.19
and in the subsequent examples.

2.3.3.2 Fourier Transform for Impulses

The synthetic signals shown in Figure 2.20 illustrate further properties of the Fourier
transform. First of all, the Gaussian function defined by the formula

ft) = 2m) " 2n % exp(—n?) (2.94)

has the remarkable property that it coincides with its Fourier transform (see
Figure 2.20a). In particular, its Fourier transform is real-valued and positive. There-
fore, it agrees with its magnitude Fourier transform. The Fourier representation
(2.91) tells us that the Gaussian function is obtained as an (infinitesimal) weighted
superposition of periodic sine waves, where the weights are again given by the Gaus-
sian function. The next question we consider is how the Fourier transform behaves,
if we start to make the Gaussian function somewhat narrower (see Figure 2.20b).
This leads to the notion of a Dirac sequence, which is a sequence of functions
(fu)nen of norm || f,|| = 1 such that for increasing n the functions f,, “concentrate”
more and more around the point + = 0. The limit of this sequence is the Dirac
delta function or impulse function (often denoted by the symbol ), which can
be thought of as a function that is zero everywhere except for t = 0. At =0, it
has an infinitely narrow spike of infinite height, which integrates to a value of one.
Strictly speaking, this impulse is not a function, but a so-called distribution. As
illustrated by Figure 2.20b, the magnitude Fourier transform of a Dirac sequence
becomes broader and broader. This scaling property of the Fourier transform is
shown in Exercise 2.20. In the limit case, the Fourier transform approaches a con-
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Fig. 2.21 Waveform and its magnitude Fourier transform for (a) a clapping sound and (b) white
noise.

stant function, where the magnitudes of all frequency components have the same,
yet infinitesimally small value.

The interpretation of this property is important in view of practical applications.
It says that impulse-like sounds such as a drum hit or a transient as occurring in the
attack phase of a musical tone (see Section 1.3.4) lead to a flat magnitude Fourier
transform with many small, yet nonzero Fourier coefficients. In other words, for
a sudden sharp sound, the signal’s energy is spread across the entire spectrum of
frequencies. This is also illustrated by Figure 2.21a, which shows the waveform and
its magnitude Fourier transform for a real clapping sound. Another type of sound
that results in an energy spread across the entire frequency spectrum are noise-like
signals. Generally speaking, random signals such as white noise also remain random
when transformed into the Fourier domain. For example, Figure 2.21b shows white
Gaussian noise and its magnitude Fourier transform, which also looks like noise that
is equally spread over the entire frequency range.

2.3.3.3 Translation and Modulation

As a final example, which is shown in Figure 2.22, we consider the rectangular

function
1, if-05<r<05,
f(0):= {O, otherwise. (295

Its Fourier transform is the sinc function, which is defined by

sin 7wt :
sine(r) ::{lm ) igig (2.96)

)

For the proof of this fact, we refer to Exercise 2.21. The rectangular and the sinc
function play an important role in the sampling theorem (see Exercise 2.28). In the
case that the rectangular function is centered around ¢ = 0, its Fourier transform is
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Fig. 2.22 Behavior of Fourier transform under translations. From left to right, the signal as well as
the magnitude, real part, and imaginary part of the Fourier transform are shown. (a) Rectangular
function. (b) Translation by one second. (¢) Translation by five seconds.

a real-valued function (see Figure 2.22a). However, this is no longer the case if we
start to shift the rectangle in time. For example, translating the rectangular function
one second to the right, as illustrated by Figure 2.22b, leaves the magnitude of the
Fourier transform unchanged. However, the translation has a significant impact on
the phase as well as on the real and imaginary parts of the Fourier transform. This
again demonstrates that time information is not revealed by the magnitude, but that
it is encoded in the phase of the Fourier transform. Let us have a more general look
at this phenomenon. Let f € L*(R) be a signal, then the function f;, defined by

Jio(t) == f(t—10) (2.97)

is called the translation of f by #y € R, and the function f® defined by

F(1) :=exp(2miant ) f (1) (2.98)

is called the modulation of f by @y € R. It is not hard to show (Exercise 2.22) that
for the Fourier transform one obtains

oo (@) = exp(—27ian) f(o) (2.99)

and - )
f®(w) = f(o+ ). (2.100)

In other words, a translation of the signal in the time domain leads to a modulation
in the Fourier domain, and vice versa.
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2.3.4 Fourier Transform for DT-Signals

We finally introduce the Fourier transform for the signal space ¢%(Z), which consists
of the finite-energy DT-signals. Recall from (2.32) that the most common discretiza-
tion procedure to transform a CT-signal f: R — R into a DT-signal x: Z — R is
equidistant sampling, where the samples are defined by x(n) = f(n-T),n € Z, fora
given sampling rate F; = 1/T and sampling period T > 0.

Let x € ¢>(Z) be an arbitrary DT-signal of finite energy, then the Fourier repre-
sentation of x is

x(n) = cwexpy,(n)do = coexp(2mion)dw® (2.101)
Jwel0,1) 0el0,1)

for n € Z. Furthermore, the coefficients ¢, are given by the frequency-dependent
function £: [0,1) — C defined by

=Y x(n)exp,(n) = Y x(n)exp(—2micwn), (2.102)

nez nez

which is called the Fourier transform of x. Both the Fourier representation as well
as the Fourier transform are nontrivial facts that require mathematical proofs. Al-
though similar in nature, the Fourier transform for DT-signals cannot be directly
derived from the Fourier transform for CT-signals. However, as we will see, the
case of DT-signals can be regarded to be dual to the case of periodic CT-signals.
Also, the Fourier transform of a sampled analog signal can be regarded as a kind of
approximation of the Fourier transform of the analog signal.

2.3.4.1 Periodicity and Aliasing

The Fourier representation (2.101) says that the signal x can be represented as an in-
finitesimal superposition of the elementary frequency functions exp,, sampled with
T =1 (see (2.32)). In this case, only the frequencies @ € [0,1) are needed. Intu-
itively, the restriction of the frequency parameters to the set [0, 1) can be explained
as follows: For an integer frequency parameter k € Z and sampling points n € Z one
has exp(2mikn) = 1. Therefore,

exp,,,(n) = exp(2mi(w +k)n) = exp(2mion) exp(2mikn) = exp,(n). (2.103)

In other words, two exponential functions with an integer difference in their fre-
quency parameter coincide on the set of sampling points n € Z. Consequently, they
cannot be distinguished when considered as 1-sampled DT-signals. We have en-
countered this aliasing phenomenon already in Figure 2.14 of Section 2.2.2. Using
a sampling rate of 1 Hz, the Nyquist frequency is @ = 0.5 Hz. All oscillations
with a frequency above this rate are not captured by 1-sampling and lead to the
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same samples as oscillations of lower frequencies. This fact is also illustrated by
Figure 2.23.

Next, let us have a closer look at the Fourier transform (2.102). Note that (2.103)
implies that the function @ +— exp(—2mion) is l-periodic for all n € Z. Being a
superposition of 1-periodic functions, also the Fourier transform £ is 1-periodic.
Furthermore, one can show that the Fourier transform is energy preserving, i.e.,
Il 2(z) = II£]l 12(0,1))- Note that this is exactly the reverse of the situation we have
seen for 1-periodic signals f € L?([0,1)), where the Fourier transform was a DT-
signal f € (*(7Z). Replacing the frequency parameter @ by the time parameter 7,
the formula (2.102) for the Fourier transform of ¢(Z) becomes (up to a sign in the
exponential function) the formula (2.79) for the Fourier representation of L>([0,1)).
A similar relation holds between the Fourier representation (2.101) for Ez(Z) and
the Fourier transform (2.80) for L([0, 1)). From this it also follows that the Fourier
transform for ¢%(Z) applied to the Fourier transform f of a signal f € L>([0, 1)) gives

back the 1-periodic signal f up to a sign, i.e., f(t) = f(—r). In mathematics, the
close relation between the spaces ¢(Z) and L?(]0, 1)) and their Fourier transforms
is also referred to as duality.

2.3.4.2 Riemann Approximation
Let us now investigate the relation between the Fourier transform of L?([0,1)) and

the one of ¢2(Z). Starting with a CT-signal f € L?(R), let x be its T-sampled version.
Then one obtains
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(o) = Z x(n) exp(—2mion)

nez

=Y f(nT) exp(—2micn)

nez

~ J(tT)exp(—2mior)dt (2.104)
teR

_ ! f(t)exp (—27Ttia)t> dt

T Jier
1 /0
=7/ ( T) ’
where we have used the substitution rule for indefinite integrals to replace ¢7 by t.
The approximation sign expresses that the value £( @) obtained by a sum has roughly
the same size as the value f(/T)/T obtained by an integral. This is a special case
of the Riemann sum approximation, which we explain next.

Recall that the integral of a function is the (weighted) area determined by the
function’s graph and the time axis. In case of a complex-valued function, the
complex-valued integral is defined by the integral of the real part and of the imag-
inary part of the function. For many functions, the integral can be approximated
by partitioning the time axis into small intervals, picking the function value at the
mid-point of each interval, and then summing up the interval lengths weighted by
the respective value (see Figure 2.24). The resulting sum is also called the Riemann
sum for the integral. The accuracy of the approximation very much depends on the
resolution of the partition (the finer, the better the approximation) and the properties
of the integrand (the slower it oscillates, the better the approximation).

In our case, the intervals of the partitioning have length one. Furthermore, the
integrand is the function & : R — C defined by Ah(r) := f(¢:T)exp(—2miwt), which
basically is the product of the signal and an exponential function. Because of alias-
ing effects, in particular arising from the factor exp(—2mi®t), the Riemann sum

does not yield a meaningful approximation for @ € R\ [—1,1]. In particular, while

# is 1-periodic, the function @ +— f(@/T)/T is nonperiodic and approaches zero for

@ — Foo. Within the interval [—1, 1], however, in particular when approaching the
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Fig. 2.25 Relation between the Fourier transform of a CT-signal and that of the DT-signal ob-
tained by 1-sampling. Each row shows a signal (left) and its magnitude Fourier transform (right).
(a) Analog chirp signal with A = 0.003 and (b) its 1-sampled version. (¢) Analog chirp signal
with A = 0.004 and (d) its 1-sampled version showing strong aliasing artifacts around the Nyquist
frequency.

frequency @ = 0, the Riemann sum £(®) approximates the value f(w/T)/T with
increasing accuracy.

2.3.4.3 Chirp Signal Example

To further illustrate the relation between CT- and DT-signals and their Fourier trans-
forms, we consider a signal in which the frequency increases with time. Such a sig-
nal is also called a chirp signal or sweep signal. In particular, for a given positive
constant A > 0, the function

(2.105)

[ sin(A-m?), fort >0,
f() = {0, fort <0,

defines a linear chirp, which is a sinusoidal wave that increases in frequency lin-
early over time. It can be shown that the instantaneous frequency at time ¢ =
is @y = Ato, which is the derivative of the phase divided by 2. Figure 2.25 shows
two chirp signals for different values of A. In the first case (Figure 2.25a), the main
frequencies are below @ < 0.4, which is also shown by the magnitude Fourier trans-
form. As a result, there is little aliasing when 1-sampling the signal (Figure 2.25b).
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The Fourier transform X of the resulting DT-signal x yields a good approximation
of the Fourier transform f in the range [0,0.5). Note that £ is 1-periodic whereas
f is not. Now, increasing the constant A results in a chirp signal with frequency
components above the Nyquist frequency of 0.5 (Figure 2.25¢c). Therefore, when
1-sampling the signal, there are aliasing artifacts where frequencies 0.5 + @ are
identified with frequencies 0.5 — @ (see Figure 2.25d). In this case, the Riemann
sum (2.104) yields a poor approximation of the actual integral.

2.4 Discrete Fourier Transform (DFT)

Computing the Fourier transform of signals involves the evaluation of integrals or in-
finite sums, which is, in general, computationally infeasible. In practice, as we have
already discussed in Section 2.1.3, one typically approximates the Fourier transform
by finite sums. Furthermore, the Fourier transform is evaluated only for a finite num-
ber of frequencies. In this section, we show how the finite sums and the Fourier co-
efficients must be chosen to obtain a linear transform known as the discrete Fourier
transform (DFT). The important point is that the DFT can be computed efficiently
by means of an algorithm, the famous fast Fourier transform (FFT). The FFT is
considered one of the most important algorithms, being widely used for many ap-
plications in engineering and mathematics. In the following, we introduce the case
of finite-length signals and their Fourier transform, which can then be formulated
in terms of the DFT. We then describe in detail the FFT algorithm and discuss its
computational complexity.

2.4.1 Signals of Finite Length

To derive the DFT, we start to reinvestigate the Fourier transform for a DT-signal
x € (*(Z). We assume that the energy of x is concentrated in the interval [0: N — 1],
i.e., x(n) ~0forne€Z\[0:N — 1]. Then we obtain from (2.102)

Zx n)exp,,(n) Zx n)exp,, (1) (2.106)

nez

for a frequency parameter @. Recall that since £ is 1-periodic only the frequencies
o € [0, 1) need to be considered. In practice, one often computes the Fourier trans-
form only for a finite subset of frequencies. In particular, fixing a number K € N,
one considers the frequencies @ = k/K for k € [0: K — 1], which corresponds to a
1/K-sampling of the frequency space [0, 1). Even though the number N of points
in time and the number K of frequencies are not related at all, it is convenient to
assume N = K. This assumption, as we will see, leads to a compact matrix-theoretic
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formulation of the Fourier transform along with an efficient algorithm for computing
the transform.

In the following, we assume N = K. Furthermore, let x € KZ(Z) be a sig-
nal that is zero outside the interval [0:N — 1] so that one obtains equality in
(2.106). Such DT-signals are also referred to as finite-length signals, where N
is the length of the signal. Each such signal x can be identified with a vector
x:= (x(0),x(1),...,x(N—1))" € CV. This way, we can regard C" as a subspace of
(*(Z), where the inner product (2.43) of ¢*(Z) reduces to the inner product (2.37)
of CV. Not all frequencies @ € [0, 1) are needed to characterize a signal of length N.
Indeed, only the frequencies k/N for k € [0 : N — 1] suffice to represent such signals.
To see this, we define a vector u; € CV for each k € [0 : N — 1] by setting

uy(n) := expy/y(n) = exp(2mikn/N), (2.107)

n € [0: N —1]. In other words, the vector u; consists of the first N samples of the
exponential function expy /y. Then (2.106) can be expressed as

#(k/N) = Zx n)expyy(n) =x ' = (x|uy). (2.108)

Thus, the Fourier transform of a signal of length N can be obtained by inner prod-
ucts with the sampled and truncated exponential functions u;. We now show that
these exponential functions (after rescaling) form an ON-basis of the Hilbert space
CN. First, we define the number p := exp(27i/N). Obviously, p" = 1 and p* # 1
for k € [1 : N —1]. Such a number is also called a primitive N root of unity (see
also Exercise 2.23). Using the properties (2.70) and (2.71) of the exponential func-
tion, one obtains

N—1

(uglug) = Y exp(2mikn/N)exp(2miln/N) (2.109)
n=0
Z exp(2mi(k — )n/N) = Z pl=bin (2.110)
n=0

for k,¢ € [0: N — 1]. In the case k = ¢, this implies |u||> = (uz|u;) = N. In the case
k # ¢, one has p*~¥) £ 1. Therefore, one can apply the sum formula

2 (1—d")/(1-a) (2.111)

for geometric series, which holds for any complex number a # 1 (see Exercise 2.18).
Setting a = p*~*), one obtains
1— pN (k—¢)

(wlug) =



88 2 Fourier Analysis of Signals

This shows that
{w/VNke[0:N—1]} (2.113)

is an ON-basis of the complex Hilbert space CV. In particular, from (2.52), one
obtains the Fourier representation

1 N-1

x=— Y (x|u)uy. (2.114)
N k=0

In other words, a finite-length signal can be represented as a weighted superposi-
tion of sampled and truncated exponential functions u;, where the weights are the
Fourier coefficients given by (2.108). Next, we show how the Fourier transform and
Fourier representation for finite-length signals relate to the discrete Fourier trans-
form (DFT).

2.4.2 Definition of the DFT

Recall from (2.108) that the Fourier coefficients of a signal x of finite length N are
given by

X (k) == (x|u;) = Zx n)exp(—2mikn/N) (2.115)

for k € [0: N—1]. Let X := (X(0),X(1),...,X(N—1))" € CN denote the vector
of Fourier coefficients. By definition, the discrete Fourier transform (DFT) is the
mapping C¥ — CV that maps the input vector x to the output vector X. From (2.115)
it is clear that this is a linear mapping, which can be described by the (N x N) matrix
DFTy given by

DFTy(n,k) = exp(—2mikn/N). (2.116)

One crucial observation is that there are many relations between the num-
bers exp(2xikn/N) for k,n € [0,N — 1]. Using the primitive N root of unity
p = exp(27mi/N) as well as the relations p*" = exp(27ikn/N) and @ := p =
exp(—27i/N), one obtains DFTy (n,k) = @"". This yields the famous matrix

11 1 1
1 o ? V!
2 4 2(N—1
DFTy=|1 @ o - PV . (2.117)
.] .wal .(1)2(N71) .(D(Nfl)(Nfl)

Obviously, DFTy is a symmetric matrix. Its columns are given by u; and its rows
by W . In summary, we have seen that the Fourier transform £ of a DT-signal x of
finite length N can be computed for frequencies @ =k /N, k € [0 : N — 1] by a single
matrix—vector product X = DFTy - x.
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The Fourier representation given by (2.114) is the inverse of the Fourier trans-
form. For a spectral vector X, it outputs the original signal x. Again, being a linear
mapping C¥ — CV, the Fourier representation is given by a matrix, the inverse of
the matrix DFTy. From (2.113) it directly follows that

11 1 RN |
1 p p2 pN*I

DFT,,' :%—DFTNT:% 1 p2  p . p2N-1) (2.118)
1 prl pZ(Nfl) p(Nfl)(Nfl)

In other words, the inverse essentially coincides with the DFT matrix up to some
normalizing factor and complex conjugation.

2.4.3 Fast Fourier Transform (FFT)

Note that the usual computation of the matrix—vector product X = DFTy - x requires
O(N?) multiplications and additions, which is too many for most applications. For
example, having a signal with one thousand samples (N = 10°) would require al-
ready a number of operations on the order of a million (N> = 10°). In many cases
one has to deal with much larger N > 10°, which makes a naive computation of a
DFT infeasible. The good news is that the DFT matrix is highly structured, which
can be exploited when computing a matrix—vector product. The main idea lies in a
factorization of the DFT matrix into a product of O(log N) sparse matrices, each of
which can be evaluated with O(N) operations. This leads to an efficient algorithm,
the so-called fast Fourier transform (FFT), which only requires O(Nlog N) multi-
plications and additions. The FFT algorithm was originally found by Gauss in about
1805 and then rediscovered by Cooley and Tukey in 1965.

The FFT algorithm is based on the observation that applying a DFT of even
size N = 2M can be expressed in terms of applying two DFTs of half the size
M. Let oy = exp(—27i/N) be the primitive root of unity used in DFTy so that
DFTy(n,k) = @ for n,k € [0: N — 1]. Similarly, we define @y = exp(—27i/M)
so that DFTy(n,k) = @} for n,k € [0: M — 1]. Obviously, py = p3. Let x € CV
be an input vector and X = DFTy - x as before. Then for the first M entries X (k),
k €[0: M —1] one has
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X(k) =Y x(n)oy' (2.119)

n=0
M—1 M—1

= Y xnof?+ ¥ x2n+ 1)y (2.120)
n=0 n=0
M—1 M—1

= Y x2noff +of ¥ x2n+1)off. (2.121)
n=0 n=0

In other words, the first M entries of X are obtained by first applying a DFT,; on
the even-indexed entries of x as well as a DFT); on the odd-indexed entries of x.
The final result is then obtained by adding up the two output vectors, where the
second one is adjusted by the factors a)}f,, which are also known as twiddle factors.
Similarly, for the last M entries X (M + k), k € [M — 1] one has

N—1
X(M+k) =Y x(nm)oy"™" (2.122)
n=0

M—1 M—1
Y sy 4 Y x2n+ Doy ) 2.123)

n=0 n=0
M—1 M—1
= Y xCn)oy; —of Y x2n+ 1)y, (2.124)
n=0 n=0
where we have used wﬁmnﬂ) = —1. This shows that the last M entries of X are

obtained by the same computation scheme as the first M ones, except for using the
twiddle factors —@f; instead of @Y. The following matrix factorization summarizes
this result:

x(0)
x(2)
x(0) 5
x(1) idy| A DFTy| 0 X(N=2)
iy : B (idZIAMM> ( 0 MIDFTM) | @12
X(N — 1) x(3)
x(N.— 1)

The matrix idy = diag(1,1,...,1) denotes the (M x M) identity matrix and Ay =
diag (1, @y, ..., 0¥ ") the (M x M) diagonal matrix containing the twiddle factors.
The rearrangement of the input vector into components with an even and compo-
nents with an odd index can be expressed by an additional permutation matrix. Al-
together, this leads to a factorization of the DFTy matrix into a product of sparse
matrices (having only few nonzero coefficients) and DFT,; matrices of half the size.
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Algorithm: FFT

Input: The length N = 2L with N being a power of two
The vector (x(0),...,x(N—1))T e C¥
Output: The vector (X(0),...,X(N—1))T =DFTy - (x(0),...,x(N—1))T

Procedure: Let (X(0),...,X(N —1)) =FFT(N,x(0),...,x(N — 1)) denote the general form

of the FFT algorithm.
If N =1 then
X(0) =x(0).

Otherwise compute recursively:
(A(0),...,A(N/2—1)) =FFT(N/2,x(0),x(2
(B(0),...,B(N/2—1)) =FFT(N/2,x(1),x(3
C(k) = o -B(k) fork€ [0: N/2—1],

X (k) =A(k)+C(k) forke [0: N/2—1],

X(N/2+k)=A(k)—C(k) forke [0:N/2—1].

\.,v
=
=
wn
)
=
=
|
_
=
=

Table 2.1 Recursive version of the FFT algorithm.

The FFT algorithm is again summarized by the compact recursive version shown in
Table 2.1.

What have we gained when evaluating the DFTy by means of this procedure?
Let 1(N) be the number of multiplications and additions’ needed to compute the
matrix—vector product DFTy - x. By (2.125), one needs to evaluate two DFT)y,,
which takes 2 (M) operations. Furthermore, at first sight, one seems to require
2M = N multiplications for the twiddle factors and 2M = N additions to sum up the
output vectors from the DFT}, step. A closer look shows that one can do even better.
First note that the first twiddle factor (k = 1) is co]{, = 1, thus causing no multiplica-
tion cost. Furthermore, multiplication with the other twiddle factors (k € [1: M — 1])
needs to be done only once, but can be used twice (see C(k) in Table 2.1, where it
is used once in X (k) = A(k) + C(k) and once in X(N/2+k) = A(k) — C(k)). As a
result, one requires only M — 1 multiplications for the twiddle factors (instead of
2M = N). Altogether, one obtains the estimate

1(N) <2u(N/2)+ 1.5N. (2.126)

Now, this procedure unfolds its full effect when applied recursively. To this end, one
assumes that N = 2L is a power of two. Obviously (1) = 0, since in the case N = 1
nothing has to be done. This leads to the following overall estimate:

7 In the following, subtractions are counted as additions.
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W(N) <2-u(N/2)+1.5N (2.127)

<4-u(N/4)+1.5N+1.5N (2.128)

<... (2.129)

§2L~[.L(l)+1.5N+1.5N+...+1.5N (2.130)
L=log,(N) times

= 1.5Nlog,(N). (2.131)

This equation can also be formally shown by a simple induction (see Exercise 2.26).
The savings obtained from the FFT algorithm are huge, in particular for large N. For
example, in the case N = 103, the FFT algorithm requires 2 - 10* operations instead
of 10% as needed for the naive approach, which is a reduction of operations by a
factor of 50. For N = 10°, this factor is already 3,000, and for N = 109, it reaches
25,000. In this case, if the FFT requires a second of computing time, the naive
approach would require 7 hours.

2.4.4 Interpretation of the DFT

Let us summarize the results obtained so far. We started with a CT-signal f € L?(R)
and derived a DT-signal x by T-sampling. Fixing a number N € N of samples, we
computed X = DFTy - x for x = (x(0),...x(N —1)) . What is the meaning of the
Fourier coefficients X = (X(0),...X (N —1)) " in relation to the original analog sig-
nal f? To answer this question, we need to combine the results induced by the DFT
approximation (2.106) and the Riemann approximation (2.104):

(kY 1k 1
X(k) ~ % <N> ~ ot <N : T) . (2.132)

In other words, to obtain the “correct” physical interpretation of the coefficient X (k)
one needs to know the window size N and the sampling rate 1/7'. First, X (k) needs
to be scaled by the factor 7. Second, the index k corresponds to the frequency @ =
k/(NT). In other words, the DFT computes the frequencies only on a linear grid of
frequencies with a resolution of 1/(NT') Hz.

However, the approximations in (2.132) need to be taken with care. The first ap-
proximation is only good if the samples of x(n) are close to zero outside the interval
[0 : N — 1]. Obviously, this is the case if the analog signal f is close to zero out-
side the interval [0, (N — 1)/T]. Furthermore, recall that the second approximation
is only good if f does not contain frequency components above the Nyquist fre-
quency 1/(2T) Hz. Also, the approximation becomes poor for large k correspond-
ing to high frequencies of the exponential functions. Assuming that f is real-valued,
one can easily check that f(@) = f(—w), (@) = #(—o), and X (k) = X(N — k)
(see (2.83) and Exercise 2.24). Therefore, the coefficients X (k) are redundant for
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Fig. 2.26 DFT approximation of the Fourier transform. (a) Analog chirp signal and its Fourier
transform. (b) Sampled signal using 7 = 1/32 and DFT coefficients using N = 64. (c) Interpolation
of sampled signal and of DFT coefficients.

=|5]+1,...,N—1, and one only needs to consider the coefficients X (k) for
k=0,1,...,[5].

As an example, let us consider the analog chirp signal shown in Figure 2.26a,
where we assume that the signal is zero outside the shown interval [0,2]. The
Fourier transform is shown for frequencies ® € [0, 15]. Next, we sample the chirp
signal using a sampling rate of F; = 32 Hz and obtain a finite-length signal x of
length N = 64. Applying a DFTy results in a complex-valued vector X = DFTy - x,
the magnitude values of which are shown in Figure 2.26b. By (2.132), we obtain
X (k)/32 ~ f(k/2). For example, the index k = 30 corresponds to the frequency
o = 15 (see Figure 2.26c). The resulting frequency resolution is 0.5 Hz.

2.5 Short-Time Fourier Transform (STFT)

The Fourier transform f of a signal f € L? (R) describes the frequency content of the
signal. Comparing the signal with a periodic exponential function ¢ — exp(2miwr)
results in a coefficient f(®) that exhibits the overall intensity of oscillations at @ Hz
occurring in the signal. However, because of the nonlocal nature of the analysis
function, the frequency information is always averaged over the entire time domain.
Sudden changes and local variations of the signal such as the beginning and the
end of events cannot be detected well by the Fourier transform. Local phenomena
of the signal become global phenomena in the Fourier transform. In contrast, small
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changes in the phase of the Fourier transform can have considerable effects in the
time domain.

To remedy the drawbacks of the Fourier transform, as we have already discussed
in Section 2.1.4, Dennis Gabor introduced in the year 1946 the modified Fourier
transform, now known as the short-time Fourier transform (STFT). This trans-
form is a compromise between a time- and a frequency-based representation, deter-
mining the sinusoidal frequency and phase content of local sections of a signal as it
changes over time. In this way, the STFT does not only tell which frequencies are
“contained” in the signal but also at which points of times or, to be more precise,
in which time intervals these frequencies appear. In the following, we start by in-
troducing the STFT for the case of analog signals. From the STFT one can derive a
spectrogram, which visually represents the time—frequency content of a signal. Fi-
nally, we introduce a discrete version of the STFT as it is typically used in practice.
This is the version of the STFT we have already encountered in Section 2.1.4.

2.5.1 Definition of the STFT

For a given signal, we want to find a transform that exhibits the frequency content
of f in a neighborhood of each point in time 7. The basic idea is to consider only a
small section of the signal around a point ¢, where the influence of a point within the
section decreases with increasing distance from 7. Mathematically, this weighting is
modeled by multiplying the signal with a window function, which can be thought of
as a weighting (often bell-shaped) function that localizes around ¢. Instead of using
a different window function for each point ¢, one uses a single window function
that localizes around the point ¢+ = 0. This function is then shifted across time. If
f € L*(R) is a signal and g : R — R is such a window function, then the function
fg.u localized at point 7 is defined by

Jor(u) = f(u)g(u—1). (2.133)

Figure 2.27 shows a chirp signal f as well as the resulting localized signals fg;
when using a bell-like window function g centered at zero for the shift parameters
t=0.5,t =1, and r = 1.5, respectively.

In view of a general mathematical formulation, one often admits complex-valued
window functions g : R — C and requires g € L?(IR) as well as | g||2 # 0. Extending
(2.133), the function f, is defined by

Jor(u) == f(u)g(u—t). (2.134)

Note that the complex conjugate does not play any role in case of a real-valued win-
dow g, which will always be the case in this book. Also, note that from a technical
point of view, g does not need to have a particular shape.

Given a signal f € L*>(R) as well as a window function g € L*(R), the
(continuous-time) short-time Fourier transform (STFT) is a function fg :RxR—
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Fig. 2.27 Chirp signal and windowed versions along with their magnitude Fourier transforms.
(a) Original signal. (b) Window centered at t = 0.5. (¢) Window centered at t = 1.0. (d) Window
centered at r = 1.5.

C defined by

Folt, @) = for(0) = / F(u)@(u— 1) exp(—2riou)du. (2.135)

uceR

In other words, f;,(t, -) coincides with the Fourier transform of the localized signal
S, for a fixed time instance € R.

As an illustration, let us continue with the example of Figure 2.27, which shows
the chirp signal f(r) = sin(20 - 7t?) for t € [0,2]. As we mentioned after (2.105),
the instantaneous frequency at time ¢ is @ = 20¢. Therefore, when considering the
localized signal f,; one may expect frequencies around @ = 20t Hz. Indeed, the
Fourier transform fg; reveals a peak at 10 Hz for + = 0.5 (Figure 2.27b), a peak at
20 Hz for t = 1 (Figure 2.27c), and a peak at 30 Hz for t = 1.5 (Figure 2.27d).

2.5.1.1 Alternative Definition of the STFT

When considering the short-time Fourier transform, one can assume a different
viewpoint, which leads to a sightly different definition. In the above definition,
we first windowed the original signal f with the time-shifted window g; to obtain
the localized signal f,,, which was then compared against the exponential func-
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tions exp,,. A different viewpoint is to construct localized elementary functions
8.0 : R — C by defining

8ro(u) :=exp(2mio(u—t))g(u—1), (2.136)

u € R. In other words, g is obtained by first modulating the window g by @ Hz,
which is a frequency shift in the Fourier domain (see (2.100)). The resulting mod-
ulated window is then shifted in time by ¢ sec (see (2.97)). Intuitively, g; , may be
thought of as a “musical note” of frequency  that is active in a neighborhood of
t. The parameters ¢ and @ allow for shifting the musical note in the time—frequency
plane (see Figure 2.28).

It is not hard to see that ||g, o[ = ||g| for a window function g € L*(R) (see
Exercise 2.22). Therefore, as opposed to the exponential functions exp,,, which do
not have finite energy, one has g; o € L?(R). Therefore, we can define a function
ﬁ’:RxR—Mbesetting

F5(t,0) = (flgr0) = / _ SR —exp(-2mio(—1)du.  (213)

The inner product (f|g; ») measures the similarity between the signal f and the mu-
sical note g; . If f and g; ¢ oscillate with the same frequency within the window,
the inner product (f|g; o) has a large absolute value. Vice versa, if f has no fre-
quency components around @, the inner product is close to zero and f and g; o are
more or less orthogonal. The signal

u— (flg10)80(u) (2.138)

can be considered as the “projection” of the signal f in the direction of the musical
note g; o (see Figure 2.15).

The original STFT f;, defined by (2.135) and the version fé defined by (2.137)
coincide up to some time-dependent modulation factor:

fo(t,0) = f2(t, ) exp(2mioon). (2.139)

In the first version only the window is shifted, whereas in the second version also the
exponential function is shifted along with the window. Often f; is used for the ana-
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log case, whereas fg corresponds to what is used for the discrete Fourier transform
(see for example (2.26)). We will come back to this issues in Section 2.5.3.

2.5.1.2 Role of the Window Function

We now discuss the role of the window function g, which plays an important role
from a signal processing point of view. Typically, a window function is chosen to
be zero-valued outside of some chosen section, so that when a signal is multiplied
by the window function, the product is also zero-valued outside the section. The
finite-length signal that is left can be regarded as a “view through the window.” The
definition (2.135) shows that the STFT depends on both the signal as well as the
window function, although one is typically interested only in the signal’s properties.
The design of suitable window functions and their influence is a science by itself,
which is outside the scope of this book. In the following, we discuss some examples
that illustrate how the window may affect the spectral estimate computed by the
STFT.

The seemingly simplest way to obtain a local view on the signal f is to leave it
unaltered within the desired section and to set all values to zero outside the section.
Such a localization is realized by a rectangular window as defined in (2.95) and
again shown in Figure 2.29a. However, using the rectangular window has major
drawbacks, since it generally leads to discontinuities at the section’s boundaries in
the localized signal f,,. As we have discussed before, such abrupt changes lead to
artifacts due to interferences which are spread over the entire frequency spectrum.
Rather than being part of the original signal f, these frequency components come
from the properties of the rectangular window (see Figure 2.29a). Recall that the
Fourier transform of the rectangular window is the sinc function defined in (2.96),
which shows slowly decaying ripples across the entire spectrum. These ripples also
become visible in the STFT of a chirp signal as demonstrated by Figure 2.30a.
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Fig. 2.30 Windowed chirp signal and its magnitude Fourier transform using different window
functions. (a) Rectangular window. (b) Triangular window. (¢) Hann window.

To attenuate the boundary effects, one often uses windows that are nonnegative
within the desired section and continuously fall to zero towards the section’s bound-
aries. One such example is the triangular window (Figure 2.29b), which leads to
much smaller ripple artifacts (Figure 2.30b). A window often used in signal process-
ing is the Hann window (also known as the Hanning window) named after Julius
von Hann. The Hann window g is a raised cosine window defined by

o) = { (I4+cos(mu))/2 if —0.5<u<0.5 (2.140)

0 otherwise

(see Figure 2.29¢). Dropping smoothly to zero at the section boundaries, the above-
mentioned artifacts in the Fourier transform of the windowed signal are softened.
This is also illustrated by Figure 2.30c. However, on the downside, the Hann win-
dow introduces some smearing of frequencies. As a result, the Fourier transform of
a signal’s windowed section may look smoother than the signal’s properties sug-
gest. In other words, the reduction of ripple artifacts introduced by the window is
achieved at the expense of a poorer spectral localization. Similarly, as we will see in
the next section, the size of the window crucially affects the STFT.

2.5.2 Spectrogram Representation

The STFT of a signal f yields for each point in time 7 and frequency ® a complex
number f,(f, ®). This information is often visualized by means of a spectrogram,
which is a two-dimensional representation of the squared magnitude:
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Spec(t, ) = | f (1, 0)[> = | F2(t, @) . (2.141)

For the definition of the spectrogram, the version of the STFT in (2.139) does not
matter, since the modulation factor has a magnitude of one. When generating an
image of a spectrogram, the horizontal axis represents time, the vertical axis is
frequency, and the dimension indicating the spectrogram value of a particular fre-
quency at a particular time is represented by the intensity or color in the image.
There are many variations in visualizing a spectrogram. Sometimes the vertical and
horizontal axes are switched, so time runs up and down. Sometimes the amplitude is
represented as the height of a 3D surface instead of color or intensity. To emphasize
musical or tonal relationships, the frequency axis is often plotted in a logarithmic
fashion, which yields a log-frequency representation as we will encounter in the
subsequent chapters. A logarithmic frequency axis also accounts for the fact that
human perception of pitch is logarithmic in nature (see Section 1.3.2). Finally, in
the case of audio signals, the amplitude values are also often visualized using a log-
arithmic scale, for example, by using a decibel scale. In this way, small intensity
values of perceptual relevance become visible in the image. In the following, if not
specified otherwise, we use in our visualizations a linear frequency axis and a log-
arithmic scale to represent amplitudes. The specific scale is not of importance, but
only serves the purpose of enhancing the qualitative properties of the visualization.

In our first example, we again consider a chirp signal f defined by f(z) =
sin(4007¢%) for ¢ € [0,1], which is smoothly faded out towards ¢ = 1 (see
Figure 2.31a). For this chirp, the instantaneous frequency linearly raises from @ =
OHzatr =0to @ =400 Hz at t = 1. For computing the STFT, we use a Hann win-
dow having a size of 62.5 ms. The resulting spectrogram is shown in Figure 2.31b.
The logarithmic amplitude values are encoded by different gray levels, which are
lighter for small values and darker for large values. Note that each column of the
spectrogram corresponds to a plot of a Fourier transform as, for example, shown in
Figure 2.30c.

The image of the spectrogram shows a strong diagonal stripe starting at the time—
frequency point (¢, ®) = (0,0) and ending at (7, ®) = (1,400), which reveals the
linear frequency increase of the chirp signal. This diagonal stripe has a substantial
width (roughly 40 Hz), which can be explained as follows: First, recall that at a
given point ¢ the STFT exhibits the frequency content of an entire neighborhood
(a windowed section of the signal) around #, and the STFT averages the frequency
information across this section. Second, as discussed in Section 2.5.1, the window
introduces some additional smearing of frequencies in the Fourier domain. The ar-
tifacts introduced by the window function also explain the weaker diagonal stripes
that run below and above the strong diagonal stripe. These weaker stripes corre-
spond to the ripples occurring in the Fourier transform of the window function. As
opposed to Figure 2.30c, where no such ripples can be seen for the Hann window,
the ripples become visible in the visualization of the spectrogram only because we
have used a logarithmic magnitude scale. We have already seen in Figure 2.30a that
the ripple artifacts become much stronger when using a rectangular window instead
of a Hann window. This phenomenon is illustrated by Figure 2.31c, which shows
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Fig. 2.31 Spectrogram of a chirp signal using two different window types. (a) Signal. (b) Spec-
trogram with Hann window of size 62.5 ms. (¢) Spectrogram with rectangular window of size
62.5 ms.

a corresponding spectrogram. This visualization demonstrates the importance of
choosing a suitable window function. In general, it is not easy to distinguish the
characteristics of the signal and the effects introduced by the window function.
With the next example, we discuss the role of the size of the window function g.
To this end, we consider the signal f shown in Figure 2.32a, which is defined by

£(t) = sin(8007¢) + sin(9007t) + 8 (t — 0.45) + 8(t — 0.5) (2.142)

for ¢ € [0, 1]. In this interval, f is a superposition of two sinusoids of frequency 400
and 450 Hz, respectively. Furthermore, two impulses are added at the points # = 0.45
and = 0.5 sec. Again we assume that f is zero outside the shown interval [0, 1].
This signal is interesting since it contains two components that are close in time (the
two impulses that are 50 ms apart) and two components that are close in frequency
(the two sinusoids that are 50 Hz apart). Figure 2.32b shows the spectrogram when
using a Hann window of size 32 ms. The image contains a horizontal stripe in the
region between 375 and 475 Hz, which corresponds to the sinusoids, as well as two
vertical stripes at t = 0.45 and r = 0.5 sec, which correspond to the impulses. As
illustrated by Figure 2.20b, each of the impulses results in many nonzero Fourier
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Fig. 2.32 Spectrogram using different window sizes. (a) Signal. (b) Spectrogram with short Hann
window (32 ms). (¢) Spectrogram with long Hann window (128 ms).

coefficients spread across the entire spectrum, which explains the vertical stripes.
Since the window size of 32 ms implies that in each window there is at most one
of the impulses, the two impulses can be clearly separated by the STFT. However,
the STFT is not able to separate the two frequency components at @ = 400 Hz and
® = 450 Hz. The reason is that the chosen window introduces frequency smearing.
The scaling property of the Fourier transform (Exercise 2.20) says that reducing the
size by temporally compressing the window leads to a broadening of its Fourier
transform. This, in turn, implies that the frequency smearing becomes more severe.
Therefore, to separate the two frequency components, one strategy is to increase
the window size, thus reducing the frequency smearing. Indeed, using a Hann win-
dow of size 128 ms results in a clear separation as shown by the two horizontal
stripes (see Figure 2.32¢). However, increasing the window size goes along with an
increased smearing in the time domain. As a result, the two impulses are not sep-
arated any longer. As a side remark, we want to point to the two vertical stripes
showing up at =0 and # = 1. An explanation is to be given in Exercise 2.27.

In summary, using a large window size results in a good localization in frequency,
but a poor localization in time, whereas using a small window size has the opposite
effect. Increasing the window size leads to an STFT which averages the frequencies
of the signal over a greater time interval, resulting in a loss of time information. In
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the limit case of an “infinite window size” one ends up with the usual Fourier trans-
form, which averages the frequencies over the entire time domain R. Vice versa,
successively decreasing the window size results in a Dirac sequence, where, in the
limit case of g being an impulse, the STFT gives back the original signal: perfect
time localization, no frequency localization.

The time localization property of the STFT depends on the temporal spread of
the window function g, whereas the frequency localization property of the STFT
depends on the spectral spread of the Fourier transform ¢. We want to mention
that one cannot have both properties at the same time. A variant of the Heisenberg
uncertainty principle says that there is no window function that simultaneously
localizes in time and frequency with arbitrary precision.

2.5.3 Discrete Version of the STFT

So far, we have discussed the STFT and spectrogram in the case of analog signals.
In practice, one uses sampled signals and computes the STFT only on a finite time—
frequency grid. Because of efficiency issues, one typically employs DFTs which
can be computed by means of the FFT algorithm. As before, let x be a DT-signal
obtained from a CT-signal f by T-sampling. Furthermore, let w be a sampled version
of an analog window function g. In the discrete case, the window can be shifted only
in a sample-wise fashion. Because of efficiency issues, one often shifts the window
in even larger steps, which are specified by some hop size parameter H € N (given in
samples). Following the alternative definition (2.137) in the analog case, we define
the (discrete-time) STFT x* of the DT-signal x with respect to the window function
w by

X (m, ®) := Z x(n)w(n—mH)exp(—2miw(n—mH)) (2.143)
nez

= Y x(n+mH)w(n) exp(—2mion) (2.144)
nez

form € Z and o € [0,1). Now, if the sampled window function w is a finite signal,
the sum in (2.144) becomes finite, and we can apply the DFT to compute the discrete
STFT for certain frequencies.

In the analog case, we assumed that the window function g was centered at time
zero. To simplify the formulas in the discrete case, we assume that the support of
the window function is contained only in the positive part of the time axis centered
at half the window length (i.e., the window is shifted by half a window length to the
right compared with the zero-centered case). The zero-centered case can be easily
restored by also shifting the original signal by half a window length.

Having said this, we assume that the nonzero samples of the discrete window
w are w(n) for n € [0 : N — 1]. For each frame index m € Z, we define the vector
Xm = (Xm(0),...,.x,(N—1))" € CN with
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Xm(n) = x(n+mH)w(n) (2.145)

for n € [0: N — 1] and compute the vector X, = (X,,(0),...X,,(N —1))" € CN via
a DFT of size N:
X, = DFTy - x,- (2.146)

Then one obtains

N—-1
x"(m,k/N) = Z(’) x(n+mH)w(n)exp(—2mikn/N)
_ Nf xon(n) exp(—27ikn /N) (2.147)
n=0
= Xm(k)

for k € [0 : N — 1]. Thus, we have shown that, for each time frame m € Z, one can
compute the discrete STFT at frequencies @ = k/N for k € [0 : N — 1] by means of
a DFTy. In the case that N is a power of two, this can be done efficiently using the
FFT.

2.5.3.1 Summary

Altogether, we have reached exactly the version of the discrete STFT already in-
troduced in Section 2.1.4. Let us again summarize the main results. Let x be a DT-
signal obtained by T-sampling. Furthermore, let w be a discrete window of finite
length N with coefficients w(n) forn € [0 : N — 1]. Then

N-1
X(m,k) =x"(m,k/N) = Z x(n+mH)w(n)exp(—2mikn/N)  (2.148)
n=0

is the discrete STFT or simply the STFT of x (see also (2.26)). Each spectral vector
for some time frame m € Z can be computed by using a DFTy, which can be eval-
uvated efficiently by using an FFT if N is a power of two. The coefficients X (m, k)
have a similar interpretation as discussed in Section 2.4.4. First recall that the up-
per half of the frequency coefficients are redundant if x and w are real-valued. In
this case, one only considers the coefficients k € [0 : N/2]. By (2.132), the index &
corresponds to the frequency

k-F,

Fcoef(k) = N

(2.149)

(see also (2.28)). In particular, the index k = N /2 corresponds to the Nyquist fre-
quency ® = 1/(2T).

Next, we discuss how the index m is to be interpreted. The interpretation is not
straightforward since m refers to an entire windowed section of the signal rather than
a specific point in time. In signal processing, such a windowed section is also called
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Fig. 2.33 Spectrogram representation of Discrete STFT. Shown are the original indices (left) and
their physical interpretation (right). (a) Signal using 1/7 = 1000 Hz. (b) Spectrogram using N = 32
and H = 16. (c¢) Spectrogram using N = 256 and H = 128.

a frame and m is called the frame index. The physical duration of a frame is NT
seconds. There are no strict conventions for associating a physical time position to a
frame. When assuming that the window is centered at zero, as we did in the case of
the continuous-time version of the STFT, one should take the center of the frame as
a physical reference point. When assuming that the window starts at time position
zero centered at half the window length, one may take the start of the frame as a
physical reference point. As said before, the second convention can be transferred
into the first one by shifting the original signal by half a window length. In the
following, we want to adapt the second convention such that the frame index m is
associated to the physical time position
m-H

Tcoef(m) = F (2.150)

(see also (2.27)). Using this convention, the index m = 0 is associated with ¢ = 0.

2.5.3.2 Examples

In Figure 2.9 we have already seen an example of how to interpret the frame and
frequency indices in terms of physical units such as seconds and Hertz. Let us
consider a second example to illustrate the effect of different parameter settings.
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Figure 2.33a shows a DT-signal based on a sampling rate of F; = 1/T = 1000 Hz.
To compute the spectrogram of Figure 2.33b, a window length of N = 32 and a
hop size of H = 16 were used. This yields a frame size of NT = 32 ms and the
frame index m corresponds to time Tooer(m) = mTH = m - 16 ms, which is also
the time resolution of the STFT. In particular, frame index m = 62 corresponds to
Teoet(m) = 0.992 = 1 sec. Furthermore, the frequency index k corresponds to fre-
quency Feoer(k) =k/(NT) = k-31.25 Hz. In particular k = 16 yields the Nyquist fre-
quency Feoer(16) = 500 Hz. A second parameter setting using N =256 and H = 128
is shown in Figure 2.33c.

2.6 Further Notes

In this chapter, we have studied fundamental techniques for analyzing signals by
means of elementary sinusoidal functions, which possess an explicit physical mean-
ing in terms of frequency. We have considered various types of signals including
analog or CT-signals as well as DT-signals or more general digital signals, which
were obtained by sampling and quantization. Generally speaking, the CT-domain
gives the “right” interpretation of physical phenomena, whereas the DT-domain is
used to do the actual computations. Being the most important tool for processing
audio signals, we have introduced different variants of the Fourier transform for
the CT- as well as for the DT-domain. The Fourier transform converts a time-
dependent signal into frequency-dependent coefficients, each of which indicates the
strength of the respective elementary exponential function. The process of decom-
posing a signal into frequency components is also called Fourier analysis. In con-
trast, we have seen that the Fourier representation rebuilds a signal from the ele-
mentary functions, a process also called Fourier synthesis. The Fourier transform
and the Fourier representation are closely related, leading to very similar formulas
(see Table 2.2 for an overview). Many of these formulas can be expressed by in-
ner products, which makes it also possible to use the same geometric language one
knows from finite-dimensional Euclidean spaces.

We now give some references and pointers to literature for further reading. This
chapter is a vastly expanded version of a summary on the Fourier transform given in
[12, Section 2.2]. The basic definitions and main properties of the Fourier trans-
form are covered in most introductory books on signal processing. As example
references, we want to mention the classical textbook on Signals and Systems by
Oppenheim et al. [13] or the book on Digital Signal Processsing by Proakis and
Manolakis [14]. Most signal processing software contains implementations of the
Fourier transform. For example, all figures shown in this chapter have been gen-
erated using MATLAB [11]. An entertaining and nontechnical introduction to the
main ideas of time—frequency analysis can be found in the book The World Accord-
ing to Wavelets by Hubbard [9]. Also Wikipedia contains many interesting articles,
which have served as a source of inspiration for this chapter.
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Signal space || L*(R) L2([0,1)) (z)
Inner product || (flg) = [ f(0)g()dr | (flg)= [ f()g)dr | (xly)= ¥ x(n)y(n)
teR t€[0,1) nez
Norm £l =/ {f1F) £l =/ {f1F) [[xll2 = v/ {xlx)
N L2(R) = £2([0.1)) = A(2) =
Definition
{1 R=Cl|fla <o} | {f:0,1) =2 Cl|fl2 <eo} | {f:Z—=C||x]2 <o}
Elementary || g _, ¢ [0,1)—C Z—C
glenqcliieélncy t — exp(2miot) t > exp(2mike) n— exp(2mwion)
Frequency weR kez wel01)
parameter
Fourier fin)= flt)= x(n) =
representation || [ ¢4 exp(27iot)dw Y. crexp(2mike) | coexp2mion)do
weR kEZL 0el0.1)
fiR=C fiz—cC £:[0,1)=C
Fourier f(a)) - f(k) =c = H0)=co=
transform
| f(t)exp(—2micot)dt | f(t)exp(—2mikt)dt Y x(n)exp(—2mion)
teR t€0,1) nez

Table 2.2 Overview of the signal spaces L>(R), L?([0,1)), and £?(Z) and their respective Fourier
representation and Fourier transform.

In this chapter, we have used clear mathematical modeling which is necessary
when one wants to understand the relation between the CT- and DT-domain. Ad-
ditional mathematical structures such as the inner products or the complex formu-
lation of the Fourier transform lead to compact and intuitive formulas. A geomet-
ric approach to signal processing can be found in the two recent books by Vetterli
et al. [16, 17], which build on each other. Although we have used the notion of
Lebesgue spaces, we have not introduced them with rigor. In particular in the case
of CT-signals, the definition of Lebesgue spaces becomes a bit tricky, since one
needs the notion of measurability of the functions in order for the integrals to be de-
fined. For a mathematically rigorous treatment of measure and Lebesgue theory, we
refer to the book Real Analysis by Folland [5]. As we have already indicated before,
the spaces L?(R) and L?([0,1)) are actually quotient spaces where two functions f
and g are considered to coincide if || f — g|j» = 0, i.e., if they differ only up to a null
set. The equality in the Fourier representation and in the Fourier transform is just an
equality in the L2-sense, which is a weaker notion than pointwise equality. Under
additional assumptions on f one also obtains pointwise equality. For example, if f
is a continuously differentiable periodic CT-signal, the Fourier series converges uni-
formly to f on the interval [0, 1) and one obtains pointwise equality. We have also
mentioned before that the integral in the definition (2.92) of the Fourier transform
of asignal f € L?(R) does not exist in general. Instead, one needs to define the inte-
gral by some limit process (2.93). The existence of the limit is based on the so-called
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Hahn—Banach theorem [5]. One main problem in the CT case is that the exponen-
tial functions exp,, : R — C are not contained in L?(R). Therefore, the integral in
(2.92) cannot be written as an inner product as is possible for the Fourier coeffi-
cients (2.80). Finally, note that we have not given any proofs for the existence and
correctness of the considered Fourier transforms and Fourier representations. These
proofs are outside the scope of this book and can be found in Folland [5]. In particu-
lar, in the case of periodic signals and DT-signals, the completeness property (2.52)
is more difficult to prove and requires some quite technical machinery.

In this chapter, we have only scratched the topics of sampling and aliasing, which
are of crucial importance for digital signal processing. In general, there are many
ways to approximate a CT-signal and to describe it by a finite number of discrete
parameters. For example, the discrete set of parameters could be the Fourier coef-
ficients (for periodic signals), the coefficients of polynomials (when representing
a function by its Taylor series), or the values of a CT-signal at a finite number of
points in time. In all cases there are certain requirements on the original CT-signal,
e.g., periodicity or differentiability, to guarantee certain bounds on the approxima-
tion error. In the case of sampling, these requirements concern the frequency content
of the original signal. The famous sampling theorem says that an Q2-bandlimited
signal f € L*(R) (i.e., where the Fourier transform f vanishes for |®| > Q for a
real number £ > 0) can be reconstructed perfectly from the 7-sampling of f with
T:=1/(29) (see [13, 14]). In Exercise 2.28, we cover this important result in more
detail. The sampling theorem is often associated with the names Harry Nyquist and
Claude Shannon. It is interesting to note that the theorem was also discovered inde-
pendently by Edmund Taylor Whittaker, Vladimir Kotelnikov, and others (see [1, 8]
for an overview and historical notes).

There also exists a vast literature on the discrete Fourier transform (DFT) and
its companion algorithm, the fast Fourier transform (FFT). In the original article by
Cooley and Tukey [3], the authors describe an algorithm that works in case that the
length N of the DFT is a power of two. By applying several tricky modifications of
the FFT, this result can be extended to an algorithm for evaluating a DFT of arbitrary
length N € N with time complexity of O(NlogN). A detailed description of this
result can be found in the book Fast Fourier Transforms by Clausen and Baum [2],
which treats this topic from an algebraic point of view. In particular, Section 2.4.3
closely follows [2, Section 1.3].

The short-time Fourier transform (STFT), which is also often referred to as the
windowed Fourier transform, was pioneered in the year 1946 by Dennis Gabor
for use in communication theory [6]. We have seen that the STFT is a compromise
between a time- and a frequency-based representation of the signal. For a detailed
discussion of the role of the window function used in the STFT calculation, we refer
to [7]. One main drawback of the STFT is that the window function g implies a kind
of rigid time—frequency resolution. As a result, properties of a signal that are much
shorter than the window size are “synthesized” in the frequency domain, whereas
properties of the signal that are much longer than the window size are “synthesized”
in the time domain. In both cases many of the “notes” gy, are needed to repre-
sent the phenomena of the signal. To remedy this problem, numerous alternatives
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have been suggested, including time—frequency representations based on wavelets.
For further reading and links on this topic, we refer to [4, 10, 15, 17]. Parts of
Section 2.5 including the notation and the association of g4, to “musical notes”
were inspired by [10, Chapter 2]. Finally, we want to mention that so far we have
mainly looked at the magnitude of the Fourier coefficients. In the later chapters, we
will also have a closer look at the phase information, which can be used to refine the
frequency estimation. Furthermore, the phase becomes important when reconstruct-
ing a signal from a modified STFT.
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Exercises

Exercise 2.1. Let (f|g) := [,cp f(7) - g(r)dr be the similarity measure for two functions f: R — R
and g : R — R as defined in (2.3). Consider the following six functions f, : R — R forn € [1: 6],
which are defined to be zero outside the shown interval:

R I SIS )

— L

5 o
AR | e
-1 -05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 1
1'—|_ 1 _I— 1
Jfa o | Js o | Jo o
- L

-1 -05 0 05 1

-1

-1 -05 0 05 1

-1 -05 0 05 1

Determine the similarity values (f;|f;») for all pairs (n,m) € [1 : 6] x [1: 6].

Exercise 2.2. Sketch the magnitude Fourier transform of the following signals assuming that the
signals are zero outside the shown intervals (see Figure 2.6 for similar examples):

.
(a)
1F | -
0.5 &l
(b) 0
0.5 I
-1 L L L L L 3
o] 2 4 6 8 10 12
0.5 1
(c) of
0.5
-1k L L 1 L L
0 2 4 8 10 12

6
Time (seconds)

Exercise 2.3. Based on (2.27) and (2.28), compute the time resolution (in ms) and frequency res-
olution (in Hz) of a discrete STFT based on the following parameter settings:

(a) F;,=22050,N=1024,H =512

(b) Fy =48000, N = 1024, H =256

(¢) Fy=4000, N =4096, H=1024

What are the respective Nyquist frequencies?

Exercise 2.4. Let F; = 44100, N = 2048, and H = 1024 be the parameter settings of a dis-
crete STFT X as defined in (2.26). What is the physical meaning of the Fourier coefficients

X(1000,1000), X(17,0), and X' (56,1024), respectively? Why is the coefficient X'(56,1024)
problematic?
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Exercise 2.5. Sketch the magnitude Fourier transform (as in Figure 2.9) for each of the three sig-
nals shown in Exercise 2.2. Assume a window length that corresponds to a physical duration of
about one second.

Exercise 2.6. The naive approach for computing a DFT requires about N> operations, while the
FFT requires about Nlog, N operations. Compute the factor for the savings when using the FFT
for various N. In particular, consider N = 2" for n = 5,10, 15,20, 25, 30.

Exercise 2.7. Let fj and f> be two periodic analog signals with integer periods A; € Nand A, € N,
respectively. Show that g = f1 + f» is periodic with periods that are integer multiples of A; as
well as A,. In general, g may have additional periods not necessarily being integer multiples of 1;
and A,. As an example, specify two signals f; and f, with prime period A; = A, = 2 such that
g = f1+ /2 is periodic with prime period A = 1.

Exercise 2.8. In this exercise, we show that there are periodic functions that do not have a prime
period (i.e., that do not have a least positive constant being a period). The easiest example of such
a function is a constant function. Show that the function f : R — R defined by

_J1, forteqQ,
f(t)'i{o, forr e R\Q

is also periodic without having a prime period.
[Hint: In this exercise, we assume that the reader is familiar with the properties of rational numbers
(Q) and irrational numbers (R \ Q).]

Exercise 2.9. Sketch the graph of the quantization function Q : R — R defined by

la|

0(@):=sen(a)-a- |9+ 1|

for a € R and some fixed quantization step size A > 0 (see (2.33)). Furthermore, sketch the graph
of the absolute quantization error.

Exercise 2.10. In mathematics, the term “operator” is used to denote a mapping from one vector
space to another. Let V and W be two vector spaces over R. An operator M : V — W is called
linear if M[a;v| + axvz] = aiM[vi] + aaM|[v,] for any vi,v, € V and a;,a, € R. Show that V :=
{f|f: R— R} and W := {x| x: Z — R} are vector spaces. Fixing a sampling period T > 0,
consider the operator M that maps a CT-signal f € V to the DT-signal M[f] := x € W obtained by
T-sampling as defined in (2.32). Show that this defines a linear operator.

Exercise 2.11. Show that the quantization operator Q : R — R as defined in Exercise 2.9 and (2.33)
is not a linear operator.

Exercise 2.12. In this exercise we discuss various computation rules for complex numbers and
their conjugates. The complex multiplication is defined by ¢ - ¢» = ajaa — b1ba +i(aiby + axby)
for two complex numbers ¢; = aj +iby,cp = ay + iby € C (see (2.34)). Furthermore, complex
conjugation is defined by ¢ = a — ib for a complex number ¢ = a+ib € C (see (2.35)). Finally, the
absolute value of a complex number c is defined by |c| = v/a® + b2. Prove the following identities:

(@) Re(c) =(c+7c)/2
() Im(c) = (c—72)/(2i)
() cito=cr+e
d) cirea=cr-c2

(€) cc=a’>+b*=|c]?

) 1/c=c/(cc)=c/(a®+b*) =7/(|c]")
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Exercise 2.13. We have seen in Section 2.2.3.2 that the set C% = {x|x: Z — C} of complex-valued
DT-signals defines a vector space. Show that the subset ZZ(Z) C CZ of DT-signals of finite energy
is a linear subspace. To this end, you need to show that x +y € ¢>(Z) and ax € ¢*(Z) for any
x,y € *(Z) and a € C.

Exercise 2.14. In Section 2.3.1, we defined the set {1,sing, cos; | k € N} € L% ([0,1)). Prove that
this set is an orthonormal set in L ([0, 1)), i.e., that it satisfies (2.50) and (2.51).
[Hint: Use the following trigonometric identities:

(a) cos(a)?+sin(a)? =1

(b) cos(a)cos(B) = (cos(a+ ) +cos(a—PB))/2
(c) sin(a)sin(B) = (cos(a—P) —cos(a+B))/2
(d) sin(a)cos(f) = (sin(et+ ) +sin(a—f))/2

To show (2.51), use (a) and the fact that cos% and sin% have the same area over a full period. The
proof of (2.50) is a bit cumbersome, but not difficult when using (b), (c), and (d).]

Exercise 2.15. Let exp(iy) := cos(y) +isin(y), ¥ € R, be the complex exponential function as
defined in (2.67). Prove the following properties (see (2.68) to (2.71)):

(@) exp(iy) = exp(i(y+27))
(b) [exp(iy)| =1
(¢) exp(iy) = exp(—iy)
(@) exp(i(7i + 7)) = exp(inn) exp(ina)

d :
© —e’;}’;’” = iexp(i7)
[Hint: To prove (d), you need the trigonometric identities cos(ct + f) = cos(at)cos(f) —
sin(a) sin(fB) and sin(a + ) = cos(a)sin(B) + sin(a) cos(B). In (e), note that the real (imagi-
nary) part of a derivative of a complex-valued function is obtained by computing the derivative of
the real (imaginary) part of the function.]

Exercise 2.16. In (2.77), we defined for each k € Z the complex-valued exponential function exp, :
[0,1) — C by expy(t) := cos(2mkt) + isin(2mwkt), t € R. As in Exercise 2.14, show that the set
{expy | k € Z} C L*([0,1)) is an orthonormal set, i.e., |lexp;||> = 1 for k € Z (see (2.51)) and
(expylexp,) = 0 for k # £, k,£ € Z (see (2.50)).

[Hint: Use the properties of the exponential function introduced in Exercise 2.15. Furthermore,
note that the real (imaginary) part of an integral of a complex-valued function is obtained by
integrating the real (imaginary) part of the function.]

Exercise 2.17. Let atan2 be the function as defined in (2.76). For a complex number ¢ =a+ib € C,
we set atan2(c) := atan2(b, a). Show that atan2(A - ¢) = atan2(c) for any positive constant A € R~.

Furthermore, show that atan2(c) = —atan2(c).
[Hint: Use the fact that the arctan function is an odd function, i.e., arctan(—v) = —arctan(v) for
veR]

Exercise 2.18. In this exercise, we consider the geometric series for compex numbers, which is
needed in (2.112). Prove that Y"1 a" = (1 —a")/(1 — a) for any complex number a # 1.
[Hint: For the proof, use mathematical induction on N.]

Exercise 2.19. We have seen that two sinusoids of similar frequency may add up (constructive
interference) or cancel out (destructive interference); see Figure 2.19. Let fi(¢) = sin(27w;7) and
Sfo(t) = sin(2mwnt) be two such sinusoids with distinct but nearby frequencies @; ~ @;. In the
following figure, for example, @; = 1 and @, = 1.1 is used.
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The figure also shows that the superposition fi + f> of these two sinusoids results in a function
that looks like a single sine wave with a slowly varying amplitude, a phenomenon also known as
beating. Determine the rate (reciprocal of the period) of the beating in dependency on @; and ;.
Compare this result with the plot of f; + f> in the figure.

[Hint: Use the trigonometric identity sin(a) + sin() = 2cos <a—;ﬁ> sin (#) fora,f €R.]

Exercise 2.20. Let f € L>(R) be a signal of unit energy || f||> = 1. Show that the scaled signal g
defined by g(r) := s'/2f(s-1) also has unit energy for a positive real scaling factor s > 0. Further-
more show that g(@) = s~'/?f(w/s) for @ € R. Discuss this result. Describe how one can obtain
a Dirac sequence by changing the parameter s (see Section 2.3.3.2).

Exercise 2.21. Show that the Fourier transform of the rectangular function in (2.95) is the sinc
function in (2.96). Also prove that the sinc function is continuous at r = 0.

[Hint: Use the fact that the derivative of ¢ — exp(—2mimt) is given by 7 — —2mwiwexp(—2wiot);
see Exercise 2.15. From this, one can derive the indefinite integral of the exponential function. To
prove the continuity at r = 0, look at the first terms of the Taylor series of the sine function.]

Exercise 2.22. For a signal f € L*(R), consider the translation f;, defined by f;, (1) := f(t —to)
for 7 € R (see (2.97)) and the modulation f defined by f® (¢) := exp(2miayt) f(t) fort € R (see
(2.98)). Show that || f|| = || fi, | = [|/“*|. Furthermore, prove the properties (2.99) and (2.100):

Jo(®) =exp(—2mion)f(®)  and  fN ()= f(o+ o)
for w € R.

Exercise 2.23. Any complex number ¢ € C with ¢V = 1 for a given N € N is called an N root
of unity. If in addition ¢* # 1 for 1 < k < N, the root ¢ is called primitive. Show that py :=
exp(—27i/N) defines a primitive N root of unity. Furthermore, describe all N roots of unity.
Which of these roots are primitive? Determine for N € {4,7,12} all primitive N roots of unity.
[Hint: In this exercise, one needs to know that a (nonzero) polynomial of degree N has at most N
different roots, where a root of a function is an input value that produces an output of zero.]

Exercise 2.24. Letx = (x(0),...x(N—1)) T be a real-valued vector consisting of samples x(n) € R
forn € [0: N — 1]. Show that

X = DFTy - x
with X = (X(0),...X(N —1))7 fulfills the symmetry property X (k) = X(N —k) for all k €
[1:N—1]and X(0) € R. This shows that the upper half of the frequency coefficients are redundant
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if x is real-valued. Furthermore, show the converse. Given a spectral vector X with X(0) € R and

X(k)=X(N—k) forallk € [1:N — 1], then
x=DFTy'-X

is a real-valued vector (see (2.118)).
[Hint: Use the computation rules for complex numbers from Exercise 2.12.]

Exercise 2.25. Specify the DFTy matrix explicitly for N € {1,2,4}. Count the number of multi-
plications and additions when performing the usual matrix—vector product DFTy - x for a vector
x = (x; ,xz,X3,x4)T. Then conduct all steps of the FFT algorithm (two recursions are needed) and
again count the overall number of multiplications and additions needed to compute DFT} - x.

Exercise 2.26. Let N = 2" be a power of two. In (2.127), we derived the estimate pu(N) <
2u(N/2)+ 1.5N for the number of multiplications and additions needed to compute the matrix—
vector product DFTy - x. Using p1(1) = 0 (the case n = 0), show by a mathematical induction on n
that this implies 1 (N) < 1.5Nlog, (N).

Exercise 2.27. In the spectrograms shown in Figure 2.32 one can notice vertical stripes at t = 0
and f = 1. Why?

Exercise 2.28. In this exercise, we prove the sampling theorem. A CT-signal f € L?(R) is called
Q-bandlimited if the Fourier transform f vanishes for |®| > 2, i.e., f(®) = 0 for |@| > Q. Let
f € L*(R) be an 2-bandlimited function and let x be the T-sampled version of f with T :=1/(2Q),
i.e., x(n) = f(nT), n € Z. Then f can be reconstructed from x by

£6)= Y. x(n)sinc (t_T"T> - %f (%) sinc (21 —n),

nez

where the sinc function is defined in (2.96). In other words, the CT-signal f can be perfectly re-
constructed from the DT-signal obtained by equidistant sampling if the bandlimit is no greater than
half the sampling rate.

[Hint: Note that one may assume Q = 1/2 (and 7 = 1) by considering the scaled function
t+— f(¢/L). In this case, f is 1/2-bandlimited and can be extended to a 1-periodic function g.
Represent g by its Fourier series (2.79) and compute the Fourier coefficients ¢, = (g|exp,), n € Z.
Compare these coefficients with the Fourier representation (2.91) of f evaluated att =nforn € Z
(again using the fact that f is 1/2-bandlimited). As a result, one obtains ¢, = f(—n). Finally,
reconstruct f from the Fourier series of g. To this end, you need the result of Exercise 2.21.]
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